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Abstract

This work evaluates how well Coupled Model Intercomparison Project 6 (CMIP6) models reproduce the climatology of North

American SCS environments in ERA5 reanalysis and examines what drives biases across models. Biases in Springtime SCS

environments vary widely in magnitude and spatial pattern, but most models do well in reproducing the climatological pattern

and a few also reproduce the overall magnitude. SCS bias is driven by bias in extreme CAPE. This bias is ultimately found to be

driven by bias in mean-state near-surface moist static energy (MSE), indicating that the SCS environments depend strongly on

the near-surface mean state. Results are broadly similar to Spring across all seasons, particularly Summer. Biases differ strongly

across parent models but weakly across child models of the same parent. These outcomes help identify models well-suited for

studying climate effects on SCS environments and also provide a foundation for improving model performance in the future.
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Key Points:6

• Most models reproduce severe convective storm (SCS) environment pattern over7

eastern North America and some also reproduce the magnitude.8

• SCS environment bias is driven by mean-state near-surface moist static energy bias.9

• Hence, simulating SCS environments well requires simulating the near-surface mean10

state air properties well.11
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Abstract12

This work evaluates how well Coupled Model Intercomparison Project 6 (CMIP6) mod-13

els reproduce the climatology of North American SCS environments in ERA5 reanaly-14

sis and examines what drives biases across models. Biases in Springtime SCS environ-15

ments vary widely in magnitude and spatial pattern, but most models do well in repro-16

ducing the climatological pattern and a few also reproduce the overall magnitude. SCS17

bias is driven by bias in extreme CAPE. This bias is ultimately found to be driven by18

bias in mean-state near-surface moist static energy (MSE), indicating that the SCS en-19

vironments depend strongly on the near-surface mean state. Results are broadly sim-20

ilar to Spring across all seasons, particularly Summer. Biases differ strongly across par-21

ent models but weakly across child models of the same parent. These outcomes help iden-22

tify models well-suited for studying climate effects on SCS environments and also pro-23

vide a foundation for improving model performance in the future.24

Plain Language Summary25

Climate models are useful tools for studying how severe thunderstorms may change26

with climate change, Models cannot simulate the storms themselves but can simulate en-27

vironments that support severe thunderstorms. Using the most recent set of models used28

to simulate future projections of climate change, we find that some models can simulate29

the historical climatology of these environments very well, while others do not. We also30

show that model errors in severe thunderstorm environments arise primarily due to er-31

rors in the mean energy content of near-surface air, particularly that associated with wa-32

ter vapor. Hence, simulating these extreme environments well depends strongly on sim-33

ulating average conditions well.34

1 Introduction35

An important question of societal significance is how severe convective storms (SCS),36

including severe thunderstorms and tornadoes, will change in the future under climate37

change (Ashley, 2007). Climate models are a useful tool for studying how a variety of38

weather phenomena may change with climate change. SCS events occupy very small spa-39

tial scales, though, and as a result climate models cannot directly resolve such events.40

Instead, it is common to use environmental proxies that indicate whether a given col-41

umn of air is favorable for supporting SCS activity (Ludlam, 1963; Johns & Doswell III,42

1992). Favorability is most commonly defined in terms of two “ingredients”: one ther-43

modynamic ingredient given by Convective Available Potential Energy (CAPE), and one44

kinematic ingredient given by the bulk 0-6 km wind difference (S06; a.k.a. “bulk shear”)45

(Rasmussen & Blanchard, 1998; Brooks et al., 2003; Gensini & Ashley, 2011). High val-46

ues of the product of the two quantities is a widely used proxy for a favorable environ-47

ment for SCS activity (hereafter “SCS environments”). These proxies calculated from48

environmental data have been successfully used to explain spatiotemporal variations in49

severe thunderstorm activity and their associated hazards using reanalysis data (Taszarek50

et al., 2020, 2021; Coffer et al., 2020) and in individual global climate model simulations51

(Li et al., 2021; Hoogewind et al., 2017; Chen et al., 2020).52

Global climate models from Coupled Model Intercomparison Project 5 (CMIP5)53

were found to vary widely in their ability to reproduce the historical climatology of se-54

vere convective storm (SCS) environments found in reanalysis over North America (Seeley55

& Romps, 2015). Recent work has also examined how SCS environments may change56

in the future across the more recent CMIP6 model suite (Lepore et al., 2021). However,57

given the wide range of variability in the performance of CMIP5 climate models, it is58

important to quantify the biases of individual models compared to reanalysis in CMIP659

as well. Moreover, understanding what are the key drivers of those model biases in SCS60

environments can help identify precisely what underlying aspects of the thermodynamic61
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or kinematic environments are biased, and possibly to provide an avenue for improving62

models to reduce those biases in the future.63

This work has two objectives. First, we examine how well CMIP6 models repro-64

duce the historical SCS climatology in ERA5 reanalysis in a manner similar to Seeley65

and Romps (2015); we focus on Spring but analyze all four seasons. Second, we combine66

a simple framework for deconstructing biases with a recent theoretical framework for un-67

derstanding variations in CAPE (Li & Chavas, 2021) to understand the key drivers of68

biases across models. Section 2 presents the Data and Methodology. Section 3 presents69

the results. Finally, Section 4 provides a summary and discussion.70

2 Methodology71

2.1 Data72

For historical climate model data, we use 6-hourly model-level data for 1980-201473

from the 13 historical CMIP6 model simulations (Eyring et al., 2016) with the required74

data to calculate both CAPE and bulk 0–6km shear (list of models provided in Supple-75

mentary Table S1). Results within each model are aggregated into Spring (MAM), Sum-76

mer (JJA), Fall (SON), and Winter (DJF) seasons.77

We compare output from each climate model against the ERA5 reanalysis pressure-78

level data for the identical period (Hersbach et al., 2020). Li et al. (2020) showed that79

ERA5 reanalysis representation of severe weather environments and parameters over North80

America compares well against radiosonde observations, including at the extremes. Hence,81

here we focus on comparing CMIP6 against ERA5.82

2.2 Analysis83

We define SCS environments by extreme values (99th percentile) of the product
of convective available potential energy (CAPE) and 0–6-km bulk vertical wind shear
(S06), hereafter ‘CAPES06’ (Li et al., 2020). CAPE measures conditional instability of
an air parcel within an atmospheric column, defined as the vertical integral of buoyancy
of a parcel from its level of free convection to its equilibrium level. Here we use the near-
surface (z = 2m) parcel and calculate CAPE according to (Emanuel (1994) Eq. 6.3.5)

CAPE = Rd

∫ pLFC

pEL

(Tρ,parcel − Tρ,env) dln(p) (1)

where Rd is the dry gas constant, Tρ,parcel and Tρ,env are the respective density temper-
atures of the parcel and environment at a given level, pLFC is the pressure at the level
of free convection, and pEL is the pressure at the level of neutral buoyancy. We follow
Chen et al. (2020) and assume pseudoadiabatic ascent (hence the density temperature
is given by the virtual temperature) and neglect the latent heat of freezing. S06 repre-
sents lower-tropospheric environmental horizontal vorticity available to generate updraft
vertical vorticity, defined as the magnitude of the wind vector difference between 6 km
and 10 m above the surface:

S06 = |u⃗6km − u⃗10m| (2)

We define mean bias in a given quantity x (e.g. CAPES06) as

bias = 100

(
∆x

xERA5

)
(3)

where ∆ denotes the difference between model and reanalysis (∆x = xmodel−xERA5),
and the factor of 100 translates bias to a percent bias in the model relative to reanal-
ysis. Following Li and Chavas (2021), we decompose the bias in CAPES06 of each CMIP6
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model relative to ERA5 according to

∆CAPES06

CAPES06
=

∆CAPE

CAPE
+

∆S06

S06
+

∆CAPE

CAPE
· ∆S06

S06
+ ϵ, (4)

where we drop the ERA5 subscript in the denominator to simplify the notation. A given84

term may be multiplied by 100 to express it as a percent bias as in Eq. 3. This decom-85

position method enables us to quantify conditional bias contributions to CAPES06 from86

CAPE (first RHS term) and S06 (second); the third term is the conditional bias prod-87

uct term and ϵ is the residual. These biases are ‘conditional’ because the subset of grid88

points used for their calculation is conditioned on a particular criteria for CAPES06 (e.g.89

top 1%). This decomposition is a common approach to understand how changes in the90

product of two or more quantities depend on changes in each component (e.g., Bony et91

al. (2004); Emori and Brown (2005); Chen and Chavas (2020)).92

As will be shown below, CAPE biases are the dominant driver of biases in SCS en-
vironments. Thus, we would like to understand what drives these biases. However, CAPE
is a vertically-integrated quantity whose calculation typically requires lifting a hypothet-
ical near-surface parcel through the depth of the troposphere, which is difficult to de-
compose. Instead, Li and Chavas (2021) demonstrated that variations in CAPE scale
closely with variations in a CAPE-like quantity, initially proposed by Agard and Emanuel
(2017), that depends only on bulk properties of the thermodynamic profile. This scal-
ing CAPE, which we denote CAPEs, is given by

CAPEs = (Msfc −DFT )ln
TBT

Ttrop
(5)

where Msfc is surface moist static energy, given by Msfc = cpTv,2m + gzsfc + Lvq2m;93

cp is the specific heat of air at constant pressure; g is the acceleration due to gravity; Lv94

is the latent heat of vaporization of water; Tv2m is the 2-m virtual air temperature; zsfc95

is the surface geopotential height; and q2m is the 2-m specific humidity. DFT is the mean96

free tropospheric dry static energy, given by DFT = cpTvFT + gzFT , where TvFT and97

zFT are the mean free tropospheric virtual temperature and geopotential height, respec-98

tively, each weighted by the natural logarithm of virtual air temperature. TBT and Ttrop99

are the virtual temperatures at boundary-layer top and tropopause, respectively. The100

boundary-layer top is defined as the level where the vertical gradient of relative humid-101

ity is the minimum in the lower 2500-m atmosphere (Aryee et al., 2020). The tropopause102

is defined as the lowest level within the 85-450 hPa layer where the lapse rate decreases103

to less than 2 K km−1 and the average lapse rate between this level and all higher lev-104

els over a 100-hPa depth is less than 2 K km−1(WMO/OMM/BMO, 1992); this method105

is consistent with the function trop wmo in the open-source NCAR Command Language106

(NCL).107

Li and Chavas (2021) showed that CAPEs scales very closely with CAPE over the108

North American continent in the MERRA2 reanalysis, even at the extremes. CAPEs is109

simpler than CAPE mathematically, as it does not require a vertical integral. Thus, it110

is much more straightforward to use to decompose the different terms that contribute111

to variations in CAPE.112

Given their close linear scaling, we may relate CAPEs to CAPE according to

CAPE ≈ a · CAPEs + b (6)

As the intercept b is in general small, the bias in CAPE approximates the bias in CAPEs:

∆CAPE

CAPE
≈ ∆CAPEs

CAPEs
(7)

–4–
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Substituting Eq. 5 into Eq. 7 and simplifying yields an equation for the contributions113

of each component of CAPEs to the total bias in CAPEs:114

∆CAPEs

CAPEs
=

∆Msfc

Msfc −DFT

+
−∆DFT

Msfc −DFT

+
∆ln TBT

Ttrop

ln TBT

Ttrop

+

(∆Msfc −∆DFT )∆ln TBT

Ttrop

(Msfc −DFT )ln
TBT

Ttrop

+ ϵ

(8)

The right hand side represents contributions to bias in CAPEs from biases in Msfc (first115

term), DFT (second term), log-temperature term (third term); the fourth term is the bias116

product term and ϵ is the residual.117

Finally, for the purpose of our analysis below, we further decompose the Msfc bias
term linearly into biases in near-surface sensible heat (temperature) and latent heat (mois-
ture):

∆Msfc

Msfc −DFT

=
cp∆Tv2m

Msfc −DFT

+
Lv∆q2m

Msfc −DFT

(9)

We will use the above equations to understand how biases in near-surface temperature118

or moisture can drive biases in CAPE. In our analysis below, all biases include the mul-119

tiplicative factor 100 to translate them to percent biases relative to reanalysis.120

3 Results121

In the presentation and discussion of our results below, we focus on Spring as the122

principal season for SCS activity. We then describe notable differences in other seasons123

(Supplementary figures), as severe weather is also common in other seasons, particularly124

in the northern Great Plains Summer and in the southeast US Winter (Hoogewind et125

al., 2017; Long et al., 2018).126

3.1 Comparison of CMIP6 models against ERA5127

We first evaluate CMIP6 model performance against ERA5 in reproducing the cli-128

matological Springtime spatial distribution of SCS environments defined by extreme CAPES06129

(Fig. 1). We define ‘extreme’ as the 99th percentile at each gridpoint for a given model130

or ERA5 on their original grid based on the 6-hourly time series (00, 06, 12, 18 UTC)131

for 1980–2014, which is the finest temporal resolution available in CMIP6 models. The132

result across all gridpoints are then linearly interpolated to 1x1-deg grids using python133

package scipy.interpolate.griddata. Performance across models is summarized in Fig. 1b134

in terms of explained variance (r2, x-axis) and mean bias (y-axis; [%]), similar to Seeley135

and Romps (2015) (their Fig. 2); values are listed in Supplementary Table S2. For this136

quantitative calculation and all subsequent calculations below, we use the subset of all137

land grid points within a domain that spans much of the United States east of the Rocky138

Mountains (pink box in Fig. 1), and grid points are excluded that have a seasonal ERA5139

value for extreme (99th percentile) CAPE below 150 J/kg in order to avoid locations where140

extreme CAPE is very low and hence severe weather is simply not expected to occur at141

all. The latter criterion only removes roughly the northern half of our domain of inter-142

est in Winter and a few grid northern grid points near the Great Lakes in Spring, and143

it has no effect on other seasons. Mean bias is calculated from this subset of gridpoints144

by calculating the mean difference between model and ERA5 and then dividing by the145

mean in ERA5 (i.e. 100∗ ∆x
xERA5

), where the mean is weighted by cosine of latitude to146

account for variations in surface area with latitude.147

Compared to ERA5 reanalysis, the CMIP6 historical simulations exhibit a wide148

range of biases in both magnitude and spatial distribution of extreme CAPES06 (Fig.149
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1a), similar to that found in CMIP5 (Seeley & Romps, 2015). The majority of the mod-150

els do reasonably well in reproducing the basic spatial distribution found in ERA5, with151

CAPES06 largest over eastern Mexico and southern Texas and decreasing moving north-152

wards through the Great Plains and eastward toward the Ohio Valley. Pattern corre-153

lations yield r2 values that range from 0.26 to 0.94, though the majority of models (9/13)154

have r2 values greater than 0.75 (Fig. 1b). A smaller number of models reproduce the155

overall magnitude well, with only 6/13 having bias magnitudes less than 40%. All mod-156

els are biased high (positive bias), indicating they all overestimate the magnitude of CAPES06157

over the central and eastern U.S. Pattern correlation and mean bias are correlated with158

one another such that models that better reproduce the magnitude also tend to better159

reproduce the spatial pattern.160

Model performance differs across parent models (MPI, CNRM, MIROC) but is quite161

similar across child models within a given parent model. For example, all three MPI mod-162

els reproduce both the pattern (high pattern r2) and magnitude (low mean bias) very163

well (Fig. 1b). The two CNRM models also reproduce the magnitude with only slightly164

reduced performance in reproducing the spatial distribution. Meanwhile, the two MIROC165

models capture the spatial distribution reasonably well but with a larger overestimation166

of the magnitude. These outcomes indicate that the structure of the bias is driven by167

the deeper architecture of the parent model and is not sensitive to subtler changes among168

child models, including grid resolution (Supplementary Table S1). Overall, the MPI and169

CNRM model groups perform very well in reproducing both the magnitude and spatial170

distribution of severe weather environments found in ERA5.171

The spatial distribution of bias in extreme CAPES06 closely mirrors that of ex-172

treme CAPE alone across models (Fig. 1c), especially for the high-biased models. This173

result suggests that bias in CAPES06 is primarily driven by bias in CAPE. To test this174

quantitatively, we use Eq. 4 to decompose bias in CAPES06 into contributions from CAPE175

and S06 (Fig. 2). At each gridpoint, we first extract the top 1% of cases of CAPES06176

(and its associated values of CAPE and S06) in a given season from a model or ERA5.177

From this subsample, we then calculate the median of CAPES06 (hence this is the 99.5th178

percentile of CAPES06) and of CAPE and S06 associated with this CAPES06 subsam-179

ple (hence this is not the 99.5th percentiles of CAPE or S06). Finally we follow the same180

method as was done for CAPES06 in Fig. 1b to calculate the mean bias for each quan-181

tity. The result is a single domain-wide measure of model mean bias in each quantity182

that is input into Eq. 4 to decompose CAPES06 bias into contributions from conditional183

CAPE (grey bar) and S06 (yellow bar) in Fig. 1d. We also repeat this process for the184

top 1% of cases of CAPE (i.e. unconditional bias in CAPE; black bar) for comparison185

with conditional bias in CAPE.186

Variance in conditional CAPE bias (grey bar) across models accounts for 94% of187

the variance in CAPES06 bias (red bar) across models (Fig. 1d). The conditional S06188

bias is relatively small, which indicates that shear bias does not play a significant role.189

The bias product and the residual terms are negligible. CAPE bias is uniformly posi-190

tive, reflecting the fact that CMIP6 models systematically overestimate CAPE over the191

eastern half of the U.S. (Fig. 1a) similar to CAPES06 above. Results are quantitatively192

similar across all other seasons (Summer Fig. S1; Fall Fig. S2; Winter Fig. S3). In Fall,193

a few low-bias models exhibit a non-negligible S06 bias that largely offsets the CAPE194

bias. Finally, conditional CAPE bias (grey bar) covaries closely with unconditional CAPE195

bias (black bar; r2 = 0.99), with the latter typically slightly overestimating the former.196

Indeed, nearly all of the the top 1% of CAPE cases within our domain of interest are as-197

sociated with the top 10% of CAPES06 cases. This outcome indicates that the top 1%198

of CAPE cases, while not an identical subset to that of CAPES06, are still sampled from199

extreme SCS environments. As a result, we may understand bias in CAPE conditioned200

on extreme CAPES06 via bias in unconditional extreme CAPE, which we examine next.201
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3.2 Decomposing variation in CAPE across models using CAPEs202

Given that CAPE bias is the dominant contributor to CAPES06 bias, we next in-203

vestigate the drivers of bias in extreme CAPE via variations in extreme CAPEs. As noted204

above, CAPEs has been shown in MERRA2 reanalysis to scale very closely with CAPE205

over the North American continent and is much more straightforward mathematically206

to understand its variability Li and Chavas (2021).207

In ERA5, CAPEs is also found to scale very closely with CAPE over the North Amer-208

ican continent (Fig. 2a-c; r2 = 0.99). This result is consistent across seasons as well,209

particularly Summer (Fig. S4a-c; r2 = 0.98) and Fall (Fig. S5a-c; r2 = 0.99), with210

only a slight decrease in explained variance in Winter (Fig. S6a-c; r2 = 0.94). Hence211

CAPEs captures not only the spatial pattern of CAPE but also its seasonal cycle.212

Across CMIP6 models, extreme CAPEs scales closely with extreme CAPE over the213

eastern U.S as well (Fig. 2d), with pattern r2 values exceeding 0.85 and all but one model214

exceeding 0.9. The linear scaling factor a between CAPE and CAPEs lies between 0.5–215

0.65 across models, with most clustered between 0.525–0.6, indicating that the linear re-216

lationship is quite similar across models. The results indicate that variations in CAPEs217

may be used to understand variations in CAPE within and across models. Across mod-218

els, the spatial-mean values of extreme CAPE and CAPEs also covary strongly (Fig. 2e;219

r2 = 0.94), indicating that the magnitude of bias in CAPE is very well captured by that220

of CAPEs. In other seasons, results are similar though relationships are slightly weaker,221

with pattern r2 values exceeding 0.8 for Summer (Fig. S4), 0.85 for Fall (Fig. S5), and222

0.75 for Winter (Fig. S6).223

Next, we compare biases in CAPE and CAPEs and then decompose CAPEs (Eq.224

8) to understand what drives bias in CAPE. We use the same approach (median of top225

1%) as was used to decompose CAPES06 in Fig. 1d. Following from Eq. 7, mean bias226

in extreme CAPE across models covaries closely with mean bias in extreme CAPEs (Fig.227

3a; r2 = 0.93), especially for high-biased models. This CAPEs bias is primarily driven228

by bias in surface moist static energy, Msfc (Fig. 3b; r2 = 0.88). Notably, there are a229

couple of models (e.g. CNRM) that have relatively small bias in CAPEs but large er-230

rors in Msfc and DFT that largely offset one another.231

We further decompose variations in Msfc bias into its contributions from temper-232

ature (sensible heat; black bar) and moisture (latent heat; grey bar) using Eq. 9 (Fig.233

3c). For models that exhibit high bias in Msfc, this bias is driven principally by moist234

bias. Meanwhile, for models that exhibit low bias in Msfc, this bias is driven principally235

by cold bias. Temperature and moisture biases covary strongly with one another and have236

the same sign within a given model in all but one model, indicating that their effects act237

in concert to drive bias in Msfc.238

Finally, we examine whether this bias in SCS environments can be directly tied to239

bias in the mean state over the central and eastern U.S. Across models, mean bias in Msfc240

associated with extreme CAPEs environments is found to scale closely with mean bias241

in mean-state Msfc (Fig. 4a; r2 = 0.95). Moreover, the finding of a strong positive co-242

variance between moist and warm biases in SCS environments extends to the mean state243

as well (Fig. 4b; r2 = 0.95), as models tend to be either biased warm and moist or bi-244

ased cool and dry, with preference for larger warm and moist bias (and hence high Msfc245

bias). Hence, while our focus is on bias in extreme environments associated with severe246

convective storms, this bias is intimately linked to bias in the properties of mean state247

near-surface air. This finding suggests that a model’s ability to correctly reproduce these248

relatively rare but impactful environments depends on its ability to correctly reproduce249

the low-level background state.250

For other seasons, bias in CAPE across models covaries closely with bias in CAPEs251

in Summer, Fall, and Winter as well (Fig. S7-S9, respectively). However, the drivers of252

–7–
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bias become more complex, as Msfc explains less variance in CAPEs in Summer (58%),253

Fall (60%), and Winter (68%). Bias in DFT becomes more significant and occasionally254

dominant in driving bias in CAPEs in some models, indicating a greater role for vari-255

ations in the temperature structure (mean temperature and depth) of the free troposphere256

outside of Spring. However, in Fall and Winter, biases in Msfc (low bias; cold, dry) and257

DFT (high bias; warm, deep) are often large and oppose each other. Finally, bias in Msfc258

associated with extreme CAPEs also scales closely with bias in mean-state Msfc across259

seasons (Fig. S10-12), with a similar very close relationship in Fall (Fig. S11; r2 = 0.93)260

and a somewhat weaker relationship in Summer (Fig. S10; r2 = 0.57) and Winter (Fig.261

S12; r2 = 0.51).262

4 Discussion263

This work has demonstrated that most CMIP6 models can reproduce the spatial264

structure of the historical SCS environment climatology over central and eastern North265

America, and some of those models (MPI and CNRM) reproduce the overall magnitude,266

too, though always with a high bias. Bias in SCS environments is driven by bias in ex-267

treme CAPE. The latter is driven principally by near-surface moist static energy bias268

in the mean state, particularly in Spring. Biases differ strongly across parent models but269

weakly across child models of the same parent, suggesting that the underlying cause of270

the bias lies in the deeper architecture of the parent model rather than subtle variations271

among child models, including grid resolution.272

Our results help identify models that can more faithfully reproduce the spatial struc-273

ture and amplitude of the climatology of SCS environments over North America and hence274

may be better suited for studying how these environments may change with climate. Link-275

ing bias in extreme SCS environments (i.e. from the tail of the distribution of CAPE*S06)276

to bias in the near-surface mean state provides an avenue to understand the physics that277

generate this model bias in the context of the climate system as a whole via e.g. energy278

budgets. Our results suggest that land surface properties in a model may play an im-279

portant role in its ability to reproduce not only the mean state but also the extremes.280

Finally, the distinct behavior of parent vs. child model could be used to identify specific281

aspects of a model’s architecture (e.g. dynamical core, physics parameterizations) that282

drive bias in the mean state and, in turn, SCS environments.283

5 Open Research284

The data used to generate the figures in the manuscript are available at https://285

doi.org/10.4231/42ZJ-A891 (Chavas & Li, 2022). 6-hourly pressure-level ERA5 re-286

analysis data were accessed from https://doi.org/10.5065/BH6N-5N20 (European Cen-287

tre for Medium-Range Weather Forecasts, 2019). 6-hourly CMIP6 model historical ex-288

periment data were accessed from https://esgf-node.llnl.gov/search/cmip6; model289

information is detailed in Table S1. Analyses were performed on the NCAR Cheyenne290

and Casper supercomputers (Computational and Information Systems Laboratory, 2019)291

as well as on computational resources provided by Purdue Rosen Center for Advanced292

Computing (RCAC) (McCartney et al., 2014).293
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Figure 1. (a) Comparison of Spring (MAM) CMIP6 historical model simulations against

ERA5 in reproducing the severe weather environment climatology, defined as the 99th percentile

CAPE*S06. Top-left panel: ERA5 distribution. Other panels: 13 CMIP6 model differences from

ERA5 (color) and absolute values (contour). Pink box indicates land region used for all subse-

quent analyses and mean bias calculations. (b) Pattern r2 and mean bias ([%]; Eq. 3). (c) as

(a) but for 99th percentile CAPE only. (d) Mean bias of extreme CAPES06 over the central and

eastern U.S. across CMIP6 models relative to ERA5 (red bar), and the conditional bias contri-

bution from CAPE (grey bar) and S06 (yellow bar) given by Eq. 4. Black bar represents mean

unconditional bias in the 99th percentile of CAPE. Period is 1980–2014. All calculations in (b)

and (d) are from land gridpoints in the pink box whose Spring 99th percentile CAPE exceeds 150

J kg−1 (see text for details). Results for Summer (JJA), Fall (SON), and Winter (DJF) shown in

Supplementary Figures S1–S3.
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Figure 2. Comparison of extreme CAPE against extreme CAPEs in Spring. ERA5: (a) 99th

percentiles of CAPE; (b) as in (a) but for CAPEs; (c) CAPEs vs. CAPE with linear regres-

sion fit (solid line). CMIP6 model vs. ERA5: (d) scatter plot of pattern r2 between extreme

CAPE and CAPEs (x-axis) and linear regression slope (y-axis; a in Eq. 6) within ERA5 (‘E’)

and within each model; (e) spatial-mean 99th percentile CAPE vs. CAPEs over the central and

eastern U.S. within ERA5 (‘E’) and within each model, with error bars indicating one standard

deviation. Results for Summer (JJA), Fall (SON), and Winter (DJF) shown in Supplementary

Figures S4–S6.
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Figure 3. (a) Mean bias over the central and eastern U.S. in the median of top 1% cases of

CAPE (red bar) vs. CAPEs (black bar) for each model in Spring (Eq. 7). (b) Decomposing bias

in CAPEs (top 1%) into conditional bias contributions from Msfc (yellow bar), DFT (green bar),

and other terms (Eq. 8). (c) Linearly decomposing conditional bias in Msfc into bias contribu-

tions from sensible heat (black bar) and latent heat (grey bar). Results for Summer (JJA), Fall

(SON), and Winter (DJF) shown in Supplementary Figures S7–S9.

–13–



manuscript submitted to Geophysical Research Letters

Figure 4. (a) Mean bias in Msfc from the top 1% of CAPEs environments (Fig. 3) vs. mean

bias in mean-state Msfc. (b) Mean-state biases in q2m vs. Tv2m. Solid line indicates linear re-

gression fit and cross bars indicate one standard deviation in each quantity. Results for Summer

(JJA), Fall (SON), and Winter (DJF) shown in Supplementary Figures S10–S12.
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