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Abstract

Accurate earthquake location and magnitude estimation play critical roles in seismology. Recent deep learning frameworks have

produced encouraging results on various seismological tasks (e.g., earthquake detection, phase picking, seismic classification,

and earthquake early warning). Most existing machine learning earthquake location methods utilize waveform information

from a single station. However, multiple stations contain more complete information for earthquake source characterization.

Inspired by recent successes in applying graph neural networks in graph-structured data, we develop a Spatio-Temporal Graph

Convolutional Neural Network (STGCN) for estimating earthquake locations and magnitudes. Our graph neural network

leverages geographical and waveform information from multiple stations to construct graphs automatically and dynamically by

an adaptive feature integration process. Given input waveforms collected from multiple stations, the neural network constructs

different graphs and fuses spatial-temporal consistency effectively from various stations based on graphs’ edges. Using a recent

graph neural network and a fully convolutional neural network as baselines, we apply STGCN to earthquakes cataloged by

Southern California Seismic Network from 2000 to 2019 and induced earthquakes collected in Oklahoma from 2014 to 2015.

STGCN yields more accurate earthquake locations than those obtained by the baseline models and performs comparably in

terms of depth and magnitude prediction, though the ability to predict depth and magnitude remains weak for all tested models.

Our work demonstrates the potential of using graph neural networks and multiple stations for better automatic estimation of

earthquake epicenters.
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Abstract18

Accurate earthquake location and magnitude estimation play critical roles in seismol-19

ogy. Recent deep learning frameworks have produced encouraging results on various seis-20

mological tasks (e.g., earthquake detection, phase picking, seismic classification, and earth-21

quake early warning). Most existing machine learning earthquake location methods uti-22

lize waveform information from a single station. However, multiple stations contain more23

complete information for earthquake source characterization. Inspired by recent successes24

in applying graph neural networks in graph-structured data, we develop a Spatio-Temporal25

Graph Convolutional Neural Network (STGCN) for estimating earthquake locations and26

magnitudes. Our graph neural network leverages geographical and waveform informa-27

tion from multiple stations to construct graphs automatically and dynamically by an adap-28

tive feature integration process. Given input waveforms collected from multiple stations,29

the neural network constructs different graphs and fuses spatial-temporal consistency ef-30

fectively from various stations based on graphs’ edges. Using a recent graph neural net-31

work and a fully convolutional neural network as baselines, we apply STGCN to earth-32

quakes cataloged by Southern California Seismic Network from 2000 to 2019 and induced33

earthquakes collected in Oklahoma from 2014 to 2015. STGCN yields more accurate earth-34

quake locations than those obtained by the baseline models and performs comparably35

in terms of depth and magnitude prediction, though the ability to predict depth and mag-36

nitude remains weak for all tested models. Our work demonstrates the potential of us-37

ing graph neural networks and multiple stations for better automatic estimation of earth-38

quake epicenters.39

Plain Language Summary40

Machine learning-based approaches have recently become prevalent in seismolog-41

ical tasks such as earthquake source characterization, which is the interest of this paper.42

The location and magnitude of an earthquake can be best determined by relating the43

motion recorded at multiple stations in a network. Therefore, it would be beneficial to44
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combine the waveforms from multiple seismic stations for source characterization. Be-45

cause of the irregular spatial distribution of seismic stations, graph convolutional neu-46

ral networks (a deep learning architecture which handles graph-structured data) have47

great potential in combining both spatial and temporal information from different seis-48

mic stations. In this work, waveforms recorded at multiple stations are passed through49

neural networks with connective links based on the similarity of waveform features and50

geographic locations. The model is tested on two datasets and compared to two pub-51

lished baselines (graph convolutional neural network and fully convolutional network).52

Compared with the baselines, STGCN achieves improved accuracy for epicenter estima-53

tion and comparable accuracy for depth and magnitude estimation.54

1 Introduction55

Earthquake source characterization plays a fundamental role in various seismic stud-56

ies, including earthquake early-warning, hazard assessment, subsurface energy exploration,57

etc. (L. Li et al., 2020). Characterization of an earthquake source can be posed as a clas-58

sical inverse problem. Its purpose is to infer the source information (location, magnitude,59

etc) from seismic recordings. Various approaches have been developed to characterize60

earthquake sources, the most well-established being traveltime-based inversion (Z. Zhang61

et al., 2017; Z. Li & van der Baan, 2016; Lin et al., 2015; H. Zhang & Thurber, 2003)62

and waveform-based inversion (Beskardes et al., 2018; Zhebel & Eisner, 2015; Pesicek63

et al., 2014; Gajewski et al., 2007). Traveltime-based methods implement a multi-step64

process, in which the arrival times of P and S waves are determined through phase de-65

tection and then associated to specific earthquakes; earthquake locations are estimated66

as an inversion process given arrival times, station locations, and a velocity model. Mag-67

nitudes are calculated based on waveform amplitudes. Though traveltime-based meth-68

ods are commonly used in seismic applications, they are susceptible to noise-related er-69

rors, particularly when estimating low-magnitude events, and fail to utilize abundant phase70

and amplitude information in the complete waveform. In contrast, waveform-based in-71
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version integrates all phase and amplitude information recorded in seismographs, result-72

ing in high quality source characterization, however, which is computationally expen-73

sive. Both methods require domain expertise to properly tune parameters in the inver-74

sion process. Deep learning for source characterization provides a data-driven alterna-75

tive, where integrated location and magnitude predictions extract full-waveform features76

with less computational expense than waveform inversion.77

Advances in algorithms and computing, and the availability of large, high-quality78

datasets have allowed machine learning techniques to attain spectacular success in seis-79

mological applications (Kong et al., 2019; Bergen et al., 2019) including phase picking80

(Zhu & Beroza, 2019), seismic discrimination (Z. Li et al., 2018), waveform denoising (Zhu81

et al., 2019), phase association (Ross et al., 2019), earthquake location (Perol et al., 2018),82

as well as magnitude estimation (Mousavi & Beroza, 2020b). Although machine learn-83

ing has long been applied to seismic event detection (J. Wang & Teng, 1995; Tiira, 1999),84

the first work to leverage recent advances in deep learning was developed by Perol et al.85

(2018), where convolutional neural networks (CNN’s) were trained to detect earthquakes86

from single station recordings and predict the source locations from among six regions.87

Though successful in establishing foundational research in machine learning for earth-88

quake location, the CNN model is restricted to waveforms from a single seismic station89

and can only classify earthquakes into broad geographic groups without providing spe-90

cific location information. Since then, more advanced single-station approaches have been91

developed to improve location accuracy. Mousavi and Beroza (2020a) build Bayesian neu-92

ral networks to learn epicenter distance, P-wave travel time, and associated uncertainty93

from single-station data.94

Recently, multi-station based machine learning methods have shown promising re-95

sults. For instance, Kriegerowski et al. (2019) develop a CNN structure that combines96

three-component waveforms from multiple stations to predict hypocenter locations, re-97

sulting in more accurate source parameters than single station methods. X. Zhang et al.98
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(2020) developed an end-to-end fully convolutional network (FCN) to predict the prob-99

ability distribution of earthquake location directly from input data recorded at multi-100

ple stations, which was extended to determine earthquake locations and magnitudes from101

continuous waveforms for earthquake early warning (X. Zhang et al., 2021). Shen and102

Shen (2021) also adopt a CNN framework, extracting the location, magnitude, and ori-103

gin time from continuous waveforms collected across a seismic network.104

Though multiple-station approaches improve upon single-station methods, the use105

of standard convolutional layers is limited in several ways: (1) CNN’s are designed to106

function on evenly-spaced grids (i.e. photographs) where information is exclusively shared107

between adjacent cells, and (2) CNN’s require the input of station locations to be static108

(i.e. recordings from station 01 must always be found at position 01 of the input file) in109

order to learn positional mapping. These assumptions are inappropriate for seismic net-110

works, which are not regularly-spaced and may record information related to non-adjacent111

stations. Additionally, station outages, the addition/removal of stations to seismic net-112

works, and the ability to select a localized array for the detection of small-magnitude events113

makes dynamic station input highly desirable for source characterization.114

Münchmeyer et al. (2020) developed an attention-based transformer model for earth-115

quake early warning, which was extented to predict hypocenters and magnitudes of events116

in Münchmeyer et al. (2021). While this model is successful in implementing a multi-117

station approach that allows for dynamic inputs, high computational complexity restricts118

inputs to a relatively small number of stations. Another method for implementing flex-119

ible, multi-station input that avoids high complexity for large networks is through graph120

convolution. This method is implemented by van den Ende and Ampuero (2020), who121

develop a multi-station source characterization model. This model regards features as122

nodes on an edgeless graph, implementing single-station convolution and global pooling.123

However, global pooling may not sufficiently extract all useful information from multi-124

ple seismic stations, as the pooling layer is ideally applied after global features are ob-125
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tained by feature fusion along the spatial dimension. Yano et al. (2021) introduce a multi-126

station technique in which edges are manually constructed. While this technique allows127

for more meaningful features to be constructed than in global pooling, manually-selected128

edges require station inputs to be fixed during training and implementation, introduc-129

ing the same limitation inherent to CNN’s. Similarly, McBrearty and Beroza (2022) pro-130

poses a GCN framework using multiple pre-defined graphs constructed on both labels131

and station locations. The model requires the arrival time and is evaluated by a synthetic132

dataset.133

In this study, to harness the full functionality of Graph Convolutional Neural Net-134

works (GCN’s) while maintaining flexibility in the location and number of seismic sta-135

tions, we design a data-driven framework, spatio-temporal graph convolutional neural136

network (STGCN), that creates edges automatically to combine waveform features and137

spatial information. In order to evaluate the performance of our approach, we compare138

STGCN to two baselines: the GCN model designed by van den Ende and Ampuero (2020)139

and the Fully Convolutional Network (FCN) designed by X. Zhang et al. (2020). We ap-140

ply all three models to the two datasets oupon which the baselines were originally tested141

and trained: (1) regional 2.5 < M < 6 earthquakes recorded by 185 seismic stations142

in Southern California from 2000 to 2019 (van den Ende & Ampuero, 2020), and (2) lo-143

cal 0 < M < 4 earthquakes recorded by 30 seismic stations in Oklahoma from 2014144

to 2015 (X. Zhang et al., 2020). Next, model stability is evaluated with different hyper-145

parameters. Finally, we examine the transferrability of STGCN to seismic networks out-146

side of the training domain.147

The layout of this article is as follows. In Section 2, we describe the fundamentals148

of graph-based CNN models and STGCN. In Section 3, we introduce the field data, train-149

ing procedures, and experimental results. In Section 4, we discuss the mechanisms which150

enhance and inhibit the performance of STGCN in the context of previous work. Finally,151

in Section 5, we present concluding remarks and discuss future work.152
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2 Methodology153

In this section, we describe our framework and the major components of our STGCN.154

A graph is constructed by a set of nodes and edges. Our proposed framework constructs155

input-dependent graphs automatically, in which a node represents a seismic station and156

the edge connecting two nodes denotes that extracted features from these two nodes will157

be combined during convolution. The input to the network is collection of three-channel158

waveforms from each seismic station, along with the latitude and longitude of the record-159

ing stations. The output is the earthquake magnitude and location denoted by latitude,160

longitude and depth.161

2.1 Overview162

Encoder

Single Station

Mag: 2.06
Depth: 3.00 km

Waveform Feature Extraction Spatial Feature Fusion Prediction

channel

Figure 1: The overview of STGCN. There are three major components in STGCN: (1)

Waveform feature extraction for obtaining time domain feature from each station inde-

pendently. (2) Spatial feature fusion for time domain feature integration from different

stations based on their geographic locations and extracted feature similarity. (3) Earth-

quake location and magnitude prediction given spatial features from the previous step.

Graph convolutional neural networks (GCN’s) are designed to handle graphical data,163

or data that can be represented by vertices connected by edges. In GCN’s, convolution164

and pooling operates along connecting edges. In CNN’s, on the other hand, convolution165

and pooling operates on regions closest together on a Euclidean grid, meaning that in-166
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put order directly impacts information-sharing and featurization. This is not the case167

for GCN’s, in which edges are not restricted to Euclidean grids but may instead be con-168

structed by any criteria. Two major advantages of GCN architectures are that they do169

not require a fixed input order, and can handle graphs with different sets of vertices. These170

properties of GCN’s fit well in seismic data analysis with inputs from multiple stations.171

It is common for stations in a seismic network to be added, removed, or repositioned,172

or for the recording quality of individual stations to fluctuate over time due to opera-173

tion and/or equipment issues. It is therefore beneficial to dynamically select relevant seis-174

mic stations for source characterization. We therefore propose a dynamic GCN frame-175

work as the basis for STGCN.176

Inspired by Y. Wang et al. (2019), our graph convolutions follow the design of Edge-177

Conv layers to automatically generate edges between nodes. Instead of manually con-178

structing fixed edges or implementing an edgeless graph, our framework learns to com-179

bine useful information from multiple stations implicitly during the training process. Our180

framework consists of three major components as shown in Figure 1:181

• Waveform feature extraction: We first extract time-domain features from the wave-182

form recorded at each seismic station using a CNN-based encoder. The three-channel183

seismic recordings are reduced to a low dimensional representation.184

• Spatial feature fusion: We then represent the seismic station network as a graph,185

in which each node (i.e. station) is connected to other nodes by automatically gen-186

erated edges. Through iterative steps of edge generation and convolution, the per-187

ceptive field is gradually enlarged. The model integrates and fuses features from188

different stations to obtain a high-order view of the recorded wavefield over the189

seismic network. The graph convolutional architecture considers both geographic190

locations and waveform feature similarity among multiple seismic stations.191
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• Prediction: The last component is the prediction module. A fully-connected neu-192

ral network outputs four normalized scalars corresponding to latitude, longitude,193

depth and magnitude based on features learned from the previous steps.194

2.2 Graph Convolutional Layers195

Spatial Feature Vectors Edge Generation
[K-Nearest Neighbors (K = 4)]

= max-pool

f (          )

f (          )

f (          )

f (          )

g (                           )

g (                           )

g (                           )

g (                           )

-
-
-
-

+

+

+

+

Feature Update

Figure 2: The overview of a graph convolutional layer. Each graph convolutional layer

consists of two parts: (1) Edge generation among different stations. (2) Feature updating

for each station based on the generated links. In the figure, the feature of the red sta-

tion is updated based on four nearby blue stations. g(·) and f(·) represent two learnable

networks.

The spatial feature fusion process is the most important component and consists196

of four graph convolution layers. The goal of each graph convolution layer is to enlarge197

the perceptive field by combining the extracted feature of each seismic stations and auto-198

selected neighbor stations. As shown in the Figure 2, each graph convolution layer can199

be broken down into two steps:200

• Edge generation: Each station node is connected to several other station nodes201

which show maximum similarity to the node. Similarity measurements are based202

on two criteria:203
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1. Geographic distance: The geographic distance is the intuitive choice, since ad-204

jacent stations tend to record related signals due to similar wave paths. Addi-205

tionally, events are more likely to be mutually recorded by stations in close prox-206

imity, especially in the case of small-magnitude events.207

2. Feature similarity: As the same earthquake event can be recorded by distant208

stations in a large area, waveform similarity provides a complimentary perspec-209

tive to geographic distance. We compare l2 distance of features from station i210

and j directly by ||xi−xj ||22, and thus we can combine two waveform features211

from two stations further away, where xi and xj are the extracted feature vec-212

tors.213

In edge generation, we link every station with its K-nearest neighbors based on214

their similarity, where K is a tunable hyperparapeter. In our framework, both ge-215

ographic proximity and waveform feature similarity are considered. In practice,216

the similarity between waveforms can also be affected by other factors, such as wave217

path and signal to noise ratio. By training with a large amount of samples with218

different sets of seismic stations with distinct spatial distributions, the network219

will learn to embed these implicit and complex factors to low dimensional features220

automatically, in order to minimize the misfit between labels and predictions.221

• Feature update: Given the edges, we update the features of each stations by

x̃i = max
j∈Ndistance(i)

g(xi − xj) + f(xi) + max
j′∈Nfeature(i)

g(xi − x′j) + f(xi), (1)

where the max operation refers to the element-wise max-pooling. xi, xj and x′j222

are features of station i, j and j′, respectively. j is a neighbor of i based on ge-223

ographic distance and j′ is a neighbor of i by measuring feature similarity from224

the previous edge generation step. g(·) and f(·) are two trainable fully connected225

neural networks. x̃i is the updated feature of station i. Max pooling is conducted226

along the constructed edges to combine information from the K-nearest neighbors227

of i. The update is asymmetric for station i and j to encourage the update pro-228
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cesses of i and j to be different, as it is possible that only one of the stations records229

the event.230

2.3 Architecture231

A graphical illustration of the architecture is presented in Figure 3. Time domain232

waveform features are extracted from each station independently using an encoder with233

eleven convolutional layers. The extracted features are used in spatial feature fusion, in234

which time domain features are concatenated to station locations before each graph con-235

volution. Our STGCN uses four groups of graph convolutional layers to obtain spatially236

hierarchical features. Two graphs are generated within each group: one in which edges237

are generated based on geographic distance, and one in which edges are generated based238

on waveform feature similarity. After convolution, the features obtained from both graphs239

are summed together prior to max pooling. For graphs in which geographic distance dic-240

tates edges, two scalars containing station coordinates are concatenated to each updated241

feature before each convolution. After all four groups of convolutions, the features from242

each group are concatenated together as a hierarchical representation for final source char-243

acterization regression.244

After all feature outputs are concatenated, the features are individually processed

with a final CNN layer. The output is then regressed to scalar predictions of latitude,

longitude, depth, and magnitude using a fully-connected neural network. The objective

function is

L =
1

N

N∑
i=1

1

4
||yi − ŷi|| (2)

where ŷi and yi are the prediction and ground truth values of ith sample, respectively,245

represented as vectors of latitude, longitude, depth and magnitude.246
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Figure 3: Overview of STGCN. STGCN includes three components, following the frame-

work outlined in Figure 1.

3 Experiments and Results247

In this section, the data, experiment settings, and results are discussed. We eval-248

uate STGCN with three major experiments: (1) performance on two datasets compared249

to GCN and CNN baselines, (2) stability analysis of STGCN with various settings, and250

(3) the transferrability of STGCN to regions outside of the training domain.251
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3.1 Data Description252

(a) Southern California (b)  Oklahoma

Figure 4: Maps of the two target regions used in this study: (a) Southern California and

(b) Oklahoma. The distribution of all seismic stations (black triangles) and earthquakes

(red stars) are shown. The areas used selected the transferability study are contained

within the blue squares. In the map of Southern California, the 30 stations selected for

fixed input testing are yellow triangles, and the 30 stations selected for the transferability

study are surrounded by a blue circle.

Consistent with target regions in the GCN baseline (van den Ende & Ampuero, 2020)253

and the FCN baseline (X. Zhang et al., 2020), we correspondingly collected earthquake254

datasets from Southern California and Oklahoma. The former data including station in-255

ventory, earthquake catalogue and waveforms are downloaded from the Southern Cal-256

ifornia Seismic Network (SCSN) and Southern California Earthquake Data Center (SCEDC) (Hutton257

et al., 2010) from January 2000 to June 2019 and accessed using ObsPy (Beyreuther et258

al., 2010). STGCN makes predictions by outputting values between -1 and 1. Thus we259

constrain our the labels of events to fit within a normalized range. We limit stations and260
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events to a geographic subset from 32◦ to 36◦ latitude, and from −120◦ to −116◦ lon-261

gitude (van den Ende & Ampuero, 2020). We select events from a depth range of 0-30262

km and a magnitude range of 2.5 < M < 6. The final dataset contains 2, 209 events263

recorded by 185 broadband seismic stations. On average, 48 seismic stations are func-264

tional for all events. The maximum number of functional seismic stations we can down-265

load raw waveforms from is 142. The spatial distribution of events and stations is illus-266

trated in Figure 4. After removing the instrument response, the signals are bandpass fil-267

tered from 1−8 Hz. In the second target region, we collect induced earthquake dataset268

in Oklahoma from March 2014 to July 2015 (Nanometrics Seismological Instruments,269

2013). We limit the dataset to events between 34.482◦ to 37◦ latitude, and from −98.405◦270

to −95.527◦ longitude with depths from 0-12 km (X. Zhang et al., 2020). Magnitudes271

range from 1.5 < M < 4. The instrument response is removed, and waveforms are band-272

pass filtered from 1− 8 Hz. The final dataset contains 3, 456 events recorded from 30273

stations.274

An arbitrary scaling factor of 1e7 is multiplied across both datasets to raise the ex-275

tremely small amplitudes to an acceptable range without eliminating magnitude infor-276

mation. Each recording contains 200 sec of seismic displacement collected by three or-277

thogonal channels, which is interpolated into 4, 096 evenly spaced samples, resulting in278

a sampling rate of approximately 20 Hz. We use a sliding window to handle the uncer-279

tainty of the arrival time that would occur in practical use by cropping shorter time seg-280

ments from longer raw waveforms at different positions in time. Thus, the actual arrival281

signal can locate at different time steps and the model will learn to extract proper rep-282

resentation from raw seismic waveforms that have different arrival times during train-283

ing. In the end, we use a sliding window with a length of 100 sec and a stride of 5 sec284

to create ten 100 sec samples from each 200 sec recording. Each sample is associated with285

a label containing latitude, longitude, depth and magnitude values normalized from −1286

to 1.287
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One advantage of our GCN over CNN’s or GCN’s with fixed edges is its ability to288

make predictions using dynamic inputs (i.e., the selected stations and their order in the289

input file are not necessarily the same for each sample). To demonstrate this ability, we290

perform tests with STGCN and the GCN baseline using Southern California data with291

dynamic inputs, in which functioning stations are randomly selected for each event. How-292

ever, to make a fair comparison between STGCN and the FCN baseline, the same sta-293

tions must occupy the same position in each input. Using the Southern California and294

Oklahoma datasets, we train STGCN as well as both baselines on thirty fixed stations295

to compare the performance of all methods. The GCN models can be adaptively trained296

to make predictions given any number of input stations. If the number of functioning297

stations is less than the target number of stations for any given event, the input is padded298

with zeroed channels and the coordinates of the missing stations are set to (−1,−1). For299

the two datasets, events are omitted where < 25 stations are functioning. In the South-300

ern California dataset where phase reports from SCEDC are available, only events with301

> 5 stations recording available P and/or S phases are kept, considering the sparse cov-302

erage of the stations in a large region. Overall, each event in the Southern California dataset303

is detected by an average of 31 stations.304

3.2 Training Procedure305

In the experiments, we use AdamW as the optimizer with a learning rate of 3e−4.306

The l2 regularization term λ is 1e−4. Models are trained for 400 epochs with early stop-307

ping after 50 epochs without validation error improvement, from which we select the model308

with the best validation performance. We use a 20-80 split to divide each dataset into309

testing and training data, and reserve 20% of the training data for validation. The datasets310

are not randomly shuffled, but rather separated by time in which training data precedes311

testing data. This approach avoids potential information leakage (Kaufman et al., 2012)312

which might occur from spatially and temporally localized swarms. This method of split-313

ting data also better simulates a real-use case, in which historic earthquakes would be314
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(a) Southern California (b)  Oklahoma

Figure 5: The monthly earthquake frequency distribution for (a) Southern California and

(b) Oklahoma. The temporal boundaries between the training, validation, and testing

data are indicated by color.

used to train a model to detect more recent events on a network where station config-315

uration and seismic characteristics may evolve over time. Figure 5 shows the monthly316

event frequency distribution in the training and testing dataset.317

When testing transferability, models are tuned using a learning rate of 3e−5 for318

2,000 epochs with an early stopping cutoff of 100 epochs without validation improvement.319

All weights in the model were permitted to retrain.320

3.3 Performance Comparison321

To evaluate our developed framework, we compare the testing mean absolute er-

ror (MAE) of our proposed model (referenced as STGCN) with the baseline model by

van den Ende and Ampuero (2020) (referenced as GCN) when applied to 100 randomly-

selected stations from the Southern California dataset. MAE is calculated as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (3)

where ŷi is the model’s prediction, yi is the true value, and n is the total number of pre-322

dictions. In graph convolution, seven edges (K=7) were generated between the each sta-323
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(a) MAE of Location Prediction (b)  MAE of Magnitude Prediction

Figure 6: (a) MAE of each tested model where the location error is measured in km. Lo-

cation error refers to the euclidean distance between the predicted location and the true

event location. (b) MAE of the magnitude predictions from the graph convolutional neu-

ral networks when applied to the Oklahoma dataset with 30 fixed stations, the Southern

California dataset with 30 fixed stations, and the Southern California dataset with 100

dynamically selected stations.

tion and the most similar nodes. The number of edges K is a tunable parameter, the im-324

pact of which we evaluate in the following section. Both models make predictions nor-325

malized between -1 and 1. The values are first reverted from the normalized scalars to326

degrees of latitude and longitude, kilometers of depth, and magnitude values. For dis-327

tance error calculations, degrees of latitude and longitude are converted to kilometers328

using conversions of 110 km/degree and 92 km/degree, respectively. The previous anal-329

ysis examines the performance of STGCN when applied to dynamically selected stations330

from a large network. To further demonstrate STGCN’s capabilities, we extend our tests331

to two different datasets (Oklahoma and Southern California), tested in comparison to332

two baselines (a GCN baseline (van den Ende & Ampuero, 2020) and a FCN baseline333

(X. Zhang et al., 2020)). As the FCN baseline requires a fixed input consisting of 30 sta-334
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Latitude MAE (km) MSE (102 km) R2

STGCN 7.788± 10.849 1.783± 12.697 0.977

GCN 10.201± 11.791 2.431± 12.438 0.969

Longitude MAE (km) MSE (102 km) R2

STGCN 7.563± 9.408 1.457± 8.209 0.982

GCN 10.095± 12.086 2.480± 11.865 0.970

Depth MAE (km) MSE (102 km) R2

STGCN 3.486± 2.958 0.209± 0.377 0.256

GCN 3.837± 3.166 0.247± 0.399 0.120

Magnitude MAE MSE R2

STGCN 0.111± 0.115 0.0257± 0.0824 0.837

GCN 0.120± 0.126 0.0302± 0.105 0.807

Table 1: Performance of the STGCN model proposed in this paper and the GCN baseline

when applied to the Southern California dataset with dynamic inputs. MAE refers to the

mean absolute error (Equation 3) and MSE refers to the mean squared error (Equation

4), where a lower value indicates less error. The R2 value (Equation 5) is a measure of

how strongly variation in the predicted values are related to variation in the ground truth

value, where a value close to 1 is indicative of high accuracy.

tions, the 30 stations active for the greatest number of events in the Southern Califor-335

nia dataset were used as the inputs for all samples. The selected stations are highlighted336

–18–



manuscript submitted to JGR: Solid Earth

in Figure 4. As the Oklahoma network consists of only 30 stations, all 30 stations were337

used. The performance overview is shown in Figure 6, which clearly shows that our pro-338

posed model achieve higher localization accuracy than baselines for all datasets. The FCN339

baseline doesn’t support magnitude prediction, and two GCN-based models achieve com-340

parable performance.341

STGCN makes predictions with an average of 8.3 km less location error, a 49% im-342

provement across all tested datasets when compared to the FCN baseline, and has the343

ability to predict magnitude as well as location. Across all datasets, STGCN makes pre-344

dictions with an average of 3.8 km less location error than the GCN baseline, a 28% im-345

provement. While magnitude does not improve for every individual dataset, STGCN shows346

an overall improvement in magnitude when all tested datasets are considered.347

The detailed evaluation results of Southern California dataset with dynamic seis-

mic stations are shown in Table 1. In terms of MAE, our GCN model outperforms the

GCN baseline for all predictions (latitude, longitude, depth, magnitude), with most im-

provement achieved in latitude and longitude prediction. In addition to MAE, the mean

squared error and R2 values are displayed. Mean squared error is calculated as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (4)

where ŷi is the model’s prediction, yi is the true value, and n is the total number of pre-

dictions. R2 is calculated as:

R2 = 1−
n∑

i=1

(ŷi − yi)2

(yi − ȳ)2
, (5)

where ŷi is the model’s prediction, yi is the true value, ȳ is the average true value, and348

n is the total number of predictions. STGCN demonstrates better performance with both349

measures of accuracy and is more consistent (smaller standard deviations in prediction350

accuracy). However, both STGCN and the GCN baseline demonstrate exceedingly low351

R2 values for depth prediction. In terms of magnitude, STGCN and GCN perform com-352

parably when all measures of accuracy are considered.353
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Latitude MAE (km) MSE (102 km) R2

STGCN 4.487± 9.264 1.060± 9.484 0.947

GCN 7.166± 12.414 2.055± 14.820 0.897

FCN 9.219± 16.418 3.545± 23.070 0.822

Longitude MAE (km) MSE (102 km) R2

STGCN 4.151± 7.035 0.667± 5.502 0.937

GCN 5.934± 8.144 1.015± 5.547 0.904

FCN 9.308± 11.883 2.279± 8.244 0.785

Depth MAE (km) MSE (102 km) R2

STGCN 1.760± 1.473 0.053± 0.083 0.026

GCN 1.701± 1.423 0.049± 0.078 0.090

FCN 1.865± 1.546 0.059± 0.084 -0.086

Magnitude MAE MSE R2

STGCN 0.154± 0.123 0.0388± 0.0668 0.787

GCN 0.195± 0.142 0.0582± 0.0831 0.681

Table 2: Performance of STGCN, GCN and FCN baselines when applied to the Oklahoma

dataset with fixed inputs. MAE refers to the mean absolute error (Equation 3) and MSE

refers to the mean squared error (Equation 4), where a lower value indicates less error.

The R2 value (Equation 5) is a measure of how strongly variation in the predicted values

are related to variation in the ground truth value, where a value close to 1 is indicative of

high accuracy.
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Latitude MAE (km) MSE (102 km) R2

STGCN 8.022± 9.664 1.577± 9.297 0.970

GCN 11.263± 11.696 2.637± 8.010 0.949

FCN 14.415± 21.827 6.842± 34.697 0.869

Longitude MAE (km) MSE (102 km) R2

STGCN 7.840± 11.645 1.971± 19.095 0.972

GCN 11.485± 12.199 2.807± 10.252 0.960

FCN 16.369± 24.872 8.865± 47.323 0.874

Depth MAE (km) MSE (102 km) R2

STGCN 3.869± 3.380 0.264± 0.411 −0.016

GCN 4.264± 3.384 0.296± 0.403 -0.141

FCN 4.105± 3.324 0.279± 0.431 -0.074

Magnitude MAE MSE R2

STGCN 0.142± 0.117 0.0340± 0.0624 0.796

GCN 0.120± 0.118 0.0283± 0.0880 0.830

Table 3: Performance of STGCN, GCN and FCN baselines when applied to the Southern

California dataset with fixed inputs. MAE refers to the mean absolute error (Equation

3) and MSE refers to the mean squared error (Equation 4), where a lower value indicates

less error. The R2 value (Equation 5) is a measure of how strongly variation in the pre-

dicted values are related to variation in the ground truth value, where a value close to 1 is

indicative of high accuracy.
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Figure 7: Testing comparison on 100 dynamically selected stations from the Southern

California dataset. “STGCN” and “GCN” denote the performance of our framework

and the published baseline, respectively. In the scatter plot, each point represents an

event, and a position on the diagonal line corresponds to perfect agreement between the

predicted value (x-axis) and the true value (y-axis). Latitude and longitude values are

displayed in degrees and depth values are displayed in kilometers

In both datasets with fixed seismic stations, the proposed model shows significant354

improvement over both baselines in terms of location error, with most improvement aris-355

ing from latitude and longitude predictions. This improvement is supported by several356

performance metrics (Table 2 and Table 3). Overall location error is 5.28 km for the Ok-357

lahoma dataset and 11.87 km for the Southern California dataset. The higher loss for358

the Southern California dataset may be attributable to the larger size of the region. As359

locations in both the smaller and larger regions are normalized to values between -1 and360
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Figure 8: Testing comparison on 30 fixed stations from the Oklahoma dataset.

“STGCN”, “GCN”, and ”FCN” denote the performance of our framework, the pub-

lished GCN baseline, and the published FCN baseline, respectively. In the scatter plot,

each point represents an event, and a position on the diagonal line corresponds to perfect

agreement between the predicted value (x-axis) and the true value (y-axis). Latitude and

longitude values are displayed in degrees and depth values are displayed in kilometers.

Magnitude is omitted for the FCN, as this model makes only location predictions

1, errors in the initial prediction will result in larger errors when converted to kilome-361

ters in larger regions. In addition, larger regions may include a greater range of struc-362

tural complexity that may be more challenging for the model to learn.363

Figure 7, 8 and 9 plot all predictions to give a richer understanding of model ca-364

pacity beyond individual quality metrics. Observation of individual predictions makes365

it clear that while both models succeed in learning a meaningful mapping to latitude and366
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Figure 9: Testing comparison on 30 fixed stations from the Southern California dataset.

“SPCGN”, “GCN”, and ”FCN” denote the performance of our framework, the published

GCN baseline, and the published FCN baseline, respectively. In the scatter plot, each

point represents an event, and a position on the diagonal line corresponds to perfect

agreement between the predicted value (x-axis) and the true value (y-axis). Latitude and

longitude values are displayed in degrees and depth values are displayed in kilometers.

Magnitude is omitted for the FCN, as this model makes only location predictions.

longitude predictions, depth predictions are highly scattered and are little better than367

predictions of the mean.368

While our proposed model predicts magnitude with less error than the GCN base-369

line on the Oklahoma dataset, the model has greater magnitude errors when applied to370

the Southern California dataset (Table 1). All models perform extremely poorly when371

predicting depth. Therefore STGCN does not improve depth or magnitude prediction,372
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where it remains comparable to the baseline models. However, STGCN substantially im-373

proves latitude and longitude predictions, resulting in higher quality location estimations374

.375

3.4 Stability Analysis376

(b) Number of Stations (c)  Number of Edges

(a)  Random Seed

Figure 10: Stability analysis permuting (a) the random seed used to select stations for

the model input, (b) the number of stations used for prediction, and (c) the number of

edges used to connect nodes during graph convolution.
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There are three critical hyper-parameters in STGCN: the number of neighbors con-377

sidered for edge generation, the total amount of observed stations, and the random se-378

lection of seismic stations when creating datasets. We use the Southern California Dasaset379

to vary these hyperparameters in order to assess the stability of STGCN. The results of380

the paramater permutation are shown in Figure 10.381

For each prediction, a random subset of functional stations were selected. We per-382

mute the random seed during the selection of 100 stations, making predictions using 7383

edges. We find that the random subsets return similar results for all predictions except384

for magnitude, which shows a higher degree of variation. With the exception of magni-385

tude, prediction accuracy remains similar when 25, 50, 75, or 100 stations are used. Mag-386

nitude prediction improves substantially when 100 stations are selected. A similar pat-387

tern is observed in the edge stability, where the number of generated edges has the great-388

est influence on magnitude performance. Overall, the model appears to be generally sta-389

ble, with magnitude demonstrating the greatest sensitivity to hyperparameter tuning.390

3.5 Transferability391

In many real use cases, a studied network may have a small or nonexistent cata-392

logue of events with which to train a predictive model. It is therefore useful to test the393

effectiveness of a pretrained model when applied to events in an unseen region. Figure 11394

shows the performance of a model trained on the Southern California dataset and tested395

on the Oklahoma dataset and vice versa when tuned with samples ranging from 0-250.396

Regardless of the number of training samples, the validation and testing data remained397

the same for each training and testing. The performance of a tuned model is compared398

to the performance of a randomly-initialized model trained with the same number of sam-399

ples to examine whether or not pretraining is beneficial.400

Two equal-area regions were selected from the Oklahoma and Southern California401

datasets. From the Southern California dataset, 30 fixed stations were selected which402
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(b) Train: Oklahoma    Test: California

(a)  Train: California     Test: Oklahoma

Figure 11: Transferability of (a) model trained on Southern California data and tested

on Oklahoma data and (b) model trained on Oklahoma data and tested on Southern

California data. The plots show the prediction error of the pretrained model (green) and

randomly initialized model (blue) when a range of 0 (no retraining) to 250 events are

used for training. The panels to the left show the euclidean location errors between the

predicted and true hypocenter measured in km, and the panels to the right show the mag-

nitude errors. The dashed line corresponds to the performance when randomly initialized

weights are trained with all available training data from the region.
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most closely resemble the distribution of the Oklahoma dataset with respect to minimum,403

maximum, and mean distance between stations. The Oklahoma dataset consists of a much404

larger training dataset comprising 2, 025 events while the Southern California dataset405

contains only 254 events. Overall, when pretrained models are applied to a new region406

with no tuning, the models perform poorly. However, the pretrained models nonethe-407

less predict location with greater accuracy than the models trained from random weights.408

The benefits of transfer learning are most marked for very small datasets - after approx-409

imately 100 events are used for training, using pretrained models has less of an advan-410

tage over randomly initialized weights.411

While the ranges of area and depth are equal between the two datasets, the mag-412

nitudes of the Southern California dataset are normalized from 2.5-6 while the magni-413

tudes of the Oklahoma dataset are normalized between 1.5-4. The tuned models were414

able to adapt to the change in normalization given only ten events.415

4 Discussion416

Our GCN has several advantages over the FCN baseline model. One of the primary417

advantages is the ability to make predictions on a dynamic set of inputs, allowing the418

model to adapt to station outages, network alterations, and station subsetting. As STGCN419

featurizes individual stations rather than an ordered network image, the model can be420

easily trained to predict using any number of stations without architectural alteration.421

The FCN baseline uses an image-to-image strategy, outputting a probability vol-422

ume in which the highest values correspond to the event location. This has the advan-423

tage of predicting a probability amplitude, which X. Zhang et al. (2020) demonstrate as424

a useful measure of prediction uncertainty, especially in cases where earthquakes occur425

outside the bounds of the modeled region. However, the volumetric output comes at the426

cost of resolution limitation due to discretization. The gridded, three-dimensional out-427

put also requires a high degree of model complexity. The FCN baseline consequently com-428
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(a)

(d)

(c)(b)

(e)

Figure 12: Graphs constructed by different layers of the graph neural network, (a) graph

convolution layer based on locations of seismic stations (b) 1st, (c) 2nd, (d) 3rd and (e)

4th graph convolution layer based on the similarity of extracted features of seismic sta-

tions. Stations that detected an event in the catalogue are denoted by red symbols, while

stations that did not record the event are shown in blue. Red and blue edges are gener-

ated for updating features of red and blue stations, respectively. Star represents the event

location. The information from stations with the event signal are clustered in deeper

layers.
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prises approximately 27 million parameters while our GCN with scalar predictions com-429

prises fewer than 0.24 million parameters.430

The baseline GCN (van den Ende & Ampuero, 2020) implements edgeless graph431

convolution (i.e. station-by-station convolutions with global pooling) while GCN model432

developed in this paper implements convolution and pooling over dynamically-generated433

edges. Figure 12 gives insight into the edge generation process. For clear visualization,434

we select a case with 50 seismic stations with K = 5. In the edges generated by wave-435

form similarity, stations that have recorded an event are generally connected to other436

recording stations, forming different clusters than the edges generated by geographic prox-437

imity. This indicates that the model is able to successfully extract waveform informa-438

tion and associate stations in order to characterize an event. Moreover, the generated439

graphs from the 3rd and 4th graph convolution layer based on the extracted feature sim-440

ilarity converge to the same structure, indicating that the number of graph convolutional441

layers is large enough to connect informative seismic stations together. If we only con-442

sider the geographic proximity, one seismic station recording the earthquake will con-443

nect to seismic stations without signal records only. It denotes that the feature similar-444

ity is a proper complement of geographic proximity during aggregating features from dif-445

ferent seismic stations.446

After training in one region, STGCN does not transfer well to other regions with-447

out retraining. This indicates that the models are encoding site-specific information such448

as velocity structure or types of seismicity (i.e. anthropogenically induced earthquakes449

in the Oklahoma dataset) as well as different magnitude range which affect predictions450

in a different region. Performance improves significantly when a small amount of train-451

ing data is used to tune the model. Using transfer learning to adapt a model from one452

region to another is more effective than training a randomized model when a limited dataset453

is available. However, best results are achieved when a model is trained for the region454

of implementation using a catalogue of several hundred events.455
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While STGCN makes improvements in functionality and location error with respect456

to the baseline models, the proposed framework faces challenges. Substantial improve-457

ments have been made in the prediction of latitude and longitude, and an overall improve-458

ment in magnitude is observed. However, magnitude does not improve in every dataset,459

and depth predictions are highly inaccurate for all models. Accurate depth estimation460

also poses a challenge for classical inversion methods (Zonno & Kind, 1984; Billings et461

al., 1994; M. Zhang et al., 2014). As the machine learning models tested in this work are462

trained in a purely supervised manner, the learned predictions are fundamentally lim-463

ited by the accuracy of the training data. Errors in training data are likely to be a lead-464

ing driver in model error in earthquake characterization, as systematically demonstrated465

by X. Zhang et al. (2020) by observing the effects of induced label noise on models trained466

with synthetic data.467

We perform a similar test, training our model using synthetic data generated with468

Pyrocko (Developers, n.d.). For each sample, receivers were placed randomly along a flat469

surface, and a double-couple source with a random strike, dip, rake, magnitude, and lo-470

cation was seeded. Both stations and events were placed with uniform probability in a471

4◦ latitude by 4◦ longitude area (between 7◦ and 11◦ in the simulated volume). For events,472

depth was constrained from 0.7 − 10 km, strike from 0 − 180◦, dip from 0 − 90◦, and473

rake from 0 − 360◦ with a magnitude range of 2.5 < M < 6. Using a precalculated474

Green’s Function (https://greens-mill.pyrocko.org/iceland reg v2-453e36), wave475

propagation was simulated through a 1-D velocity structure and recorded by the stations.476

As the simulated waveforms have a sampling frequency of 2 Hz, the samples were dec-477

imated to 20.24 Hz to be compatible with our model. We layered random noise over the478

synthetic signals to make prediction more challenging. Non-detecting stations which record479

only random noise without earthquake signal are also included in the input files. For smaller480

events (2.5 < M < 4), 0 − 23% of receivers were non-detecting, and for larger events481

(4 < M < 6), 0 − 13% of receivers were non-detecting. A total of 30 receivers were482

included in each sample.483
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As demonstrated by Figure 13, when label error is eliminated, depth predictions484

dramatically improve. This indicates that the inability to correctly predict depth is a485

reflection of data quality rather than shortcomings within the model design. Note that486

the synthetic experiment was designed for method validation and may not applicable to487

our field data due to different aspects (e.g., waveform frequency, velocity structure, etc).488

Future improvement in depth prediction must therefore be solved by accounting for in-489

correct depth labels. One solution may be to train using higher-quality datasets in which490

meticulous relocation has been implemented. However, reliance on large quantities of re-491

located sample events significantly restricts the areas in which supervised models can op-492

erate. Another solution may be to avoid purely supervised methods, implementing so-493

lutions which combine physics-based constraints with data-driven learning to overcome494

inaccuracy in depth labels.495

Another limitation that STGCN shares with the baselines is the ability to make496

predictions only within a certain range of area, depth, and magnitude, which is also the497

limitation of all machine-learning-based frameworks. The model outputs normalized val-498

ues between -1 and 1 which correspond to a range selected at the beginning of training.499

The spatial restrictions are similar to the bounds set in inversion-based methods and are500

arguably less limiting, as the predictions made by our model are continuous and there-501

fore not bound by grid-spacing. However, STGCN is more limited than non-machine learn-502

ing methods with regard to magnitude prediction. Magnitudes falling above or below503

the training range cannot be predicted by STGCN or the deep learning baselines. The504

limited range of predictions adversely impacts the usefulness of the deep learning meth-505

ods for applications such as Earthquake Early Warning, where magnitude saturation must506

be avoided. The limitations posed by fixed prediction ranges are made less severe by STGCN’s507

ability to be tuned to new ranges with small amounts of training data. However, the fixed508

prediction ranges nonetheless represent a weakness in our framework.509
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Figure 13: Testing performance of STGCN on synthetic data from 30 randomly-placed

stations. In the scatter plot, each point represents an event, and a position on the di-

agonal line corresponds to perfect agreement between the predicted value (x-axis) and

the true value (y-axis). Latitude and longitude values are displayed in degrees and depth

values are displayed in kilometers.

5 Conclusions and Future Work510

In this work, we design a graph convolutional neural network for earthquake source511

characterization based on waveform records from multiple stations. With experiments512

performed in two seismic environments, we demonstrate that STGCN outperforms both513

the FCN and GCN baselines, yields stable results using a range of hyperparameters, and514

can be applied to new datasets after retraining with a small number of events. One of515

the major advantages of our framework compared with other deep learning source char-516

acterization networks is that STGCN does not require static input or a manually gen-517
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erated graph structure. Instead, all feature generation and fusion processes are learned518

automatically from the data to synthesize waveform features and spatial data.519

Future improvements to our work include enhancing model capacity to predict depth,520

a problem which synthetic tests reveal to be primarily caused by label error. This may521

be overcome with higher-quality training data, or through methods such as physics-informed522

machine learning. Our work thus far has focused on developing architecture to charac-523

terize an earthquake given a discrete time series known to contain an event. Further adap-524

tation of the core model is required to effectively process continuous waveforms in which525

an event may not be present, or in which multiple events are contained within one win-526

dow. An additional feature to incorporate is uncertainty quantification. Given the rel-527

atively high degree of error in all methods for earthquake location, uncertainty is a stan-528

dard feature in comprehensive catalogues. Uncertainty can be incorporated internally529

(i.e. to aid in station selection) and also applied the final predictions to identify poorly-530

constrained events. Another interesting application is to transform the learning process531

in an online learning manner in which a model might adaptively retrain as more recent532

earthquakes are included in the catalogue.533

6 Open Research534

Waveform data used in this study were downloaded from the Incorporated Research535

Institutions for Seismology (http://ds.iris.edu/ds/nodes/dmc) and the Southern Cal-536

ifornia Earthquake Data Center (https://scedc.caltech.edu/data/waveform.html).537

The maps in our paper were made using Generic Mapping Tools (Wessel et al., 2013)538

and Python. The forward modelling was performed with Pyrocko (Developers, n.d.) us-539

ing the icelandregv2 Green’s function available at https://greens-mill.pyrocko.org/540

iceland reg v2-453e36.541
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