
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
08
32
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Crustal structure of northern Borneo from VDSS: Implications for

subduction termination and the tectonic reconstruction of SE Asia

Harry Telajan Linang1, Simone Pilia2, Nicholas Rawlinson1, Conor Bacon1, Amy Gilligan3,
David Cornwell3, and Felix Tongkul4

1University of Cambridge
2Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan,
Italy
3University of Aberdeen
4Universiti Malaysia Sabah

November 24, 2022

Abstract

The post-subduction tectonic evolution of northern Borneo, which experienced two sequential subduction episodes of opposite

polarity in the Neogene, is still widely debated with first-order questions such as whether the region has been in a state of

compression or extension remaining unresolved. We use waveform data recorded from a dense seismic network in northern

Borneo to investigate crustal thickness variations through the application of Virtual Deep Seismic Sounding (VDSS). The new

results reveal an extensive area of thin crust in central and southeastern Sabah that appears to extend northeast into the Sulu

Sea, where rifting initiated. We also compute local earthquake focal mechanisms, which suggest that extension is ongoing,

though now dominated by orogen collapse in the NW. Together these results point to the pervasiveness of regional extension

tectonics over the last 15-20 Myr and its role in the post-subduction cycle of plate tectonics in SE Asia.
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Key Points: 14 

• Crustal thickness map of northern Borneo obtained from Virtual Deep Seismic Sounding 15 

(VDSS).  16 

• Evidence of crustal thinning indicates Sulu Sea extension propagated into northern Borneo 17 

during the late Miocene. 18 

• Crustal thinning and newly computed focal mechanism solutions underscore the important 19 

role of extension in post-collisional settings.   20 
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Abstract 21 

The post-subduction tectonic evolution of northern Borneo, which experienced two sequential 22 

subduction episodes of opposite polarity in the Neogene, is still widely debated with first-order 23 

questions, such as whether the region has been in a state of compression or extension, remaining 24 

unresolved. We use waveform data recorded from a dense seismic network in northern Borneo to 25 

investigate crustal thickness variations through the application of Virtual Deep Seismic Sounding 26 

(VDSS). The new results reveal an extensive area of thin crust in central and southeastern Sabah 27 

that appears to extend northeast into the Sulu Sea, where rifting initiated. We also compute local 28 

earthquake focal mechanisms, which suggest that extension is ongoing, though now dominated by 29 

orogen collapse in the NW. Together these results point to the pervasiveness of regional extension 30 

over the last 15-20 Myr and its role in the post-subduction cycle of plate tectonics in SE Asia.  31 

 32 

Plain Language Summary 33 

Northern Borneo, which lies in the heart of southeast Asia, was assembled by a complex series of 34 

tectonic events over the last 40 million years. Principle among these was subduction of the Proto 35 

South China Sea plate beneath its northwest continental margin, which ended in continent-36 

continent collision. Subduction of the Celebes Sea plate in the SW followed, which terminated ~ 37 

9 million years ago. A key point of debate in the evolution of this region is the relative dominance 38 

of compressional and extensional tectonics. In this study, we exploit seismic data collected in 39 

northern Borneo from a dense array of seismometers to construct a new crustal model of the region, 40 

which robustly constrains the crust-mantle boundary. We find that the crust in central northern 41 

Borneo is anomalously thin and appears to extend NE into the Sulu Sea, which is consistent with 42 

a model of rifting and ocean basin formation that propagated into the adjacent continent. An 43 
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analysis of earthquake sources also indicate a predominance of normal faulting, which suggests 44 

that extensional tectonics likely dominated the region following the earlier continent-continent 45 

collision. This finding has important implications for understanding both post-collisional and post-46 

subduction processes and the assembly of Southeast Asia. 47 

 48 

Introduction 49 

Northern Borneo, which incorporates the Malaysian state of Sabah, represents a unique 50 

opportunity to understand the evolution of continental lithosphere in a post-subduction setting, in 51 

this case, produced by sequential termination of two opposed subduction systems in the Miocene, 52 

and holds vital clues for unraveling the complex tectonic history of Southeast Asia (e.g., Rangin, 53 

1990; Hutchison, 2000; Hall, 2008; Hall, 2013; Tongkul, 2017). Subduction of the Proto-South 54 

China Sea (PSCS) beneath NW Sabah began in the Eocene and ceased in the Early Miocene with 55 

continent-continent collision between the Dangerous Grounds block (see Figure 1) and the western 56 

margin of Sabah. Subsequent continental shortening is responsible for deformation and uplift 57 

above sea level of the deep-marine sediments of accretionary complexes such as the Trusmadi and 58 

Crocker Formations (Tongkul, 1991, 1994; Hutchison, 2000, 2005; Hall, 2013, 2017). To the 59 

northeast, the back-arc extension and opening of the Sulu Sea are frequently associated with SE 60 

subduction rollback of the Celebes Sea beneath the Sulu Arc in a time window between ~21 and 61 

~9 Ma (Hall, 2013; Lai et al., 2020). 62 
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 63 

Figure 1. Map of the study area. Magenta triangles show seismic stations from nBOSS and 64 

MetMalaysia networks. Green diamonds denote geochemical dating locations relevant to this 65 

study. Left inset shows the SE Asia region with Malaysia in green and Sabah highlighted by 66 

a black rectangle. DGB, Dangerous Grounds Block; NWBT, NW Borneo Trough; FTB, Fold 67 

and Thrust Belt. 68 

 69 

A unifying narrative describing the tectonic history of Sabah has proven elusive for various 70 

reasons, including the presence of complex geology masked by thick tropical regolith and 71 

vegetation, and a lack of information on the crust and underlying mantle structure. From a 72 

geochronological perspective, reliable data in the region are limited to only a few clusters (Figure 73 

1); this has prevented previous studies from making robust inferences about significant geological 74 
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features and properly constraining the timing of key tectonic developments in Sabah’s history. 75 

More importantly, the Neogene evolution of northern Borneo and associated neotectonic activity 76 

remains controversial, with most explanations lying between two end-member models: (i) 77 

compressional tectonics, at least partially associated with the opening of the South China Sea 78 

(Tongkul, 1994, 1997; Morley & Back, 2008; Morley et al., 2011) and (ii) extensional tectonics, 79 

predominantly driven by trench retreat of the Celebes Sea (Hall, 2013; Pilia et al., 2021a). 80 

Recently, fresh clues have been obtained by Tsikouras et al. (2021) with new zircon 81 

radiometric dating of the Ranau peridotites and Telupid ophiolite in Sabah (Figure 1). They suggest 82 

that back-arc extension propagated from the Sulu Sea into northern Borneo, resulting in significant 83 

extension that led to the exhumation of a subcontinental peridotite suite near Ranau and a rift-84 

related magmatic episode (9.2 to 10.5 Ma) near Telupid. However, this study was subsequently 85 

questioned by Cullen and Burton-Johnson (2021), who argue against the interpretation of the new 86 

zircon ages by Tsikouras et al. (2021) and the possible extent of propagation of Sulu Sea extension 87 

into northern Borneo. 88 

 Earthquake data recorded by a new, dense seismic network in Sabah represents an excellent 89 

opportunity to constrain many first-order crustal parameters, including thickness and stress 90 

orientation. In this study, we estimate Moho depths by exploiting a recently developed passive 91 

seismic method commonly referred to as Virtual Deep Seismic Sounding (VDSS), initially 92 

proposed by Tseng et al. (2009). We implemented the method as in Thompson et al. (2019) and 93 

Pilia et al. (2021b) to get estimates on the crustal thickness beneath the seismic network in northern 94 

Borneo. At the same time, we infer the present-day distribution of stress from new focal 95 

mechanism analysis of local earthquakes. We then reconcile both sets of results with prior evidence 96 

for either a compressional or extensional tectonic setting in northern Borneo. 97 



manuscript submitted to Geophysical Research Letters 

 

2 Data Analysis 98 

2.1 Virtual Deep Seismic Sounding 99 

 We use waveform data recorded by 46 broadband stations of the northern Borneo Orogeny 100 

Seismic Survey (nBOSS) temporary seismic network and 20 broadband stations operated by the 101 

Malaysian Meteorological Department (MetMalaysia) (Pilia et al., 2019) – see Figure 1 for 102 

locations. We use earthquake events with magnitudes larger than 5.0 in an epicentral distance 103 

range between 30° and 50° from the station (Figure 2), resulting in a total of 172 seismic sources. 104 

VDSS focuses on the SsPmp phase, originating from an S-to-P conversion under a free surface. 105 

The converted P-wave then travels downwards and undergoes a wide-angle (post-critical) 106 

reflection at the Moho before impinging on a seismic station (Figure 2). The difference in arrival 107 

time between the SsPmp phase and the Ss phase provides an estimate of the Moho depth through 108 

the following equation: 109 

 110 

TSsPmp - Ss = 2H (Vp
-2 – p2

β)
1/2,                                                   (1) 111 

 112 

where H is the crustal thickness, Vp is the average P-wave speed in the crust, and pβ is the ray 113 

parameter, which is determined using the known source-receiver geometry and the ak135 velocity 114 

model (Kennett et al., 1995). 115 
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 116 

Figure 2. (A) Seismic source distribution (red dots) in the epicentral distance range 30° – 50° 117 

from which earthquake data were extracted. (B) The schematic ray diagram illustrates the 118 

main phases used during the VDSS analysis. (C) An example of stacked waveform data from 119 

a station in Sabah with the Ss and SsPmp arrivals highlighted in black and blue, respectively. 120 

The precursor Sp phase and reverberatory SsPmsPmp are also labeled and highlighted in 121 

grey. 122 

 123 

The first step in preparing a VDSS trace is to isolate the SsPmp phase from its event 124 

waveform. This involves windowing data around the S-arrival time generated by a teleseismic 125 

source, using predictions from a global reference model (ak135 in this case). The instrument 126 

response is then deconvolved from the raw data before applying a second-order zero-phase 127 

Butterworth bandpass filter with 0.05 Hz and 0.5 Hz corner frequencies. The horizontal 128 

components are subsequently rotated into the radial and tangential components (Thompson et al., 129 
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2019). In order to remove source-side scattering effects, we applied the source normalization 130 

method of Yu et al. (2013), which ultimately allows the use of all seismic events within the 131 

prescribed epicentral distance range regardless of focal depth. This increases the number of viable 132 

waveforms, which is advantageous because the usable epicentral-distance range intrinsic to the 133 

method is limited (Figure 2a).  134 

Next, the vertical and radial component traces are rotated into the pseudo-S component 135 

traces (Parker et al., 2016; Thompson et al., 2019). These are then deconvolved from the vertical 136 

and radial component of the waveform using an extended-time multitaper approach (10 s sliding 137 

window, 75% window overlap, 3 Slepian tapers; Helffrich, 2006). The resulting vertical 138 

component VDSS traces are then visually inspected and are retained if: (i) the SsPmp phase is 139 

clearly visible; ii) a prominent direct Ss arrival and precursor sP can be detected; and iii) ringy or 140 

oscillatory signals are absent. Finally, we use the results from a joint receiver function (RF) and 141 

surface wave inversion analysis to produce synthetic seismograms to get the predicted travel time 142 

of the SsPmp phase for different slowness at each station (Pilia et al., 2021b). Thus, the retained 143 

traces (observed data) go through a final inspection where traces are kept if its SsPmp arrival falls 144 

within 4-seconds before and after the predicted zero-crossing of the SsPmp in the synthetic 145 

seismograms. 146 

At this stage, the only unknown parameter required to estimate the thickness of the crust 147 

from Equation (1) is the bulk velocity Vp (Figure S1), which we determined from the joint RF 148 

analysis presented in Pilia et al. (2021a). The S-wave velocities estimated beneath each station 149 

obtained from the RF analysis are converted to P-wave velocities using the empirical relation 150 

devised by Brocher (2005). For each station, we perform a time-to-depth migration of each VDSS 151 

trace based on Equation (1) and linearly stack them to produce a final VDSS trace from which the 152 
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crustal thickness beneath a station is estimated to be the point where the SsPmp zero-crossing 153 

occurs (Pilia et al., 2021b, Tseng et al., 2009, Yu et al., 2016). Due to the post-critical reflection 154 

of the P-wave at the Moho, SsPmp undergoes a phase shift, in addition to a clear moveout (Figure 155 

S2), that varies across the slowness range between 14.2 and 15.7 sec/deg. The stacking of traces 156 

and good slowness coverage of our data averages out any bias that the phase shift might introduce. 157 

Calculating the envelope function of the single VDSS traces would remove the phase shift; 158 

however, Thompson et al. (2019) show that the zero-crossing proxy and envelope function results 159 

are consistent when a good slowness coverage is present, as it is in our case. 160 

The joint RF and surface wave inversion works well in many parts of Sabah but proved 161 

challenging, particularly from the perspective of extracting Moho depths, in the east due to the 162 

extensive sedimentary basins and the presence of shallow ophiolite cover. The higher frequency 163 

content (e.g., 0.05 to 2 Hz) used by RFs appears to be more contaminated by short period noise 164 

and reverberations such that the primary phase Ps is not easily identifiable (Figure S3). For VDSS, 165 

the primary phase SsPmp recorded in eastern Sabah is more discernible due to the low-frequency 166 

content inherent to the method (0.05 to 0.5 Hz), which suppresses undesirable signals arising from 167 

small-scale intra-crustal structure beneath Sabah (Figure S4). 168 

 169 

2.2 Analysis of Seismicity 170 

We manually picked P-wave first break polarities for 101 earthquakes (Mw ≥ 2.0) from a 171 

new earthquake catalog for the region around Mt Kinabalu, which were used to calculate moment 172 

tensor solutions (Bacon, 2021). This task was performed using the Bayesian moment tensor 173 

inversion software MTfit by Pugh (2018), wherein we constrained the solutions to be purely 174 

double-couple. MTfit employs a Markov-chain Monte-Carlo approach to explore the posterior 175 
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probability space and identify the best-fitting moment tensor solution while naturally incorporating 176 

the measurement uncertainties associated with moment tensor estimation (e.g., location and 177 

velocity model uncertainties), which can be significant in the case of microseismicity (Figure S5). 178 

From the 101 earthquakes analyzed, we produce 26 well-constrained moment tensor solutions 179 

(inset in Figure 3; Table S1). These new observations are supplemented by moment tensor 180 

solutions recorded in global catalogs (gCMT, ISC-GEM, and GEOFON), reflecting the broader 181 

history of seismicity recorded across northern Borneo. 182 

 183 

3 Crustal thickness variations in Sabah 184 

 Figure 3 illustrates the final Moho-depth map of Sabah obtained using the VDSS method, 185 

which reveals several alternating thin and thick crustal bands, with depths ranging between 21 and 186 

46 km. When compared to crustal thicknesses derived from RF analysis (Pilia et al., 2021a) and 187 

inferred from the shear wave velocity structure (Greenfield et al., 2022), all three results appear 188 

broadly consistent. VDSS has the advantage of obtaining robust depth estimates in the east, where 189 

a clear Moho was absent in the RF results  (see Figure S6-7). Inferring Moho depth from a shear-190 

wave model constrained by surface waves at best constrains the broadscale pattern of Moho depth, 191 

but at least these are largely in agreement with the first-order variations present in the new VDSS 192 

model. The robustness of the VDSS results was investigated by constructing Moho maps using the 193 

SsPmp bounce points at the Moho as the depth measurement location for different subsets of events 194 

(see Figure S8, S9, and S10) and varying the input crustal velocity model by adding random noise 195 
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(Figure S11). Overall, our analysis suggests that the features that we interpret are well-constrained 196 

by the data. 197 

 198 

Figure 3. Moho-depth map of Sabah using a color scale centered on 35 km. Green diamonds 199 

show the locations of ophiolites of late Miocene age, as inferred by Tsikouras et al. (2021). 200 

The white triangle denotes Mt Kinabalu. Black lines are depth-to-Moho contours drawn 201 

every 5 km. The top-left inset is a zoom-in of the area around Mt Kinabalu, taken from the 202 

area within the square box. Purple focal mechanisms are gCMT solutions, blue are ISC 203 

solutions, and red are GEOFON solutions. Green focal mechanisms in the inset map are 204 

earthquakes in a new local catalog of seismicity derived from P phase first-motion polarities 205 

at stations in the nBOSS and MetMalaysia networks. Focal mechanisms are represented as 206 

beachballs plots, scaled by magnitude (scale factor of 2 for inset map). 207 

 208 
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 Following the cessation of PSCS subduction, continent-continent collision occurred in 209 

western Sabah, deforming and elevating much of the Crocker Range. The most abrupt deflection 210 

of the Moho topography inferred by our results appears to coincide with the Crocker Range, where 211 

crustal thickness estimates exceed 40 km in places (Figure 3). This observation suggests that 212 

folding and thrusting due to continent-continent collision between western Sabah and the 213 

Dangerous Grounds has produced a thicker crust with a substantial root beneath the mountain belt 214 

along the western coast. Immediately offshore to the west of the Crocker Range on the continental 215 

shelf (thrust and fold belt), the crust is significantly thinner, a result largely compatible with Moho 216 

depth inferences made from offshore active seismic methods (Franke et al., 2008). 217 

 A significant result that emerges from this study is the area of thin crust that runs from the 218 

northeast to the southwest in central Sabah (crust B in Figure 4), with a strike resembling that of 219 

the Crocker Range and the NW margin of Sabah. The thin crust is wider at the northeast coast and 220 

appears to continue offshore into the Sulu Sea. New radiometric data from Tsikouras et al. (2021) 221 

indicate that the chemical signature of the Telupid ophiolite represents that of a narrow oceanic 222 

basin. The zircons from the ophiolite are Miocene in age (9.2 to 10 Ma), which is consistent with 223 

the timing of back-arc extension induced by slab rollback of the Celebes Sea. Intriguingly, the area 224 

of thin crust inferred by our results correlates with the mapped exposure of the Telupid ophiolite 225 

and the zircon samples analyzed by Tsikouras et al. (2021). We interpret this area of thin crust as 226 

evidence of Miocene extension tectonics likely related to the same back-arc extension that formed 227 

the Sulu Sea. Brun et al. (2016) suggest that an acceleration in trench retreat in the Aegean changed 228 

the extension mode from localized to distributed. Northern Borneo might have experienced a 229 

similar episode during a period of rapid trench rollback of the Celebes Sea ~16 Ma, as suggested 230 
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by Hall (2013). During this time, extension in the Sulu Sea might have propagated to the SW, thus 231 

forming the areas of thin crust we observe in Sabah. 232 

 In the eastern half of Sabah, the Moho depth map reveals an alternating thick and thin 233 

crustal pattern (Figure 3). Despite being narrower than the thick crust labeled A in Figure 4, crust 234 

C similarly displays Moho depths of more than 40 km along its strike (see Figure 4). Further 235 

southeast, the thin crust that underlies the Tawau area (crust D in Figure 4) could have also resulted 236 

from back-arc extension. The overall pattern of an alternating thick and thin crust in Sabah with a 237 

common strike is consistent with extensional tectonics where strain localization produces thinner 238 

crust between thicker and presumably more resistant blocks, somewhat akin to the style of crustal-239 

scale boudinage observed in the Aegean (Jolivet et al., 2004). 240 

The analysis of focal mechanisms observed in Figure 3 provides insight into the present 241 

day stress regime in Sabah. A standout feature of the focal mechanism map is that nearly every 242 

mechanism is either normal or exhibits a clear extensional component in central and western Sabah 243 

(Figure S12). This is not limited to the Ranau area, as indicated by focal mechanisms X, Y, and Z 244 

(see Figure 3), adjacent to the thin crustal region in central Sabah revealed by our new Moho depth 245 

map. We hypothesize that the western half of Sabah is currently undergoing extension, likely 246 

related to orogen collapse, as also suggested by Sapin et al. (2013) based on GPS measurements 247 

and study of the NW Borneo Wedge. The orogen collapse may also drive the active fold and thrust 248 

belt (FTB) structure observed between the NW Borneo Trough and the Crocker Range (Hall, 249 

2013). On the other hand, the east and southeast exhibit more varied focal mechanisms. This could 250 

be related to the reorientation of the Celebes Sea tectonic plate, which is now actively subducting 251 

southward under Sulawesi. 252 

 253 
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4. Conclusion 254 

 255 

Figure 4. A sketch of the proposed tectonic evolution of northern Borneo (adapted from Hall, 256 

2013; Tsikouras et al., 2021). A and C represent areas of relatively thick crust, while B and 257 

D represent areas of relatively thin crust. 258 

 259 

Our new crustal thickness model of Sabah, derived from applying the VDSS method to 260 

teleseismic waveform data, is consistent with the operation of extensional tectonics throughout 261 

much of the Miocene, during which back-arc spreading resulted in the opening of the Sulu Sea. 262 

The pattern of trench-parallel thick and thin crust in eastern Sabah is reminiscent of crustal-scale 263 

boudinage structures observed elsewhere during subduction rollback and aligns with 264 
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interpretations of geochemical and geological data that suggests that Sulu Sea extension 265 

propagated into Sabah in the Miocene. Although we cannot rule out the possibility that these 266 

crustal thickness variations were present prior to the Sulu Sea opening or were influenced by 267 

subsequent events, the confluence of evidence favors extensional rather than compressional 268 

tectonics. Our analysis of new and existing focal mechanisms from local earthquakes supports the 269 

contemporary stress field being extensional, at least in central and western Sabah, albeit through a 270 

different mechanism (orogen collapse) than that invoked for the Miocene. These results show that 271 

crustal extension plays an important role in the evolution of post-subduction continental margins, 272 

even in the circumstances as complex as northern Borneo, where subduction, continent-continent 273 

collision, back-arc extension and orogen collapse have come together to produce a distinctive 274 

chain of events. 275 

 276 
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