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Ayala3

1Universidad de Chile
2National Center for Atmospheric Research
3Centre for Advanced Studies in Arid Zones (CEAZA)

November 22, 2022

Abstract

The implementation of elevation bands is a common strategy to account for vertical heterogeneity in hydrology and land surface

models; however, there is no consensus guidelines for their delineation. We characterize hydrological implications of this choice

by configuring the Variable Infiltration Capacity (VIC) model in nine mountainous basins of the Andes Cordillera, central Chile,

using six different setups: no elevation bands (benchmark model), and elevation bands with vertical discretizations of 1000, 750,

500, 200 and 100 m. The analyses are conducted in a wet period (April/1982-March/1987), dry period (April/2010-March/2015)

and a climatological period April/1982-March/2015). The results show that adding elevation bands yield little variations in

simulated monthly or daily streamflow; however, there are important effects on the partitioning of precipitation between snowfall

and rainfall, snowmelt, sublimation, and the spatial variability in September 1 SWE, suggesting a model-structure equifinality.

Incorporating elevation bands generally yields less basin-averaged snowmelt, and more (less) catchment-scale sublimation across

water-limited (energy-limited) basins. Further, the implications of elevation bands vary with the analysis period: fluxes are more

affected during the wet period, while variations in September 1 SWE are more noticeable during the dry period. In general,

the effects of adding elevation bands are reduced with increasing vertical discretization, and can differ among catchments.

Finally, the grid cells that yield the largest sensitivities to vertical discretization have relatively lower mean altitude, elevation

ranges >1000 m, steep slopes (>15°) and annual precipitation amounts <1000 mm, with large intra-annual variations in the

water/energy budget.
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Key Points: 15 

● Elevation bands do not affect basin-scale runoff considerably, but they perturb other 16 
hydrological fluxes and their spatial variability. 17 

● Simulated peak SWE is more affected by elevation bands in dry periods, and such effects 18 
are not proportional to vertical discretization. 19 

● Elevation bands are important in grid cells with relatively low altitude, high elevation 20 
ranges, steep slopes and pronounced seasonality.  21 
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Abstract 22 
The implementation of elevation bands is a common strategy to account for vertical heterogeneity 23 
in hydrology and land surface models; however, there is no consensus guidelines for their 24 
delineation. We characterize hydrological implications of this choice by configuring the Variable 25 
Infiltration Capacity (VIC) model in nine mountainous basins of the Andes Cordillera, central 26 
Chile, using six different setups: no elevation bands (benchmark model), and elevation bands with 27 
vertical discretizations of 1000, 750, 500, 200 and 100 m. The analyses are conducted in a wet 28 
period (April/1982-March/1987), dry period (April/2010-March/2015) and a climatological period 29 
April/1982-March/2015). The results show that adding elevation bands yield little variations in 30 
simulated monthly or daily streamflow; however, there are important effects on the partitioning of 31 
precipitation between snowfall and rainfall, snowmelt, sublimation, and the spatial variability in 32 
September 1 SWE, suggesting a model-structure equifinality. Incorporating elevation bands 33 
generally yields less basin-averaged snowmelt, and more (less) catchment-scale sublimation 34 
across water-limited (energy-limited) basins. Further, the implications of elevation bands vary with 35 
the analysis period: fluxes are more affected during the wet period, while variations in September 36 
1 SWE are more noticeable during the dry period. In general, the effects of adding elevation bands 37 
are reduced with increasing vertical discretization, and can differ among catchments. Finally, the 38 
grid cells that yield the largest sensitivities to vertical discretization have relatively lower mean 39 
altitude, elevation ranges >1000 m, steep slopes (>15°) and annual precipitation amounts <1000 40 
mm, with large intra-annual variations in the water/energy budget.   41 
 42 
Plain Language Summary 43 
 44 
Spatially distributed computer-based models are widely used to make predictions on water 45 
availability. In mountainous areas, it is common to use elevation bands to represent complex 46 
topography within each modeling unit in a simplified manner; however, the effects of the selected 47 
number of bands and/or elevation range on model results have not been assessed in detail. We use 48 
a suite of diverse Andean basins to document how the configuration of elevation bands affect the 49 
simulation of the water cycle at different spatial scales. Our results show that, although the 50 
incorporation of elevation bands has little effects on the simulation of discharge at the basin outlets, 51 
similar results can arise from different spatial distributions of rainfall, snowfall, snowmelt, 52 
sublimation and maximum annual accumulation. The implications of adding elevation bands may 53 
vary with the climate conditions (i.e., wet/dry) of the analysis period. Finally, we identify mean 54 
altitude, elevation range, slope and annual precipitation as the variables that should be examined 55 
carefully to decide where (i.e., which grid cells) the choice of elevation band configuration should 56 
be made with more caution. 57 

1 Introduction 58 
Snow is essential for water supply in mountain environments. In this context, numerical 59 

models are not only useful for understanding the physical processes that determine snow 60 
accumulation and melting (Liston & Sturm, 1998; Lehning et al., 2006; Clark et al., 2017), but 61 
also to make predictions that can be used for decision making (Schneider & Molotch, 2016), 62 
especially considering ongoing and future changes in climatic conditions (IPCC, 2021). Indeed, 63 
climate change is expected to impact mountain snowpack in many mountain regions of the world 64 
(Barnett et al., 2005), such as the Colorado Headwaters of USA (Rasmussen et al., 2014), the 65 
Appalachian Mountains (Demaria et al., 2016), the eastern Himalayas of Nepal (Bhatta et al., 66 
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2019), the extratropical Andes (Vicuña et al., 2021), and the Spanish Pyrenees (López-Moreno et 67 
al., 2013). Hence, improving the realism of snow models is critical for reliable estimates of snow 68 
water equivalent (SWE) under current and future climatic conditions.  69 

Because water resources applications in mountainous areas require model simulations at 70 
the watershed or regional scales (Mendoza et al., 2020), spatial discretization strategies are needed 71 
to address heterogeneities within the domain of interest. Common choices involve the delineation 72 
of grid cells (Liang et al., 1996; Beck et al., 2020), sub-catchments (Bandaragoda et al., 2004) and 73 
hydrologic response units (HRUs; Markstrom et al., 2008; Newman et al., 2014) as spatial 74 
modeling units. Typically, sub-element variability is also incorporated to improve simulations of 75 
the spatial distribution of SWE within each modeling unit (Hartman et al., 1999; Pradhanang et 76 
al., 2011; Bajracharya et al., 2018) and to reduce the model sensitivity to changes in the spatial 77 
scale (Haddeland et al., 2002). A popular approach is the implementation of subgrid elevation 78 
bands, which can account for orographic effects on precipitation and temperature (Abdulla et al., 79 
1996), improving the timing of simulated snowmelt (e.g., Habets et al., 1999; Vicuña et al., 2011) 80 
and streamflow dynamics (Abbaspour et al., 2007). 81 

Despite the widespread use of elevation bands in hydrologic and land surface models, there 82 
is no guidance for appropriate configuration, based on the effects on simulated hydrological 83 
variables (Grusson et al., 2015). Indeed, many studies implementing elevation bands only provide 84 
information on the number of snow bands (e.g., Abdulla et al., 1996; Andreadis & Lettenmaier, 85 
2006; Li et al., 2017; Newman et al., 2017; Bajracharya et al., 2018) or the vertical discretization 86 
(e.g., Fontaine et al., 2002; Haddeland et al., 2002; Arora et al., 2008), without further details 87 
and/or justification of their choice. Improved understanding of effects of elevation bands on 88 
simulated states and fluxes is crucial for better characterizations of water resources in mountain 89 
domains, given the large effects that subjective modeling decisions may have on hydrological 90 
portrayals (Mendoza et al., 2016; Mizukami et al., 2016; Melsen et al., 2019). 91 

To the best of our knowledge, only a few studies have examined the effects of elevation 92 
band configurations on hydrologic model simulations. Arola and Lettenmaier (1996) found that 93 
adding 10 elevation bands to a lumped model configuration reduced differences in simulated SWE 94 
with respect to spatially-aggregated distributed model output in two regions in Montana, USA. 95 
Hartman et al. (1999) configured the RHESSys model in the Loch Vale Watershed (Rocky 96 
Mountains National Park, Colorado, USA) and compared the effects of adding 200-m and 500-m 97 
elevation bands against no bands. In their implementation, they distributed precipitation, air 98 
temperature and radiation fluxes at each band, finding (1) little differences among model 99 
configurations in catchment-averaged simulated SWE and annual runoff, and (2) that adding 100 
elevation bands affected the timing of simulated streamflow. Haddeland et al. (2002) compared 101 
model simulations between a 200-m elevation band configuration and no elevation bands, running 102 
the Variable Infiltration Capacity (VIC; Liang et al., 1994, 1996) model across different grid 103 
resolutions over the Columbia and Arkansas River basins; when no elevation bands were 104 
considered, melting occurred earlier, with an increase in evapotranspiration (ET) and, therefore, a 105 
shift in both timing and amount of runoff. Essery (2003) compared domain-averaged SWE 106 
simulations for the Torne-Kalix River basin (Scandinavia), obtained from a spatially aggregated 107 
model, a distributed model with 10 elevation bands, and a 0.25° fully distributed model; they found 108 
a close agreement between the latter two configurations - which produced lower peak SWE and 109 
extended snow cover duration (compared to the case without bands) -, and found little 110 
improvements using four to 10 elevation bands. Clark et al. (2011) showed that disaggregating the 111 
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Pinnacle Stream subcatchment (New Zealand) into 100-m elevation bands produced much lower 112 
basin-averaged melt rates compared to a spatially lumped configuration. Pradhanang et al. (2011) 113 
implemented and calibrated the SWAT model with none, three and five elevation bands (defined 114 
with equal areas) in the Cannonsville watershed (New York, USA), distributing daily precipitation 115 
and temperature using a simple linear regression with altitude; they found that streamflow 116 
simulations were improved when using three elevation bands, with little impacts when further 117 
increasing the number of elevation bands. 118 

More recently, Grusson et al. (2015) showed that implementing ten elevation bands in the 119 
SWAT model yielded better streamflow simulations, more runoff and less evapotranspiration than 120 
two reference simulations (without bands) in the Garonne watershed in France. Bhatta et al. (2019) 121 
characterized the effects of geospatial decisions when discretizing the Tamor River basin (eastern 122 
Himalayas, Nepal); in particular, they found that moving from one to five elevation bands provided 123 
considerable improvements in daily streamflow simulations, and that moving to 10 elevation bands 124 
yielded marginal benefits.  125 

None of these studies systematically assessed the effects that the vertical discretization of 126 
elevation bands yields on streamflow simulations and annual water balance components, or 127 
identified those sub-regions where implementing elevation bands yields large variations in 128 
simulated SWE. Hence, this paper addresses the following research questions: 129 

1. How does the configuration of elevation bands affect simulated streamflow, catchment-130 
scale water fluxes and SWE near the date of maximum accumulation? 131 

2. What are the implications of adding elevation bands on simulated SWE at the grid cell 132 
scale? 133 

3. What attributes characterize those grid cells where elevation bands make a large difference 134 
in simulated SWE?   135 

To seek for answers, we configure the VIC macro-scale hydrological model in nine basins 136 
located along the western slopes of the extratropical Chilean Andes. We compare simulation 137 
results from a calibrated model without elevation bands (benchmark) with those considering a 138 
vertical discretization defined every 1000, 750, 500, 200 and 100 m. We select the VIC model 139 
given: (i) the global interest of users (Addor & Melsen, 2019; Sepúlveda et al., 2021) and, 140 
therefore, the potential utility of our results for the hydrology community, and (ii) past and ongoing 141 
efforts to characterize the current and future hydrology across continental Chile (DGA, 2017; 142 
Vicuña et al., 2021; Vásquez et al., 2021). To disentangle the possible role of climatic conditions 143 
on inter-model differences, and partially motivated by the negative effects of the ongoing 144 
megadrought in Central Chile (Garreaud et al., 2017, 2019), we conduct our assessments for a 145 
climatological period (April/1982 – March/2015), a wet period (April/1982 – March/1987) and a 146 
dry period (April/2010 – March/2015). A key difference with previous work is that we focus on 147 
the sole effects of distributing air temperature with topography, keeping precipitation rates and the 148 
rest of meteorological forcings spatially constant across each grid cell. 149 

2 Study Domain 150 
We conduct our analyses in nine mountainous basins located along the western slopes of 151 

the extra-tropical Andes Cordillera (32.5°-37°S, 70°-71.5°W, Figure 1). These basins were 152 
selected based on the following criteria: (i) a near-natural flow regime defined as a maximum 153 
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threshold value of 5% for the relationship between annual volume of water assigned as permanent 154 
consumptive rights and the mean annual flow (Table 3 in Alvarez-Garreton et al., 2018), (ii) 155 
absence of large reservoirs within each catchment, and (iii) small (<2%) glacierized area. Further, 156 
these catchments span a wide range of hydroclimatic conditions (Table 1), from high aridity index 157 
(2.9) and relatively low mean annual precipitation (486 mm; Estero Pocuro en el Sifón) to low 158 
aridity index (0.7) and high mean annual precipitation (1929 mm; Río Ñuble en La Punilla). The 159 
southern basins (35°-37°S in Figure 1) also have larger vegetation coverage (just forest fraction 160 
coverage shown) due to the lower aridity and increased precipitation, providing higher runoff 161 
ratios. 162 
 163 

Despite snow being a key component of the water cycle in all case study basins, these 164 
encompass different hydrological regimes. This is illustrated in Figure 1 left and right panels), 165 
including catchment-scale precipitation and monthly averages of hydrologic variables simulated 166 
with the VIC model. Three dominant regimes can be seen: rainfall-driven (Pocuro); snow-167 
dominated (Las Leñas); and mixed regimes where (i) rainfall is the main control for runoff 168 
production (Claro), (ii) rainfall and snowmelt contributions are comparable (Ñuble), or (iii) 169 
snowmelt dominates catchment-scale hydrology (Arrayán, Mapocho, Colorado, Los Palos and 170 
Melado). Interestingly, there are catchments where the seasonal cycles of soil moisture and runoff 171 
are similar, regardless of their hydrological regimes (Claro, Las Leñas, Colorado, Palos and 172 
Melado), and basins where these cycles are different (Arrayán, Mapocho, Claro and Ñuble).  173 

 Table 1. List of catchment attributes. Hydrologic variables correspond to the period April/1979 -174 
March/2015. Mean slope and forest fraction were obtained from Alvarez-Garreton et al. (2018). 175 

Catchment Latitude 
(°) 

Longitude 
(°) 

Area 
(km2) 

Mean basin 
elevation and 

range 
(m.a.s.l) 

Mean  
slope 

(°) 

Mean Annual 
Precipitation 

(mm/yr) 

Mean 
Annual 

AI 
(PET/P) 

Mean 
Annual 
Runoff 

(mm/yr) 

Mean 
Annual 

Runoff Ratio 
(-) 

Forest 
fraction 

(%) 

Estero Pocuro 
en el Sifón -32.92 -70.54 181 2107  

(1002-3695) 22.1 486 2.9 126 0.26 0.2 

Estero Arrayán 
en la Montosa -33.33 -70.46 216 2469  

(969-3833) 24.2 615 2.4 233 0.38 0.4 

Río Mapocho en 
Los Almendros -33.37 -70.45 638 2936 

 (970-5428) 25.2 503 2.5 310 0.62 0.4 

Río Las Leñas 
antes junta Río 

Cachapoal 
-34.36 -70.31 172 2865  

(1279-4574) 30.4 1266 1.1 752 0.59 0.2 

Río Claro en El 
Valle -34.69 -70.87 349 1596  

(535-3334) 22.2 1422 0.9 862 0.61 27.1 

Río Colorado en 
junta con Palos -35.28 -71.00 877 2253  

(594-4073) 19.6 1802 0.8 1387 0.77 11.5 

Río Palos en 
junta con 
Colorado 

-35.27 -71.02 490 2013  
(595-4037) 19.9 1891 0.7 1689 0.89 16.7 

Río Melado en 
el Salto -35.88 -71.02 2127 2010 

 (698-3619) 23.5 1766 0.8 1232 0.70 1.9 

Río Ñuble en La 
Punilla -36.66 -71.32 1254 1711  

(566-2617) 
23.92 1929 0.7 1718 0.89 13.6 

 176 
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 177 

Figure 1. Location and elevation of the nine case study basins (center panel), along with seasonal 178 
cycles with precipitation (P, black lines and gray areas) and simulated water balance variables (left 179 
and right panels) for the climatological period (April/1982-March/2015)  - including active soil 180 
moisture (SM, red), SWE (green) and runoff (RO, blue) - for the nine case study basins: (a) Estero 181 
Pocuro en el Sifón, (b) Estero Arrayán en la Montosa, (c) Río Mapocho en Los Almendros, (d) 182 
Río Las Leñas antes junta Río Cachapoal, (e) Río Claro en El Valle, (f) Río Colorado en junta con 183 
Palos, (g) Río Palos en junta con Colorado, (h) Río Melado en el Salto, (i) Río Ñuble en La Punilla. 184 
For modeled SM, we subtract the lowest mean monthly value of the year so that the plotted values 185 
show only the active range of variation. 186 

3 Data and Methods 187 

3.1 Meteorological forcings and streamflow data 188 
Daily precipitation and temperature extremes are obtained from an updated version of the 189 

CR2MET dataset (Boisier et al., 2018), which has a horizontal resolution of 0.05° x 0.05°, covering 190 
continental Chile for the 1979-2016 period. The dataset for precipitation was generated with a 191 
statistical post-processing technique that uses topographic descriptors and large-scale climatic 192 
variables (water vapor and moisture fluxes) from ERA-Interim (Dee et al., 2011) and ERA5 (C3S 193 
& Copernicus Climate Change Service (C3S), 2017) as predictors, and observed daily precipitation 194 
from gauge stations as predictand. For the case of maximum and minimum daily temperature, 195 
additional variables from MODIS land surface products were added as predictors. Daily 196 
precipitation and temperature time series are disaggregated into 3-hourly time steps using the sub-197 
daily distribution provided by ERA-Interim. Relative humidity and wind speed are derived for the 198 



manuscript submitted to Water Resources Research 
 

7 
 

same horizontal resolution grid by spatially interpolating a blend between ERA-Interim and ERA5 199 
datasets, because the latter was not available for the entire study period (1985–2015) at the moment 200 
of data acquisition (early 2018). Despite the short temporal coverage from ERA5 (2010-2016), the 201 
updated reanalysis information was included for a better spatial representation of the mega drought 202 
(Garreaud et al., 2019; Vicuña et al., 2021). 203 

Streamflow data is obtained from stations maintained by the Chilean Water Directorate 204 
(DGA, available from the CR2 Climate Explorer https://www.cr2.cl/datos-de-caudales/).  205 

3.2 Hydrological model 206 
We use the Variable Infiltration Capacity (VIC; Liang et al., 1994, 1996) model, which is 207 

a macro-scale, process-based and semi-distributed hydrologic model. In VIC, the modeling unit is 208 
the grid cell, which is defined here to match the meteorological forcing data resolution (i.e., 0.05° 209 
x 0.05°). The model is run at 3-hourly time steps. Interception is simulated with a one-layer canopy 210 
reservoir that is emptied by canopy evaporation, transpiration, or throughfall, which occurs when 211 
additional precipitation exceeds the storage capacity of the canopy. Different vegetation classes 212 
are allowed in each grid cell through a mosaic approach, where water and energy balance terms 213 
are computed independently for each coverage class (vegetation and bare soil). Each grid cell has 214 
three soil layers: the two upper layers represent the interaction between soil moisture and 215 
vegetation, while the bottom layer simulates baseflow processes. It should be noted that VIC does 216 
not consider lateral exchange of fluxes between grid cells, which implies that water can only enter 217 
a grid cell from the atmosphere. A two-layer energy balance model is used to simulate snowpack 218 
dynamics: the upper layer solves the energy balance between the atmosphere and the snowpack, 219 
and the bottom layer stores the excess snow mass from the upper layer (Cherkauer & Lettenmaier, 220 
2003; Andreadis et al., 2009).  221 

3.3 Experimental setup 222 

3.3.1 Benchmark model 223 
To assess the effects of including elevation bands on simulated states and fluxes, we 224 

compare VIC simulations with different elevation band implementations against a benchmark 225 
model based on the work by Vásquez et al. (2021). In such implementation, a priori distributions 226 
for vegetation parameters were obtained using the land cover classes described in Zhao et al. 227 
(2016); spatial information on hydraulic conductivity values was obtained from the Natural 228 
Resources Data Center (CIREN for its acronym in Spanish) and all grid cells were considered flat 229 
(i.e., no elevation bands are defined). In our setup, all model simulations are conducted in full 230 
energy balance mode – dismissing frozen soil processes –, and no horizontal runoff routing is 231 
performed since, for the contributing catchment areas examined here, routing effects are not 232 
expected to be important at the daily or longer time scales (Gericke & Smithers, 2014; Beck et al., 233 
2020). Therefore, modeled streamflow is obtained from basin-averaged runoff. 234 

The parameters for the benchmark model (Table 2) are calibrated using the Shuffled 235 
Complex Evolution global optimization algorithm (SCE; Duan et al., 1993). All soil parameters 236 
are considered spatially constant within each catchment (i.e., no parameter regularization was 237 
considered). The objective function is the Kling-Gupta Efficiency metric (Gupta et al., 2009): 238 

 239 
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𝐾𝐺𝐸 = 1 − '(𝑟 − 1)+ + (𝛼 − 1)+ + (𝛽 − 1)+	 (1) 

where 𝑟 is the Pearson correlation coefficient between simulated and observed runoff; 𝛼 is the 240 
ratio of the standard deviation of simulated values to the standard deviation of observed values; 241 
and 𝛽 is the ratio between the mean of the simulated values to the mean of observations. 242 

The calibration process considers streamflow data for at least four years within the period 243 
April/1990-March/2010, and if the minimum record length is not satisfied, the periods April/1985-244 
March/1990 and April/2010-March/2015 are considered. All model simulations are conducted for 245 
the period Jan/1979-Dec/2015, using the first three years to initialize model states. If two or more 246 
parameter sets yield the same KGE values, we select the one that maximizes the Nash-Sutcliffe 247 
efficiency (NSE; Nash & Sutcliffe, 1970). The parameter sets found in this step are used for 248 
subsequent modeling experiments (section 3.3.2) - i.e., no parameter recalibration is performed.  249 

Table 2. List of VIC parameters and limits considered for calibration.  250 

Parameter Description Units 
Calibration range 

Min Max 
infilt Variable infiltration curve parameter (binfilt) - 0.001 0.162 
Ds Fraction of Dsmax where non-linear baseflow begins - 0.312 0.806 

Dsmax Maximum velocity of baseflow mm/day 83.2 183.2 

Ws 
Fraction of maximum soil moisture where non-linear baseflow 

occurs - 0.108 0.900 

C Exponent used in baseflow curve - 3.0 10.9 
depth1 

Thickness of each soil moisture layer 
m 0.014 2.169 

depth2 m 0.418 5.281 
depth3 m 0.173 3.753 

Ksat Saturated hydraulic conductivity mm/day 1499 2565 
Newalb Fresh snow albedo  0.725 0.950 
Albacum a Snow albedo curve parameter - 0.725 0.950 

Albthaw a Snow albedo curve parameter - 0.883 0.920 
Train Minimum temperature for rainfall occurrence °C -2.735 3.446 
rsnow Snow surface roughness m 1.24E-5 0.022 

 251 

3.3.2 Alternative model configurations 252 
Figure 2 illustrates how elevation bands can be configured in VIC. It can be noted that the 253 

model lumps all areas within the same elevation range into one band. Additionally, fluxes and state 254 
variables for each band are weighted by area fraction to provide grid-cell averages. 255 
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 256 

Figure 2. Spatial representation of subgrid elevation bands in VIC. A, P, T, and Z denote area, 257 
average precipitation, air temperature, and terrain elevation for each elevation band.   258 

For each basin, we create five alternative model configurations by spatially disaggregating 259 
all grid cells into 1000 m, 750 m, 500 m, 200 m and 100 m elevation bands, using the Advanced 260 
Spaceborne Thermal Emission and Reflection (ASTER) global Digital Elevation Model 261 
(reference). To harmonize all these spatial configurations, we consider 0 m a.s.l. as the starting 262 
point of elevation bands for all catchments, instead of the lowest point of each catchment’s grid 263 
cell. For the lowest and the highest elevation bands, we set a minimum fractional area of 5% (with 264 
respect to the grid cell’s area); if such a condition is not met, that band (i.e., the lowest and/or the 265 
highest) is merged to the closest one. This implies that peak elevations may be excluded from our 266 
representation of subgrid variability.  267 

In all alternative model configurations, precipitation rates are assumed to be constant with 268 
elevation, but air temperature is lapsed from the mean grid cell elevation to each elevation band 269 
using local lapse rates. To this end, we cluster our basins into three groups (basins 1-3, 4-7 and 8-270 
9 in Figure 1) based on spatial proximity, and compute lapse rates using the mean annual 271 
temperatures obtained from the grid cells belonging to each cluster. It should be noted that these 272 
lapse rates are not affected by the configuration of elevation bands, since they are computed from 273 
a meteorological product (CR2MET) that assumes flat grid cells. All simulations with elevation 274 
bands are performed in full energy balance mode, without horizontal runoff routing. 275 

3.3.3 Analysis framework 276 
We select three continuous periods for analysis based on observed catchment-scale 277 

precipitation and runoff: (i) a 5-year wet period, (ii) a 5-year dry period, and (iii) a climatological 278 
period that spans April/1982 – March/2015, including (i) and (ii). The choice of wet and dry 279 
periods is based upon visual inspection of annual precipitation time series and the calculation of 280 
5-year moving averages of precipitation and runoff. The wet period (April/1982 – March/1987) 281 
begins after a long epoch with a persistent negative trend in annual precipitation across semi-arid 282 
central Chile (30-35°S) from the beginning of the 20th century until the mid-1970s (Quintana & 283 
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Aceituno, 2012). The dry period (April/2010 – March/2015) covers the first half of the 284 
megadrought, when severe annual rainfall deficits (25-45%) prevailed in central Chile (30-38°S), 285 
diminishing the Andean snowpack and resulting in amplified declines of river flow (up to 90%), 286 
reservoir volumes and groundwater levels (Garreaud et al., 2017).   287 

First, we assess the capability of the benchmark model and each alternative model 288 
configuration (i.e., six model configurations in total) to reproduce observed daily runoff, flow 289 
duration curves and runoff seasonality. In this analysis, flow duration curves and runoff seasonality 290 
graphs are calculated for the climatological period. We compute the KGE and NSE for modeled 291 
runoff at daily and monthly time steps. Additionally, we examine the percent bias for the 292 
midsegment slope (%BiasFMS) and the low-segment volume (%BiasFLV) of the flow duration 293 
curves (Yilmaz et al., 2008): 294 
 295 

%𝐵𝑖𝑎𝑠𝐹𝑀𝑆 =	
[𝑙𝑜𝑔(𝑄𝑆=>) − 𝑙𝑜𝑔(𝑄𝑆=+)] − [𝑙𝑜𝑔(𝑄𝑂=>) − 𝑙𝑜𝑔(𝑄𝑂=+)]

[𝑙𝑜𝑔(𝑄𝑂=>) − 𝑙𝑜𝑔(𝑄𝑂=+)]
∙ 100	 (2) 

 296 

%𝐵𝑖𝑎𝑠𝐹𝐿𝑉 = −1 ∙ 	
∑ [𝑙𝑜𝑔(𝑄𝑆F) − 𝑙𝑜𝑔(𝑄𝑆G)]G
FH> − ∑ [𝑙𝑜𝑔(𝑄𝑂F) − 𝑙𝑜𝑔(𝑄𝑂G)]G

FH>
∑ [𝑙𝑜𝑔(𝑄𝑂F) − 𝑙𝑜𝑔(𝑄𝑂G)]G
FH>

∙ 100	 (3) 

where QS is the simulated flow [m3/s], QO is the observed flow [m3/s], m1 and m2 are the lowest 297 
and highest flow exceedance probabilities (0.2 and 0.7, respectively), and L is the index of the 298 
minimum flow.  299 

Then, we compute percent changes between alternative model configurations and the 300 
benchmark model results to quantify the effects of adding elevation bands on simulated 301 
input/output fluxes and SWE. Specifically, we examine mean annual rainfall, snowfall, runoff, 302 
sublimation, snowmelt and ET, as well as September 1 SWE (SWE 09/01 hereafter) – which is 303 
used to produce operational seasonal streamflow forecasts in central Chile (Mendoza et al., 2014) 304 
–, at both catchment and grid cell (i.e., 0.05°) scales.  305 

To analyze in detail the effects of snow bands with different vertical discretizations on 306 
simulated daily SWE, albedo, cumulative sublimation and cumulative snowmelt, we select three 307 
grid cells with different locations, mean elevations, and elevation ranges within the Mapocho River 308 
basin (Figure 3). These comparisons are conducted for water years selected from our wet and dry 309 
periods to examine the interplay between hydroclimatic conditions and the configuration of 310 
elevations bands.  311 
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 312 
Figure 3. (a) Selected grid cells of the Mapocho River basin; the black dot represents the 313 
catchment outlet. (b) Hypsometric curves of the grid cells displayed in panel (a), including those 314 
selected for detailed analysis.  315 

To identify the most sensitive grid cells and model configurations in terms of snow 316 
accumulation, we compare SWE 09/01 (i.e., SWE at the beginning of snowmelt season) obtained 317 
from the 200-m configuration and the benchmark, for all water years (i.e., 33) in the climatological 318 
period. We define a grid cell as sensitive if differences in simulated SWE 09/01 with respect to the 319 
benchmark model are larger than 10% for >50% of water years. To seek for controls on different 320 
grid cell behavior, we compare the cumulative distribution functions (CDFs) of several attributes 321 
(Table 3) obtained from sensitive vs. insensitive grid cells. We also contrast CDFs of state 322 
variables and fluxes simulated with the 200-m model configuration in sensitive vs. insensitive grid 323 
cells, including rainfall, snowfall, ET, runoff, snowmelt, and maximum SWE. In all these 324 
comparisons, we perform Kolmogorov-Smirnov tests and report associated p-values. 325 

Table 3: Attributes considered for each grid cell. Calculations consider water years (April-March). 326 
Attributes name Description Units Formula 

Altitude Mean elevation m a.s.l. - 

Range 
Difference between 

maximum and 
minimum altitude. 

m zmax – zmin 

Aspect 

Average grid cell 
aspect, calculated 

counterclockwise from 
east. 

° - 

Slope Mean slope across each 
grid cell ° - 

Annual temperature  
(T) 

Annual T for a specific 
water year °C 

1
𝑁
J
K

LH>

𝑇NOLFP	

Annual precipitation 
(P) 

Annual P for a specific 
water year mm/yr J

K

LH>

𝑃NOLFP	
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Attributes name Description Units Formula 

Annual Moisture Index 
(Im)1 

Indicates whether 
climatic conditions are 
arid (water-limited) or 
humid (energy-limited) 
. Ranges from -1 to 1, 

with negative and 
positive values for arid 
and humid conditions, 

respectively. 

- 

𝐼= =	
1
12

J
TH>+

TH>

𝑀𝐼(𝑡)	

Where: 

𝑀𝐼(𝑡) = {1 − 𝐸W(𝑡)𝑃(𝑡) 	 , 𝑃(𝑡) > 𝐸Z(𝑡)	0	, 𝑃(𝑡)

= 𝐸Z(𝑡)	
𝑃(𝑡)
𝐸W(𝑡)

− 1	, 𝑃(𝑡) < 𝐸Z(𝑡)	 

Moisture Index 
Seasonality 

(Imr)1 

Indicates intra-annual 
changes in the 

water/energy budget. 
Ranges from 0 (no 

variability) to 2 (very 
large variability) 

- 𝐼=,\ = ]𝑀𝐼(1,2,…12)_	− ]𝑀𝐼(1,2,…12)_	 

Fraction of annual 
precipitation that 

occurs as snowfall 
(fs)1 

Ranges from 0 to 1, 
where 0 indicates no 

snowfall in a year and 
1 that all precipitation 

occurs as snow. 

- 𝑓a =
∑ 𝑚𝑜𝑛𝑡ℎ𝑙𝑦	𝑠𝑛𝑜𝑤𝑓𝑎𝑙𝑙

∑ 𝑚𝑜𝑛𝑡ℎ𝑙𝑦	𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛
	

N is the number of days in each water year. 327 

4 Results 328 

4.1 Model evaluation against observed streamflow 329 
Figure 4 compares modeled daily runoff time series against observations for water year 330 

(WY) 2009/2010 (as an example), as well as mean monthly runoff and daily flow duration curves 331 
for the climatological period. The results show small differences between the benchmark model 332 
(i.e., no elevation bands) and the alternative model configurations. Adding elevation bands 333 
provides a maximum KGE increment of 0.03 for daily streamflow throughout all basins during 334 
WY 2009/2010 (see Table 4). All model configurations underestimate daily peak flows during 335 
winter (e.g., f.1 and h.1) and fail to capture streamflow recessions, providing slower (e.g., see panel 336 
f.1 between June and August) or faster (e.g., see panel i.1 between July and August) responses 337 
compared to observed runoff. In the Palos River basin (Figure 4g.1), there are notable 338 
discrepancies in December arising from different vertical discretizations. Figure 4 also shows that 339 
all model configurations capture catchment-scale runoff seasonality reasonably well, excepting 340 
Estero Arrayán (Figure 4b.2), where rainfall contributions to runoff are underestimated, or the Las 341 
Leñas basin (Figure 4d.2), where modeled maximum monthly values are delayed. In some cases, 342 
observed monthly values are overestimated (e.g., Pocuro basin, Figure 4a.2) or underestimated 343 
(e.g., December to March at the Ñuble basin, Figure  4i.2; near August, Figure 4g.2).  344 

Table 4: KGE values for simulated daily runoff - WY 2009/2010. 345 
Model  

configuration Pocuro Arrayán Mapocho Las 
Leñas Claro Colorado Palos Melado Ñuble 

                                                
1 These climate indices were used in Knoben et al. (2018). It should be noted that the fraction of annual precipitation 
that occurs as snow (fs) was not calculated as in Knoben et al. (2018), because VIC computes snowfall considering a 
minimum temperature at which rainfall can occur and a maximum temperature at which snowfall can occur, rather 
than using a single temperature as threshold.  
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No Bands 
(NB) 0.73 0.58 0.58 0.79 0.51 0.64 0.70 0.69 0.32 

1000 m 0.74 0.58 0.59 0.81 0.51 0.65 0.70 0.69 0.33 
750 m 0.74 0.58 0.59 0.79 0.51 0.65 0.70 0.69 0.33 
500 m 0.74 0.58 0.61 0.80 0.51 0.65 0.73 0.69 0.34 
200 m 0.74 0.59 0.60 0.81 0.51 0.65 0.72 0.68 0.34 
100 m 0.74 0.58 0.60 0.81 0.51 0.65 0.72 0.68 0.34 

 346 

The results for the percent bias in the mid-segment slope of the flow duration curves 347 
(%BiasFMS, Table 5) show that all model simulations yield flashier responses compared to 348 
observed runoff in all basins. When adding elevation bands, %BiasFMS increases in the Pocuro 349 
and Arrayán basins compared to the benchmark model, with maximum variations of 2.1% and 350 
3.7% using the 100-m configuration, respectively, and these changes do not necessarily correlate 351 
with increased vertical resolution. However, elevation bands provide improvements (i.e., decrease 352 
in %BiasFMS) in the rest of the basins, ranging from 0.3% for the Claro River basin (200-m 353 
configuration) to 8.3% for Las Leñas River basin (200-m configuration). 354 

The incorporation of elevation bands yields reductions in the percent bias in FDC low-355 
segment volume (%BiasFLV, Table 5) in all catchments excepting the Mapocho River basin. As 356 
with %BiasFMS, improvements in %BiasFLV are not correlated with the vertical resolution, and 357 
they range from 0.01% for Pocuro (1000-m configuration) to 1.03% for Las Leñas (200-m 358 
configuration). However, large negative biases in simulated long-term baseflow responses are 359 
obtained in some basins (Figure 4, panels c.3, d.3, e.3, g.3, h.3 and i.3) with all model 360 
configurations. 361 

Table 5: Model evaluation metrics derived from the daily flow duration curve (April/1982-362 
March/2015). 363 

Metric Config. Pocuro Arrayán Mapocho Las 
Leñas Claro Colorado Palos Melado Ñuble 

%BiasFMS  

No Bands 
(NB) 15.5 21.6 22.6 53.4 45.8 5.2 52.9 31.2 59.9 

1000 m 17.6 25.3 22.1 47.3 46.0 4.7 50.1 27.8 57.7 
750 m 16.0 23.2 20.8 46.5 46.1 4.8 50.8 27.4 57.3 
500 m 16.7 23.2 22.3 45.8 45.4 4.7 49.3 25.9 55.8 
200 m 16.9 24.1 22.4 45.1 45.5 4.4 48.4 24.9 56.0 
100 m 17.4 23.9 22.2 45.2 45.4 4.5 47.8 24.8 55.6 

%BiasFLV 

No Bands 
(NB) 2.0 5.4 6.9 6.5 14.4 0.8 6.3 14.2 16.1 

1000 m 2.0 5.3 7.2 5.7 14.3 0.8 6.2 13.6 15.9 
750 m 1.9 5.2 6.9 5.6 14.3 0.8 6.2 13.6 15.9 
500 m 2.0 5.2 7.1 5.5 14.2 0.7 6.1 13.4 15.8 
200 m 2.0 5.1 7.0 5.5 14.2 0.7 6.0 13.2 15.7 
100 m 2.0 5.1 7.1 5.5 14.2 0.7 6.0 13.1 15.7 

 364 
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 365 

 366 

Figure 4. Comparison between simulated and observed runoff (Q) for all basins in terms of daily 367 
time series (April/2009-March/2010, left panels), mean monthly runoff (center panels) and daily 368 
flow duration curves (right panels, vertical logarithmic scale). The results in center and right panels 369 
correspond to the climatological period. In the left panels, missing dots indicate the absence of 370 
runoff measurements.  371 

Figure 5 illustrates the sensitivity of KGE to the configuration of elevation bands across 372 
basins and analysis periods, for daily (top panels) and monthly (bottom panels) runoff. In general, 373 
these results reinforce the idea that adding elevation bands has marginal effects on simulated basin-374 
averaged runoff, yielding KGE improvements (ΔKGE) during the 5-year wet period that range 375 
from 0 to 0.05 (Palos basin) for both daily (Figure 5a) and monthly (Figure 5d) time scales. During 376 
the 5-year dry period (Figures 5b and 5e), the overall KGE improvement (average from all 377 
catchments) is 0.02, with the largest increments obtained for the Palos and Mapocho River basins 378 
(although the resulting KGE is still low), and negligible variations (~0.01) in the remaining basins. 379 
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 380 

Figure 5. KGE results computed with daily (top) and monthly (bottom) runoff, obtained from the 381 
benchmark (NB: No Bands) and the five alternative model configurations (i.e., using 1000-m, 750-382 
m, 500-m, 200-m, and 100-m elevation bands). Each curve displays individual basin results, and 383 
missing basins in some panels indicate the absence of verification (i.e., observed) data for that 384 
period.  385 

During the climatological period (Figures 5c and 5f), similar performance metrics are 386 
obtained for the 200-m and 100-m configurations. For daily runoff simulations (Figure 5c), adding 387 
elevation bands provides KGE improvements ranging 0.02-0.03 in Las Leñas and Mapocho basins, 388 
and slight KGE reductions (less than 0.01) in the Colorado and Melado basins. KGE values 389 
obtained from monthly runoff simulations (Figure 5f) increase between 0.01 and 0.03 in all basins 390 
when 200-m and 100-m configurations are used. 391 

The results displayed in Figure 5 show that incorporating elevation bands generally yields 392 
slight improvements in streamflow simulations in terms of KGE; however, a higher vertical 393 
resolution does not necessarily translate into increased KGE in all basins (e.g. see results for Estero 394 
Arrayán in Figures 5a, 5b and 5c). A noteworthy result from Figure 5 is the constant, larger positive 395 
effect on KGE that adding elevation bands provides in the Palos River basin during the wet period 396 
compared to the dry period, which may be explained by the linear shape of its hypsometric curve 397 
over most of its fractional area (not shown), favoring more evenly distributed areas across 398 
elevation bands. More generally, Figure 5 shows that the effects of increased vertical resolution 399 
are not necessarily linear, i.e., some ‘coarse’ model configurations provide better KGE results than 400 
configurations with more elevation bands, yet both configurations are an improvement compared 401 
to the benchmark (see, for example, 750-m configuration results for the Pocuro basin in Figure 5d, 402 
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and 1000-m configuration results of the Arrayán basin in Figure 5f). The analysis of KGE 403 
components (see Figures for Supplement S4, S5 and S6) reveals a similar behavior for these 404 
metrics, i.e., slight variations of results with the choice of snow band configuration during the dry 405 
period, and changes in both wet and climatological periods. The largest impacts of alternative 406 
model configurations are obtained for the α component (Figure S5), with a moderate reduction.  407 

The effects of adding elevation bands are somewhat different for NSE, for which 408 
improvements during the wet and climatological periods are greater than the response of KGE, 409 
especially in the Arrayán River basin. Further, negligible changes in NSE are observed during the 410 
dry period (Figure S3). 411 

4.2 Effects on mean annual fluxes and September 1st SWE 412 
Figure 6 illustrates the effects of adding elevation bands on simulated basin-averaged mean 413 

annual fluxes and SWE 09/01. Overall, changes in annual averages are smaller than 5% (with a 414 
few exceptions). Differences between alternative configurations are usually smaller than 415 
differences between the benchmark and any model configuration with elevation bands, and the 416 
effects of increasing the vertical resolution are very small beyond 200-m. Further, variations 417 
produced by alternative model configurations are not necessarily proportional to the vertical 418 
resolution of elevation bands, and the sign of such impacts in a specific catchment may differ 419 
depending on the analysis period. 420 

The alternative model configurations produce slight variations in mean annual runoff, with 421 
~0.15% reductions during the wet and climatological periods in most basins. During the dry period, 422 
small reductions (<0.1%) are obtained in the Colorado, Melado and Ñuble River basins. The 423 
Arrayán River basin is the only catchment where the inclusion of elevation bands slightly increases 424 
(~0.5%) the mean annual runoff in all analyses. These small variations in mean annual runoff – 425 
compared to the other variables displayed in Figure 6 – suggest that the similarity in KGE values 426 
obtained for daily and monthly runoff with all model configurations (Figure 5) may be attributed 427 
to very different reasons. Indeed, mean annual rainfall decreases in seven catchments (i.e., all 428 
basins except Las Leñas and Mapocho) around 0.7-0.9% during the wet period, as the number of 429 
elevation bands increases due to changing the snow-rain partitioning of precipitation. Very similar 430 
variations are observed during the dry and climatological periods; even more, the inclusion of more 431 
elevation bands also yields less rainfall during the dry period in the Mapocho River basin. 432 
Conversely, average increases of 2-3% in mean annual snowfall are obtained with the alternative 433 
model configurations. 434 

The implementation of elevation bands results in mixed variations across catchments in 435 
basin-averaged SWE 09/01 with respect to the benchmark model. Negative changes are obtained 436 
in Las Leñas and Colorado River basins during all analysis periods; and small (<0.5%) negative 437 
variations in SWE 09/01 are obtained in the Palos River basin during the dry period. In the 438 
remaining basins, more SWE 09/01 is simulated with the alternative model configurations, and 439 
variations depend on the analysis period and vertical discretization.  440 

Interestingly, the results in Figure 6 show that more simulated snowfall does not 441 
necessarily yield more SWE 09/01. For example, adding elevation bands increases snowfall in the 442 
Colorado River basin in all analysis periods, producing less SWE 09/01 compared to the 443 
benchmark model. Additionally, all alternative configurations provide more snowfall in the Pocuro 444 
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River basin; however more SWE 09/01 is obtained during the dry period and the climatological 445 
period, and less SWE 09/01 during the wet period. 446 

Figure 6 also shows that incorporating subgrid elevation bands generally yields less 447 
snowmelt with a few exceptions (i.e., Figures 5a.3, 5b.2, 5g.2, 5h.2), and mixed variations in 448 
annual sublimation amounts. Indeed, elevation bands tend to provide more sublimation in northern, 449 
water limited (i.e., PET/P >1) catchments (e.g., Figures 5a to 5d), and generally less sublimation 450 
in energy limited (i.e., PET/P <1) basins. Additionally, part of the rainfall feeds the snowpack, 451 
providing liquid water that contributes to increase SWE during the winter season, which explains 452 
why VIC produces more annual snowmelt than annual snowfall. For example, the mean annual 453 
snowfall obtained with the baseline model at the Pocuro River basin is 93 mm/yr, while the mean 454 
annual snowmelt for the same period is 196 mm/yr. 455 

Slight increases (~0.6%) in simulated basin-averaged ET are obtained with the alternative 456 
model configurations during the wet (except Arrayán, with ~0.5% decreases) and climatological 457 
periods. During the dry period, the addition of elevation bands yields less simulated ET in four 458 
basins (Pocuro, Arrayán, Claro and Palos).  459 

We now examine intra-catchment variability in changes induced by the alternative model 460 
configurations on simulated hydrological variables. Specifically, we assess percent changes 461 
[100·(alternative – benchmark)/benchmark] in simulated mean annual fluxes and SWE 09/01 at 462 
each grid cell across the Mapocho River basin (Figure 7). The same figures for the remaining 463 
catchments are included in the supplementary information (S7-S14). It can be noted that the effects 464 
of elevation bands on mean annual rainfall are more evident in high elevation areas (over 3,000 m 465 
a.s.l.), where larger increments (all computed as the mean from the alternative configurations) are 466 
obtained during the wet period (~9% average; Figure 7a) compared to the dry period (~2% average; 467 
Figure 7b); additionally, rainfall increments are larger than 20% in some high-elevation grid cells 468 
during the wet period. Conversely, the incorporation of elevation bands yields less rainfall in low 469 
elevation grid cells, with declines < 5%. 470 

As expected, simulated snowfall increases in grid cells located below 2,500 m a.s.l. when 471 
elevation bands are included, with larger increments for higher vertical resolutions. Snowfall 472 
variations in low-elevation areas are larger during the wet period using all alternative model 473 
configurations, spanning +20-50%. Further, adding elevation bands in the Mapocho River basin 474 
decreases snowfall amounts less than 10% in some grid cells located above 2.500 m a.s.l. The 475 
largest variations in SWE 09/01 generally occur below 3,000 m a.s.l., and these are more 476 
pronounced during the dry period; however, this behavior is not observed in the rest of the basins 477 
(see from Supplementary Figure S7 - Figure S14). Simulated annual sublimation and snowmelt 478 
can be largely affected by the inclusion of elevation bands. Interestingly, the sign and magnitude 479 
of snowmelt variations does not necessarily match the spatial patterns of changes in SWE 09/01. 480 
Finally, Figure 7 shows that the alternative model configurations do not induce substantial changes 481 
in mean annual ET and runoff across the basin of interest, which is also observed in the remaining 482 
basins.  483 
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 484 

 485 

Figure 6. Percent changes [100·(alternative – benchmark)/benchmark] in simulated basin-486 
averaged mean annual fluxes and SWE 09/01 for different periods (columns) and all case study 487 
basins. In each panel, the bars holding the same color represent, from left to right, percent changes 488 
for model configurations with 1000 m, 750 m, 500 m, 200 m and 100 m elevation bands. The 489 
numbers placed over each set of bars indicate the values obtained with the benchmark model (in 490 
mm/year for fluxes and mm for SWE 09/01). Note that a different axis range is used for the 491 
Mapocho River basin during the dry period (b), due to overaccumulation on a grid cell with 492 
glacierized area (not shown here) which affects simulated SWE 09/01. 493 
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 494 
Figure 7. Spatial variability of percent changes [100*(alternative – benchmark)/benchmark] in 495 
grid cell-scale simulated mean annual fluxes and SWE 09/01 at the Mapocho River basin. Results 496 
are presented for (a) wet and (b) dry analysis periods. The various columns display, from left to 497 
right, results for mean annual rainfall, mean annual snowfall, mean SWE 09/01, mean annual 498 
sublimation, mean annual ET, mean annual snowmelt and mean annual runoff. The top row 499 
displays results for the benchmark model in mm/yr (excepting SWE 09/01, presented in mm), 500 
while the remaining rows show results for alternative model configurations (i.e., 1000, 750, 500, 501 
200 and 100 m elevation bands, from top to bottom). Black tiles indicate no data, associated with 502 
benchmark model results equal to zero (or unbounded result). The black dot in the top row 503 
represents the catchment outlet. 504 

4.3 Differences in simulated daily SWE 505 
We examine simulations of daily SWE and three related variables (albedo, cumulative 506 

sublimation and cumulative snowmelt) in three grid cells of the Mapocho River basin (Figure 3) 507 
during WYs 1984 and 2012, characterized by wet and dry conditions, respectively (Figure 8). 508 
Model simulations with elevation bands yield less SWE in all grid cells during WY 1984 (wet), 509 
and snow disappearance gets delayed in grid cells (2) and (3) compared to the benchmark model. 510 
In grid cell (1), this does not happen due to its high mean altitude (3,699 m a.s.l), yielding snow 511 
bands with similar altitudes and, therefore, a similar timing of simulated snow accumulation and 512 
melt. During WY 2012 (dry), the alternative model configurations also provide less average SWE 513 
than the benchmark model, with specific effects on simulated accumulation and melt events. For 514 
example, the 1000-m configuration in grid cell (1) yields the largest melt rates before October, 515 
although it provides the highest SWE compared to the other configurations; in grid cell (2), a 516 
precipitation event at the end of July/2012 produces snow accumulation only if elevation bands 517 
are considered, even though it gets quickly melted; in grid cell (3), the alternative configurations 518 
provide less maximum SWE (~20 mm in mid-June) than the benchmark model, despite they 519 
generate earlier (almost two weeks) snow accumulation and extend the snow season for more than 520 
a week in some cases. Interestingly, although alternative model configurations yield less SWE in 521 
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grid cell (1) during WY 2012, lower and earlier snowmelt is obtained compared to the benchmark 522 
model, which provides fast, step-like responses. 523 

For the albedo, the largest differences in grid cell (1) are observed in the dry period, 524 
especially during the melt season (after September). Around the same date, cumulative sublimation 525 
from the alternative configurations begins to depart from the benchmark model results.  526 
 527 

 528 

Figure 8. Simulated time series of daily SWE, albedo and the cumulative sublimation and 529 
cumulative snowmelt for the benchmark model and the alternative model configurations, for the 530 
selected grid cells (panels (a), (b) and (c) correspond to grid cells (1), (2) and (3) in Figure 3). Each 531 
column displays results for a snow season belonging to a wet (WY 1984) and a dry (WY 2012) 532 
water year.   533 

Figure 9 displays time series of daily SWE simulated by individual elevation bands in grid 534 
cells (1), (2) and (3) (Figure 3a, 3b, and 3c respectively), using 1000-m  (top panel) and 200-m 535 
(bottom panel) configurations. It can be noted that differences between the benchmark model (red 536 
lines) and the spatial average of alternative configurations (black lines) are attributed to the low 537 
accumulation in low-elevation bands (gray lines). The comparison between 1000-m and 200-m 538 
simulations shows that adding more elevation bands enhances differences with the benchmark 539 
model; for example, the 1000-m (200-m) configuration yields 25 (39) mm less peak SWE than the 540 
benchmark in grid cell (1) during the dry period (Figure 9a). Further, the 200-m configuration 541 
yields larger seasonally-averaged SWE than the 1000-m configuration due to more snow 542 
accumulation at high elevations. Increasing the vertical resolution affects the magnitude of 543 
simulated SWE, with higher values in October 2012 using the 200-m configuration (Figure 9a, 544 
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dry); indeed, the latter configuration provides a ~50 mm reduction in October 20 SWE compared 545 
to the benchmark model, while the 1000-m configuration reduces SWE for more than 80 mm the 546 
same day. This reveals another interesting feature: despite some high-elevation bands 547 
accumulating more SWE than the benchmark model (see gray lines above the red line), this is not 548 
translated into increased spatially averaged SWE, due to their low contributing area. 549 

In the low-elevation grid cell (Figure 9b), adding elevation bands yields a longer snow 550 
season, and the 200-m configuration enables more snow accumulation (compared to 1000-m), 551 
getting closer to the benchmark model results. Finally, the simulations for both (the 200-m) 552 
configurations during WY 1984 (WY 2012, after September) in grid cell (3) (Figure 9c) show that 553 
adding higher elevation bands can delay the occurrence of grid cell averaged snowmelt events. 554 
The highest elevation bands start accumulating snow earlier during WY 2012, compared to the 555 
benchmark simulation. 556 

 557 

 558 

Figure 9. Comparison between simulated time series of daily SWE at the grid cell scale (i.e., 559 
0.05°) using the benchmark model (red line), vs. an alternative model configuration (black line) 560 
with elevation bands (Δz =1000 m, top panel; and Δz = 200 m, bottom panels) for selected grid 561 
cells (panels (a), (b) and (c) correspond to grid cells (1), (2) and (3) in Figure 3, respectively). In 562 
each panel, the gray lines show daily SWE simulated at each elevation band contained in the grid 563 
cell of interest. Each column displays results for a snow season belonging to a wet (WY 1984) and 564 
a dry (WY 2012) water year. 565 

4.4 Identification of sensitive grid cells 566 
The results in Figure 7 and Figures S7-S8-S9 show that adding elevation bands may have 567 

large effects on simulated SWE 09/01 in some grid cells, introducing considerable intra-catchment 568 
variability. Nevertheless, this variability compensates in such a way that implementing elevation 569 
bands yields smaller (or negligible) effects at the basin scale (Figure 10a), compared to the grid 570 
cell scale (0.05°) used here (Figure 10b). Hence, we now turn our attention to the question: where 571 
does the implementation of elevation bands make a larger difference in simulated SWE? To seek 572 
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for answers, we examine discrepancies in CDFs of nine topographic and climate attributes (defined 573 
in section 3.3.3) between sensitive and insensitive grid cells (Figure 11). The results show that 574 
sensitive grid cells have lower mean elevations (median of 1,700 m a.s.l.), larger elevation ranges 575 
and average slope, and smaller aspect in the range 120-240 (NW-SW) than insensitive ones. 576 
Further, sensitive grid cells show higher mean annual temperatures (median around 8°C compared 577 
to 6°C from insensitive grid cells), mean annual precipitation mostly over 1000 mm/yr (90% of 578 
sensitive grid cells), and a considerable fraction of precipitation falling as snowfall (the median fs 579 
value of sensitive grid cells is 0.41, versus a median of 0.20 for insensitive grid cells). The annual 580 
average moisture index (Im) and the moisture index seasonality (Imr) are larger in sensitive grid 581 
cells, indicating more humid conditions and more pronounced intra-annual variations in 582 
meteorological conditions, switching from fully arid to fully saturated.   583 
.   584 
 585 

 586 

Figure 10. Simulated SWE 09/01 using 200-m elevation bands vs.  the same variable obtained 587 
with the benchmark model at the (a) catchment scale, and (b) individual 0.05° grid cells. Each dot 588 
indicates results for a specific combination of water year and spatial unit, and each panel comprises 589 
results from all the grid cells contained in the nine case study basins. Results are stratified for dry 590 
(red) and wet (blue) water years, defined using the mean annual precipitation (𝑃𝑎) for the 591 
climatological period as threshold. 592 

Figure 12 displays the CDFs of states and fluxes simulated with 200-m elevation bands in 593 
sensitive and insensitive grid cells, showing larger rainfall amounts in sensitive grid cells (median 594 
of ~1500 mm/yr) compared to insensitive grid cells (median ~1250 mm/yr); conversely, smaller 595 
snowfall amounts (median ~190 mm/yr) are seen in sensitive grid cells compared to insensitive 596 
grid cells (median ~330 mm/yr). Accordingly, lower values of maximum SWE are reached in 597 
sensitive grid cells (median ~370 mm) compared to insensitive grid cells (median ~590 mm/yr). 598 
This behavior is expected given the relatively lower mean elevation of sensitive grid cells (Figure 599 
11). The results for annual snowmelt show large differences in the shape of the CDFs, similar to 600 
annual precipitation behavior (Figure 11). The sublimation of sensitive grid cells is higher (median 601 
~60 mm/yr) compared to insensitive grid cells (median ~45 mm/yr), and the shapes of the CDFs 602 
are similar to  those of maximum SWE. Annual runoff discrepancies between sensitive and 603 
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insensitive grid cells are only noticeable for values smaller than 1600 mm/yr, with a relatively 604 
larger p-value. Finally, we do not find considerable ET differences between sensitive and 605 
insensitive grid cells. 606 
 607 

 608 
Figure 11: CDFs of selected topographic and hydroclimatic attributes for sensitive vs. insensitive 609 
grid cells. Aspect values of 180º (90º) represent west (north) facing grid cells. We identify grid 610 
cells as sensitive if differences in simulated SWE 09/01 with respect to the benchmark model are 611 
larger than 10% for >50% of water years in the climatological period. The p-value is obtained from 612 
applying the Kolmogorov-Smirnov test between sensitive and insensitive groups. The results were 613 
obtained using the 200-m configuration. 614 

 615 

 616 
Figure 12: Same as in Figure 11, but for model states and fluxes. 617 

5 Discussion 618 
The results presented in this paper unveil several implications that the delineation of 619 

elevation bands may have on hydrological characterizations, including streamflow performance 620 
metrics. Indeed, the KGE results for daily and monthly streamflow (Table 4) do not differ 621 
considerably among the model configurations tested here. The maximum KGE improvement 622 
provided by alternative model configurations (compared to the benchmark) is ΔKGE = 0.03 for 623 
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the Mapocho and Palos River basins, which cannot be considered an improvement in streamflow 624 
simulations due to the inclusion of snow bands (Clark et al., 2021).  These small changes suggest 625 
a form of model-structure-equifinality for KGE (Khatami et al., 2019), since spatial heterogeneities 626 
arising from different modeling alternatives compensate to produce very similar values for the 627 
same performance metric applied at the catchment scale. This is not observed, however, when 628 
analyzing the bias in the FDC mid-segment slope (%BiasFMS). For Las Leñas and Palos River 629 
basins, the bias reductions (100-m – benchmark) are 8.2% and 6.4% respectively. A reduction for 630 
the same metric is obtained in the remaining basins when comparing the 100-m configuration with 631 
the benchmark, excepting the Arrayán River basin, where the bias increases by 2.3%. For the FDC 632 
low-segment volume (%BiasFLV), small variations (<1.1%) are obtained.  633 

Despite the little differences among alternative configurations for KGE (and its 634 
components) and NSE, we found notable discrepancies in simulated basin-averaged variables, and 635 
spatial differences in rainfall, snowfall, SWE 09/01, sublimation, ET, snowmelt and runoff 636 
compared to the benchmark model (Table 4). In general, smaller variations in simulated 637 
hydrological variables are obtained as more elevation bands are added, especially beyond a 200-638 
m vertical resolution, which agrees with past studies (e.g., Essery, 2003; Pradhanang et al., 2011; 639 
Bhatta et al., 2019). Interestingly, the direction (i.e., sign) of variations introduced by elevation 640 
bands (compared to the benchmark) is not the same for all catchments and climate conditions (i.e., 641 
wet/dry) of the analysis period.  642 

As expected, simulated processes (i.e., precipitation partitioning into snowfall and rainfall, 643 
daily SWE) vary when vertical heterogeneity in air temperature is included, and the effects 644 
generally increase with vertical resolution. Such heterogeneity causes differences in snow 645 
accumulation across elevation bands, decreasing spatially-averaged peak SWE in each grid cell 646 
and delaying snow cover depletion (Figure 9). This aligns well with the findings of Essery (2003), 647 
who concluded that the aggregated model (equivalent to our benchmark model) was unable to 648 
represent winter melt at low elevations and delayed spring melt at high elevations. Other studies 649 
have also highlighted the role of subgrid heterogeneity for more realistic SWE calculations, and 650 
therefore for improved snowmelt estimates (e.g., Clark et al., 2011; DeBeer & Pomeroy, 2017). 651 
Our results also show that low elevation bands accumulate less SWE and melt earlier, in agreement 652 
with observations reported by Tong et al. (2008) for a watershed in western Canada, while the 653 
highest elevation bands yield lower melt rates, reducing the snow cover depletion rate (i.e., snow 654 
lasts longer). Such differences can be explained by changes in the energy balance (specifically, 655 
sensible and latent heat fluxes, Figures S15-S23) since, in our configuration, precipitation is 656 
spatially uniform in each grid cell with all model configurations.  657 

A novel contribution of our study is the identification of topographic and climatic controls 658 
defining where it is more important to incorporate elevation bands. Our results clearly demonstrate 659 
that topographic attributes play a key role, including elevation range, and spatially-averaged 660 
elevation and slope. Although we did not find statistically significant differences (i.e., p-value > 661 
5%) in terms of aspect between insensitive and sensitive grid cells, the sensitive grid cells group 662 
was found to follow a northern orientation. This connection between low elevation and aspect 663 
aligns well with the findings of Helfricht et al. (2012), who examined LiDAR observations 664 
acquired at the Upper Rofen valley in Austria, concluding that south-facing (equivalent to north-665 
facing in the Southern Hemisphere) exposed slopes at the lowest elevation bands remain almost 666 
snow free at the end of 2001, 2002 and 2008 accumulation periods, due to high radiation loads. 667 
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A key limitation of this study is that subgrid variability in precipitation was not 668 
incorporated (Pradhanang et al., 2011; Grusson et al., 2015), focusing only on air temperature. 669 
Hence, future work could expand these analyses to account for orographic controls on 670 
precipitation, as well as incoming radiation fluxes or other meteorological forcings, such as wind 671 
speed. Because the strategy to delineate snow bands should prioritize a proper representation of 672 
SWE at those altitudes with the largest areas, showing high snow accumulation (Helfricht et al., 673 
2012), the effectiveness of irregular vertical discretizations could be tested to emphasize the 674 
importance of such areas. Additionally, it would be useful to assess the effects of different 675 
elevation band configurations on streamflow forecasts or projected climate change impacts on 676 
hydrological variables, including case studies from other snow climates (as in Raleigh et al., 2015) 677 
and even simpler (e.g., conceptual, bucket style) hydrologic models. 678 

6 Conclusions 679 
We have examined the hydrological implications of representing subgrid variability 680 

through elevation bands in nine basins located along the western slopes of the Andes Cordillera. 681 
Specifically, we implemented five alternative model configurations in the VIC macro-scale 682 
hydrological model, with elevation bands of 1000, 750, 500, 200 and 100 m interval to distribute 683 
air temperature, and compared their results against a benchmark model (i.e., model without 684 
elevation bands) in terms of streamflow simulations, mean annual fluxes and SWE 09/01, and 685 
daily SWE simulations in a suite of grid cells located across the Mapocho River basin. Finally, we 686 
analyzed possible physical and climatic characteristics that define those grid cells where elevation 687 
bands are more impactful on SWE estimates. The results show that, although the incorporation of 688 
elevation bands does not appreciably affect model performance in terms of the Kling-Gupta 689 
efficiency for daily and monthly streamflow, it does affect other fluxes and SWE at the catchment 690 
scale and the intra-basin variability of simulated variables, suggesting a form of model-structure-691 
equifinality. Other findings are as follows: 692 
 693 

● Elevation bands yield larger effects in the partitioning of precipitation into rainfall and 694 
snowfall, for both catchment and grid cell scales during the wet period (WYs 1982-1986) 695 
compared to the dry period. Additionally, differences in ET and runoff between the 696 
alternative model configurations and the benchmark are also more pronounced during the 697 
wet period, although not as evident as the case of rainfall and snowfall. On the other hand, 698 
impacts of vertical discretization on SWE 09/01 are comparatively more relevant during 699 
dry periods. 700 

● Adding elevation bands generally yields less basin-averaged snowmelt, and more (less) 701 
catchment-scale sublimation across water-limited (energy-limited) basins. 702 

● The magnitude of variations in simulated hydrological variables induced by elevation 703 
bands is not proportional to the vertical discretization or number of elevation bands 704 
adopted.  705 

● Adding elevation bands affects the duration of snow cover with the highest bands holding 706 
snow for a longer period, and yields earlier snow accumulation during the water year 707 
compared to the benchmark model. 708 

● SWE 09/01 is generally more affected by elevation bands in grid cells with relatively lower 709 
mean altitude, elevation ranges >1000 m, steep slopes (>15°) and annual precipitation 710 
amounts <1000 mm with larger intra-annual variations in wetness conditions. 711 
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1. Content 
 
This supplementary material file contains additional figures and tables to support the analysis of the results 
presented in the main manuscript. The methodology used to obtain these results is explained in the main 
manuscript. 
 
The following sections are presented: 
 

● Section 2. Attributes for catchment selection. 
Table S1 

● Section 3. Observed time series for selected catchments. 
Figure S1 - Figure S2  

● Section 4. NSE and KGE components. 
Figure S3 - Figure S6 

● Section 5. Spatial heterogeneity of water balance variables. 
Figure S7 - Figure S14 

● Section 6. Energy balance. 
Figure S15 - Figure S24 
 

 
 
 
 



2. Attributes for catchment selection 
 
Table S1 shows the attributes used in this study for basin selection, including the glacier area, the 
intervention degree (relationship between annual volume of water assigned as permanent consumptive 
rights and the mean annual flow) and the presence of big dams.  

Table S1: Attributes for the case study basins included here, and used for the catchment selection process 
(Alvarez-Garreton et al., 2018).  

Catchment Glacier area (%) Intervention degree (%) Big dams 
Estero Pocuro en el Sifón 0 0 No 

Estero Arrayán en la Montosa 0 5.78 No 

Río Mapocho en Los Almendros 0.73 0.27 No 

Río Las Leñas antes junta Río Cachapoal 0.45 0 No 

Río Claro en El Valle 0 0.05 No 

Río Colorado en junta con Palos 0.72 0 No 

Río Palos en junta con Colorado 0.02 < 0.01 No 

Río Melado en el Salto 0.97 < 0.01 No 

Río Ñuble en La Punilla 1.09 0.26 No 

 
	  



3. Observed time series for selected catchments 
 

 
Figure S1: Time series of mean annual streamflow for the climatological period. The blue shaded region 
represents the wet period (April/1982 – March/1986). Red shaded subperiod represents the dry period 
(April/2010 – March/2014). 



 
Figure S2: Time series of annual precipitation for the climatological period. The blue shaded region 
represents the wet period (April/1982 – March/1986). Red shaded subperiod represents the dry period 
(April/2010 – March/2014). 
	  



4. NSE and KGE components  
 

 

Figure S3: NSE results computed with daily (top) and monthly (bottom) runoff, obtained from the 
benchmark (NB: No Bands) and the five alternative model configurations (i.e., using 1000-m, 750-m, 500-
m, 200-m, and 100-m elevation bands). Each curve displays individual basin results, and missing basins in 
some panels indicate the absence of verification (i.e., observed) data for that period. 
 
 



 
Figure S4: Pearson product-moment correlation coefficient between simulated and observed runoff. The 
results are displayed for daily (top) and monthly (bottom) runoff, obtained from the benchmark (NB: No 
Bands) and the five alternative model configurations (i.e., using 1000-m, 750-m, 500-m, 200-m, and 100-
m elevation bands). Each curve displays individual basin results, and missing basins in some panels indicate 
the absence of verification (i.e., observed) data for that period. 
 



 
Figure S5: Same as in S12, but for the ratio 𝛽 between the mean of the simulated values to the mean of 
observations. 

 
Figure S6: Same as in S12, but for the ratio 𝛼 of the standard deviation of simulated values to the standard 
deviation of observed values. 



5. Spatial heterogeneity of water balance variables  

 
Figure S7: Spatial variability of percent changes [100*(alternative – benchmark)/benchmark] in grid cell-
scale simulated mean annual fluxes and SWE 09/01 at the Pocuro River basin. Results are presented for (a) 
wet and (b) dry analysis periods. The various columns display, from left to right, results for mean annual 
rainfall, mean annual snowfall, mean SWE 09/01, mean annual sublimation, mean annual ET, mean annual 
snowmelt and mean annual runoff. The top row displays results for the benchmark model in mm/yr 
(excepting SWE 09/01, presented in mm), while the remaining rows show results for alternative model 
configurations (i.e., 1000, 750, 500, 200 and 100 m elevation bands, from top to bottom). Black tiles 
indicate no data, associated with benchmark model results equal to zero (or unbounded result). The black 
dot in the top row represents the catchment outlet. 

 
Figure S8: Same as in Figure S7, but for Estero Arrayán en la Montosa 

 
 



 
Figure S9: Same as in Figure S7, but for Las Leñas antes junta Río Cachapoal 

 
Figure S10: Same as in Figure S7, but for Río Claro en El Valle. 

 
 

Figure S11: Same as in Figure S7, but for Río Colorado en junta con Palos.	  



 
Figure S12: Same as in Figure S7, but for Río Palos en junta con Colorado. 

 
 

 
Figure S13: Same as in Figure S7, but for Río Melado en El Salto. 



 
Figure S14: Same as in Figure S4, but for Río Ñuble en La Punilla. 

	  



6. Energy Balance 
 
In this section, we provide details on the energy balance approach implemented in VIC, and the results 
obtained for the basins of interest. 
 
VIC computes the albedo using the United States Army Corps of Engineers method (USACE, 1956), which 
is an empirical equation for albedo decay, where this variable depends on the age of snow surface. 
Therefore, snow albedo is not directly affected by air temperature. 
 
In VIC, the cloudiness and its effect on radiation is calculated using equations 2.29 from Bras (1990) and 
the method of Deardorff (1978). Part of the code used by VIC for processing atmospheric data comes from 
MT-CLIM, which is a weather preprocessor developed by the NTSG group in the School of Forestry at the 
University of Montana.  
 
The longwave radiation, which can be succinctly described in terms of an emissivity, was calculated using 
the Prata parametrization (1996): 
 

𝜀 = 1 − (1 + 𝜉)𝑒𝑥𝑝	(−/1.2 + 3.0𝜉)	 (1) 

𝜉 = 4
𝑒5
𝑇5
74

𝑀9

𝑅∗𝑘𝜓
7	 (2) 

𝜓 = 1+ 4
𝑒
𝑝
7
𝑀9

𝑀>
	 (3) 

𝑘 = 𝑘9 +
𝛾
𝑇5
	 (4) 

where: 
𝜀: clear-sky emissivity 
𝑒5: screen-level value of the vapor pressure. 
𝑒: partial pressure of water vapor. 
𝑇5: measured temperature. 
𝛾: temperature lapse rate. 
𝑀9 and 𝑀> are the molecular weight of water vapor and dry air, respectively.  
𝑅∗: universal gas constant (𝑅∗ = 8.314	 ∙ 10C𝐽𝑘𝑔FG𝑘𝑚𝑜𝑙FG  ) 
 
In equation (1), the overbar represents the mean value. 
 
The incident solar radiation is obtained iteratively, using the equations by Thornton & Running (1999).  
 
Canopy temperature is obtained by iteratively solving the canopy-atmosphere and canopy-ground exchange 
fluxes (e.g., turbulent fluxes). 
 
Figures S15-S23 show the spatial heterogeneity obtained with the benchmark model for the net radiation at 
the surface (including longwave and shortwave radiation), latent and sensible heat fluxes from the surface 
and the ground heat flux plus heat storage in the top soil layer. Additionally, the intra-catchment variability 



of changes induced by different subgrid discretizations is also illustrated. The key findings of these figures 
are as follows: 
 

● In general, the results show that incorporating elevation bands does not yield variations of net 
radiation larger than 10% in any basin, during both analysis periods (except in Figure S15, for an 
only grid cell). Further, the effects of increasing the number of elevation bands in all basins seem 
to be moderate. 

 
● In some basins, the latent heat flux gets reduced near the catchment outlets (e.g. Figure S15a, Figure 

S17a, Figure S19a, Figure S21b), while in others larger reductions are obtained at high elevations 
(e.g. Figure S20a, Figure S21a, Figure S23a). In general, elevation bands provide the largest 
variations for this variable during the wet period. 

 
● The results show that elevation bands yield reductions in sensible heat flux at the highest altitude 

grid cells (e.g. Figure S15, Figure S18). Again, the largest variations occur during the wet period 
(specially in Las Leñas basin, Figure S18a). 

 
● Finally, elevation bands yield increased ground heat flux near the catchment outlets, and also 

reductions that mostly occur in high elevation grid cells (e.g., Figure S15, Figure S17b, Figure S19, 
Figure S21b). For some basins and configurations, the largest decrease in ground heat flux is 
obtained at the lowest altitude grid cell (e.g., Figure S16a, Figure S17a, Figure S18, Figure S19a, 
Figure S21a). 

 



 
Figure S15: Spatial variability of percent changes [100·(alternative – benchmark)/benchmark] in grid cell-
scale simulated mean annual energy fluxes at the Mapocho en Los Almendros basin. Results are presented 
for (a) wet and (b) dry analysis periods. The various columns display, from left to right, net shortwave, net 
longwave, latent and sensible heat fluxes from the surface and ground heat flux plus heat storage in the top 
soil layer. The top row displays results for the benchmark model in W/m2, while the remaining rows show 
results for alternative model configurations (i.e., 1000, 750, 500, 200 and 100 m elevation bands, from top 
to bottom). Black tiles indicate no data, associated to benchmark model results equal to zero (or unbounded 
result). 



 
Figure S16: Same as in Figure S15, but for Pocuro en El Sifón.  

 

 



 
Figure S17: Same as in Figure S15, but for Arrayán en La Montosa.  

 

 
Figure S18: Same as in Figure S15, but for Las Leñas antes junta Río Cachapoal.  



 
Figure S19: Same as in Figure S15, but for Río Claro en El Valle.  

 

 
Figure S20: Same as in Figure S15, but for Río Colorado en junta con Palos.  



 
Figure S21: Same as in Figure S15, but for Río Palos en junta con Colorado.  

 

 
Figure S22: Same as in Figure S15, but for Río Melado en El Salto. 

 



 
Figure S23: Same as in Figure S15, but for Río Ñuble en La Punilla. 

 



 

 
Figure S24: Energy flux variables. Panels (a), (b) and (c) correspond to grid cells (1), (2) and (3) in Figure 
3 of the main document. Each column displays results for a snow season belonging to the wet (WY 1984) 
and dry (WY 2012) subperiods.   
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