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Abstract

The cascade hazard, heat stress (preconditioned) and heavy rainfall (response) in close succession have become frequent in

several areas of the globe, causing critical infrastructure failures. Although some regions of South Asia witness deadly humid

heat stress, little is known about the linkage of humid heat stress (HHS; high temperature compounded by humidity) versus

record rainfall and cascade hazard due to compound (same or lagged-day) occurrences of both extremes. We leverage ground-

based meteorological records from 1970-2018 to analyze the risk of extreme precipitation preceded by heat stress over selected

urban locations of India using a multivariate conditional-probability approach. We show that humid heat is likely to intensify

the extreme rainfall, especially during the core monsoon (June-September) season. This phenomenon is associated with moisture

convergence and large upper tail distributions of peak precipitation over several sites. Our insights to compound flood hazard

would benefit (re)-insurance and flash flood forecast, devising adaptations.
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Key Points:

• We propose a conditional probability-based approach to attribute severity
of precipitation extremes considering heat stress as covariate.

• Extreme precipitation preceded by humid heat stress tend to show larger
frequency during southwest monsoon season.

• Cities near the coast tend to reach ’real’ tipping points indicating larger
risk of cascade hazard owing to heat stress-rainfall extremes.

Abstract

The cascade hazard, heat stress (preconditioned) and heavy rainfall (response)
in close succession have become frequent in several areas of the globe, causing
critical infrastructure failures. Although some regions of South Asia witness
deadly humid heat stress, little is known about the linkage of humid heat stress
(HHS; high temperature compounded by humidity) versus record rainfall and
cascade hazard due to compound (same or lagged-day) occurrences of both ex-
tremes. We leverage ground-based meteorological records from 1970-2018 to
analyze the risk of extreme precipitation preceded by heat stress over selected
urban locations of India using a multivariate conditional-probability approach.
We show that humid heat is likely to intensify the extreme rainfall, especially
during the core monsoon (June-September) season. This phenomenon is as-
sociated with moisture convergence and large upper tail distributions of peak
precipitation over several sites. Our insights to compound flood hazard would
benefit (re)-insurance and flash flood forecast, devising adaptations.

Plain Language Summary

This study contributes to an understanding of multivariate (same time and
place) and sequential (preconditioned, i.e., multiple times and same place) com-
pound extremes, humid heat stress and heavy rainfall, impacting the system
vulnerability. Although several studies assessed the likelihood of compound
heat-moisture stresses and its impact, very few have explored humid heat stress-
precipitation couplings in driving concurrent heat-pluvial floods. Typically,
climate-informed extreme rainfall assessments in South Asia and elsewhere rely
on covariate-based extreme value analysis considering air temperature (i.e., sen-
sible heat flux), as an influencing driver. We propose a conditional probability-
based approach to identify the severity of extreme precipitation, considering
humid heat stress as a compounding driver. We demonstrate the potentials of
the model using ground-based observations over notable urban and peri-urban
localities of India, representing seven homogeneous (rainfall) climatic zones of
the country. Our analysis reveals that considering the upper limit of human
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survivability (i.e., wet bulb temperature � 32°C), the western half of the country
showed a robust amplification in extreme precipitation. Further, coastal cities
tend to attain or exceed the wet-bulb temperature threshold, indicating a larger
risk of cascade hazard (i.e., heat stress and heavy rainfall in close succession),
triggering critical infrastructure failures and widespread urban flooding.

1 Introduction

Climate change is expected to alter the frequency and intensity of rare extreme
events, such as heat stress, flooding, and the compound interactions between
such unprecedented extremes (Masson-Delmotte et al., 2021). Several regions
of South Asia have witnessed deadly heatwaves in recent decades in densely
inhabited localities (Im et al., 2017; Saeed et al., 2021), threatening the sus-
tainability of rapidly growing urban settlements. Exposure to dangerously high
temperatures endangers the health and development of cities, resulting in reduc-
tions in labour productivity and economic output (Fechter-Leggett et al., 2016;
Dasgupta et al., 2021). Extreme precipitation and flooding pose considerable
risks, impacting more than 70 million population globally each year, estimated
in 2018 (CRED, 2018). The frequency and intensity of extreme rainfall have
increased over several areas of India over the past few decades (Krishnamurthy
et al., 2009). Furthermore, a potential link between human contribution to heat
waves and heavy precipitation has been shown earlier (Fischer & Knutti, 2015).

Humidity plays a vital role in intensifying heat stress because the hot and hu-
mid environment affects thermal comfort level as it is difficult to remove heat
via evaporation (Davis et al., 2016). Few studies have shown an upward trend
in heatwaves and its relationship to dry spells over India (Rohini et al., 2016;
Sharma & Mujumdar, 2017). Nevertheless, the focus has been on the sensi-
ble heat content of air, solely considering ‘dry-bulb’ temperature (i.e., air tem-
perature) or emphasizing causal relationships of dry-bulb temperature versus
extreme precipitation (Agilan & Umamahesh, 2017; Risser & Wehner, 2017).

We hypothesize that HHS will potentially augment convective available poten-
tial energy (CAPE), leading to severe storm events and frequent flooding. In
this paper, we analyze the hazard cascade over selected urban locations of In-
dia (Figure 1a-b) with a copula-based conditional probability (CCP; Figure 1c)
framework (Nelsen, 2013). While HHS can potentially collapse critical infras-
tructures, such as electrical power grid failure (Stone Jr et al., 2021), the concur-
rence of extreme precipitation within a short time window would collapse the
urban-storm water drainage systems (Rosenzweig et al., 2018). Inferences are
based on high-quality meteorological observations during the past five decades
(1970-2018) over densely populated nine urban locations (Table S1) of India.
We define two types of compound events, Case I : Peak over threshold (POT)
wet bulb temperature coincide/precedes by POT extreme precipitation event;
Case II: Annual maxima wet bulb temperature coincide/precedes by peak rain
events. While Case I considers when extremes occur simultaneously or suc-
cessively (e.g., multivariate-case), Case II deals with extremes combined with
background conditions, which does not necessarily extreme by itself, amplifying
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the overall impact (e.g., sequential-case). We consider up to a week’s time lag
since both extremes may not occur on the same day, and the response of pluvial
floods within a week of occurrence of heat stress could be the part of the same
large-scale phenomenon (Berghuijs et al., 2019; Rowe & Villarini, 2013).

2 Data and Methods

2.1 Data Collection

We obtain station-based daily meteorological records from the IMD (India Me-
teorological Department; https://dsp.imdpune.gov.in/) archived at 03:00 (08:30
IST) and 12:00 (17:30 IST) hour UTC from 1970-2017. Following the literature
(Raymond et al., 2018; Zhang & Villarini, 2020), we sampled HHS from (See
section 2.2) daily wet-bulb temperatures (WBT) sampled at 17:30 local time.
We consider nine urbanized locations, representing seven homogeneous climatic
zones (based on rainfall; Priyadarshi et al., 2020) of India (Figure 1b) with
populations varying from 0.09 - 22.04 million.

2.2 Sampling of Compound Events

The high-pressure system, high humidity, and long-lasting atmospheric block-
ing are drivers of the emergence of HHS (Dubey et al., 2021; Saeed et al.,
2021; Figure 1c). We define “multivariate compound” events as Case I when
extreme WBT coincide or preceded by heavy precipitation events. Here mul-
tiple co-occurring hazards causing extreme impact (Zscheischler et al., 2020)
are delineated using the POT approach. We initially compute several thresh-
olds ranging from 95th to 99th percentiles at an increment of 0.5 from available
meteorological records and later consider 96.5th percentile threshold, ensuring
sufficient length of concurrent pairs across all sites (Figure S1 a-b). To ensure
the independence of the selected extremes, we consider three days de-clustering
periods (Barton et al., 2016). Next, as Case II, we sample “preconditioned
compound” extreme when annual maxima (AMX) WBT precedes peak precip-
itation events within a d-day occurrence of the latter event. Here, AMX-WBT
acts as a causal or triggering mechanism, whereas the peak precipitation, does
not necessarily an extreme in a statistical sense, amplifies the overall impact
(Zscheischler et al., 2020). Following the literature (Berghuijs et al., 2019; W.
Zhang & Villarini, 2020), for both definitions (multivariate and preconditioned),
we detect compound events when extreme HHS occurs within a d-day (d = 3,
5, and 7 days) before the extreme precipitation event.

2.3 Probabilistic Modelling

We used a series of probability distribution functions, such as Generalized Pareto
(GP), Log-normal, Gamma, Generalized Extreme Value (GEV), Log-logistic dis-
tributions, and Kernel density functions for marginal distribution modelling of
compound events (Tables S2 - S5). Due to its nonparametric nature, overall,
the Kernel density function can represent extreme events reasonably well (Fig-
ures S2 – S5). To select the best distribution and to choose most parsimonious
model, we evaluate the minimum AIC (Akaike Information Criteria) with cor-
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rection for the small samples (Burnham & Anderson, 2003). Then performed
the goodness-of-fit test using the Anderson Darling test (AD), which emphasizes
discrepancies at the upper tail of a distribution.

We use parametric families of copulas to assess compound hazards associated
with heat stress-pluvial floods. We estimate copula parameters using the max-
imum pseudo-likelihood approach (Genest et al., 1995). We determine the
goodness-of-fit of copulas using the parametric bootstrap-based method em-
ploying Cramer-von Mises distance statistics, a measure of deviation between
two continuous distribution functions (Rémillard, 2017; Supplementary Infor-
mation SI.1). A large p-value indicates (Tables S6-S7) the best (offering the
largest p-value) versus the next-best fit copulas have modelled the compound
events well. Further, to check the credibility in modeling the upper tail of the
compound heat stress-peak precipitation event, we evaluated an additional met-
ric, i.e., Upper Tail Ratio (UTR; Wietzke et al., 2020), to identify how well the
selected copulas simulate the upper tail behavior of the joint distribution model.
For this, first, we compute the observed UTR, which is defined as the ratio of
the maximum compounding precipitation magnitude to the at site 10-year re-
turn level considering monsoon maxima precipitation (Section S1.2). Next, we
calculate simulated UTR from copula-based simulated samples, in which we
obtain the maximum precipitation quantiles using inverse CDF (distribution)
transformation of the marginal distributions (Section S1.2; Tables S2 and S5).
Finally, to investigate the feasibility of the selected copula family, we compare
the observed versus simulated UTR of the best versus the next best copulas (Ta-
bles S8-S9). We select the copula family with the lowest relative bias and the
uncertainty estimates evaluated through the interquartile range (Section S1.2;
Figure S6).

2.4 Amplification Ratio

We propose a simple dimensionless index, Amplification Ratio (AR), to identify
the hot spots experiencing heavy to very heavy precipitation preceded by heat
stress. The index is motivated by the Compound hazard ratio (Ganguli &
Merz, 2019) and represents a functional relationship linking at-site precipitation
magnitude versus the HHS-driven compound precipitation. Mathematically, AR
is the ratio between univariate return periods of peak rain events not preceded by
HHS, and the conditional return periods of extreme precipitation compounded
by the HHS events.

, where AR� [0, ∞) (1)

An AR value larger (smaller) than 1 indicates amplifications (depreciation) in
compound precipitation frequency relative to solely considering peak rain event.
Here represents at-site return period for rainfall only events not preceded by HSS
and defined as (Kim et al., 2003) , where is mean inter-arrival time between two
consecutive rain only events; for Case I, , and for Case II, = 1, considering mon-
soon maxima precipitation events accounts for one event per year. represents
total number of peak rain only events considering 96.5th percentile threshold, N
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denotes length of records (in years) and indicates the marginal distribution of
rain only events. Tables S10-S11 and Figures S7-S8 suggest satisfactory fit of
rainfall only events.

Likewise, the denominator, represents return period in a CCP framework as-
suming the condition when peak rain event exceeds the threshold given extreme
WBT also exceeds a threshold (Brunner et al., 2016)

(2)

denotes mean inter-arrival time between consecutive compound events, ; indi-
cates number of peak rain events preceded by the HHS. denotes CDF of peak
precipitation events computed at 99th percentile (quantiles exceeding 1% of the
time) of the sampled compound event pair, whereas denotes CDF of extreme
WBT, which acts as a causal (conditional) driver for peak precipitation. is
computed considering (i) the likely (i.e., 50th percentile HHS values) value from
the sampled compound WBT events and (ii) considering TW � 32°C. indicates
copula-based joint CDF.

2.5 Moisture Convergences during HHS-Peak Precipitation

To attribute physically, we compare the daily-averaged moisture transport on
precipitation days preceded by HHS versus precipitation days not preceded by
HHS for the years 1979-2018. The vertically integrated moisture transport (IVT)
supplies a significant amount of moisture for the summer monsoon rainfall (Fa-
sullo & Webster, 2003). We calculated the IVT as a composite of the vertical
integral of eastward and northward water vapour flux provided by the ERA-
Interim re-analysis products with a spatial resolution of 0.75° (Brands et al.,
2017), whereas the mean IVT direction is evaluated using directional statistics
(Mardia, 1975).

3 Results and Discussion

3.1 Pronounced Variability in Wet-bulb Temperature Trends

Our preliminary analysis over the selected urban areas (Figure 1a-b) shows that
changes in median and extreme trends (annual maxima and the local 95th per-
centile time series over the 1970-2017 baseline) in WBT are more pronounced
than DBT (Figure S9). The rate of change in DBT is less for most sites except
Ahmedabad, where we observe a significant increasing trend in mean DBT. In
contrast, Dehradun shows a significant declining trend in DBT with no signifi-
cant increasing/decreasing trend for the WBT. Therefore, DBT alone is insuf-
ficient to capture the extreme HHS and may underestimate the associated risk.
Our finding corroborates with Rogers et al. (2021) that suggests an amplifica-
tion of HHS trend globally over densely urbanized locations leading to larger
fraction of population exposure to humid heat as compared to dry-heat. Con-
sequently, following earlier studies (Raymond et al., 2020; Zhang & Villarini,
2020), we have considered WBT an indicator of heat stress compounded by
humidity.
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3.2. Variability in Dependence Strength and Timing of Concurrent
Occurrence

Next, to explore spatial heterogeneity in compound heat stress-pluvial flood
hazards, we explore spatial dependence between drivers. The heat maps of
dependence pattern (Figure S1a) for extreme at different levels versus time
lags suggest the city located at a higher elevation and in temperate climate
zone (i.e., Dehradun; Figure 1a) show a dominant positive dependence between
drivers. This could be because many mountainous and high-latitude regions of
the northern hemisphere have reported warming-induced seasonal shifts in pre-
cipitation (Tamang et al., 2020). Further, the low-latitude coastal city, Panaji,
located at a close proximity (7.5 km) to the Arabian Sea, shows concomitant in-
crease in precipitation intensity with increase in HHS. The positive correlation at
coastal cities is often linked to increased convection and local precipitation due
to the combination of warm El Niño and Indian Ocean Dipole (IOD)-induced
large-scale teleconnections (Ashok et al., 2004; Trenberth & Shea, 2005). We
observe a mix of positive and negative correlations for remaining cities, with
large proportions of negative correlations for Hyderabad and Bhubaneshwar at
different threshold levels. While in tropical urban areas, intense precipitation is
reported with warming, the apparent negative correlation is explained by the hu-
midity limitations at higher temperatures (Fowler et al., 2021). The lag period
of 7 days and a threshold of 96.5th percentile capture the dependency pattern
while ensuring sufficient sample lengths for multivariate hazard assessment (Fig-
ure S1b). Therefore, we have considered the threshold as 96.5th percentile and
up to a week of time-lag for analyzing compound heat-pluvials in subsequent
analyses.

To further investigate the seasonal variability of compound events, we com-
pare the correlation values and their time of emergence across different seasons
(Figure 2). While we note concurrence of HHS-precipitation is mainly limited
to Southwest monsoon season (June – September), as confirmed by over 40%
of samples in both cases. The spatial trend shows a distinct pattern for the
western and eastern halves of the country. The positive dependence in west-
ern half indicates evidence of intense precipitation preceded by HHS (Kumar
et al., 2010). The significant positive correlation (at 10% significance level)
at Dehradun (Figure 2a) suggests possibility of robust amplification in peak
discharge. In contrast, negative correlations over the eastern and the interior
corridor of the sub-continent (e.g., Hyderabad and Guwahati) are apparent. A
likely explanation is extreme HHS occurrence during the break or weak spells
of monsoon, leading to limited moisture availability in these areas (Ivanovich
et al., 2021; Krishnan et al., 2009). Typically, during the southwest monsoon,
higher values of WBTs are observed over north India compared to the southern
peninsula, with larger diurnal variability at the east coast in contrast to smaller
variations at the west coast (Reddy, 1976). The scatter plot of peak precipi-
tation versus the HHS (Figure S10) further confirms notable heat stress over
north India (Delhi) and eastern coast (Kolkata), where the WBT tend to attain
or even exceed the WBT threshold of 30°C, triggering thermal discomfort and
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slowdown in labour productivity (Dasgupta et al., 2021).

The UTR distribution of Case I shows 7 out of 9 cities tends to be more intense
(>1 – 1.3), indicating major flooding (Figure S11). For Case II, one city shows
bankfull conditions with UTR value of 0.56, followed by five cities show minor
to moderate flooding with UTR ranges from 0.6 – 1 (Villarini et al., 2014). For
Dehradun, the UTR value is more than one in both cases, indicating suscep-
tibility to major flooding. The larger value of UTR for Case I compared to
Case II could be because in former, both drivers are extremes by themselves,
whereas for the latter extreme WBT, acts as a triggering mechanism for peak
precipitation, where the rain event does not necessarily be an extreme.

3.2 Trends in Pluvial Frequency and its Amplification

We identify “hotspot” cities with larger amplifications in peak precipitation in a
CCP framework, assuming the occurrence of peak precipitation preceded by the
extreme WBT. Extreme precipitations are identified from the 99th percentile of
the flood peak distribution from compound event pairs, considering two scenar-
ios of HHS as physical covariates: the likely scenario represented by the TW >
50th percentile of sampled HHS, and the extreme TW scenario considering TW
>32°C, the upper limit of labour productivity. To provide a regional view, we
coined a normalized metric, AR statistics that provide an information of how
much larger (or smaller) are the compound flood peak distribution than the
at site peak precipitation frequency without considering HHS. Although consid-
ering the likely scenario (Figure 3a), only a few locations (one site in Case I
and four sites in Case II) show perceptible changes with AR > 1, considering
extreme TW scenario, the majority of sites report considerable shortening of the
return period. The largest amplifications are observed for Mumbai and Panaji,
followed by Ahmedabad – all three cities are close to the ocean, which indicates
the coastal cities are at greater risk of heat stress-driven pluvial flood risk.

We further compare the return period corresponding to peak rainfall not pre-
ceded by HHS versus the return period corresponding to heat-stress-driven rain
events for the extreme TW scenario (Figure. 3b). The scatter plot is divided
into four quadrants, considering a threshold return period of 25-year, which is
adequate to flood small to medium-sized catchments (CWC, 2012). The cities
lie in quadrants II and IV are exposed to larger risk, manifested by considerable
shortening of HHS-driven rain events, even down to 2-year (e.g., Ahmedabad
and Panaji in Fig. 3b) compared to at-site extreme precipitation frequency,
which are not preceded by HHS. This demonstrates peak rainfall episodes com-
pounded by HSS tend to become intense and frequent, which may be under-
estimated by solely considering extreme precipitation. Interestingly, compared
to Case II, the frequency amplification trends in Case I are modest, with the
maximum value close to 3, and often characterized by depreciation (AR < 1).
This could be because in Case I, each variables in the AR metric, including
its drivers in the denominator, are extreme by itself. In contrast, in Case II,
the AR metric is determined by the ratio of design rain events of seasonal (June-
September) maxima precipitation to the HSS-driven peak precipitation, where
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the latter variable may not be necessarily extreme. However, a combination of
(several) modest values augmented by background conditions may result in an
extreme impact (Pescaroli & Alexander, 2018).

3.3 Precipitation Frequency and Moisture Flux during Concurrent
Event

To identify underlying causes of precipitation amplification, we compare the
mean moisture transport of precipitation days compounded by HHS events ver-
sus moisture transport of precipitation days not preceded by HHS events (Figure
4a-b). The mean moisture convergence shows an anomalous anticyclonic pattern
in the Northern part of India (Figure 4), a signature of atmospheric blocking
during hot days (Dubey et al., 2021). During wet spells, the anomalous wind
patterns caused by shorter blocking events pushed monsoon rains north and
west, resulting in heavy rains in these areas. Bellow 17° N at Southern India,
moisture movement arises from the Arabian ocean towards the Bay of Bengal on
the day of HHS. The composites show accumulating moisture flux, which tends
to be more pronounced (� 550 kgm-1s-1 of IVT) over the region during precipita-
tion days preceded by HHS. In contrast, the moisture flux, during precipitation
days not preceded HHS, is relatively lower than the former two cases. A substan-
tial moisture convergence is apparent in Case I than Case II on precipitation
days preceded by HHS. Mechanistically, it appears that extreme WBT in the
tropics augments convective instability, which potentially enhances atmospheric
convection and precipitation (Zhang et al., 2021). To explain further, we com-
pare histograms of the rainfall frequency versus the magnitude for both cases.
For Case I, a long tail on a higher magnitude of rainfall together with a notable
shift in the mean rainfall suggest a “changed symmetry” associated with rain
events preceded by HHS (Figure 4a, extreme right), which indicates an inten-
sification of compound rain events. For Case II, no such evidence of shifted
mean (towards higher rainfall) is apparent for compound rain events (Figure 4b,
extreme right).

4 Conclusions

We demonstrate the heat stress-pluvial compound flood potentials of urban
agglomerates of India via two cases: in Case I, both drivers were considered as
extreme (POT WBT and POT precipitation) where severe heat stress is either
coincided or preceded by the extreme rain events, whereas in Case II, annual
maxima WBT was considered as a preconditioned driver triggering peak rain
event within a limited time window. Recently, a few studies have detected the
cascading impact of HHS (i.e., preconditioned driver) on extreme precipitation
occurrence (i.e., responder); however, such efforts are mostly confined to mid-
to-high latitudes (Fowler et al., 2021; Zhang & Villarini, 2020) and sub-tropical
continents (Bui et al., 2019; Ning et al., 2022; You & Wang, 2021). While using
re-analysis products, Zhang & Boos (2021) showed susceptibility of heavy to
very heavy precipitation about half of the Global land areas between 50°N and
50°S coincided or immediately following extreme WBT, very few studies have
explored compound flood potentials and associated hazards of HSS-coupled-
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rainfall extremes, especially over tropics, one of the vulnerable regions in Earth’s
climate system (Lenton et al., 2008).

Our analyses reveal a spatially coherent dependence structure for the cities
located across western versus eastern corridors of the country - a statistically
significant decreasing dependence strength is apparent for cities located across
the east, whereas the urban areas located across the west show (insignificant)
positive dependence. While a positive dependence suggests a more frequent
and extreme rainfall compounded by HHS, the negative dependence between
drivers indicates the possibility of reduced peak magnitude of pluvials. Barring
the strength of dependence between drivers, the spatial distribution of UTR
suggests moderate to severe flooding due to preceding HHS events. In particular,
coastal cities are more exposed to heat stress; which is alarming since in warming
climate with the advent of local sea-level rise, especially in tropics (Hooijer &
Vernimmen, 2021), more precipitation may increase the vulnerability of low-
lying coasts owing to coastal compound flooding (Dhiman et al., 2018; Fang et
al., 2021).

Due to a limited number of station-based observations, while spatiotemporal
coverage of records remains constrained for this study, our proof-of-principal
framework could extend to any geographical region to identify hotspots of hu-
mid heat stress-pluvial flooding using observations and climate model output.
Further, considering different sources of uncertainty in bivariate framework, we
assume the effect of changes in the time series are not large. Although our
initial case study is confined to selected urban locations of India, the obtained
insights provide a new perspective for understanding the response of compound
HHS-pluvial extremes, which will be helpful for risk management, flash flood
forecast, and insurances. We may expect enhanced HHS-precipitation coupling
with significant social and economic repercussions as climate shocks increase
(IPCC - SPM, 2022). Future assessments are needed to understand the conse-
quences of anthropogenic forcing on compound HHS-pluvial extremes unveiling
the intricate feedback processes of the climate system and preparing resilience
to extreme events.

5 Data availability

Station-based meteorological records are procured from the IMD (India
Meteorological Department; https://dsp.imdpune.gov.in/). The popu-
lation data is obtained from the Census India website, available freely at
(https://censusindia.gov.in/). The digital elevation models (DEM) of India
are obtained from Global 30 Arc-Second Elevation (GTOPO30) available
at: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-
elevation-global-30-arc-second-elevation-gtopo30. The IVT records are
obtained from the European Centre for Medium-Range Weather Forecasts
(ECMWF)’s ERA-Interim product available at a daily resolution via the web-
link: https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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Figure 1: (a) Elevation profile of India. The digital elevation models (DEM) of
India are obtained from Global 30 Arc-Second Elevation (GTOPO30) database
available at approximately 1 km resolution. The elevation map of India is pro-
jected using spatial analysis software Arc GIS Desktop version 10.8.1. (b) Map
of India showing 9 cities with their population and seven homogeneous climatic
zones (rainfall). Size and shade of the circles is proportional to population
density, the lighter (dark) shade and smaller (larger) circles represent smaller
(higher) population density. The projected population for 2020 was calculated
using previous census record. (c) Flowchart summarizing the workflow, where
CE = compound event, WBT = wet-bulb temperature, POT 96.5 = peak over
threshold level (96.5), AMX =Annual Maxima, KS = Kolmogorov-Smirnov,
CVM=Cramer-von Mises, AD = Anderson Darling, � = level of significance,
𝑇𝑄|WBT = Conditional return period corresponds to heat-stress induced peak
rain event, 𝑇𝑄 = Return period corresponds to peak rain event NOT preceded
by heat stress.
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Figure 2: Spatial distribution of strength of dependence between drivers with
their selected copula family for Case I (POT) and Case II (AMX). Pie Charts
show the time (season) of concurrence of the compound extreme. The shape of
marker denotes selected copula types – markers with double boundary indicate
statistically significant dependence at 10% level.

Figure 3: (a) Spatial distributions of Amplification Ratio, AR. The up (down)
triangles represents likely scenario, i.e., Tw > 50th percentile of sampled HHS,
whereas circles indicates extreme Tw scenario, considering Tw>32°C. Further,
up triangle indicates an amplification, whereas down triangle denotes deprecia-
tion. (b) Scatter plot shows the relationship between univariate return period
for peak rainfall event not preceded by HHS and the calculated return period in
a CCP framework indicating heat-stress-driven peak rain events for the extreme
scenario. The filled circles indicate Case I and the empty circles represents Case
II. Red and blue colour circles represent amplification and deprecation, respec-
tively. The locations with significant dependence are marked with asterisk (*).
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Figure 4: Daily-averaged moisture transport on the day of HHS, on the pre-
cipitation days preceded by and not preceded by HHS for (a) Case I and (b)
Case II. Histograms of the rainfall frequency versus the rainfall magnitude for
(a; extreme right) Case I and (b; extreme right) Case II.

References

Agilan, V., & Umamahesh, N. V. (2017). What are the best covariates for
developing non-stationary rainfall Intensity-Duration-Frequency relationship?
Advances in Water Resources, 101, 11–22. Ashok, K., Guan, Z., Saji, N. H.,
& Yamagata, T. (2004). Individual and Combined Influences of ENSO and
the Indian Ocean Dipole on the Indian Summer Monsoon. Journal of Climate,
17(16), 3141–3155. Berghuijs, W. R., Allen, S. T., Harrigan, S., & Kirchner, J.
W. (2019). Growing Spatial Scales of Synchronous River Flooding in Europe.
Geophysical Research Letters, 46(3), 1423–1428. Brands, S., Gutiérrez, J. M.,
& San-Martín, D. (2017). Twentieth-century atmospheric river activity along

13



the west coasts of Europe and North America: algorithm formulation, reanalysis
uncertainty and links to atmospheric circulation patterns. Climate Dynamics,
48(9–10), 2771–2795.Bui, A., Johnson, F., & Wasko, C. (2019). The relationship
of atmospheric air temperature and dew point temperature to extreme rainfall.
Environmental Research Letters, 14(7), 074025.Burnham, K. P., & Anderson,
D. R. (2003). Model selection and multimodel inference: a practical information-
theoretic approach. Springer.CRED (Centre for Research on the Epidemiology
of Disasters). (2018). Review of Disaster Events (pp. 1–6). Belgium: Univer-
sité catholique de Louvain. Retrieved from https://www.cred.be/CWC (Cen-
tral Water Commission, 2012). Handbook for flood protection, anti-erosion and
river training works. Flood management organization, New Delhi.Dasgupta, S.,
Maanen, N. van, Gosling, S. N., Piontek, F., Otto, C., & Schleussner, C.-F.
(2021). Effects of climate change on combined labour productivity and supply:
an empirical, multi-model study. The Lancet Planetary Health, 5(7), e455–e465.
Davis, R. E., McGregor, G. R., & Enfield, K. B. (2016). Humidity: A review
and primer on atmospheric moisture and human health. Environmental Re-
search, 144, 106–116. Dhiman, R., VishnuRadhan, R., Eldho, T. I., & Inamdar,
A. (2018). Flood risk and adaptation in Indian coastal cities: recent scenarios.
Applied Water Science, 9(1), 5.Dubey, A. K., Kumar, P., Saharwardi, M. S.,
& Javed, A. (2021). Understanding the hot season dynamics and variability
across India. Weather and Climate Extremes, 32, 100317. Fang, J., Wahl, T.,
Fang, J., Sun, X., Kong, F., & Liu, M. (2021). Compound flood potential from
storm surge and heavy precipitation in coastal China: dependence, drivers, and
impacts. Hydrology and Earth System Sciences, 25(8), 4403–4416. Fasullo, J.,
& Webster, P. J. (2003). A hydrological definition of Indian monsoon onset
and withdrawal. Journal of Climate, 16(19), 3200–3211.Fechter-Leggett, E. D.,
Vaidyanathan, A., & Choudhary, E. (2016). Heat Stress Illness Emergency
Department Visits in National Environmental Public Health Tracking States,
2005–2010. Journal of Community Health, 41(1), 57–69. Fischer, E. M., &
Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy-
precipitation and high-temperature extremes. Nature Climate Change, 5(6),
560–564. Fowler, H. J., Lenderink, G., Prein, A. F., Westra, S., Allan, R. P.,
Ban, N., et al. (2021). Anthropogenic intensification of short-duration rainfall
extremes. Nature Reviews Earth & Environment, 2(2), 107–122.Ganguli, P.,
& Merz, B. (2019). Extreme Coastal Water Levels Exacerbate Fluvial Flood
Hazards in Northwestern Europe. Scientific Reports, 9(1), 13165. Hooijer, A.,
& Vernimmen, R. (2021). Global LiDAR land elevation data reveal greatest
sea-level rise vulnerability in the tropics. Nature Communications, 12(1), 3592.
Im, E.-S., Pal, J. S., & Eltahir, E. A. (2017). Deadly heat waves projected
in the densely populated agricultural regions of South Asia. Science Advances,
3(8), e1603322.Ivanovich, C., Horton, R. M., & Sobel, A. H. (2021). Extreme
Humid Heat during South Asian Summer Monsoon Breaks. In AGU Fall Meet-
ing 2021. AGU.Kim, T.-W., Valdés, J. B., & Yoo, C. (2003). Nonparametric
Approach for Estimating Return Periods of Droughts in Arid Regions. Jour-
nal of Hydrologic Engineering, 8(5), 237–246. Krishnamurthy, C. K. B., Lall,
U., & Kwon, H.-H. (2009). Changing Frequency and Intensity of Rainfall Ex-

14



tremes over India from 1951 to 2003. Journal of Climate, 22(18), 4737–4746.
Krishnan, R., Kumar, V., Sugi, M., & Yoshimura, J. (2009). Internal feed-
backs from monsoon–midlatitude interactions during droughts in the Indian
summer monsoon. Journal of the Atmospheric Sciences, 66(3), 553–578.Kumar,
V., Jain, S. K., & Singh, Y. (2010). Analysis of long-term rainfall trends in
India. Hydrological Sciences Journal, 55(4), 484–496. Lenton, T. M., Held,
H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., & Schellnhuber, H. J.
(2008). Tipping elements in the Earth’s climate system. Proceedings of the Na-
tional Academy of Sciences, 105(6), 1786–1793.Mardia, K. V. (1975). Statistics
of directional data. Journal of the Royal Statistical Society: Series B (Method-
ological), 37(3), 349–371.Masson-Delmotte, V., Zhai, P., Pirani, A., Connors,
S. L., Péan, C., Berger, S., et al. (Eds.). (2021). Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change. Cambridge
University Press.Nelsen, R. B. (2013). An introduction to copulas (Vol. 139).
Springer Ning, G., Luo, M., Zhang, W., Liu, Z., Wang, S., & Gao, T. (2022).
Rising risks of compound extreme heat-precipitation events in China. Interna-
tional Journal of Climatology, Doi: 10.1002/joc.7561Pescaroli, G., & Alexander,
D. (2018). Understanding compound, interconnected, interacting, and cascad-
ing risks: a holistic framework. Risk Analysis, 38(11), 2245–2257.Priyadarshi,
N., Bandyopadhyay, S., Chowdary, V. M., Chandrasekar, K., Chockalingam,
J., Raj, U., & Jha, C. S. (2020). Segmentation-based approach for trend anal-
ysis and structural breaks in rainfall time series (1851–2006) over India. Hy-
drological Sciences Journal, 65(9), 1583–1595.Raymond, C., Matthews, T., &
Horton, R. M. (2020). The emergence of heat and humidity too severe for hu-
man tolerance. Science Advances, 6(19), eaaw1838. Reddy, S. J. (1976). Wet
bulb temperature distribution over India. Mausam, 27(2), 167–172.Risser, M.
D., & Wehner, M. F. (2017). Attributable Human-Induced Changes in the
Likelihood and Magnitude of the Observed Extreme Precipitation during Hur-
ricane Harvey. Geophysical Research Letters, 44(24), 12,457-12,464. Rogers,
C. D., Ting, M., Li, C., Kornhuber, K., Coffel, E. D., Horton, R. M., et al.
(2021). Recent Increases in Exposure to Extreme Humid-Heat Events Dispro-
portionately Affect Populated Regions. Geophysical Research Letters, 48(19),
e2021GL094183.Rohini, P., Rajeevan, M., & Srivastava, A. K. (2016). On the
Variability and Increasing Trends of Heat Waves over India. Scientific Reports,
6(1), 26153. Rosenzweig, B. R., McPhillips, L., Chang, H., Cheng, C., Welty,
C., Matsler, M., et al. (2018). Pluvial flood risk and opportunities for re-
silience. Wiley Interdisciplinary Reviews: Water, 5(6), e1302. Rowe, S. T., &
Villarini, G. (2013). Flooding associated with predecessor rain events over the
Midwest United States. Environmental Research Letters, 8(2), 024007. Saeed,
F., Schleussner, C.-F., & Ashfaq, M. (2021). Deadly Heat Stress to Become
Commonplace Across South Asia Already at 1.5°C of Global Warming. Geo-
physical Research Letters, 48(7), e2020GL091191. Sharma, S., & Mujumdar,
P. (2017). Increasing frequency and spatial extent of concurrent meteorological
droughts and heatwaves in India. Scientific Reports, 7(1), 15582. Stone Jr, B.,
Mallen, E., Rajput, M., Gronlund, C. J., Broadbent, A. M., Krayenhoff, E. S., et

15



al. (2021). Compound Climate and Infrastructure Events: How Electrical Grid
Failure Alters Heat Wave Risk. Environmental Science & Technology, 55(10),
6957–6964.Tamang, S. K., Ebtehaj, A. M., Prein, A. F., & Heymsfield, A. J.
(2020). Linking global changes of snowfall and wet-bulb temperature. Journal
of Climate, 33(1), 39–59.Trenberth, K. E., & Shea, D. J. (2005). Relationships
between precipitation and surface temperature. Geophysical Research Letters,
32(14). Doi: 10.1029/2005GL022760.You, J., & Wang, S. (2021). Higher proba-
bility of occurrence of hotter and shorter heat waves followed by heavy rainfall.
Geophysical Research Letters, 48(17), e2021GL094831.Villarini, G., Goska, R.,
Smith, J. A., & Vecchi, G. A. (2014). North Atlantic tropical cyclones and
US flooding. Bulletin of the American Meteorological Society, 95(9), 1381–
1388.Zhang, W., & Villarini, G. (2020). Deadly compound heat stress-flooding
hazard across the central United States. Geophysical Research Letters, 47(15),
e2020GL089185.

Zhang, Y., & Boos, W. R. (2021). Risk of intense precipitation accompanying
extreme wet-bulb temperatures. In AGU Fall Meeting 2021. AGU.

Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress
constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137.

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton,
R. M., et al. (2020). A typology of compound weather and climate events.
Nature Reviews Earth & Environment, 1(7), 333–347.

16



 
 

2 
 

 
Geophysical Research Letters 

Supporting Information for 

Multivariate Approach Reveals a Higher Likelihood of Compound Heat 
Stress-Pluvial Floods in Urban India 

 Poulomi Ganguli1, Sucheta Pradhan1 

1Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, India 

 

Contents of this file  
 

Text S1  
Figures S1 to S11 
Tables S1 to S11 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

2 
 

Text S1 

SI.1 Goodness-of-fit of Copulas using Parametric Bootstrap Method 

We employ the parametric bootstrap-based goodness-of-fit test as suggested by Rémillard (2017) 

to select the best copula family. Parametric bootstrap procedure is described as below: 

For large integer resamples N (N >> n, where n is the sample length) generated from the copula 

families, we perform the following test statistics: 

1. Compute  𝐶௡ and estimate the copula parameter φ with φ௡ = 𝑇௡ (𝑈ଵ,௡, … … … 𝑈௡,௡ሻ, where Tn 

represents a deterministic function with expression 𝑇௡ ൌ 𝜓ሺ𝑃௡ሻ, 𝑈ଵ,௡, … … … 𝑈௡,௡ denote n-

dimensional (n=2) rank order transformed variables or the pseudo observations and 𝑃௡ is the 

CDF of rank-ordered transformed variable vector given by, 

                                          𝑃௡ ൌ ඥ𝑛ሺ𝐶௡ െ 𝐶஦௡ሻ                                     (S1) 

 

Where 𝐶௡൫𝑈௜,௡൯ is the CDF of the empirical copula and 𝐶∅೙
ሺ𝑈௜,௡ሻ represent CDF estimated 

from the parametric copula family. For two dimensional case, the empirical copula, 

Cn(u1,u2) is estimated from the following expression 
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2. Compute the value of empirical Crámer von Mises distance (CvMD) statistics 𝑆௘௠௣ , which 

is an integrated squared difference between CDF calculated from empirical copula and the 

parametric family of copula. 
          

           𝑆௘௠௣ ൌ ׬ 𝑃𝑛
2ሺ𝑢ሻ𝑑𝐶𝑛ሺ𝑢ሻ ൌ ∑ ൛𝐶𝑛൫𝑈𝑖,𝑛൯ െ 𝐶∅𝑛

ሺ𝑈𝑖,𝑛ሻൟ
2𝑛

𝑖ൌ1
.

ሾ0,1ሿ𝑑                    (S3) 

 

  

3. For some large integer N, repeat the following steps for every k ∈ {1, . . . , N}: 
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a. Generate a random sample 𝑌௜,௡
ሺ௞ሻ, . . . , 𝑌௡,௡

ሺ௞ሻ from distribution 𝐶∅,௡ and compute the 

pseudo-observations 𝑈௜,௡
ሺ௞ሻ = 𝑹௜,௡

ሺ௞ሻ /(n + 1), where 𝑅௜,௡
ሺ௞ሻ  , . . . , 𝑅௡,௡

ሺ௞ሻare the 

associated rank vectors of 𝑌௜,௡
ሺ௞ሻ, . . . , 𝑌௡,௡

ሺ௞ሻ.   

 

b. Estimate copula parameter φ with φ௡
ሺ௞ሻ ௡ = 𝑇௡ (𝑈ଵ,௡

ሺ௞ሻ, … … … 𝑈௡,௡
ሺ௞ሻሻ, where 

𝑈ଵ,௡
ሺ௞ሻ, … … … 𝑈௡,௡

ሺ௞ሻ are the simulated ranked data. Compute CDF from the simulated 

ranked sample, 𝐶௡
ሺ௞ሻሺ𝑢ሻ 

 

       𝐶௡
ሺ௞ሻሺ𝑢ሻ ൌ ଵ

௡
∑ 1൫ 𝑈௜,௡

ሺ௞ሻ ൑ 𝑢൯,   𝑢 ∈ ሾ0,1ሿௗ௡
௜ୀଵ                           (S4)        

c. Compute corresponding CvMD 
               

                  𝑆௕௢௢௧
ሺ௞ሻ ൌ ∑ ቄ𝐶𝑛

ሺ𝑘ሻ ቀ𝑈𝑖,𝑛
ሺ𝑘ሻቁ െ 𝐶

∅𝑛
ሺ𝑘ሻሺ𝑈𝑖,𝑛

ሺ𝑘ሻሻቅ
2

𝑛
𝑖ൌ1                             (S5) 

 

The critical value of test statistic at   significance level based on Sn is given as   1 :boot

k
n n

S   
, where 

x    denotes the integer part of x . An approximate p-value for the test is then given by 

∑ 1
ሺௌ್೚೚೟

ೖவௌ೐೘೛ሻ

ே
ே
௞ୀଵ .  

We compute the critical value of the test at 5% significance level. Based on the largest p-value 

obtained through N = 500 bootstrap resamples, we have identified the best fit copula family. Other 

than the parametric bootstrap method, we employed the upper tail ratio to choose the suitable 

copula family (UTR; See section SI.2), which is the ratio between pluvial flood hazard component 

represented by heat- stress-driven compound precipitation and the at-site 10-year seasonal maxima 

precipitation. Next, we compare the observed UTR obtained from the historical precipitation series 

(See Eq. S6 in section SI.2) versus the simulated UTR (See Eq. S7 in section SI.2) obtained from 

the best and the next-best fit copula family. Finally, we select the suitable copula family that offers 

the lowest percentage bias (denoted with PBias) and the minimum uncertainty estimated through 

the interquartile range between the two copula families.  

SI.2 Selection of Copulas based on Goodness-of-fit test and Upper Tail Ratios 

We compare the copula performance to fit the Upper Tail Ratio (UTR; Wietzke et al., 2020) of the 

extreme precipitation to ensure the heavy tail behavior is simulated adequately well by the selected 

copula. For this, we calculate the observed UTR and the simulated UTR using the following 

expression: 
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                 𝑈𝑇𝑅௢௕௦௘௥௩௘ௗ ൌ
ெ௔௫௜௠௨௠ ௖௢௠௣௢௨௡ௗ௜௡௚ ௣௥௘௖௜௣௜௧௔௧௜௢௡ ௗ௘௣௧௛

 ௪௜௧௛௜௡ ௔ ௪௘௘௞ ௢௙ ௢௖௖௨௥௔௡௖௘ ௢௙ ௛௘௔௧ ௦௧௥௘௦௦
஺௧௦௜௧௘ ଵ଴ ௬௘௔௥ ௥௘௧௨௥௡ ௟௘௩௘௟ 

௖௢௡௦௜ௗ௘௥௜௡௚ ௦௘௔௦௢௡௔௟ ௠௔௫௜௠௔ ௣௥௘௖௜௣௜௧௔௧௜௢௡

            (S6) 

 

 

             𝑈𝑇𝑅௦௜௠௨௟௔௧௘ௗ ൌ
ெ௫௜௠௨௠ ௣௥௘௖௜௣௜௧௔௧௜௢௡ ௗ௘௣௧௛ ௦௬௡௧௛௘௧௜௖௔௟௟௬ ௦௜௠௨௟௔௧௘ௗ ௕௬

 ௦௘௟௘௖௧௘ௗ ௖௢௣௨௟௔ ௙௔௠௜௟௬ ௜௡ ௔ ௡ୀହ଴଴ ௕௢௢௧௦௥௔௣ ௥௨௡
஺௧௦௜௧௘ ଵ଴ ௬௘௔௥ ௥௘௧௨௥௡ ௟௘௩௘௟ 

௖௢௡௦௜ௗ௘௥௜௡௚ ௦௘௔௦௢௡௔௟ ௠௔௫௜௠௔ ௣௥௘௖௜௣௜௧௔௧௜௢௡

                   (S7) 

 

In Eqs. S6 and S7 we consider the seasonal maxima precipitation during June-September months 

at the denominator since the southwest summer monsoon season is the largest contributor of total 

annual rainfall in India (Soman & Kumar, 1990). 

 

Further, following earlier studies (Rowe & Villarini, 2013; Villarini & Smith, 2010), we 

normalized Eqs. S6 and S7 using at-site 10-year pluvial flood return level. The 10-year flood is a 

commonly used threshold to distinguish properties of the upper tail of flood distributions (see, e.g., 

O’Connor & Costa, 2004; Villarini et al., 2011).We calculate the PBias of the best fit and the next 

best fitted copula families using Eqs. S6-S7. Finally, we select the copula based on the minimum 

PBias and the lower inter Quartile Range (IQR) (i.e., the difference between 25th and 75th 

quantile) values between the best fit and the second-best fit copula families. 

                                                

                                             𝑃𝐵𝑖𝑎𝑠 ൌ ௎்ோ೚್ೞ೐ೝೡ೐೏ି௎்ோೞ೔೘ೠ೗ೌ೟೐೏

௎்ோ೚್ೞ೐ೝೡ೐೏
                                         (S8) 
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            Figure S1. Variability of (a) dependence pattern and (b) sample length considering different extreme level and time 

lag. The selected time window and extreme level, i.e., 96.5th percentile and 7-day time lag, is marked with dotted 

rectangle in gray. The statistical significance of dependence strength is evaluated at 10% significance level i.e., p-

value < 0.10 and marked with ‘+’ symbol.
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Figure S2. Distribution fits for Precipitation for Case I (POT). The empirical CDF is shown in solid thick black lines, whereas the fitted theoretical 
distribution is shown using blue lines. The inset shows the fit of probability density function. 
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Figure S3. Distribution fits for WBT for Case I (POT). The inset shows the fit of probability density function. The empirical CDF is shown in solid 
black lines, whereas the fitted theoretical distribution is shown using blue lines. 
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Figure S4. Distribution fits for precipitation for Case II (AMX). The empirical CDF is shown in solid black lines, whereas the fitted theoretical 
distribution is shown using blue lines. 
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Figure S5. Distribution fits for WBT for Case II (AMX). The empirical CDF is shown in solid black lines, whereas the fitted theoretical distribution 
is shown using blue lines. 
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 Figure S6. Relative bias for (a) UTR and (b) Kendall’s τ for the best-fit and next-best fit copula families identified using parametric bootstrap 
approach. 
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Figure S7. Distribution fits for Precipitation for Case I (POT) for rain-only events. The empirical CDF is shown in solid black lines, whereas the 
fitted theoretical distribution is shown using blue lines. The inset shows the fit of probability density function. 
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Figure S8. Distribution fits for Precipitation for Case II (AMX) for rain-only events. The empirical CDF is shown in solid black lines, whereas the 
fitted theoretical distribution is shown using blue lines.  
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Figure S9. Trends in Mean and Extreme Dry- vs Wet-Bulb Temperature. Bar-plot shows the trends in Mean, POT and AMX wet-(WBT) and dry- 
(DBT)bulb temperature respectively. The red shades of bar show positive change/decade, whereas the blue shades of bar depict negative 
change, above (below) the normal level, while the normal level is indicated using the ‘zero’ mark on the x-axis.   
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Figure S10. Response of peak precipitation to the extreme HSS. Tw at x-axes indicates wet-bulb temperature. Tw exceedance of 31°C, 

which is extremely dangerous for human (Raymond et al., 2020), is prominent for two cities, New Delhi and Kolkata. Panjim is 

an acronym for the city Panaji (WMO ID 43192), which is located across the western coast of peninsular India.  
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Figure S11. Spatial distribution of UTR (dimensionless). The size and shade of the circle is proportional to UTR magnitude. *UTR 
classification is according to Villarini et al. (2014). 
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Table S1. Projected population of 2020 for selected 9 location in millions 

  *  2020 2010 1
N

P P DGR  , where N = 10; decadal interval considering census records at a 10-year apart, DGR denotes the decadal growth rates considering the 

year 2000 as baseline and was computed from percentage change in population from the year 2000 and 2010 respectively; *shows declining DGR.    

 

 

  

          WMO ID Location DGR Population in 2020 (in million) 

42111 Dehradun 0.5 0.60 

42410 Guwahati 2.5 1.20 

42971 Bhubaneshwar 4 1.25 

43003 Mumbai* -0.3* 9.12 

43128 Hyderabad 1.1 4.37 

43192 Panaji 2.5 0.09 

42182 New Delhi 3.4 22.04 

42647 Ahmedabad 2.6 7.00 

42809 Kolkata 0.1 4.54 
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Table S2. Results of Marginal distribution fit and Goodness of fit statistics for POT precipitation for compound event pair Case I (POT) 

 
*The best selected distribution are based upon the minimum AIC and the graphical diagnostic plot Fig. S4. Selected distributions are marked in bold italic fonts. The 

abbreviations GP and GEV denote Generalized Pareto and Generalized Extreme Value distributions respectively.   

 
 
 
 
 
 
 
 
 
 
 
 

Station 

(WMO ID) 

Selected 

Distribution 

GP GEV Gamma Lognormal Log-logistic Kernel 

  
AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value 

42111 Kernel -1151.99 0.75 -967.40 0.36 -930.74 0.07 -991.47 0.22 -981.06 0.22 -1166.93 0 

42182 Kernel -876.19 0.46 -774.94 0.39 -816.51 0.06 -853.42 0.48 -825.65 0.41 -887.41 0 

42410 GP -838.00 0.04 -787.03 0.56 -712.51 0.00 -775.52 0.03 -768.40 0.29 -822.95 0 

42647 Kernel -715.47 0.61 -641.06 0.44 -599.31 0.10 -679.54 0.36 -666.27 0.34 -736.69 0 

42809 Kernel -563.63 0.28 -592.69 0.82 -423.61 0.03 -456.35 0.04 -467.10 0.12 -613.28 0.05 

42971 Kernel -424.29 0.78 -395.06 0.34 -369.35 0.05 -399.21 0.23 -399.92 0.30 -444.28 0.01 

43003 Kernel -427.25 0.98 -428.26 0.98 -330.17 0.02 -362.98 0.12 -362.41 0.29 -453.79 0.02 

43128 GP -905.87 0.29 -787.45 0.66 -678.32 0.03 -779.42 0.28 -772.65 0.32 -882.92 0 

43192 Kernel -238.89 0.85 -217.11 0.54 -208.37 0.03 -221.55 0.19 -214.55 0.50 -241.11 0.02 
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Table S3. Results of Marginal distribution fit and Goodness of fit statistics for POT extreme WBT for compound event pair, Case I (POT) 
  

Station 
(WMO 

ID) 

Selected 
Distribution 

GP GEV Gamma Lognormal Log-logistic Kernel 

  
AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value 

42111 Kernel -707.63 0.002 -856.00 0.016 -804.40 0 -806.70 0 -893.62 0.013 -1011.34 0 

42182 Kernel -501.21 0 -643.83 0.040 -606.68 0.042 -608.50 0.039 -636.54 0.137 -713.23 0.047 

42410 Kernel -511.72 0.006 -620.51 0.07 -578.78 0.129 -581.02 0.129 -598.77 0.166 -656.09 0.016 

42647 Kernel -346.89 0.001 -273.39 0 -459.84 0.019 -461.08 0.021 -505.43 0.058 -606.58 0 

42809 Kernel -342.73 0.002 -198.17 0.002 -427.87 0.006 -429.36 0.007 -446.88 0.07 -522.13 0.024 

42971 Kernel -188.44 0.002 -214.76 0.009 -295.63 0.046 -296.73 0.048 -314.28 0.072 -369.53 0 

43003 Kernel -154.65 0 -189.54 0.004 -260.56 0.028 -261.56 0.044 -270.80 0.088 -329.43 0 

43128 Kernel -416.62 0.001 -417.16 0 -487.98 0 -491.03 0 -618.21 0 -729.32 0 

43192 Kernel -131.19 0.009 -119.06 0.0205 -174.38 0 -174.82 0 -187.91 0.003 -216.68 0.002 

* For graphical diagnostic plot, see Fig. S5. Selected distributions are marked in bold italic fonts. 
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Table S4. Results of Marginal distribution fit and Goodness of fit statistics for peak precipitation event, Case II (AMX) 
 

Station (WMO 
ID) 

Selected 
Distribution 

GEV Gamma Lognormal Log-logistic Kernel 

  
AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value 

42111 Kernel -245.297 0.293 -230.920 0.141 -256.520 0.251 -250.160 0.422 -266.846 0.002 
42182 Kernel -202.179 0.391 -214.658 0.540 -203.771 0.450 -224.422 0.519 -253.642 0.191 
42410 Kernel -263.063 0.468 -286.326 0.709 -273.275 0.589 -278.902 0.661 -301.266 0.227 
42647 Kernel -75.003 0.813 -77.486 0.553 -81.963 0.974 -83.274 0.947 -91.087 0.358 
42809 Gamma -170.439 0.957 -185.827 0.854 -168.883 0.974 -180.638 0.874 -178.051 0.003 

42971 Kernel -143.077 0.178 -183.329 0.934 -161.883 0.470 -176.422 0.553 -207.591 0.034 
43003 Kernel -103.203 0.577 -123.737 0.583 -112.636 0.808 -115.305 0.839 -128.541 0.002 
43128 Kernel -147.465 0.263 -155.551 0.458 -136.790 0.349 -146.020 0.498 -188.323 0.017 
43192 Kernel -38.940 0.826 -45.913 0.346 -42.907 0.748 -43.141 0.811 -57.817 0.01 

* For graphical diagnostic plot, see Fig. S6. Selected distributions are marked in bold italic fonts. 
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Table S5. Results of Marginal distribution fit and Goodness of fit statistics for annual maxima WBT driver for compound event pair, Case II (AMX) 

* For graphical diagnostic plot, see Fig. S7. Selected distributions are marked in bold italic fonts. 
 
 
 
 
 

Station 
(WMO ID) 

Selected 
Distribution 

GEV Gamma Lognormal Log-logistic Kernel 

  
AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value 

42111 GEV -254.932 0.316 -251.078 0.083 -252.618 0.087 -247.509 0.439 -252.444 0.11 

42182 Kernel -216.56 0.055 -217.566 0 -217.643 0 -230.022 0.007 -248.127 0.251 
42410 Kernel -262.29 0.166 -264.205 0.302 -265.489 0.281 -258.597 0.322 -268.623 0.185 
42647 Kernel -59.5355 0.219636 -64.1241 0.065 -64.483 0.063 -62.7834 0.221 -71.3485 0.011 
42809 Kernel -131.818 0.246 -130.656 0.177 -131.599 0.13 -130.851 0.295 -146.416 0.03 
42971 Kernel -169.781 0.076613 -172.991 0.249 -171.957 0.225 -179.503 0.451 -185.521 0.002 
43003 Kernel -103.42 0.016 -95.1025 0 -94.5348 0 -102.064 0 -119.37 0.002 
43128 Kernel -165.673 0.153 -143.523 0.047 -144.506 0.027 -147.857 0.081 -184.536 0.402 
43192 Kernel -43.7977 0.496241 -47.8339 0.452 -47.9443 0.483 -46.1709 0.301 -57.8223 0.076 
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Table S6. Best fit and next best fit copula family based on CvM statistics for Case I (POT)

WMO 
ID 

Location Best fit copula Next best fit copula 

Copula Family 𝑺𝒆𝒎𝒑 𝑺𝒃𝒐𝒐𝒕
ሺ𝒌ሻ  p-value Copula 

Family 
𝑺𝒆𝒎𝒑 𝑺𝒃𝒐𝒐𝒕

𝑪  p-value 

42111 Dehradun AMH 0.017 0.153 1 Plackett 0.017 0.034 0.75 
42182 New Delhi Plackett 0.019 0.039 0.669 AMH 0.022 0.041 0.52 
42410 Guwahati AMH 0.023 0.047 0.628 Student’s t 0.024 0.040 0.404 
42647 Ahmedabad AMH 0.031 0.055 0.428 Plackett 0.026 0.040 0.302 
42809 Kolkata AMH 0.037 0.078 0.644 Plackett 0.035 0.039 0.094 
42971 Bhubaneshwar Student’s t 0.032 0.041 0.197 Plackett 0.070 0.041 0.002 
43003 Mumbai Plackett 0.012 0.042 0.986 Student’s t 0.025 0.041 0.529 
43128 Hyderabad 

(Uppal) 
Student’s t 

0.015 0.038 0.927 
Plackett 

0.098 0.038 0.001 
43192 Panaji AMH 0.026 0.151 0.991 Frank 0.021 0.047 0.786 
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Table S7. Best fit and next best fit copula family based on CvM statistics for Case II (AMX) 

 

 

WMO 

ID 

Location Best fit copula Next best fit copula 

Copula Family 𝑺𝒆𝒎𝒑 𝑺𝒃𝒐𝒐𝒕
ሺ𝒌ሻ  p-value Copula Family 𝑺𝒆𝒎𝒑 𝑺𝒃𝒐𝒐𝒕

𝑪  p-value 

42111 Dehradun Frank 0.0156 0.047 0.951 AMH 0.029 0.070 0.795 

42182 New Delhi AMH 0.033 0.124 0.947 Student’s t 0.035 0.050 0.338 

42410 Guwahati Student’s t 0.027 0.047 0.636 Plackette 0.043 0.045 0.067 

42647 Ahmedabad Gumbel Hougaard 0.025 0.054 0.899 Frank 0.026 0.070 0.869 

42809 Kolkata Plackette 0.022 0.054 0.831 Student's t 0.048 0.054 0.124 

42971 Bhubaneshwar Plackett 0.027 0.050 0.605 Student's t 0.044 0.052 0.145 

43003 Mumbai AMH 0.065 0.097 0.286 Frank 0.045 0.059 0.225 

43128 Hyderabad (Uppal) Frank 0.030 0.049 0.505 Plackette 0.037 0.051 0.294 

43192 Panaji Rotatory Clayton 0.013 0.045 1 Gumbel Hougaard 0.014 0.064 0.994 
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Table S8. Selected copula family based on upper tail ratio performance for Case I (POT)

 

 

*The font in bold indicates the selected family based on minimum central tendency as well as lower uncertainty bound. Here mean indicates the central tendency of the 
sample calculated using the 50௧௛ percentile or the median point. Best and next best fit copulas are selected based on Cramér–von Mises statistics. Uncertainty bound 
indicates Interquartile range estimated as the difference between 75௧௛ and 25௧௛ percentile of the selected sample.

 

Site 

Mean (Best fit 

copula) 

Mean (Next best fit 

copula) 

Uncertainty bounds (Best fit 

copula) 

Uncertainty bounds (Next 

best fit copula) 

Final Selected 

42111 0.420 0.008 0.107 0.122 Plackett 

42182 0.016 0.285 0.146 0.211 
Plackett 

42410 0.118 0.353 0.000 0.199 
AMH 

42647 0.260 0.010 0.337 0.071 
Plackett 

42809 0.250 0.025 0.275 0.050 Plackett 

42971 0.028 0.018 0.174 0.170 Plackett 

43003 0.017 0.026 0.293 0.293 Student’s t 

43128 0.081 0.089 0.548 0.548 
Student’s t 

43192 0.490 0.029 0.183 0.279 Frank 
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Table S9. Selected copula family based on upper tail ratio performance for Case II (AMX) 

Site Mean (Best fit 
copula) 

Mean (Next best fit 
copula) 

Uncertainty bounds (Best 
fit copula) 

Uncertainty bounds (Next 
best fit copula) 

Final Selected 

42111 0.034 0.466 0.397 0.099 Frank 

42182 0.226 0.000 0.194 0.113 Student’s t 

42410 0.033 0.033 0.164 0.164 Student’s t 

42647 0.031 0.021 0.229 0.240 Gumbel Hougaard 

42809 0.113 0.094 0.494 0.456 Student’s t 

42971 0.059 0.118 0.176 0.176 Plackett 

43003 0.500 0.054 0.161 0.375 Frank 

43128 0.000 0.000 0.185 0.222 Frank 

43192 0.027 0.041 0.205 0.205 Rotatory Clayton 
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Table S10. Results of Marginal distribution fit and Goodness of fit statistics for POT precipitation driver for rain-only events Case I (POT) 

*For the graphical diagnostic plot see Fig. S7. Selected distributions are marked in bold italic fonts.  

 

Station  

(WMO ID)

Selected 

Distribution 

GP GEV Gamma Lognormal Log-logistic Kernel 

 

  AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value 

42111 GP -2369.7 0.5 -1958.7 0.2 -1810.0 0.0 -1923.2 0.1 -1944.6 0.1 -2500.2 0 

42182 GP -2607.5 0.6 -2077.5 0.3 -1860.0 0.0 -2105.2 0.2 -2097.6 0.1 -2539.5 0 

42410 GP -3681.4 0.0 -3194.2 0.3 -2657.2 0.0 -3027.8 0.0 -3106.7 0.0 -3674.5 0 

42647 GP -2004.5 0.2 -1639.0 0.3 -1475.6 0.0 -1727.5 0.2 -1735.0 0.2 -2052.3 0 

42809 GP -3428.6 0.9 -2755.8 0.1 -2414.8 0.0 -2597.5 0.1 -2659.2 0.1 -3478.0 0 

42971 GP -3381.6 0.8 -2602.2 0.2 -2336.8 0.0 -2540.1 0.1 -2588.0 0.1 -3259.5 0 

43003 GP -2414.8 1.0 -1913.1 0.3 -1629.4 0.0 -1790.7 0.1 -1818.1 0.1 -2308.6 0 

43128 GP -3255.8 0.6 -2826.8 0.4 -2213.9 0.0 -2503.5 0.1 -2561.6 0.1 -3360.8 0 

43192 GP -2525.5 0.6 -2217.4 0.3 -1839.3 0.0 -1992.7 0.1 -2030.1 0.1 -2663.5 0 
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Table S11. Results of Marginal distribution fit and Goodness of fit statistics for peak precipitation driver for Rain-only events, Case II (AMX) 

 

* For graphical diagnostic plot, see Fig. S8. Selected distributions are marked in bold italic fonts. 
 
 
 
 
 
 
 

Station 

(WMO ID) 

Selected 

Distribution 

GEV Gamma Lognormal Log-logistic Kernel 

  

AICc p-value AICc p-value AICc p-value AICc p-value AICc p-value 

42111 Log-logistic -306.0 0.9 -303.8 0.4 -308.9 1.0 -315.2 1.0 -300.4 0.6 

42182 Lognormal -288.9 0.6 -287.3 0.5 -300.1 0.7 -288.2 0.6 -299.6 0.3 

42410 Kernel -323.1 0.4 -315.6 0.7 -286.3 0.6 -317.7 0.6 -336.8 0.5 

42647 Kernel -318.7 0.1 -315.4 0.0 -318.4 0.2 -327.4 0.6 -331.1 0.1 

42809 Kernel -242.6 0.3 -253.1 0.5 -257.0 0.4 -254.0 0.5 -277.2 0.3 

42971 Kernel -315.3 0.5 -297.9 0.3 -315.5 0.4 -304.8 0.5 -333.7 0.2 

43003 Kernel -292.3 0.5 -267.2 0.1 -284.9 0.2 -282.7 0.3 -323.4 0.1 

43128 Kernel -359.3 0.9 -317.1 0.2 -352.6 0.5 -339.2 0.7 -363.6 0.5 

43192 Kernel -342.1 0.1 -355.9 0.1 -332.7 0.3 -350.0 0.9 -359.2 0.6 
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