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Abstract

The Madden–Julian Oscillation (MJO) is the dominant source of sub-seasonal variability in the tropics. It consists of an

Eastward moving region of enhanced convection coupled to changes in zonal winds. It is not possible to predict the precise

evolution of the MJO, so sub-seasonal forecasts are generally probabilistic. We present a deep convolutional neural network

(CNN) that produces skilful state-dependent probabilistic MJO forecasts. Importantly, the CNN’s forecast uncertainty varies

depending on the instantaneous predictability of the MJO. The CNN accounts for intrinsic chaotic uncertainty by predicting

the standard deviation about the mean, and model uncertainty using Monte-Carlo dropout. Interpretation of the CNN mean

forecasts highlights known MJO mechanisms, providing confidence in the model. Interpretation of forecast uncertainty indicates

mechanisms governing MJO predictability. In particular, we find an initially stronger MJO signal is associated with more

uncertainty, and that MJO predictability is affected by the state of the Walker Circulation.
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Abstract12

The Madden–Julian Oscillation (MJO) is the dominant source of sub-seasonal variabil-13

ity in the tropics. It consists of an Eastward moving region of enhanced convection cou-14

pled to changes in zonal winds. It is not possible to predict the precise evolution of the15

MJO, so sub-seasonal forecasts are generally probabilistic. We present a deep convolu-16

tional neural network (CNN) that produces skilful state-dependent probabilistic MJO17

forecasts. Importantly, the CNN’s forecast uncertainty varies depending on the instan-18

taneous predictability of the MJO. The CNN accounts for intrinsic chaotic uncertainty19

by predicting the standard deviation about the mean, and model uncertainty using Monte-20

Carlo dropout. Interpretation of the CNN mean forecasts highlights known MJO mech-21

anisms, providing confidence in the model. Interpretation of forecast uncertainty indi-22

cates mechanisms governing MJO predictability. In particular, we find an initially stronger23

MJO signal is associated with more uncertainty, and that MJO predictability is affected24

by the state of the Walker Circulation.25

Plain Language Summary26

The Madden-Julian Oscillation (MJO) is an important tropical climate phenomenon.27

It consists of enhanced convective thunderstorms and anomalous winds that propagate28

eastward along the Equator for a few weeks. The MJO is difficult to predict and exhibits29

great variability. This means that forecasts are often probabilistic. However, current mod-30

els have difficulty in correctly predicting the uncertainty in the forecast based on the cur-31

rent conditions. In this paper, we propose a model using neural networks capable of mak-32

ing reliable probabilistic forecasts. We interpret the behaviour of the algorithm to ver-33

ify its consistency with the known physical mechanisms of the MJO and to highlight new34

physical conditions that affect MJO prediction uncertainty.35

1 Introduction36

The Madden-Julian Oscillation (MJO: Madden & Julian, 1971) is an envelope of37

enhanced tropical convection with associated changes to the atmospheric circulation. It38

is characterised by its period of 40-50 days, its planetary scale, and its Eastward prop-39

agation at speeds of 4–8 ms−1. It is the major source of predictability on sub-seasonal40

timescales in the Tropics (Zhang, 2013) and influences phenomena such as the North At-41

lantic Oscillation and Arctic sea ice cover through global teleconnections (Ferranti et al.,42
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1990; Cassou, 2008; Yoo et al., 2012; Henderson et al., 2014). Subseasonal forecasts are43

of great socio-economic value through their potential to predict extreme weather events44

several weeks ahead (Vitart & Robertson, 2018). There is therefore great interest in im-45

proving predictions of the MJO, and in understanding sources of MJO predictability (Kim46

et al., 2018).47

The chaotic nature of the Earth System means that it is not possible to predict the48

precise evolution of the MJO beyond a few days, so subseasonal forecasts are generally49

probabilistic (J. Slingo & Palmer, 2011; Bauer et al., 2015). If the probabilistic forecast50

mean is assessed, averaging out the unpredictable ‘noise’, current dynamical models have51

a prediction skill up to three weeks (Lim et al., 2018; Vitart, 2017). However, system-52

atic biases remain, especially in the propagation of the MJO convective anomaly over53

the Maritime Continent (Kim et al., 2016; Barrett et al., 2021; Li et al., 2020). In con-54

trast to the mean skill, the probabilistic skill of MJO forecasts is low (Lim et al., 2018;55

Vitart, 2017). Improving probabilistic forecasts is essential to quantify our confidence56

in the predictions, and to advance understanding of the predictability of this phenomenon.57

While prediction skill is a property of the forecast model, predictability is a prop-58

erty of the Earth-system. MJO predictability studies have focused on the theoretically59

achievable prediction limit that one could achieve with a perfect model, quantified as 6–60

7 weeks (e.g. Neena et al., 2014; Wu et al., 2016; Kim et al., 2018). This is complemen-61

tary to an approach taken in the medium-range forecasting community, where ‘predictable’62

forecasts are those for which the forecast uncertainty is small (e.g. Palmer, 2000). This63

identification is possible because medium-range forecasts exhibit state-dependent reli-64

ability (Leutbecher & Palmer, 2008). If reliable, state-dependent, MJO forecasts could65

be produced, forecast uncertainty could be used as an indicator of instantaneous MJO66

predictability.67

Increasing volumes of data, advances in computational power, and developments68

in statistical modelling have led to substantial interest in the use of machine learning in69

Earth-system science (Reichstein et al., 2019; Huntingford et al., 2019). Deep learning70

has been applied to the MJO for phase classification (Toms et al., 2020; Martin et al.,71

2021), post processing (Kim et al., 2021), and deterministic prediction (Martin et al.,72

2021). Here, we develop a neural network that produces well calibrated probabilistic fore-73

casts of the MJO. We use a convolutional neural network (CNN), which has proved ef-74

–3–



manuscript submitted to Geophysical Research Letters

fective at identifying hidden patterns and processes in climate (Ham et al., 2019; Arco-75

mano et al., 2020; Schultz et al., 2021) and other areas such as image recognition (Russakovsky76

et al., 2015).77

The paper is structured as follows: in Section 2, we describe the CNN, including78

the data used to train the model. In Section 3 we present our results. We evaluate the79

CNN compared to dynamical models from the Subseasonal-to-Seasonal (S2S) prediction80

project. We validate the CNN by seeking to understand its mean forecasts, before us-81

ing the CNN to uncover potential sources of predictability for the MJO. Finally we dis-82

cuss the significance of our results and draw conclusions in Section 4.83

2 Methods84

2.1 Data85

Observational data used to train and test the CNN are taken from the ECMWF86

Reanalysis version 5 (ERA5) dataset between 1979–2019 (Hersbach, H., et al., 2020). We87

compare the CNN to models from the S2S database (F. Vitart et al., 2017). We select88

reforecast data from four representative models, chosen to span the range of performances89

of models in the S2S database. In particular, we include the European Centre for Medium-90

Range Weather Forecasts (ECMWF) model, which is known to produce the most skil-91

ful MJO forecasts (Lim et al., 2018). The remaining models chosen had the largest re-92

forecast ensemble size, enabling probabilistic forecast skill to be assessed. Details are pre-93

sented in Supporting Table S1 and Text S1.94

2.2 Overview of Predictive Model95

The MJO is a coupled convective-dynamic anomaly that can be summarised by the96

bivariate Real-time Multivariate MJO (RMM) index (Wheeler & Hendon, 2004). The97

RMM index classifies active MJO events (amplitude greater than one) into one of eight98

phases depending on geographical location (e.g. Supporting Figure S1). Using observed99

daily-mean maps for a single date t as inputs, we train a deep CNN to predict the mean100

and uncertainty in RMM1 and RMM2 computed from daily means at a later date t+101

τ , training a separate CNN for each lead time. The chosen lead times are one, three and102

five days, then every fifth day up to 35 days. The architecture of the CNN is shown in103

Supporting Figure S2.104
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We compute the observed values of the RMM following Wheeler and Hendon (2004)105

(Supporting Text S2). Subseasonal anomalies of daily-mean Outgoing Longwave Radi-106

ation (OLR) and daily-mean zonal winds at 200 hPa (UA200) and 850 hPa (UA850) be-107

tween 20°S–20°N are latitudinally averaged and divided by their global variance. The108

first two Empirical Orthogonal Functions (EOFs) of the combined fields are computed.109

RMM1 and RMM2 are the projection of the daily fields onto EOFs 1 and 2.110

Even though the MJO shows seasonal behaviour, we train a single model for all111

seasons to maximise the available training data. As inputs we use subseasonal anoma-112

lies of OLR, UA200, and UA850, consistent with fields used to compute the RMM in-113

dices. We supplement these with four further fields which provide complementary infor-114

mation: daily mean Specific Humidity at 400 hPa (SHUM400) was included because Barrett115

et al. (2021) reported large differences in SHUM400 between MJO events which prop-116

agate and weaken over the Maritime Continent; daily mean geopotential at 850 hPa (Z850)117

provided skill in previous work (Toms et al., 2020); daily mean Downwelling Longwave118

Radiation at the surface (DLR) has a marked annual cycle, which we found a more ef-119

fective means of accounting for the seasonality of the MJO than including a dummy vari-120

able. Finally, daily anomalies of sea surface temperature (SST) are included, since the121

MJO is known to be linked to El Nino-Southern Oscillation (ENSO: e.g. Kessler, 2001).122

Sensitivity of CNN performance to the choice of input feature is shown in Supporting123

Figure S3, providing insights into sources of predictability for the MJO. Inputs are pro-124

vided as maps spanning 0–360oE, 20oS–20oN on a 2.5ox2.5o grid. The different variables125

are input to the CNN as separate channels. This allows the CNN to learn to identify co-126

located phenomena. To ensure independence between the training and testing data sets,127

we use the first 80% of the dates for training, and the remaining 20% for testing.128

We model the two forecast RMM indices as following a Gaussian Bivariate distri-129

bution with null correlation (Wheeler & Hendon, 2004). The network outputs the pre-130

dicted means and variances of RMM1 and RMM2, and is trained by minimising the neg-131

ative log-likelihood. The output variance represents the intrinsic chaotic (aleatoric) un-132

certainty in the prediction. In addition, we represent the epistemic uncertainty in the133

CNN model weights using a Monte-Carlo Dropout method to produce an ensemble of134

forecasts (Gal & Ghahramani, 2016; Gal, 2016; Scalia et al., 2019). The total forecast135

uncertainty is the sum of the aleatoric and epistemic variances. More details are provided136

in Supporting Text S3.137
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2.3 Interpretation using PatternNet138

We use the PatternNet algorithm (Kindermans et al., 2017) to interpret forecasts139

made by the CNN, as it outperforms other approaches including Guided BackProp and140

Layerwise Relevance Propagation in both idealised test cases and for image classifica-141

tion problems (Kindermans et al., 2017). Inputs to the CNN include a signal, that con-142

tains information about the future state of the MJO, and a distractor, that is a resid-143

ual containing information irrelevant to the prediction task (Kindermans et al., 2017).144

PatternNet is a distinct network to the CNN, but whose structure reflects that of the145

CNN in reverse, propagating the estimated signal from the output to the input space,146

thereby disentangling the signal from the distractor: for more details, see Supporting Text147

S4.148

3 Results149

3.1 Network performance150

Figure 1 compares the network’s performance to models from the S2S database (see151

Supporting Text S5 for definitions of all metrics). Figures 1(a–c) show the determinis-152

tic skill of the CNN mean forecasts in terms of the Root Mean Square Error (RMSE),153

Amplitude Error, and Phase Error respectively. In terms of RMSE, the CNN is compet-154

itive with models from the S2S database, though has larger errors than ECMWF. Sim-155

ilarly to the dynamical models, the CNN forecasts suffer from an increasing amplitude156

error with time, indicating a decay in MJO strength over the duration of the forecast.157

It is known that dynamical models simulate slower MJO propagation speeds than ob-158

served, resulting in a negative phase error (Lim et al., 2018). Here the CNN outperforms159

the dynamical models, accurately capturing the MJO propagation speed. A fourth met-160

ric, the bivariate correlation, is shown in Supporting Figure S4: the CNN performance161

is poorer than ECMWF, but similar to CNRM and BOM.162

Figures 1(d–f) assess the probabilistic skill of the CNN. The Continuous Ranked163

Probability Score (CRPS: Marshall et al. (2016)) compares forecast and observed cumu-164

lative distribution functions. The CNN is competitive with forecasts from the S2S database,165

outperforming three of the four dynamical models considered. Despite being widely used,166

the CRPS can give unintuitive rankings (e.g Bolin & Wallin, 2019), as it penalises er-167

rors in the forecast mean more than poor calibration of spread (Christensen et al., 2015).168
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Figure 1. Skill of CNN (black), compared to forecasts from the subseasonal-to-seasonal

prediction project (colours) as a function of lead time. (a) Root mean square error. (b) Ampli-

tude error. (c) Phase error. (d) Continuous Ranked Probability Score. (e) Log-score. CNRM

and HMCR scores before day-15 were too high to be shown. (f) Error-Drop. For all scores,

a value closer to zero indicates a more skilful forecast. Forecasts from different models cover:

ECMWF 2000-2019; HMCR 1985-2010; CNRM 1993-2017; BOM 1982-2013; CNN 2011-2019.

The ECMWF data was split into two to allow direct comparison with the CNN over 2011-2019,

and to give an indication of sampling uncertainty.

An alternative score is the ‘Ignorance’ or log-score (Roulston & Smith, 2002) (Panel e).169

This score is local, derived from information theory, and easily generalises to multivari-170

ate predictions (Roulston & Smith, 2002; Bjerreg̊ard et al., 2021). It is also consistent171

with the loss function used to train the network. According to the log-score, the CNN172

is one of the two models with the best forecast skill at lead times of 5–35 days. At shorter173

lead times, it outperforms all dynamical models. The poor performance of dynamical174

models at these short lead times is due to overconfident forecasts (Bjerreg̊ard et al., 2021),175

which are penalised by the log-score. In contrast, the CNN is able to balance the loss176

in accuracy with an increasing predicted uncertainty as the lead time increases.177

For probabilistic forecasts to be useful, observations should behave as if they were178

drawn from the forecast probability distribution. For this to hold, a smaller forecast spread179

should indicate a smaller root mean squared error (RMSE) in the forecast mean on av-180
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erage. We assess this property using Error-Spread diagrams (Leutbecher & Palmer, 2008)181

shown in Figure 2. The RMSE is a measure of predictability of the atmosphere: high182

RMSE indicates lower predictability. The spread indicates the forecast model’s belief about183

the predictability. For well calibrated forecasts, RMSE and spread should be correlated,184

and the observed RMSE should equal the predicted standard deviation, with scattered185

points lying on the one-to-one line. None of the dynamical models have this property:186

their error distributions are independent of the forecast spread, such that the spread gives187

no indication of the true predictability of the MJO on that day. In contrast, if the CNN188

forecast spread is low, the RMSE is smaller than if the spread is high. The probabilis-189

tic forecasts produced by the CNN are a dynamic indicator of the certainty in the MJO190

forecasts, and therefore the instantaneous predictability of the MJO. The aleatoric un-191

certainty predicted by the CNN is substantially greater than the epistemic uncertainty,192

indicating that while the MJO exhibits chaotic unpredictability, the CNN weights are193

well constrained by the available data.194

Figure 2. Error-Spread Diagrams for (a) RMM1 and (b) RMM2 at a lead time of ten days.

The data are sorted according to the predicted spread before being split into five quintiles. The

figure shows the average spread and RMSE for each quintile. Well calibrated forecasts lie on the

one-to-one dashed line.

To quantify this property across many lead times, we incrementally remove the days195

with the highest predicted variance for each lead time and RMM index before comput-196

ing the RMSE in the forecast of the remaining days. This produces the confidence curve197

(Scalia et al., 2019). If the forecast correctly ranks different days in terms of forecast un-198
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certainty, the confidence curve should be strictly decreasing. The error-drop (Figure 1(f)),199

is the ratio between the last and first points on the confidence curve (Scalia et al., 2019).200

The smaller the error-drop, the greater the reduction in RMSE when test days are sorted201

by the forecast uncertainty. The CNN performs better than all dynamical models. It can202

distinguish between predictable and unpredictable days at all lead times. While an under-203

dispersive ensemble spread can be corrected to improve the log-score of dynamical mod-204

els (Figure 1), the ability to sort days according to their predictability cannot be intro-205

duced by statistical post-processing.206

3.2 Interpretation to validate network behaviour207

Before using the CNN to understand sources of uncertainty in the evolution of the208

MJO, we must understand how the CNN can make skilful forecasts of the MJO. This209

is necessary, as it reveals any concerning behaviour or spurious correlations (e.g. Lapuschkin210

et al., 2019), lending confidence to the predictions.211

To interpret the CNN mean forecasts, we use the PatternNet algorithm (Kindermans212

et al., 2017) to derive signal maps for each forecast. These indicate where information213

is detected by the CNN in each input field. Because the different input variables are in-214

troduced as separate channels into the CNN, weights are shared across all variables for215

much of the network: the CNN distinguishes between variables in the first layer only. It216

is therefore useful to consider both the signal maps averaged over all variables (the sig-217

nal mean) and the difference between the signal map for each variable and the signal mean218

map (the signal anomalies).219

Since propagation over the Maritime Continent is a source of error in MJO fore-220

casts in many models (Kim et al., 2016), we contrast one event which propagated over221

the Maritime Continent (28/02/2012), and one which decayed (25/02/2006) to validate222

the CNN’s behaviour. Supporting Figure S1 shows the observed RMM indices for these223

two events, and the corresponding mean forecasts initialised in phase 3, which capture224

the observed behaviour.225

Figure 3(a–b) shows the SHUM400 input fields averaged over all days in RMM226

phase 3 for the decaying and the propagating events respectively. Panels (c–d) show the227

signal means for RMM1 for the associated ten-day CNN forecasts initialised in phase 3.228

(The signal means for the decaying RMM2 are much smaller, consistent with the pre-229
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diction that day-10 RMM2 is close to zero for the events selected: see Supporting Fig-230

ure S5). For both events, the CNN signal mean maps show that the CNN integrates over231

a large region spanning the Indian and Pacific Oceans, rather than tightly focusing on232

the active MJO region: the CNN also derives information from the input fields in regions233

of suppressed convection (Feng et al., 2015; Barrett et al., 2021).234

Figure 3 (e–f) show the corresponding PatternNet signal anomalies for SHUM400,235

highlighting the relative information provided by this input field. We see a large reduc-236

tion in signal over the Pacific (150°E–90°W), and an enhancement over the Maritime Con-237

tinent (90°E–110°E) co-located with enhanced SHUM400. Supporting Figures S6–S7 show238

the equivalent figure for OLR. The RMM1 signal anomaly is greater than for SHUM400,239

and it is stronger over the Pacific than was the case for SHUM400. Both Feng et al. (2015)240

and Barrett et al. (2021) found OLR precursors in this region which distinguished be-241

tween propagating and non-propagating MJO events. We conclude that the CNN has242

identified true predictive features of MJO propagation, giving us confidence in the net-243

work.244

Figure 3. Interpretation of CNN mean forecasts. (a–b) Composite maps of phase-3 SHUM400

for an MJO event which (a) decays and (b) propagates over the Maritime Continent. (c–d) Pat-

ternNet RMM1 signal means (averaged over all variables) for ten-day CNN forecasts for the

decaying and propagating event respectively. (e–f) RMM1 signal anomalies in SHUM400 for the

decaying and propagating events respectively.
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3.3 Predictors of uncertainty in MJO forecasts245

The ability of the CNN to rank days by uncertainty enables us to investigate drivers246

of short-term predictability of the MJO. We consider cases in Boreal winter, and sep-247

arate MJO events into 4 categories according to the CNN’s 10-day forecast. We first cat-248

egorise according to strength: for each day, an event is weak (strong) if the initial ob-249

served RMM amplitude is less than (greater than) 1.0. The data are then divided into250

certain and uncertain forecasts. To study the uncertainty that is directly linked to the251

MJO initial conditions, we use the network’s predicted aleatoric uncertainty. An event252

is certain (uncertain) if both the RMM1 and RMM2 forecast aleatoric uncertainties are253

under (over) their respective 30% (70%) percentiles. For each initial observed phase and254

input feature, we compute the difference between certain and uncertain days, separately255

for weak and strong events.256

Figure 4 shows results for SHUM400 for events starting in phases 3 and 7. For phase257

3, the initial conditions of ‘certain’ forecasts have reduced humidity at the equator in the258

central Pacific (150°E-120°W) and Indian Ocean (45°E-100°E), combined with off-equatorial259

regions of enhanced humidity over the Maritime Continent and Australia (100°E-160°E).260

Before concluding that this ‘fingerprint’ is an indicator of high certainty, there are two261

possible confounding factors to consider: the initial strength of the signal, and the fore-262

cast strength at day-10. The difference maps for weak and strong events are similar to263

each other, indicating the fingerprint is independent of initial strength. However, there264

is a correlation between the forecast uncertainty and the forecast strength at day-10: ∼265

65% of ‘certain’ events are forecast as weak by day-10, while ∼ 80% of ‘uncertain’ events266

are forecast strong at day-10 (Supporting Table S3). Therefore sorting the data by fore-267

cast certainty unintentionally also sorts by forecast strength. To remove this confound-268

ing factor, we further stratified the events by strength at day-10. The moisture signal269

was muted if all events forecast as weak at day-10 were removed from the composites,270

whereas if only events forecast as transitioning from strong to weak were considered, the271

signal became more intense (not shown). This confirms that the fingerprint is primar-272

ily an indicator of forecast strength at day-10, consistent with the conclusions of (Jiang273

et al., 2020) who found that this structure hinders the eastward propagation of the MJO.274

For events initialised in phase 7, uncertain events show reduced moisture over the275

Maritime Continent in the MJO suppressed region (90°E-120°E), and enhanced mois-276
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ture over the MJO active region (150°E-150°W), when compared to certain events. This277

signature of an enhanced MJO signal in the initial conditions for unpredictable events278

is observed for other variables for phase 7, particularly OLR (Supporting Figure S8). For279

events initialised in phase 7, 85% of uncertain forecasts are also likely to be strong at280

day-10, whereas that drops to 40% for certain forecasts (Supporting Table S4). However,281

if we further stratify the forecasts by final strength, we find the signature persists (not282

shown). Thus we conclude that an initially stronger MJO signal is associated with more283

uncertainty in the forecast.284

Finally, we find that MJO predictability is affected by the background state through285

which it propagates. In particular, for events classified as certain, Z850 shows an enhanced286

gradient between the Eastern Pacific and the Maritime Continent for all forecasts ini-287

tialised in phases 4–7 (i.e. all events crossing the Pacific: Supporting Figure S9–S10).288

An enhanced Z850 gradient is consistent with a higher Southern Oscillation index and289

a stronger Walker circulation cell over the Pacific. Further stratification by strength at290

day-10 indicates that this signal is unrelated to forecast strength. An enhanced (neu-291

tral or weakened) Walker circulation therefore leads to enhanced (reduced) certainty in292

the MJO.293

Figure 4. Interpretation of CNN uncertainty forecasts. (a-b) Composite maps of specific

Humidity at 400hPa (SHUM400) for extended Boreal winter MJO events in (a) phase 3 and (b)

phase 7. (c-f) Difference between input maps for predictable and unpredictable events as classi-

fied by ten-day forecasts using the CNN. (c) Weak phase 3 events (d) Weak phase 7 events. (e)

Strong phase 3 events (f) Strong phase 7 events. Stippling denotes areas where anomalies are

significant at the 95% level using the Student’s t-test.
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4 Discussion and Conclusions294

We presented a CNN which produces probabilistic forecasts of the MJO in terms295

of means and variances of the bivariate RMM index. The skill of the CNN is compet-296

itive with models from the S2S database. Moreover, the CNN outperforms all S2S mod-297

els for one key forecast property: it can rank start dates according to the forecast un-298

certainty associated with the initial conditions. In other words, the CNN forecast spread299

is a dynamic indicator of the uncertainty in the MJO forecast on a given day.300

Since the CNN exhibits state-dependent reliability, we identify ‘certain’ CNN fore-301

casts with predictable states of the MJO and use the CNN forecasts to probe associated302

sources of predictability. We do this by considering composites of initial conditions which303

the CNN indicated led to ‘certain’ and ‘uncertain’ ten-day forecasts. We found that for304

forecasts initialised in phase 3, reduced humidity on the equator increases the likelihood305

of a decaying MJO event, which is associated with high forecast certainty. However, en-306

hanced humidity on the equator increases the likelihood of MJO propagation over the307

MC, but it does not guarantee propagation, leading to high uncertainty in the forecast308

and low medium-range predictability.309

The CNN also used background state information to determine the MJO’s instan-310

taneous predictability. A reduced gradient in Z850 was linked to more forecast uncer-311

tainty for all MJO phases approaching the Pacific. This change in Z850 reflects a weaker312

Walker circulation, associated with El-Niño events. However, we found no consistent sig-313

nal in East Pacific SST across these phases (Supporting Figures S11–S12). There is sub-314

stantial debate about the dependency of the MJO on the state of the El Niño-Southern315

Oscillation (ENSO) (e.g. Ling et al., 2017). The Eastward extent of MJO activity is greater316

in El Niño years, (Kessler, 2001), and the MJO lifetime and propagation speed is also317

modulated by ENSO, though it shows sensitivity to the season of interest and type of318

ENSO event (Pohl & Matthew, 2007; Pang et al., 2016). In contrast, the overall ampli-319

tude of MJO activity appears unrelated to ENSO (J. M. Slingo et al., 1999; Kessler, 2001).320

While the dependency of the MJO on the back-ground state is usually considered in terms321

of SST, our results demonstrate ENSO could primarily influence the MJO via changes322

to the atmospheric dynamical background associated with El Niño and La Niña.323

Our CNN approach is complementary to earlier MJO predictability studies (e.g.324

Neena et al., 2014; Wu et al., 2016; Kim et al., 2018). Instead of quantifying the poten-325
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tial predictability limit using our model, we assess relative predictability in the medium-326

range across different initial conditions. We can only do this because the CNN produces327

state dependent reliable probabilistic forecasts. Our focus was on forecasts at a lead time328

of 10-days. Longer lead time forecasts may show a different signal of predictability in329

the initial conditions: for example, while we found that a weak MJO event predictably330

decays over a 10-day period, the situation after those 10-days is likely to be more un-331

predictable than for events where the MJO persists beyond the 10-day period.332

The CNN is competitive with the best available dynamical models at predicting333

the MJO. However CNNs are complementary to dynamical models, and further improve-334

ments to MJO forecasting may be achieved through a blend of dynamical and machine335

learning approaches (Kim et al., 2021). Nevertheless, developing a stand-alone CNN fa-336

cilitates interpretation, enabling us to probe the performance of the CNN and develop337

new physical understanding, e.g. the role of different input features. This framework of338

combining state-dependent uncertainty estimates from neural networks with interpre-339

tation techniques could be applied to other climate phenomena, allowing us to quantify340

the diverse range of sources of uncertainty in the Earth System.341

5 Open Research342

Data related to this paper can be downloaded from the ERA5 Copernicus database343

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure344

-levels, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5345

-single-levels) and the S2S project archive (http://s2sprediction.net) via the ECMWF346

portal: (https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous347

-accum-ecmf/; https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous348

-accum-rums/; https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous349

-accum-lfpw/; https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous350

-accum-ammc/). The CNN forecasts produced for this paper can be downloaded from351

10.5281/zenodo.5175837. The RMM indices were computed using the CLIVAR diag-352

nostics package (https://www.ncl.ucar.edu/Applications/mjoclivar.shtml). Py-353

Torch (https://www.pytorch.org) and DropBlock (https://github.com/miguelvr/354

dropblock) libraries were implemented to build and train the CNN model. PatternNet355

code was adapted from https://github.com/TNTLFreiburg/pytorch patternnet. The356
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codes used in the current analysis are available at https://github.com/antoine-delaunay/357

DeepLearningMJO/ .358
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Introduction

In this Supporting Information we provide further details on the methodology used in

our study. Text S1 and Table S1 provide details of the Subseasonal-to-seasonal (S2S)

prediction project data used as a benchmark for the CNN performance. Text S2 describes

the observational data and preprocessing used to train the model. Text S3 provides

more details of the CNN forecasting model, focusing on the techniques used to represent

epistemic and aleatoric uncertainty, and Figure S2 shows the CNN architecture. Figure

S3 shows sensitivity of the CNN performance to chosen input fields. Text S4 details the
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PatternNet algorithm. Text S5 details the validation metrics. Text S6 proves the validity

of the DropBlock approach in place of standard dropout for convolutional layers.

We also provide further results to support our conclusions. Figure S4 shows the bivari-

ate correlation skill for the CNN and S2S models. Figure S1 shows the phase diagram

corresponding to the decaying and propagating events analysed in Section 3.2 of the

manuscript, while Figures S5–S7 show further interpretation of the CNN forecasts for

those events. Figures S8–S12 show further results concerning predictors of uncertainty in

MJO forecasts for outgoing longwave radiation (OLR), 850 hPa geopotential (Z850), and

sea surface temperature (SST).
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Text S1. Subseasonal-to-Seasonal forecast model data

We select four representative models from the Subseasonal-to-Seasonal (S2S) prediction

project database (F. Vitart et al., 2017) for comparison with the CNN. The database

consists of near real-time operational ensemble forecasts and reforecasts from 11 centres.

As the operational models are continuously improved, the skill of the forecasts evolves in

time. For that reason, we select the reforecasts for comparison with the CNN. Reforecasts

are forecasts made retrospectively using a single up-to-date version of the dynamical

model.

Details of the available reforecast data for the selected models are presented in Table

S1. Some observations have to be made: first, all models do not have the same number

of members, so to be consistent we decided to restrict the number of members to 10.

Second, as the computational cost is heavy, the reforecasts are not made every day and

consequently each model has a different reforecasting period and time range. This is an

issue which is difficult to overcome but with a large enough number of days, we should

still be able to make fair comparisons.

Text S2. Observational data and preprocessing

We train the CNN using atmospheric data from the ECMWF ERA5-Reanalysis dataset

(H. Hersbach et al., 2018a), (H. Hersbach et al., 2018b). The inputs are maps of daily

averaged fields from 1979 to 2019 with a spatial coverage of 0 – 360°E, 20°S – 20°N on

a 2.5° x 2.5° grid. We only use ERA5 data over the satellite era for which accurate

estimates of OLR are available. Selected variables are: zonal wind at 200 hPa and 850

hPa (UA200, UA850), Outgoing Long-Wave Radiation (OLR), Sea Surface Temperature
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(SST), Specific Humidity at 400 hPa (SHUM400), Geopotential at 850 hPa (Z850), and

Downward Long-Wave Radiation at the surface (DLR). For UA200, UA850 and OLR,

we apply the RMM preprocessing transform of (Wheeler & Hendon, 2004) to leave only

subseasonal anomalies: the time mean, the first three Fourier harmonics and the 120-day

running mean are removed sequentially. For SST, we subtract the climatological mean

(for each date of the calendar year, we compute the average over the same date for all

the years in the training dataset), and set all inland grid points to zero. The raw data

is used for SHUM400, Z850, and DLR, allowing the network to learn seasonal variations

in MJO predictability. Finally for every variable, we rescale the inputs to between 0 and

1 independently at every gridpoint with a Min-Max scaling to ensure the stability of the

training.

Our choice of input fields for the CNN was guided by an iterative procedure. The

first network we trained took as input the three variables used to define the RMM index:

UA200, UA850 and OLR subseasonal anomalies. Subsequent networks were trained using

one or more additional variables, and the predictive performance of the network assessed.

Supporting Figure S3 shows the relative benefit of including each of the additional input

variables selected for the final network: sea surface temperature anomalies (SST), daily

downwelling long-wave radiative forcing (DLR), daily geopotential at 850 hPa (Z850),

and specific humidity at 400 hPa (SHUM400). We compared the performance of the final

network to a network trained on DLR, Z850 and SHUM400 anomalies instead of means,

but found this degraded performance. We also considered including the values of fields

August 15, 2022, 11:13am



: X - 5

at earlier timesteps (5, 10 days before), but found this did not improve the network’s

performance, and instead led to overfitting.

Text S3. The CNN forecasting model

For an initial date t and a forecast range τ , let xt be the input at the date t, and yt+τ

be the observed RMM indices, yt+τ = (RMM1t+τ ,RMM2t+τ ) at the chosen lead time, τ .

The input xt is a series of gridded maps representing physical quantities (variables) for

each date t as a function of latitude and longitude. We train a separate network for each

forecast range τ , where τ takes discrete values: τ = 1, 3, 5, 10, 15, 20, 25, 30, 35 days.

Aleatoric uncertainty is caused by the chaotic nature of the system. Physically, we

recognise that the input variables supplied to the CNN are a subset of all possible vari-

ables, and only include information on scales larger than the resolution of the input maps,

such that the future state of the MJO is not a deterministic function of these inputs1. This

uncertainty is a property of the data and thus irreducible, regardless of the model’s train-

ing. It is also heteroscedastic, or state-dependent. The predicted aleatoric uncertainty

is included as an output of the CNN. We assume the RMM indices follow a Gaussian

bivariate distribution with a null correlation between RMM1 and RMM2 (Wheeler &

Hendon, 2004). The probabilistic network therefore has a 4-neuron output consisting of

the forecast mean, µt+τ , and variance σ2
a t+τ , where the first and second entries of µ and

σ2
a correspond to RMM1 and RMM2 respectively. Aleatoric uncertainty is accounted for

in the loss function: the model is trained by maximising the log-likelihood:

L =
1

N

N∑
t=1

−1

2
[ln(|Σt+τ |) + (yt+τ − µt+τ )

TΣ−1
t+τ (yt+τ − µt+τ )] + ln(2π) (1)

where Σt is the diagonal covariance matrix and N is the number of samples per batch.
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The epistemic uncertainty in the forecast is due to uncertainty on the CNN’s weights θ.

We recognise that the training dataset (X, Y ) is a sample from the true joint distribution

of inputs, X, and outputs, Y . We therefore seek the distribution p(θ | X, Y ) over θ

instead of a single estimate. The Monte-Carlo dropout method approximates p(θ | X, Y )

by a parametric distribution qΦ(θ), where Φ is a vector of parameters to tune. Following

(Scalia et al., 2019), we model qΦ(θ) as a Bernoulli distribution, βΦ. In other words, for a

given set of input fields, each of the CNN’s weights is deactivated with a probability set

by the vector Φ, representing the dropout rate of each layer. For the jth parameter this

gives θj ∼ θ̂j ∗ βΦ j.

Dropout is applied to the network at both training and testing time. During training,

dropout prevents overfitting by randomly deactivating some neurons at each epoch. It

ensures the predictive capability of the network is distributed across all neurons, instead

of converging to a solution in which certain neurons dominate. During testing, we use

dropout to produce M Monte-Carlo forecasts, (θ(i), µ
(i)
t+τ , σ

(i) 2
a t+τ ). We chose M = 10 for

consistency with the ensemble size of dynamical MJO forecasts, though the computational

efficiency of the CNN would enable vastly larger ensemble sizes than this. For the linear

layers of the CNN, we apply standard dropout with a dropout rate of 0.3. However,

this is not suitable for convolutional layers, because neighbouring points in the feature

maps for each layer are often highly correlated (Ghiasi et al., 2018). Instead, we use a

DropBlock approach, with a dropout rate of 0.1 for the first convolutional layer and 0.3

for subsequent convolutional layers. In DropBlock, a fraction of points of the maps are

randomly set to zero, before all their neighbouring points are also deactivated (Ghiasi
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et al., 2018). In this way, DropBlock introduces a correlation between inactive points.

However, in contrast to standard dropout, DropBlock disables points on the feature maps

and not the weights directly. In Text S6 we demonstrate that deactivating points on the

input maps as is carried out in DropBlock is equivalent to the weight deactivation applied

in standard dropout, for the case of convolutional layers without bias. This allows us to

combine the dropout and DropBlock techniques to represent epistemic uncertainty in the

CNN.

Finally, the estimated aleatoric and epistemic uncertainties are combined to give the

final predicted mean and total variance:

µt+τ =
1

M

∑
i

µ
(i)
t+τ (2)

σ2
tot t+τ =

1

M

∑
i

σ
(i) 2
a t+τ +Var(µ(i)) (3)

The network’s architecture is shown in supporting figure S2. Our network has three

convolutional layers without bias. For all of them, we used Leaky ReLU with α = 0.003

as activation function to avoid vanishing gradients. Each of the two first convolutional

layers have a (5,5) kernel and are followed by average pooling with a (3,3) kernel size

and a (2,1) stride. The third convolutional layer has a (3,3) kernel size. Convolutional

layers are followed by two fully-connected layers with 1920 and 200 neurons. The output

layer has 4 neurons: the forecast means and aleatoric variances of RMM1 and RMM2. To

ensure the output variances are positive, we apply the function f : x 7→ log(1 + exp(x))

which we found more stable than ReLU. We train the network with batches of 50 samples

up to 35 epochs. Given the large amount of data required to train a deep learning model,
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the amount of data needed to make reasonable comparisons with dynamic models and the

fact that the Outgoing Longwave Radiation data goes back to 1979 at the most, we made

the choice to keep only one train set and one test set and to tune the network parameters

(kernel, strides, etc.) on the train set. In order to prevent the overfitting that could result

from this choice, we used an L2 regularization in addition to dropout and DropBlock. We

observed some sensitivity of the network with respect to the regularization coefficient λ on

the train set performance. Hence to avoid overoptimistic results as much as possible, we

kept λ = 0.01, the L2 coefficient that had the best performance on the train set amongst

the values of λ high enough to prevent overfitting.

Text S4. PatternNet

PatternNet propagates the estimated signal from the output to the input space. Instead

of weights, each convolutional or feed-forward layer in PatternNet consists of statistical

attribution vectors, which are chosen to maximise certain functions of the covariance

between the signal and the output (Kindermans et al., 2017). These vectors are computed

layerwise during a training phase, using input fields and corresponding CNN forecasts from

the training dataset, and with knowledge of the CNN network weights. Once these vectors

are computed, PatternNet is a backpropagation algorithm. The signal sl at layer l coming

from the neuron i is obtained by multiplying the signal sl+1
i of neuron i in the previous

layer, l+1, with the attribution vector al. The signal slj of neuron j in layer l is then the

sum of all the signals of its input neurons from layer l + 1 : slj =
∑

i s
l+1, j
i .

We used the PyTorch implementation of PatternNet by (Translational Neurotechnology

Lab, 2019). During backpropagation, when a ReLU layer is encountered, the signal is
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backpropagated without modification if the neuron was active during the forward pass

and set to zero otherwise. However, the case of Average Pooling and Leaky ReLU layers

has not been addressed (Kindermans et al., 2017; Translational Neurotechnology Lab,

2019). For Average Pooling layers the output neuron is an average of input neurons: for

such layers we backpropagate the output neuron signal to the inputs without modification.

For Leaky ReLU layers, the signal is backpropagated as follows: if the input was positive

in the forward pass, the signal is backpropagated without modification, otherwise it is

multiplied by the parameter of the Leaky ReLU function (4).

slj =


sl+1
j if positive input in the forward pass

αsl+1
j otherwise

(4)

When using the PatternNet, we use the forecasts of the single CNN member without

dropout to simplify the computation. For a given input and corresponding forecast from

the CNN, PatternNet provides signals S1 and S2 for each pixel in the input fields, cor-

responding to RMM1 and RMM2 respectively. The signals S1 and S2 can take any real

value. We are interested in signal amplitude and not direction, and so take the abso-

lute value, and then rescale the signals to between 0 and 1. The Signal Mean Maps in

Supporting Figures 5–7 are computed with the signals from the test dataset.

Text S5. Validation Metrics

CNN and S2S dynamical model forecasts were validated using days with initial observed

amplitude above 1.0 (Lim et al., 2018). Three deterministic metrics were considered. The

Root Mean Square Error between the forecast and observed RMMs is defined as

RMSE(τ) =

√√√√ 1

N

N∑
t=1

[(f1(t, τ)− v1(t))2 + (f2(t, τ)− v2(t))2] (5)
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where f1, f2 are the forecast mean RMM indices for start date t at lead time τ , v1, v2 are

the verification RMM indices at that time, and N is the total number of start dates.

The MJO amplitude is defined as

A(t, τ) =
√

(RMM1(t, τ)2 +RMM2(t, τ)2) (6)

The MJO Bivariate Correlation (Supplementary Figure S4) is defined as

BV (t, τ) =

∑N
t=1 f1(t, τ)v1(t) + f2(t, τ)v2(t)√∑N

t=1(f1(t, τ)
2 + f2(t, τ)2) +

√∑N
t=1 v1(t)

2 + v2(t)2
(7)

The amplitude error can then be written

ERRA =
1

N

N∑
t=1

(Af − Av) (8)

where Af and Av are the forecast and verification amplitudes respectively.

Following (Kim et al., 2018), the MJO phase is defined as

ERRP =
1

N

N∑
i=1

atan(
v1(t)f2(t, τ)− v2(t)f1(t, τ)

v1(t)f1(t, τ) + v2(t)f2(t, τ)
)) (9)

Three further scoring rules were used to assess the probabilistic skill of the forecasts.

The Continuous Ranked Probability Score (CRPS, (Hersbach, 2000)) is widely used to

validate ensemble forecasts.

CRPS(Pf , v) =

∫ ∞

−∞
[Pf (x)−Θ(x− v)]2 dx, (10)

where Pf is the forecast cumulative distribution function, and Θ(x − v) is the observed

cumulative distribution function, which is equal to the Heaviside step function centres on

the verification, v. Gaussianity is assumed for forecasts. Following Marshall et al. (2016),
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the CRPS of a given day is computed as the sum of the CPRS for RMM1 and RMM2

separately. Then the resulting CRPS are averaged across the whole dataset.

For consistency with the loss function, the log-score, or Ignorance score (Roulston &

Smith, 2002), score (equation (1)) was also used to assess forecast skill, where the number

of samples N was the number of days in the test data set.

To assess the ability of forecasts to discern predictable from unpredictable days, we

compute Error-Spread diagrams following (Leutbecher & Palmer, 2008). For each day

we have a data triplet consisting of a predicted mean, variance, and an observed value

for RMM1 and RMM2 respectively. We first sort the triplets according to the predicted

variance into 5 equally-populated bins. Then for each bin we compute the root mean

variance, and the root mean-squared error between the forecast mean and the observation.

This process is repeated for RMM1 and RMM2 separately, for each forecast lead time,

and for each type of uncertainty (epistemic, aleatoric, and total). For well calibrated

forecasts, the average RMSE in each bin should equal the root mean variance.

We also compute the confidence curve C(α) and Error-Drop for each model. For each

lead time and each RMM index in turn, we remove the α% most uncertain cases, and

compute the RMSE between the forecast mean and the observed RMM index for the

remaining data. We repeat this process setting α to be each of the 20 evenly-spaced

quantiles of the RMSE in turn. The Error-Drop is computed from the confidence curve

as:

Error-Drop :=
C(αmax)

C(αmin)
, (11)
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where αmin and αmax correspond to the minimum and maximum fraction of days removed

respectively. We set αmin = 0.0 and αmax = 0.95.

Text S6. Monte-Carlo Dropout for DropBlock

Here, we prove that we can use the Monte-Carlo Dropout method with DropBlock. In

our model, the DropBlock is applied after each convolutional layer and these layers do not

have bias. Considering a specific convolutional layer layer l, if we denote X the input of

this layer, (Gal, 2016) showed that the convolutional operation could be seen as a matrix

multiplication W TX where W is a convolutional weight matrix, rewritten to match the

matrix multiplication operation. If we denotem the number of lines ofW T , we can rewrite

W TX with the dot products W TX = (W T
1 X,W T

2 X, ...,W T
mX)T .

As we have considered the convolutional operation as a matrix multiplication, W TX

is a column vector of size m. We must rewrite this vector as an output feature map of

shape n× p denoted F , such that n ∗ p = m. Each coefficient Fij is equal to a one of the

dot products W T
k X. n and p depend on the convolutional parameters (kernel size, stride,

dilation).

Then we apply DropBlock. In a first step, each Fij is independently multiplied by a

Bernoulli β(p). Then in a second time, for each Fij, we consider all its neighbours. We

denote dij the number of neighbours of Fij (in particular, there are less neighbours on

the edges than in the center). Fij is disabled if one of its neighbours (or itself) has been

disabled during the first step. It is equivalent as considering that Fij has been multiplied

by a Bernoulli β(pdij). Hence we can write that after the DropBlock,
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F ∗
ij = Fijβ(p

dij) = W T
k β(p

dk)X (12)

W T ∗
k = W T

k β(p
dk) (13)

Thus we conclude that DropBlock applied after a convolutional layer without bias is

equivalent to a standard Dropout with a distinct dropout probability for each weight,

which can be achieved using the Monte-Carlo Dropout method.

Notes

1. Note that even if the network were supplied with the highest resolution observational data available, these estimates of

the observed Earth System would have a finite resolution and would contain errors, thus aleatoric uncertainty remains.
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Figure S1. Phase diagrams for a decaying and a propagating event for forecasts

initialised in phase 3.

Observations from the first day - 25/02/2006 (a.) and 28/02/2012 (b.) - are represented up to

day-10 in blue. All forecasts (day-1, 3, 5, 10) which began in initial observed phase 3 for each

chosen event are represented in shades of orange.
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Figure S2. CNN Architecture. Leaky ReLU was used as the activation function of the

convolutional layers 1 and 2.
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Figure S3. Comparison of the features’ performance. Log-score is computed for a CNN trained

on different subsets of input features for day-10 forecasts. Days used have initial amplitude above

1.0. Standard stands for “UA200 + UA850 + OLR”.
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Figure S4. Bivariate correlation computed for RMM1 and RMM2 as a function of lead time.

Note that forecasts from different models cover different dates: ECMWF 2000-2019; HMCR 1985-

2010; CNRM 1993-2017; BOM 1982-2013; CNN 2011-2019. The ECMWF data was split into

two periods to allow direct comparison with the CNN over 2011-2019, and to give an indication

of sampling uncertainty.
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Figure S5. Interpretation of the CNN mean forecasts. (a–b) Composite maps of phase-3

SHUM400 for an MJO event which (a) decays and (b) propagates over the Maritime Continent.

(c–d) PatternNet RMM2 signal mean maps (signal maps averaged over all variables) corre-

sponding to ten-day CNN forecasts for the decaying and propagating event respectively. (e–f)

RMM2 signal anomalies in SHUM400 for the decaying and propagating events respectively. The

signal anomalies show a greater focus over the Maritime Continent region for this input variable.
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Figure S6. Interpretation of the CNN mean forecasts. (a–b) Composite maps of phase-3

OLR for an MJO event which (a) decays and (b) propagates over the Maritime Continent. (c–d)

PatternNet RMM1 signal mean maps (signal maps averaged over all variables) corresponding to

ten-day CNN forecasts for the decaying and propagating event respectively. (e–f) RMM1 signal

anomalies in OLR for the decaying and propagating events respectively. The signal anomalies

show a greater focus over the Maritime Continent region for this input variable.
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Figure S7. Interpretation of the CNN mean forecasts. (a–b) Composite maps of phase-3

OLR for an MJO event which (a) decays and (b) propagates over the Maritime Continent. (c–d)

PatternNet RMM2 signal mean maps (signal maps averaged over all variables) corresponding to

ten-day CNN forecasts for the decaying and propagating event respectively. (e–f) RMM2 signal

anomalies in OLR for the decaying and propagating events respectively. The signal anomalies

show a greater focus over the Maritime Continent region for this input variable.
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Figure S8. OLR uncertainty interpretation of the CNN MJO forecasts. a. and b. Composite

maps of OLR in initial phases 3 and 7 for day-10 forecasts. Maps have been rescaled using

MinMax scaling at each grid point before being fed to the CNN. c. to f. Anomalies maps

between Weak (Strong) Predictable minus Weak (Strong) Unpredictable events. Weak events

have an amplitude below (above) 1.0. Predictable (Unpredictable) events have RMM1 and

RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%) percentiles. Stippling

denotes areas where anomalies are significant at the 95% level using the Student’s t-test.
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Figure S9. Z850 uncertainty interpretation of the CNN MJO forecasts. a. and b. Composite

maps of geopotential at 850hPa (Z850) in initial phases 4 and 5 for day-10 forecasts. Maps

have been rescaled using MinMax scaling at each grid point before being fed to the CNN. c.

to f. Anomalies maps between Weak (Strong) Predictable minus Weak (Strong) Unpredictable

events. Weak events have an amplitude below (above) 1.0. Predictable (Unpredictable) events

have RMM1 and RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%)

percentiles. Stippling denotes areas where anomalies are significant at the 95% level using the

Student’s t-test.
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Figure S10. Z850 uncertainty interpretation of the CNN MJO forecasts. a. and b. Composite

maps of geopotential at 850hPa (Z850) in initial phases 6 and 7 for day-10 forecasts. Maps have

been rescaled using MinMax scaling at each grid point before being fed to the CNN. c. to

f. Anomalies maps between Weak (Strong) Predictable minus Weak (Strong) Unpredictable

events. Weak events have an amplitude below (above) 1.0. Predictable (Unpredictable) events

have RMM1 and RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%)

percentiles. Stippling denotes areas where anomalies are significant at the 95% level using the

Student’s t-test.
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Figure S11. SST uncertainty interpretation of the CNN MJO forecasts. a. and b. Composite

maps of Sea Surface Temperatures (SST) in initial phases 4 and 5 for day-10 forecasts. Maps

have been rescaled using MinMax scaling at each grid point before being fed to the CNN. c.

to f. Anomalies maps between Weak (Strong) Predictable minus Weak (Strong) Unpredictable

events. Weak events have an amplitude below (above) 1.0. Predictable (Unpredictable) events

have RMM1 and RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%)

percentiles. Stippling denotes areas where anomalies are significant at the 95% level using the

Student’s t-test.
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Figure S12. SST uncertainty interpretation of the CNN MJO forecasts. a. and b. Composite

maps of Sea Surface Temperatures anomalies (SST) in initial phases 6 and 7 for day-10 forecasts.

Maps have been rescaled using MinMax scaling at each grid point before being fed to the CNN. c.

to f. Anomalies maps between Weak (Strong) Predictable minus Weak (Strong) Unpredictable

events. Weak events have an amplitude below (above) 1.0. Predictable (Unpredictable) events

have RMM1 and RMM2 aleatoric uncertainties both inferior (superior) to their 30% (70%)

percentiles. Stippling denotes areas where anomalies are significant at the 95% level using the

Student’s t-test.
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Table S1. Description of the dynamical forecast models used for comparison.a

Model Time Range Reforecast frequency Ensemble size Model year
ECMWF 02/01/2000 - 30/11/2019 Twice weekly 11 2020
CNRM 07/01/1993 - 28/12/2017 Weekly 10 2019
BOM 01/01/1982 - 26/12/2013 Twice weekly 33 2014
HMCR 02/01/1985 - 31/12/2010 Weekly 10 2020
CNN (Train) 01/05/1979 - 18/10/2011 Daily 10 2021
CNN (Test) 19/10/2011 - 30/11/2019 Daily 10 2021
a The most recent model version were selected according to their availability. The reforecasts

are available at ftp://s2sidx:s2sidx@acquisition.ecmwf.int/RMMS/

Table S2. All initial phases

Certain Uncertain
Strong at t Weak at t Strong at t Weak at t Total

Strong at t+ 10 142 213 707 74 1136
Weak at t+ 10 193 418 117 38 766

Total 335 631 824 112 1902

Table S3. Initial Phase 3
Certain Uncertain

Strong at t Weak at t Strong at t Weak at t Total
Strong at t+ 10 16 24 135 13 188
Weak at t+ 10 15 42 33 5 95

Total 31 66 168 18 283

Table S4. Initial Phase 7
Certain Uncertain

Strong at t Weak at t Strong at t Weak at t Total
Strong at t+ 10 26 43 56 4 129
Weak at t+ 10 40 66 6 5 117

Total 66 109 62 9 246
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