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Abstract

There have been many extreme fire seasons in Maritime Southeast Asia (MSEA) over the last two decades, a trend which will

likely continue or accelerate due to climate change. Fires, in turn, are a major driver of atmospheric carbon monoxide (CO)

variability, especially in the Southern Hemisphere. Here we attempt to maximize the amount of CO variability that can be

explained via human-interpretable statistical models that use only climate mode indices as predictor variables. We expand

upon previous work through the complexity at which we study the connections between climate mode indices and atmospheric

CO (a proxy for fire intensity). Specifically, we present three modeling advancements. First, we analyze five different climate

modes at a weekly timescale, which increases explained variability by 15% over models on a monthly timescale. Second, we

accommodate multiple lead times for each climate mode index, finding that some indices have very different effects on CO at

different lead times. Finally, we model the interactions between climate mode indices at weekly timescales, which provides

a framework for studying these interactions at a higher level of complexity than previous work. Furthermore, we perform a

stability analysis and show that our model for the MSEA region is robust, which adds weight to the scientific interpretation of

the selected model terms. We believe that the complex relationships quantified here will be useful for scientists studying modes

of variability in MSEA and for forecasters looking to maximize the information they glean from climate modes.
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Key Points:9

• We quantify the connections between climate and carbon monoxide (as a proxy10

for fire intensity) in more detail than previous work.11

• Our model explains 70% of the variability in atmospheric carbon monoxide on a12

weekly timescale using only climate mode indices.13

• The impact of certain indices on carbon monoxide variability changes as their lead14

time in the model increases.15
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Abstract16

There have been many extreme fire seasons in Maritime Southeast Asia (MSEA)17

over the last two decades, a trend which will likely continue or accelerate due to climate18

change. Fires, in turn, are a major driver of atmospheric carbon monoxide (CO) vari-19

ability, especially in the Southern Hemisphere. Here we attempt to maximize the amount20

of CO variability that can be explained via human-interpretable statistical models that21

use only climate mode indices as predictor variables. We expand upon previous work through22

the complexity at which we study the connections between climate mode indices and at-23

mospheric CO (a proxy for fire intensity). Specifically, we present three modeling advance-24

ments. First, we analyze five different climate modes at a weekly timescale, which in-25

creases explained variability by 15% over models on a monthly timescale. Second, we ac-26

commodate multiple lead times for each climate mode index, finding that some indices27

have very different effects on CO at different lead times. Finally, we model the interac-28

tions between climate mode indices at weekly timescales, which provides a framework29

for studying these interactions at a higher level of complexity than previous work. Fur-30

thermore, we perform a stability analysis and show that our model for the MSEA region31

is robust, which adds weight to the scientific interpretation of the selected model terms.32

We believe that the complex relationships quantified here will be useful for scientists study-33

ing modes of variability in MSEA and for forecasters looking to maximize the informa-34

tion they glean from climate modes.35

1 Introduction36

The relationship between fire and climate has been extensively studied. Fire in-37

tensity and burned area are related to the amount, type, and dryness of available fuel,38

all of which respond closely to water conditions driven by climate variability (van der39

Werf et al., 2008). This relationship is complex and varies across the different regions40

of the globe. For instance, drought conditions were found to increase fire potential in South-41

ern Africa, but decrease fire potential in Northern Africa (Andela & van der Werf, 2014).42

Climate modes, such as the El Niño Southern Oscillation (ENSO), capture vari-43

ability in the global climate system. Studies have used these climate modes to help ex-44

plain the complex relationship between climate and fire, often via regression models. ENSO45

has been found to influence fires in North America (Mason et al., 2017; Shabbar et al.,46

2011), Maritime Southeast Asia (Chen et al., 2017; Fuller & Murphy, 2006; Reid et al.,47

2012), the Amazon (Alencar et al., 2011; Fonseca et al., 2017), and Africa (Andela & van48

der Werf, 2014; N’Datchoh et al., 2015). Furthermore, studies have found that fire be-49

havior can respond to several distinct climate modes (Andreoli & Kayano, 2006; Chen50

et al., 2016; Saji & Yamagata, 2003), with Cleverly et al. (2016) showing that the inter-51

actions between these climate modes are particularly important for explaining drought52

and rainfall in Australia (which in turn are major drivers of fire activity). This indicates53

that fire behavior is affected not only by the isolated influence of multiple modes, but54

also by their interactions (e.g., whether or not the modes are in phase).55

In addition to identifying the climate modes that most influence fire behavior in56

a given region, studies such as Chen et al. (2016) and Wooster et al. (2012) identify lead57

times that correspond to the maximum predictive performance of the climate modes be-58

ing studied. Similarly, Shawki et al. (2017) examines how far in advance the 2015 fire59

event in Indonesia can be predicted using climate based models, finding that lead times60

of up to 25 weeks can still provide useful predictions.61

These fire-climate connections have been previously studied using satellite obser-62

vations of fire properties (e.g., Ceccato et al. (2010), Chen et al. (2016), and Wooster et63

al. (2012)). The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments64

onboard the Terra and Aqua satellites provide fire count data for each overpass as well65
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as a burned area data product (Giglio et al., 2006, 2016, 2018). However, using fire counts66

or burned area directly presents a number of challenges. Fire count products ignore dif-67

ferences in fire size and intensity, burned area products can miss underground peat fires,68

and both products can miss fires obscured by smoke (Giglio et al., 2006, 2018; Shawki69

et al., 2017).70

One alternative is to model atmospheric carbon monoxide (CO) instead of fire counts,71

burned area, or aerosol optical depth (AOD) directly. CO is produced by incomplete com-72

bustion from biomass burning, fossil fuel use, and indirectly by photochemistry (Buchholz73

et al., 2018; Holloway et al., 2000), and its link to fires is well established (Edwards, Em-74

mons, et al., 2006). In fact, biomass burning is the primary source of atmospheric CO75

variability in the Southern Hemisphere, making CO anomalies a useful proxy for fire in-76

tensity (Bloom et al., 2015; Buchholz, Worden, Park, et al., 2021; Voulgarakis et al., 2015).77

Buchholz, Worden, Park, et al. (2021) show that MODIS AOD and CO observations from78

the Measurement of Pollution in the Troposphere (MOPITT) instrument over the Mar-79

itime Southeast Asia (MSEA) region are highly correlated, further justifying the use of80

CO as an alternative to fire products or AOD. Since CO variability in the Southern Hemi-81

sphere is closely linked to biomass burning (and biomass burning responds to variabil-82

ity in the climate), we expect that CO also responds to climate variability. Compared83

to the study of fire counts, burned area, or AOD, less research has gone into the connec-84

tion between atmospheric CO and climate variability. Furthermore, modeling atmospheric85

CO concentrations provides information on co-emitted atmospheric pollutants in addi-86

tion to being a proxy for fire intensity.87

Edwards, Pétron, et al. (2006) found that CO observations from MOPITT are cor-88

related with ENSO. Buchholz et al. (2018) expanded on Edwards, Pétron, et al. (2006)89

by showing that atmospheric CO anomalies in a number of Southern Hemisphere regions90

are related to four different climate modes (including ENSO) and that the interactions91

between these climate modes are important for explaining atmospheric CO anomalies.92

In this study, we examine the relationship between atmospheric CO and climate vari-93

ability, further focusing on the MSEA region because of its extremely large CO anoma-94

lies (Buchholz, Worden, Park, et al., 2021). While we focus on a single region in this pa-95

per, the modeling framework we have developed can easily be applied to other parts of96

the globe.97

In this paper, we propose a framework for studying the connections between cli-98

mate and atmospheric CO (as a proxy for fire intensity) in more detail than previous work.99

To do this, we extend the models from Buchholz et al. (2018) via the following advance-100

ments. First, we use week-averaged data rather than month-averaged data, significantly101

increasing predictive performance. Second, we include the Madden-Julian Oscillation (MJO)102

via a proxy index, resulting in models that are better able to capture extreme CO anoma-103

lies in MSEA. Third, we develop a regularization-based model fitting framework that al-104

lows for models with multiple lags of a single climate mode. Fourth, we assess the sta-105

bility of the selected model terms, which adds weight to their scientific interpretation and106

increases overall model interpretability. Finally, we explore the use of our model in a fore-107

casting setting to assess how much variability can be explained using climate mode in-108

dices alone. Note that we do not attempt to outperform or even match current forecast-109

ing tools that utilize additional modes of variability beyond climate modes (e.g., Groot110

et al. (2006), Shawki et al. (2017)), as we are only interested in the connections between111

climate modes and CO. These advancements result in models that capture more com-112

plex relationships and have better predictive performance than those presented in Buchholz113

et al. (2018) while remaining human-interpretable. We believe that these models will be114

useful for scientists studying modes of variability in MSEA and forecasters looking to115

maximize the information they glean from climate modes.116

The rest of this paper is laid out as follows. In Sections 2 and 3, we describe the117

data and our statistical model, respectively. In Section 4, we discuss our model fitting118
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Figure 1. MOPITT CO data during the Southern Hemisphere fire season (defined here as

September through December) from 2001 to 2019. Data are filtered as described in Section 2.1.

(a) Average of all MOPITT CO observations (n = 217,995,648) with the Maritime Southeast

Asia (MSEA) region shown in white (n = 12,985,456). (b) CO standard deviation with the spa-

tial range of influence of the four climate mode indices discussed in Section 2.2 shown in white.

(c) Average number of MOPITT observations falling within each grid cell during fire season.

Note that the landmasses in MSEA have fewer observations than other regions, which could be

influencing the high CO standard deviations in this region. All three subfigures are plotted on

the same 1°×1° grid.

framework. In Sections 5 and 6, we present results and assess improvements in model119

interpretability and predictive performance, respectively, over the models presented in120

Buchholz et al. (2018). Finally, we summarize our work in Section 7.121

2 Observational Data Sets122

We model atmospheric CO using a linear regression framework in which the response123

variable (CO) is modeled as a linear combination of predictor variables (climate mode124

indices and their proxies). The following subsections describe the data used as our re-125

sponse and predictor variables. Note that “covariate” is synonymous with “predictor vari-126

able” and is used throughout for brevity.127

–4–



manuscript submitted to JGR: Atmospheres

2.1 Response Variable128

For the response, we use carbon monoxide column-averaged volume mixing ratios129

(referred to as simply CO) from the MOPITT instrument onboard the Terra satellite130

(Drummond et al., 2010). The units of column-averaged volume mixing ratios (VMR)131

are parts per billion by volume (ppb). Using column-averaged volume mixing ratios in-132

stead of total column CO removes dependence on surface topography and pressure changes133

(Buchholz, Worden, Park, et al., 2021).134

MOPITT has complete Earth coverage about every three days with a footprint size135

of 22 × 22 km2. We use the V8 retrieval algorithm with validation results described in136

Deeter et al. (2019). To reduce systematic and random error, we select daytime, land-137

only retrievals from the joint near infrared (NIR) and thermal infrared (TIR) product.138

Daytime retrievals over land have a higher sensitivity to CO than nighttime or ocean re-139

trievals due to higher thermal contrast. We use the joint product because it includes ad-140

ditional information from reflected solar radiation over land (Worden et al., 2010). See141

Buchholz et al. (2018), Deeter et al. (2007), and Deeter et al. (2014) for details.142

Because MOPITT retrievals are dependent on clear sky conditions, we expect sam-143

pling error to both bias our CO time series lower and increase its variability. This is be-144

cause MOPITT observations might not be available nearest to fire source regions and145

cloud patterns can significantly reduce the amount of data available over the region. This146

issue is also present in other satellite-observed data sets, such as fire counts or aerosol147

optical depth (Reid et al., 2012). However, we do not expect these features to significantly148

impact our results for two reasons. First, the magnitude of the response will only im-149

pact the magnitude of the fitted coefficients, not their relationship relative to each other.150

Therefore, interpretation of selected model terms is still valid in a relative sense. Sec-151

ond, linear models fit via regularization (which we employ and discuss in Sections 3 and152

4) are well suited for handling noisy or variable data and will not overfit to the noise when153

tuned correctly. An analysis of how much variability in our response is attributed to cloud154

sampling is the focus of another study.155

We aggregate CO observations into a single biomass burning region in the South-156

ern Hemisphere: Maritime Southeast Asia (MSEA), defined here as -10° to 10° latitude157

and 90° to 160° longitude (see Figure 1(a)). We focus on MSEA because it is a biomass158

burning region that experiences significant CO anomalies, or concentrations well above159

average (Buchholz, Worden, Park, et al., 2021). Note that there are fewer MOPITT ob-160

servations over land within the MSEA region on average (see Figure 1(c)). This is likely161

a result of higher cloud fractions and geophysical noise over land scenes compared to wa-162

ter scenes in MSEA. The Supporting Information file contains a plot and discussion of163

the cloud fraction from the Terra-MODIS cloud mask over MSEA. We create a weekly164

time series for MSEA by averaging all of the observations falling within the region bound-165

aries for each week. This time series ranges from 2001 to 2019, resulting in 19 years of166

data and 991 weekly averages. Despite the relatively lower number of observations falling167

over MSEA landmasses, there are still 110 observations per week on average, which we168

deem a suitable number for creating our response variable. We compute the seasonal cy-169

cle by taking an average over the 19 years of data for each week. We then remove this170

seasonal cycle from the weekly time series so that our models are better able to capture171

the anomalous CO observations corresponding to large burn events. Figure 2 shows the172

weekly CO observations, climatological average, and resulting anomalies for MSEA.173

Finally, since we use CO as a proxy for fire intensity, we only model anomalies dur-174

ing the months that experience high CO variability due to burning. Although CO vari-175

ability is highest between September and November in MSEA, we use anomalies between176

September and December to be consistent with Buchholz et al. (2018). This time frame177

results in a total of 330 weekly CO anomalies for the MSEA region.178
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Figure 2. (a) Weekly CO observations for MSEA (grey circles) and the climatological average

created by averaging each week over the 19-year time series (black line). (b) CO anomalies result-

ing from the difference between the weekly observations and the climatological average. Positive

anomalies are shown in red and negative anomalies are shown in blue.

2.2 Predictor Variables179

We are interested in connections between atmospheric CO and climate variability.180

Climate modes are large scale patterns that capture variation in temperature, wind, or181

other aspects of climate over certain spatial regions. A well known example is ENSO,182

which captures quasi-periodic variability in sea surface temperature and wind in the Pa-183

cific Ocean (Neelin et al., 1998; Trenberth, 2013). Climate indices are metrics that quan-184

tify the state of climate modes.185

As in Buchholz et al. (2018), we consider four climate modes that represent vari-186

ability in the major ocean basins of the Southern Hemisphere and tropics. The ENSO187

represents the Pacific Ocean, the Indian Ocean Dipole (IOD) represents the Indian Ocean,188

the Tropical South Atlantic (TSA) represents the southern Atlantic Ocean, and the Antarc-189

tic Oscillation (AAO) represents the Southern Ocean.190

For predictor variables, we select a single climate mode index to represent each of191

these climate modes. To represent the ENSO, we use the Niño 3.4 index defined in Bamston192

et al. (1997). To represent the TSA, we use the Tropical South Atlantic Index defined193

in Enfield et al. (1999). These two indices are calculated using sea surface temperature194

(SST) anomalies in the regions shown in Figure 1(b) labeled as Nino 3.4 and TSA, re-195

spectively. To represent the IOD, we use the Dipole Mode Index (DMI) defined in Saji196

et al. (1999). This index is calculated from SST gradients between the two regions shown197

in Figure 1(b) labeled as DMI. To represent the AAO, we use the Southern Annular Mode198

(SAM) index defined in Thompson and Wallace (2000). This index captures Antarctic199

atmospheric circulation described by the poleward shift of westerly winds. This index200

is calculated by projecting observational height anomalies at 700 hPa and poleward of201

-20 degrees latitude onto the leading empirical orthogonal function of the National Cen-202

ters for Environmental Prediction and National Center for Atmospheric Research reanal-203

ysis (Kalnay et al., 1996; Kistler et al., 2001). The spatial extent of this index is shown204

in Figure 1(b) via the arrows labeled SAM. We expect a relationship between these in-205

dices and CO, as each index is related to regional climate (e.g., rainfall), which in turn206

affects drought, fire, and ultimately CO concentrations.207

In addition to these four indices, we also want to include variability captured by208

the MJO in our models. This climate mode broadly describes the eastward propagation209
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Figure 3. Time series of the five climate mode indices used as predictor variables in this

study. Note that OLR is used as a proxy index for the MJO and that DMI is plotted using a

different vertical scale.

of a convection cell that forms off the east cost of Africa and dissipates in the Pacific Ocean210

(Madden & Julian, 1972). The MJO is the dominant mode of intraseasonal variability211

in the tropics (Madden & Julian, 1994) and has been shown to increase or decrease the212

probability of extreme rain events by over 20% in MSEA depending on its phase (Xavier213

et al., 2014). The most common MJO index is described by the two primary empirical214

orthogonal functions (EOFs) resulting from a number of climate variables (Wheeler &215

Hendon, 2004). However, this index is poorly suited for use in a regression framework,216

as it would require a main term for both EOFs and their interaction to properly cap-217

ture the phase of the MJO. This introduces multiple coefficient estimates for a single phys-218

ical phenomenon, which makes it harder to model and hinders model interpretability.219

Instead of using these EOFs, we use outgoing longwave radiation (OLR) anoma-220

lies to approximate the variability described by the MJO. OLR is a metric that describes221

how much energy is leaving the atmosphere and is one climate variable used in Wheeler222

and Hendon (2004) to produce the EOF index. Low OLR values indicate the presence223

of clouds, and hence a higher likelihood of rainfall (Birch et al., 2016). While not per-224

fect, we believe OLR to be a decent approximation of the variability described by the225

MJO. Dias et al. (2017) shows that the MJO can be characterized by the variance in con-226

vection, and in Figure 3, we show that the frequency of the OLR signal captures the 30227

– 90 day oscillatory movement of the MJO convection cell. This OLR proxy is better suited228

for a regression analysis despite losing some of the information contained in the EOF in-229

dex from Wheeler and Hendon (2004).230

We aggregate OLR values over the same spatial region that defines the MSEA re-231

gion shown in Figure 1, and we create anomalies in the same manner as the CO anoma-232

lies described in Section 2.1. We demonstrate the benefit of including the OLR proxy233

in Section 6.1.234

Figure 3 shows the weekly time series for each climate mode index used as a pre-235

dictor variable in this study. Some of the indices have both high and low frequency com-236
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ponents. This is most obvious in the SAM and OLR. We believe that the high frequency237

component of the OLR captures the oscillatory movement of the convection cell described238

by the MJO because both have a period of around 30 to 90 days. The climate mode in-239

dex data used in this study are publicly available. The source of each index (or proxy240

index in the case of the MJO) is listed in Table 1.241

Table 1. Climate mode indices used in this study with citations for their sources. Note that we

use OLR as a proxy index for the MJO.

Climate Mode Metric Used in Model Source

ENSO Niño 3.4 NOAA OOPC (2021)
IOD Dipole Mode Index (DMI) NOAA OOPC (2021)
TSA Tropical South Atlantic (TSA) NOAA OOPC (2021)
AAO Southern Annular Mode (SAM) NOAA CPC (2021)
MJO Outgoing Longwave Radiation (OLR) NOAA PSL (2021)

Note that there are other important modes of variability in the MSEA region that242

we do not include in our model, such as monsoons, wave phenomenon, diurnal patters,243

and tropical cyclones (Reid et al., 2012). These factors are excluded here because we solely244

aim to examine the connections between climate mode indices and atmospheric CO (as245

a proxy for fire intensity) in a higher level of detail than previous work, rather than build246

a comprehensive forecasting tool for the region.247

3 Multiple Linear Regression Model248

We use lagged multiple linear regression to model the relationship between CO anoma-249

lies and climate mode indices. We include first order interaction terms to capture the250

interconnected nature of the global climate system. Buchholz et al. (2018) found that251

these interaction terms were highly significant in explaining CO variability. Unlike the252

models in Buchholz et al. (2018), we also include squared terms to capture potential non-253

linear relationships between the mean CO response and the climate mode indices. For254

a given region, we assume that255

CO(t) = µ+
∑
k

ak χk(t− τk) +
∑
i,j

bij χi(t− τi) χj(t− τj) +
∑
l

cl χl(t− τl)2 + ε(t), (1)256

where CO(t) is the CO anomaly at time t, µ is a constant mean offset, ak, bij , and257

cl are coefficients, χ are the climate indices, τ is the lag value for each index in weeks,258

ε(t) is a random error component, and k, i, j, and l iterate over the number of climate259

indices used in the analysis. Note that we standardize the climate indices, χ, before fit-260

ting the model so that coefficient estimates can be directly compared. We consider lags261

between one and 52 weeks for each index. We also enforce strong hierarchy, meaning that262

any covariate that appears in an interaction or squared term must also appear as a main263

effect. Strong hierarchy has long been recommended for models with interactions, as it264

helps avoid misinterpretation of the included covariates (Nelder, 1977). See the Support-265

ing Information file for more details on strong hierarchy.266

Although the high frequency variability present in the weekly climate index data267

has important near-term effects, we do not expect it to have a large impact on the amount,268

type, and dryness of available fuel far into the future. This is because we believe that269

short anomalies do not last long enough to drastically alter large scale fuel reserves. There-270
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fore, we want covariates with longer lags to capture progressively lower frequency com-271

ponents of the climate indices.272

To accomplish this, we apply more smoothing to the climate mode indices as the273

length of their lag in the statistical model increases. In brief, we do not smooth indices274

for lags below four weeks to capture as much high frequency signal as possible in these275

short term relationships. For lags between four and 52 weeks, we use Gaussian kernels276

to linearly increase the amount of smoothing applied to the indices. More information277

on our smoothing scheme can be found in the Supporting Information file.278

4 Variable Selection and Model Fitting279

We consider 52 lags of each climate mode index, quadratic terms, and all pairwise280

interactions, which results in far more covariates than observations. In this regime, there281

is not a unique least squares solution, so another model fitting method is needed to com-282

pute coefficient estimates. Furthermore, we want to perform variable and lag selection283

to obtain human-interpretable models. Buchholz et al. (2018) broke this process up into284

two parts. First, they iterated through all possible lag combinations. At a given com-285

bination of lag values, stepwise selection was used for variable selection. This resulted286

in a list of optimally performing models, with one model for each combination of lag val-287

ues. Adjusted R2 was then used to select a single model from this list. By iterating through288

the lag values in this manner, Buchholz et al. (2018) was able to use stepwise selection289

without large computational resources. However, this strategy allowed for only a single290

lag of each index in the models.291

To capture more complex relationships involving multiple lags of a given index, we292

instead consider all possible lags for each index simultaneously. This makes the search293

space too large for stepwise selection, so we instead employ regularization for both vari-294

able and lag selection. In the linear regression setting, regularization is a method of com-295

puting coefficient estimates that balances model fit and the overall magnitude of the co-296

efficients with the goal of finding models that generalize well to new data. Furthermore,297

regularization is well suited for problems with more covariates than observations, mak-298

ing it feasible to consider all lag values for each index simultaneously.299

We use a flexible regularization penalty called the Minimax Concave Penalty (MCP)300

(Zhang, 2010). Similar to the Least Absolute Shrinkage and Selection Operator (LASSO)301

penalty (Tibshirani, 1996), the MCP shrinks insignificant coefficient estimates to exactly302

zero, which leads to interpretable models with relatively few terms. Additionally, the MCP303

results in less biased estimates for the remaining non-zero coefficients by allowing for larger304

coefficients on the significant terms (Zhang, 2010). We found that using the MCP in-305

stead of the LASSO improved model performance. The MCP introduces a second pa-306

rameter, η, that controls the MCP penalty in addition to the tuning parameter, λ, which307

is present in all regularization methods. The λ parameter balances how well the model308

fits to data and the overall magnitude of the coefficients (with a smaller overall magni-309

tude leading to models with less terms). Compared to the LASSO, the MCP relaxes as310

the coefficients get larger and plateaus after they reach a certain magnitude. The η pa-311

rameter controls when this plateau occurs, with smaller η values enabling larger coef-312

ficient estimates on the significant terms. Optimal λ and η values need to be learned from313

data.314

To select parameter values, we perform a simple grid search over a range of η and315

λ values. We use the MCP to fit a model at each combination of η and λ values (imple-316

mented in R via the RAMP package from Hao et al. (2018)). We then choose between the317

resulting models via the Extended Bayesian Information Criterion (EBIC). The EBIC318

applies a much stronger penalty to large models (i.e., models with many selected terms)319

than other information criteria through a third parameter, γ, which is defined on the range320
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[0, 1]. When γ = 0, the EBIC is identical to the Bayesian Information Criterion (BIC),321

but when γ = 1, the EBIC is much harsher than the BIC. This is well suited for ap-322

plications in which the number of possible covariates is large, but the optimal model might323

in fact be quite small. Since the number of potential covariates in this application is vast324

(recall that each lag value represents a different covariate), we use the EBIC rather than325

the BIC to select the final model. After finalizing the model terms in this manner, we326

refit their coefficient estimates via maximum likelihood.327

More details on regularization, the MCP, the EBIC, and how we select parameter328

values can be found in the Supporting Information file. In the remaining sections, we329

discuss how this modeling framework and the choice of γ can be used to address our two330

goals of model interpretability and predictive performance.331

5 Interpreting Fitted Models332

Here we examine the physical implications of the models fit using the procedure333

described in Section 4. We focus on connections between climate and CO in MSEA through334

an analysis of selected indices and lag values.335

5.1 A Framework for Identifying Optimally Performing Models at Var-336

ious Complexities337

We can create a list of “optimally performing” models at decreasing complexities338

(i.e., number of terms) by increasing the EBIC parameter, γ, on the range [0, 1], as larger339

γ values increase the penalty on large models. Optimal here refers to the fact that these340

models are the result of a grid search over the other two free parameters, λ and η. For341

MSEA, this procedure results in the models listed in Figure 4. The color of each box cor-342

responds to the γ value that was used to generate the model contained within it. Note343

that multiple γ values can produce the same model. Within each box, the name of the344

index and the corresponding lag is listed (in the format “name lag”), along with the co-345

efficient estimates and standard errors.346

Moving from left to right in Figure 4, we see that the models decrease in size (from347

17 terms to nine), while their performance drops only slightly (from adjusted R2 of 0.68348

to 0.60). By examining the terms that remain in the model as it becomes more parsi-349

monious, we can determine which indices and lags are most influential in explaining vari-350

ability in the response.351

For MSEA, we can see that the Niño 3.4 index lagged at four weeks remains in the352

model with a positive coefficient estimate. This makes sense, as ENSO is a major cli-353

mate driver in the tropics, with positive anomalies resulting in warmer, drier conditions354

(Nur’utami & Hidayat, 2016). The lag of four weeks indicates that it takes about four355

weeks for the effect of a Niño 3.4 anomaly to impact CO anomalies. Additionally, the356

Niño 3.4 lag of four weeks appears as a squared term in the most parsimonious model,357

indicating that there is a nonlinear relationship between Niño 3.4 and CO. This is con-358

firmed by examining the residuals of a model fit to solely the Niño 3.4 lag of four weeks359

(not shown).360

The selected DMI lags also suggest an interesting relationship. Note that positive361

DMI anomalies are associated with reduced rainfall in parts of MSEA, while negative362

DMI anomalies are associated with increased rainfall (Nur’utami & Hidayat, 2016). A363

DMI lag of 12 weeks remains in the model as it become more parsimonious, as well as364

a shorter lag that switches from one to four weeks between the smallest two models. The365

coefficient on the longer lag is negative, while the coefficient on the shorter lag is pos-366

itive. The coefficient on the shorter lag implies that reduced rainfall (i.e., positive DMI367

anomalies) results in more CO on average, and vise versa. This is likely the result of an368
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Figure 4. Optimal models for the MSEA region for a logarithmic sequence of γ values. Note

that multiple γ values can produce the same model. The color of each box corresponds to the

γ value that was used to generate the model contained within it. The model terms are listed

in the format “name lag,” where lags are in weeks. Interaction terms are listed in the format

“name1 lag1:name2 lag2.” Coefficient estimates and standard errors are listed for each term, and

summary statistics are listed below each model. Note that “nino” refers to the Niño 3.4 index.

intuitive relationship: reduced rainfall leads to drier conditions that are more prone to369

burning (and hence more CO). Similar to the ENSO relationship, these dry conditions370

take one to four weeks to impact CO. The coefficient on the longer lag, however, implies371

the opposite: reduced rainfall (i.e., positive DMI anomalies) results in less CO on aver-372

age, and conversely, increased rainfall results in more CO on average. This could be be-373

cause rainfall leads to vegetation growth, which ultimately provides more fuel for fires.374

The length of this lag is longer, implying that it takes around 12 weeks for the increased375

vegetation growth to impact CO concentrations.376

The effect of these two DMI lags is compounding. That is, more vegetation from377

DMI-driven rainfall at a 12 week lead time results in more fuel for burning when a sub-378

sequent positive DMI anomaly drives drier conditions. This is supported by the nega-379

tive coefficient on the interaction between the DMI lag of 12 weeks and one week present380

in the largest model in Figure 4. Because the coefficient is negative, there is less CO on381

average when the DMI has the same phase (i.e., either a positive or negative anomaly)382

at both a 12 and one week lag.383

An OLR term lagged at one week remains in the MSEA model as it becomes more384

parsimonious with a positive coefficient estimate. This again makes sense, as positive OLR385

anomalies are associated with less cloud cover and hence less rain. The one week lag sug-386

gests that an OLR-driven decrease in rain leads to more CO in the short term, likely as387

a result of increased burning. The TSA index, on the other hand, is only included in the388

largest model. This could be because the TSA describes sea surface temperatures in the389

southern Atlantic Ocean, which is very far from MSEA. Therefore, it makes sense that390

the TSA is less important than the other indices in explaining CO variability in MSEA,391

as the other indices are based on aspects of the global climate system located closer to392

MSEA.393
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Finally, two Niño 3.4 interaction terms remain in the model as it becomes more par-394

simonious. One interaction is with the OLR at a one week lag and the other is with the395

DMI at a 12 week lag. The sign of these interaction terms is the same as the non-Niño396

3.4 component. This indicates that the effects of these indices are amplified when they397

are in phase, a result that has been previously identified in the literature (Cleverly et398

al., 2016; Nur’utami & Hidayat, 2016). Note that studies like Islam et al. (2018) have399

shown that there is increased fire potential when Niño 3.4 and DMI are both positive.400

Our model agrees with this finding (see the Niño - DMI interaction in the largest model),401

but also expands on this finding by showing that Niño also amplifies the effect of DMI402

at longer lead times (see the Niño - DMI interaciton in the smallest model). Our results403

are also consistent with Reid et al. (2012), who show that an increase in fire activity oc-404

curs during the ENSO warm phase and positive IOD phase. Reid et al. (2012) also found405

evidence of a relationship between ENSO and IOD. We expand on this work by spec-406

ifying the Niño 3.4 and DMI lead times that most significantly influence CO and by show-407

ing how the Niño - DMI interaction changes at different lead times.408

These findings largely agree and expand upon the results in Buchholz et al. (2018).409

For MSEA, Buchholz et al. (2018) found that a Niño 3.4 lag of one month, DMI lag of410

eight months, TSA lag of five months, and SAM lag of one month were important pre-411

dictors. The largest model presented in this study contains a Niño 3.4 lag of four weeks,412

DMI lag of 43 weeks, TSA lag of three weeks, and SAM lag of two weeks. All but the413

TSA term (which we will show to be less important for MSEA in Section 5.2) agree closely414

on their selected lag. However, the models we present here are capable of including mul-415

tiple lags of a single index, which expands on the work in Buchholz et al. (2018) and high-416

lights more complex relationships between climate and CO.417

5.2 Assessing Stability of Selected Model Terms418

While the scientific conclusions drawn in the previous section seem to agree with419

and expand upon current literature, we want to ensure that the selected covariates are420

in fact meaningful. That is, we want to avoid over-interpreting the role of covariates if421

slight changes in data result in drastically different models, as these models would not422

be capturing a meaningful physically-based relationship but would rather be artifacts423

of the specific training data.424

Therefore, we perform one-year-out resampling to assess the stability of selected425

covariates. We perform the resampling on the largest model from Figure 4 because it con-426

tains most of the terms present in the smaller models. Specifically, we perform the fol-427

lowing resampling procedure. We first iterate through the years present in the data. For428

each year, we create a testing set containing all data falling within that year and a train-429

ing set containing the remainder of the data. We then train two models using only data430

from the training set. We force the first model (called the “constant structure model”)431

to retain the same covariates as the model trained on all of the data but allow for dif-432

ferent coefficient estimates. We let the second model (called the “varying structure model”)433

to completely change based on the particular training set, meaning that it can have dif-434

ferent covariates and coefficient estimates than the model trained on all of the data. We435

then test these two models on the corresponding test set and compute the root mean square436

error (RMSE) for both.437
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Figure 5. Results from the one-year-out resampling. Constant structure model refers to the

model forced to retain the structure of the model trained on all of the data, but with refit co-

efficient estimates. New model refers to the model allowed to completely change according to

the particular training set. (a) shows the out-of-sample prediction error for each testing set.

The year on the horizontal axis indicates which year was used to test the models. The constant

structure model almost always outperforms the varying structure model. (b) shows the frequency

with which constant structure model terms appear in the varying structure models. Similarly (c)

shows the frequency with which terms not present in the constant structure model appear in the

varying structure model. The most significant covariates from Figure 4 appear in many of the

retrained models. The color in (b) and (c) corresponds to the proportion on the horizontal axis

and is included for visual clarity. Note that “nino” refers to the Niño 3.4 index.

Figure 5 shows the results of this resampling and is divided into three sections. Fig-438

ure 5(a) shows the out-of-sample prediction error (RMSE) from both models for each439

training set. The year on the horizontal axis corresponds to the year reserved for the test-440

ing set. The RMSE of the constant structure model tends to perform as well or better441

than the varying structure model. This provides justification for using the form of the442

model trained on all data as the representative model for MSEA and further interpret-443

ing its covariates, as the relationships captured by this model do a better job at explain-444

ing the data than those in the varying structure models. Note that the RMSE of the vary-445
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ing structure model is largest when 2006 and 2015 are left out of the training set. These446

years contained some of the largest CO anomalies of the 19 year time series (see Figure447

2). This indicates that: 1) these extreme fire years are important in driving the form of448

the model trained on all data, and 2) this framework should be used with caution in a449

forecasting setting.450

Figure 5(b) and Figure 5(c) show how often certain terms appear in the varying451

structure models (that is, the models allowed to completely change according to the new452

training data). This gives some indication of the stability of the various model terms.453

If a term is present in many of the retrained models, then the modeling framework is likely454

picking up a physically-based relationship. Terms that are absent from many of the re-455

trained models are more likely artifacts of the specific training set, rather than a true456

physical relationship.457

Figure 5(b) shows how often the constant structure model terms reappear in the458

varying structure models. Notably, the terms present in the most parsimonious model459

from Figure 4 are most likely to appear in the retrained models. This indicates that these460

terms are explaining the most stable aspect of the physical relationship. Other terms,461

such as the 43 week DMI lag, rarely appear in the retrained models. This indicates that462

less consideration should be given to these terms when attempting to explain the phys-463

ical relationship between climate and CO.464

Figure 5(c) shows how often terms not present in the constant structure model ap-465

pear in the retrained models. Note the different scales on the horizontal axis between466

subfigures 5(b) and 5(c). In Figure 5(c) we see that a selection of terms not in the con-467

stant structure model appear relatively frequently in the retrained models. Recall that468

when moving from the second smallest to the smallest model in Figure 4, the shorter DMI469

lag switches from one week to four weeks. In Figures 5(b) and (c), we see that both the470

one and four week DMI lags show up in about half of the retrained models. This indi-471

cates that these terms are interchangeable, and determining which is included likely de-472

pends on the other selected covariates.473

Figures 5(b) and (c) further confirm that the terms present in the most parsimo-474

nious model for the region (see Figure 4) are capturing meaningful signal and are not475

simply artifacts of the specific training set. This is because these terms remain in a large476

majority of the retrained models, each of which is trained on a different subsample of477

the data. Furthermore, Figure 5(c) illustrates that the interaction between Niño 3.4 lagged478

at four weeks and DMI lagged at 12 weeks, although not present in the constant struc-479

ture model, is still a significant interaction in explaining CO variability in MSEA. This480

also holds for the interaction between SAM lagged at 51 weeks and OLR lagged at one481

week. The terms that are included less often in the retrained models are likely more data482

dependent and help the model capture subtleties in the response. As a result, it is more483

likely that these terms would change with small changes in the data. An example is the484

TSA term lagged at three weeks present in the constant structure model. This term ap-485

pears in less than 30% of the retrained models, which confirms the analysis in Section486

5.1 that finds that TSA is less important in explaining CO variability in MSEA.487

The stability analysis presented here provides further justification for assigning sci-488

entific weight to selected model terms, as it shows that certain stable terms are not sim-489

ply artifacts of the particular training set used to fit the model. In particular, we con-490

firm that a number of terms from the smallest model presented in Figure 4 are very sta-491

ble: DMI lagged at 12 weeks, OLR lagged at one week, Niño 3.4 lagged at four weeks,492

a short DMI lag (of either one or four weeks depending on the remaining model terms),493

SAM lagged at 51 weeks, the interaction between Niño 3.4 lagged at four weeks and OLR494

lagged at one week, and the interaction between Niño 3.4 lagged at four weeks and DMI495

lagged at 12 weeks. This provides further evidence that these terms specify the most sig-496

nificant relationships between climate and atmospheric CO in MSEA.497
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6 Assessing Model Predictions498

We now turn our attention to the predictive performance of selected models. We499

again focus on the largest model from Figure 4, as this model has the best predictive ca-500

pabilities. Strong predictive performance indicates that there is indeed a connection be-501

tween climate mode indices and CO variability and that our model is able to capture part502

of this connection. Therefore, strong predictive performance gives additional weight to503

the scientific interpretation of the selected model terms. Note that the performance met-504

rics discussed in this section (e.g., percent of variability explained) are not meant to be505

an assessment of our model’s forecasting ability, but rather an assessment of how well506

we can explain the response (CO variability) using only our predictors (climate mode507

indices).508

6.1 Model Predictions with No Minimum-Lag-Threshold509

In this subsection we impose no requirements on the minimum lag value allowed510

in the models, meaning that we allow lags of one to 52 weeks as in Figure 4. In Figures511

6 and 7 we demonstrate the predictive capabilities of our model and highlight two in-512

teresting results.513

Figure 6 shows weekly observations and predictions from two model variants. Note514

that these predictions are in-sample, meaning that they are predictions of the observa-515

tions used to train the model. The top plot of Figure 6(a) shows predictions from a model516

completely refit to a data set excluding the OLR, and the bottom plot shows predictions517

from the full model (i.e., the model presented in Figure 4). We can see that including518

the OLR results in a slight decrease in RMSE and increase in both R2 and adjusted R2.519

Note that adjusted R2 is a better metric for comparing the two models, as it accounts520

for the number of terms in each model. Similar to R2, higher adjusted R2 values indi-521

cate a better fit. Furthermore, in Figure 6(b) and (c), we highlight two of the most anoma-522

lous years, which shows that the OLR helps capture the extreme CO anomalies. This523

makes sense for 2015 in particular, as the MJO and our OLR proxy experienced an ex-524

treme anomaly during this year.525

Figure 7 shows month-averaged observations and predictions from two different model526

variants. The top plot of Figure 7(a) shows predictions from a month-based model. To527

create this model, we took month-averages of the predictor variables and then trained528

the model on only these month-averaged covariates using the framework presented in Sec-529

tion 4. We imposed no restrictions on the terms included in this model, as we do not want530

to introduce information from the weekly data that would not otherwise be available in531

the monthly data. The bottom plot shows month-averaged predictions from the model532

trained on weekly data (i.e., the model shown in Figure 4). We see a noticeable increase533

in model performance when using the weekly data, suggesting that the weekly data is534

able to capture meaningful signal beyond the month-averages. This is an interesting re-535

sult, as it suggests that the higher frequency signals present in the climate indices are536

in fact meaningful signal and not simply noise. This is perhaps most important for OLR537

(the proxy for localized MJO), which has a higher frequency component than the other538

included climate indices. This increase in performance can be seen clearly during the 2015539

CO anomaly.540

–15–



manuscript submitted to JGR: Atmospheres

Figure 6. In-sample predictions from two model variants. In (a), the top plot shows predic-

tions from the optimal model without the OLR, and the bottom plot shows predictions from

the optimal model with the OLR. Adding the OLR appears to increase predictive performance

during the extreme CO anomalies shown in (b) and (c).

Figure 7. In-sample predictions from two additional model variants. In (a), the top plot

shows predictions from a model trained on month-averaged covariates, and the bottom plot shows

month-averaged predictions from a model trained on week-averaged covariates. The increase in

model performance indicates that there is meaningful signal in the higher frequency climate index

data, which is clearly seen in the anomalous years shown in (b) and (c).
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Note that the predictions from these models are an improvement over the models541

in Buchholz et al. (2018). When using week-averaged data to train the model, we are542

able to explain 88% of the variability in the month-averaged CO observations. The model543

in Buchholz et al. (2018) explains 75% of the month-averaged CO. This increase in pre-544

dictive performance is likely a result of: 1) the ability to include multiple lags of a sin-545

gle climate mode index, 2) the additional signal contained in the week-averaged data,546

and 3) the inclusion of the OLR proxy index.547

6.2 Increasing Minimum-Lag-Threshold548

The predictions shown in Subsection 6.1 are useful for demonstrating model per-549

formance and the comparative benefit of using the OLR and week-averaged data. How-550

ever, these models include an OLR term lagged at one week (see Figure 4), which means551

that they can only be used to forecast one week ahead. In this section, we explore the552

capabilities of our model in a more practical forecasting environment. Note that we are553

not attempting to outperform or even match state-of-the-art forecasting tools that uti-554

lize modes of variability beyond just climate modes. Instead, we are interested in explor-555

ing the forecasting performance of our statistical model trained solely on climate mode556

indices, which will potentially help forecasters attempting to build more sophisticated557

tools.558

To increase the prediction horizon, we implement a minimum-lag-threshold that559

only allows lags greater than the threshold value to be included in the model. Because560

increasing this threshold reduces the number of possible covariates, we also extend the561

maximum lag value as the minimum-lag-threshold is increased. Specifically, we consider562

lags between the minimum-lag-threshold and 52 weeks plus this threshold. This ensures563

that all models are based on one year of climate data, making it easier to compare their564

predictive performance.565

Figure 8 shows a selection of model performance metrics as this minimum-lag-threshold566

is increased. We focus on the largest model generated from the range of EBIC γ values,567

as this model has the best predictive performance. The top plot in Figure 8 shows the568

number of terms in the selected model for each minimum-lag-threshold. The second plot569

shows the adjusted R2 value of the selected models. As expected, the model performance570

drops off as the minimum lag is increased. However, this decline is not very rapid. That571

is, models with a high minimum-lag-threshold still explain a large percent of the vari-572

ability in atmospheric CO anomalies. This is promising, as it means that predictions can573

be made farther in advance without losing too much predictive performance. The third574

plot shows another performance metric: the average out-of-sample prediction error from575

one-year-out resampling. Here we successively leave one year out, train the model on the576

remaining data, and test it on the left out year. The average RMSE is then taken for577

each different training and testing set pair and plotted as a function of minimum-lag-578

threshold. We see that performance falls off, although gradually.579

We think that the gradual nature of the decline in model performance is a result580

of the climate indices exhibiting high auto-correlation (not shown). Since many of the581

short lags are highly correlated to longer lags of the same index, we think that these longer582

lags are able to explain much of the same CO variability when the shorter lags are ex-583

cluded. This is again promising, as it means that predictions can be made decently far584

in advance (on the order of a half year) without dramatically compromising performance.585

To further visualize model performance at increasingly large minimum-lag-thresholds,586

we consider predictions for the 2015 CO event in MSEA. Figure 9 shows predictions from587

the models corresponding to the minimum-lag-thresholds from Figure 8. The predictions588

largely capture the structure of the CO observations for minimum-lag-thresholds below589

25 weeks (about six months). After this point, the predictions begin to flatten out (i.e.,590

not capture the extremes in the response) and the predicted spike starts earlier in the591
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Figure 8. Model performance for MSEA at increasing minimum-lag-thresholds. Top plot

shows the number of terms in the selected model. Middle plot shows the adjusted R2 value of the

selected model. Bottom plot shows an average out-of-sample prediction error for each model with

magenta lines showing ± one standard deviation. Here we iteratively leave one year out, train the

model on the remaining data, and test it on the left out year. Plotted is the average RMSE with

± one standard deviation lines in magenta from this procedure as a function of minimum lag. We

can see that model performance drops off with an increasing minimum-lag-threshold, although at

a fairly gradual pace.

Figure 9. Predictions of the 2015 CO anomalies [ppb] in MSEA for a range of minimum-lag-

thresholds. Color represents CO anomalies, and the horizontal axis represents time. MOPITT

observations are shown as a horizontal bar along the bottom of the figure. The remaining vertical

axis corresponds to the minimum-lag-threshold used to fit the model, and hence each row of the

figure contains predictions from a different model. The minimum-lag-threshold can be interpreted

as the prediction horizon of the model. We see that the general structure of the observed CO

anomalies is preserved for minimum lags under 25 weeks (about half a year).
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year (i.e., in early September instead of early October). This result largely agrees with592

Shawki et al. (2017), who found that a drought metric could be reasonably predicted 180593

days (about 25 weeks) in advance. However, unlike Shawki et al. (2017), our predictions594

rely solely on past climate mode index anomalies, rather than forecasts from a global cli-595

mate model.596

7 Summary597

We build on previous work aimed at explaining the relationship between climate598

and atmospheric CO variability. Atmospheric CO is a useful proxy for fire intensity, as599

fires are the main source of CO variability in the Southern Hemisphere and CO is remotely600

sensed on a global scale.601

Our proposed regularization framework highlights a variety of optimally perform-602

ing models at decreasing complexities, isolating the most important indices and lag val-603

ues as the models become more parsimonious. For MSEA, we identify the Niño 3.4 in-604

dex lagged at four weeks as a primary driver of atmospheric CO. Other important cli-605

mate indices are the DMI and OLR (as a proxy for the MJO). We further identify that606

Niño 3.4 interactions with the OLR and DMI are significant predictors, suggesting that607

the effect of these indices is amplified when they are in phase. Finally, we show that in-608

cluding multiple lags of the DMI is important for explaining CO variability in MSEA.609

While these results broadly agree with current literature, we go beyond the usual treat-610

ment of climate mode indices on a seasonal time scale by identifying the specific weekly611

lead times for each index that have the most influence on CO variability.612

We also perform a resampling-based sensitivity analysis to quantify the robustness613

of the model fit to all data. We find that the model forced to retain the covariates from614

the model trained on all data performs as well or better than the model allowed to com-615

pletely change based on the training set. This provides justification for using the mod-616

els from Figure 4 as the representative models for MSEA. Additionally, we determine617

which covariates are most likely to remain in the model when trained on slightly differ-618

ent data, finding that the terms in the most parsimonious model from Figure 4 are also619

the most robust. This justifies assigning scientific weight to the selection of these terms,620

as it suggests that they are capturing a physically-based relationship and are not sim-621

ply artifacts of the specific training set used.622

We show that our model for the MSEA region can explain around 70% of the vari-623

ability in the weekly CO anomalies solely using climate indices as predictor variables.624

We further use model predictions to highlight the importance of the OLR (as a proxy625

for the MJO) in overall model performance and in explaining the most extreme CO anoma-626

lies. Similarly, we show that month-averaged predictions from a model trained on week-627

averaged data outperform predictions from a model trained on month-averaged data. This628

suggests that there is meaningful signal in the week-averaged data and justifies its use629

over month-averaged data. Note that the predictions from these models are an improve-630

ment over those in Buchholz et al. (2018), as they explain 88% of the variability in month-631

averaged CO observations compared to 75%.632

Finally, we perform a minimum-lag-threshold study to assess the performance of633

our model in a forecasting setting. We find that models for MSEA are still able to ex-634

plain around 65% of the weekly atmospheric CO variability when forced to only use lags635

greater than 35 weeks. While we do not attempt to outperform or even match state-of-636

the-art forecasting tools, we believe that this information is useful to forecasters hop-637

ing to maximize the information they glean from climate modes when developing more638

sophisticated tools.639

Overall, we believe that our modeling framework quantifies the relationship between640

climate mode indices and atmospheric CO (as a proxy for fire intensity and as a mea-641
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sure of air quality) at a level of complexity not previously studied. We do this by uti-642

lizing climate mode indices on a weekly timescale, accommodating multiple lead times643

of each climate mode, and including complex interactions between climate mode indices644

at a weekly timescale. We believe that this work will be useful for scientists studying modes645

of variability in MSEA.646
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1. Introduction

This Supporting Information file contains additional text and figures to help inter-

pret the main text of “Interpretable Models Capture the Complex Relationship Between

Climate Indices and Fire Season Intensity in Maritime Southeast Asia.” Specifically, it

contains additional details about:

1. Cloud cover over the study region, which affects sampling bias.
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2. The smoothing that we apply to the climate mode indices before using them in our

model.

3. The mathematical details of the regularization-based model fitting framework we

propose in the main text.

2. Cloud cover in Maritime Southeast Asia

There are noticeably fewer observations over landmasses in the Maritime Southeast Asia

(MSEA) region than over water scenes (see Figure 1(c) in main text). As we mention in the

main text, cloud masking over the region is likely a large contributor to this effect. Figure

S2 shows the cloud fraction from the Terra-MODIS cloud mask averaged between 2002

and 2019. On average, there are clearly more clouds over MSEA landmasses than water

scenes. Despite the relatively lower number of observations falling over MSEA landmasses,

there are still 110 observations per week on average, which we deem a suitable number

for creating our response variable.

3. Additional information on climate mode index smoothing

We employ the following smoothing strategy on the climate mode indices used as pre-

dictor variables in our models. We do not smooth the indices for lags below four weeks, as

we want to capture as much high frequency signal as possible from these very short term

relationships. For lags between four and 52 weeks, we use a Gaussian kernel to smooth the

indices, with the bandwidth value increasing every four weeks. To select bandwidth val-

ues, we first found the bandwidth that seemed to best capture the long term trend in the

climate indices. This was then set as the maximum bandwidth and a continuous sequence

of bandwidth values was created between no smoothing and this maximum value.
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Figure S1 shows every other level of smoothing applied to the climate indices over two

years of data. The black curve is the original weekly climate index time series, which is

used for lags one through three. The colored curves show every other level of smoothing

up to the maximum smoothing applied to lags of one year and greater. Note that the

vertical axis has been omitted from Figure S1 for visual clarity since its purpose is solely

to show the relative levels of smoothing applied to each climate index.

4. Mathematical details of regularization-based model fitting framework

A general expression for the coefficient estimates generated by regularization is given

by

β̂ = arg min
β

n∑
i=1

(
yi − β0 −

q∑
j=1

βjXij

)2

+ p(β), (1)

where X is the data matrix containing covariates as column vectors, β = (β0, β1, ..., βq)

is a vector containing an intercept (β0) and the coefficients corresponding to the covariates

in X, y is the response vector, and p(β) is some penalty applied to the coefficients. In

Equation 1, i iterates through the number of observations (n) and j iterates through

the number of covariates (q). The first term is the sum of squared residuals and can be

thought of as a measure of fit. The LASSO penalty, given by

p(β) = λ

q∑
j=1

|βj| (2)

has the added benefit of shrinking coefficient estimates to exactly zero, hence performing

variable selection (and lag selection for our application). The tuning parameter, λ ≥ 0, is
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a free parameter that balances the fit term and the penalty term. We discuss our method

for selecting λ values shortly.

Instead of the traditional 1-norm used in the LASSO, we apply a slightly more flexible

penalty: the minimax concave penalty (MCP). The MCP penalty is given by

p(β) =

q∑
j=1

f(βj), (3)

where

f(βj) =

{
λ|βj| −

β2
j

2η
if |βj| ≤ ηλ

ηλ2

2
otherwise.

(4)

While the LASSO penalty increases linearly with |βj|, the MCP penalty gradually levels

off until eventually applying a constant penalty after |βj| surpasses a threshold defined

by the free parameter η ≥ 1. We discuss our method for selecting η values shortly. The

MCP results in less biased estimates for non-zero regression coefficients (Zhang, 2010).

Essentially, it allows for larger coefficient estimates on the significant terms (which might

be closer to the “true” relationship we are attempting to model). We found that using the

MCP penalty over the 1-norm penalty from the LASSO increased model performance. The

price we pay for this generality is the introduction of a second parameter, η, in additional

to the traditional tuning parameter, λ, that weights the penalty term.

The typical procedure for selecting parameter values (e.g., η and λ) involves minimizing

the loss function (i.e., Equation 1) for a sequence of λ values, called a solution path. A

single model is then selected from the solution path using an information criterion (e.g.,

AIC or BIC) or cross-validation test error. Here we use a more general form of the BIC,

called the Extended Bayesian Information Criterion (EBIC), given by
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BICγ(s) = BIC(s) + 2γ log τ(s), (5)

where s is the model being evaluated, BIC is the standard form of the BIC, τ is the

number of possible models with equation dimension (i.e., number of terms) as s, and

γ ∈ [0, 1] controls the extra penalty contained in the second term.

The EBIC can apply a much stronger penalty to large models (i.e., models with many

selected terms) than the BIC. This is well suited for applications in which the number

of possible covariates is large, but the true model might in fact be quite small. Since we

believe this to be the case for the atmospheric CO application, we use the EBIC rather

than the BIC or cross-validation test error to select λ.

With these more flexible adaptations to the traditional LASSO, we are left with a num-

ber of free parameters: λ, the tuning parameter, η, which controls the MCP penalty,

and γ, which controls the EBIC. For a given combination of these parameters, we fit the

coefficients using the RAMP package in R (Hao et al., 2018). RAMP is a recent regulariza-

tion method that efficiently computes a hierarchy-preserving solution path for quadratic

regression (i.e., models including squared and interaction terms). Enforcing hierarchy, or

more specifically strong hierarchy, requires that terms present in an interaction are also

present as main effects. Strong hierarchy (also known as the marginality principle) has

long been recommended for models with interactions, as it helps avoid misinterpretation

of the included covariates (Nelder, 1977). Another benefit of the RAMP algorithm is its

remarkable efficiency. RAMP is able to compute full solution paths much faster than simi-

lar hierarchy-preserving algorithms available in R, such as hierNet (Bien et al., 2013) or

ncvreg (Breheny & Huang, 2011).
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We select parameter values with a simple grid search broken into two steps:

1. Select a γ value on [0, 1]. Values closer to 0 will result in larger models and values

closer to 1 will result in smaller models.

2. For the given γ value, vary λ and η simultaneously. For each combination of λ and

η, fit regression coefficients using the RAMP package. Select the model that minimizes the

EBIC computed with the selected γ value.

(i) The RAMP algorithm automatically computes a data-driven sequence of λ values,

so no user input is required.

(ii) We vary η on a logarithmic sequence from 1.001 to 6. This range was selected

manually by trial-and-error and tuned specifically for this application. We tested this

range on a number of different covariate combinations and response regions (including

MSEA), and the selected η value always fell well within this range. Note that the optimal

η value is completely data dependent and this sequence will need to be adjusted for

different applications or data.
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Figure S1. Black curve shows the original climate index data, which is used for lags of one

through three weeks. Colored curves show every other level of smoothing applied to the climate

index data, which is used for lags of four through 52 weeks. Vertical axis has been omitted for

visual clarity.
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Figure S2. Cloud fraction from Terra-MODIS, averaged between 2002 and 2019, processed

with NASA EarthData Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/). The scale

represents 0 (no cloud) to 1 (all cloud).
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