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Abstract

Characterizing spatial heterogeneity is fundamental in numerous areas, yet defining spatial patterns often depends on qualitative

assessments or a priori knowledge. Lacunarity analysis is a popular occupancy-based method for identifying relevant length

scales in spatially heterogeneous systems. From lacunarity, we identify the existence of a point which encapsulates the spatial

heterogeneity of a given system. This value satisfies the conditions for the lacunarity cutoff function and forms the basis of a

heterogeneity index. We evaluate the behavior of both parameters in monofractal, clustered, and periodic systems. In addition,

we demonstrate the broad utility of our approach to the scientific community by classifying the spatial heterogeneity of fractured

sea ice and comparing our findings to existing measures. The heterogeneity index produced a linear correlation with the area

fraction of open ocean to ice with an R2 of 0.967.
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Abstract11

Characterizing spatial heterogeneity is fundamental in numerous areas, yet defining spa-12

tial patterns often depends on qualitative assessments or a priori knowledge. Lacunar-13

ity analysis is a popular occupancy-based method for identifying relevant length scales14

in spatially heterogeneous systems. From lacunarity, we identify the existence of a point15

which encapsulates the spatial heterogeneity of a given system. This value satisfies the16

conditions for the lacunarity cutoff function and forms the basis of a heterogeneity in-17

dex. We evaluate the behavior of both parameters in monofractal, clustered, and peri-18

odic systems. In addition, we demonstrate the broad utility of our approach to the sci-19

entific community by classifying the spatial heterogeneity of fractured sea ice and com-20

paring our findings to existing measures. The heterogeneity index produced a linear cor-21

relation with the area fraction of open ocean to ice with an R2 of 0.967.22

Plain Language Summary23

Random patterns in nature are challenging to quantify yet have a profound impact24

on the behavior of Earth systems. We propose a new index to identify when a pattern25

is no longer random and an index to rank how random it is compared to a uniform proxy.26

We demonstrate the response of both measures to known patterns and use these param-27

eters to describe the characteristics of fractured sea ice. We also compare our index to28

existing measures to determine the effectiveness of our method.29

1 Introduction30

Random or semi-random patterns are prevalent in natural systems yet quantify-31

ing the spatial heterogeneity of such geometries is challenging. Lacunarity has been shown32

to reveal characteristic length scales in complex systems (Kirkpatrick & Weishampel, 2005)33

with applications in diverse topics including landscape ecology (Plotnick et al., 1993; With34

& King, 1999; Frazer et al., 2005; Saunders et al., 2005; Malhi & Román-Cuesta, 2008;35

Andronache et al., 2016), earth sciences (Zeng et al., 1996; Williams, 2015; Liu & Os-36

tadhassan, 2017; Xia et al., 2019), and medicine (Dougherty & Henebry, 2001; Yasar &37

Akgunlu, 2005; Borys et al., 2008; Hadjileontiadis, 2009; Gould et al., 2011; Popovic et38

al., 2018). Lacunarity outperforms fractal dimension and compares favorably to the mul-39

tifractal spectra leading to complementary analyses where both lacunarity and multi-40

fractal spectra are employed (Zeng et al., 1996; Kirkpatrick & Weishampel, 2005; Yasar41

& Akgunlu, 2005; Saunders et al., 2005; Gould et al., 2011; Popovic et al., 2018). Mandelbrot42

(1982) introduced the concept of lacunarity as a measure of the space filling nature of43

fractal geometries. Allain and Cloitre (1991) expanded on the concept of lacunarity through44

the gliding box algorithm which has since formed the foundation of lacunarity analysis.45

The gliding box algorithm is a counting technique applicable to both binary and quan-46

titative data sets (Plotnick et al., 1996). Their approach was initially described in one47

dimension but extends to higher dimensional spaces where a square of side length r is48

used in two dimensions and a cube of side length r in three dimensions (Allain & Cloitre,49

1991; Plotnick et al., 1996). In the gliding box algorithm, boxes of size r are iteratively50

translated across a system such that the entire domain is covered. At each location, the51

mean and variance of the mass density of elements occupying a box are determined and52

a lacunarity value calculated following Plotnick et al. (1996):53

Λ(r) =
σ2(r)

µ(r)2
+ 1 (1)

The lacunarity of a single box is insufficient to describe the spatial heterogeneity54

of an entire system thus values must be obtained for a range of box sizes (Allain & Cloitre,55

1991). Calculating a sufficient number of boxes is computationally demanding so recent56
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efforts have focused on developing optimized algorithms with remarkable reductions in57

execution time (Tolle et al., 2008; Reiss et al., 2016; Backes, 2013; Williams, 2015). We58

also report a fast implementation of the gliding box algorithm in Appendix A.59

Interpreting lacunarity curves provides valuable insight into the nature of a com-60

plex system. In lacunarity analysis, values are computed for an arbitrarily large set of61

boxes then normalized by the smallest scale of lacunarity, Λ1, and plotted on log-log axis.62

The slope of the resulting lacunarity curve is a measure of self-similarity while local min-63

ima indicate relevant length scales. However, relating these features to spatial structures64

in the base system requires qualitative assessment. Furthermore, it is not apparent from65

lacunarity curves alone whether one system is more heterogeneous than another. For in-66

stance two monofractal systems may have similar fractal dimensions but manifest dis-67

tinct patterns. Plotnick et al. (1996) examined this dynamic in regular, fractal, and clumped68

systems. They found domains with equivalent masses exhibit an even spread of average69

mass across scales while variance and thus lacunarity is directly related to the distribu-70

tion of mass within a given system. Evenly dispersed systems produced low lacunarity71

values across scales but concentrated distributions lead to heightened variance and higher72

lacunarity values.73

In order to facilitate quantitative rather than qualitative comparisons between sys-74

tems, several single value representations of lacunarity curves have been suggested. Yet75

capturing their behavior with a single value is complex. Lacunarity indices have been76

proposed based on the characteristics of specific systems (Du & Yeo, 2002), while other77

metrics use features of the curve itself such as linear regions denoting self-similarity in78

the case of the λ scaling parameter (Allain & Cloitre, 1991), and the index of transla-79

tional homogeneity (Malhi & Román-Cuesta, 2008). A more general approach is the av-80

erage lacunarity given by Sengupta and Vinoy (2006) for a discrete system:81

Λ = ln

(
1

N

N∑
i=1

Λ(ri)

)
(2)

where N is the total number of boxes. While this approach derives a single value from82

a lacunarity curve, it does not include a cutoff function as prescribed by Allain and Cloitre83

(1991) leaving the maximum box size, rmax, undefined. Because the total number of boxes84

and the maximum box size must be decided arbitrarily, Λ is limited to distinguishing be-85

tween systems with identical domains and box sizes.86

Here, two developments are presented in Section 2.1 to produce a single heterogene-87

ity index and address shortcomings present in current approaches. Data processing tech-88

niques are described in Section 2.2. Results for known patterns follow in Section 3.1 with89

an application to geophysical systems in Section 3.2. Concluding remarks and sugges-90

tions for implementation are presented in Section 4.91

2 Methods92

2.1 Definition of the Cutoff Function and Heterogeneity Index93

The first development is the definition of the cutoff function necessary to determine94

the maximum box size. As r becomes large, Λ(r) decreases since larger boxes include95

more mass which eventually outweighs variance between boxes. At some scale, Λ(ra) reaches96

a constant value of Λ(r ≥ ra) ≈ 1. Because scales beyond ra appear homogeneous,97

spatial heterogeneity is encapsulated within ra. The cutoff function is then defined as98

the first box which satisfies Λ(ra) ≈ 1 and dΛ(ra)/dr << 1. Alternatively, if r reaches99

the domain size, Λ(rd) = 1 since all observable data is included in one box and the vari-100

ance of a single observation is 0. In this case, r is set to the domain size since Λ(rd) is101

dominated by sample size rather than system characteristics. With regard to lacunar-102
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ity, a finite domain reduces variance in box mass such that the large-scale behavior of103

the system is shaped by sample size as described by Serafino et al. (2021). This implies104

either the system parameters or domain size are insufficient to capture the spatial het-105

erogeneity of the full system. Sampling at sufficient resolution is impractical for many106

applications so care must be taken such that Λ(rd) < Λ(1) to allow a meaningful com-107

parison between scales.108

The second development is the introduction of a heterogeneity index, h, which rep-109

resents the information contained within a lacunarity curve as a single number. In or-110

der to reduce a curve to one value we define the weighted average box size, Λw, as:111

Λw =
1

Nmax

Nmax∑
i=1

riΛ(ri)

Λ(1)
(3)

where Na is the number of boxes until either ra or rd is reached, denoted rmax. We nor-112

malize Λ(ri) by Λ(1) so comparisons between systems share a base value of Λ(r1) = 1.113

Although this quantity has units of length, the relationship between Λw and the phys-114

ical system is not immediately apparent. Additionally, a large range of values may be115

realized depending on system characteristics. As such, Λw alone is insufficient to facil-116

itate quantitative comparisons between systems. We instead seek an index in the range117

[0, 1] which can be found by first considering the homogeneous case for Λw. In a homo-118

geneous system, Λ(r) = 1 since the variance in box masses is zero for all scales. In this119

case, (3) reduces to the mean box size given by (1+rmax)/2 assuming box sizes increase120

by a fixed amount per iteration. An equivalent homogeneous system can then be defined121

as ΛH = (1+ra)/2. Subtracting ΛH from (3) and rearranging leads to the heterogene-122

ity index:123

h = 1 − 2Λw

1 + ra
(4)

By comparing Λw to a homogeneous equivalent, our measure quantifies heterogeneity as124

the deviation in lacunarity at a given scale from the homogeneous case. Information from125

the full range of heterogeneous scales is included in the measure by incorporating val-126

ues through rmax. Small values of h indicate a near-homogeneous system as Λw approaches127

(1+ra)/2. Large values signify heterogeneity across a range of scales with substantial128

differences between Λ(1) and Λ(rmax). A homogeneous system produces a value of h =129

0 while extreme heterogeneity yields h = 1. In the example presented in Figure 1, the130

homogeneous system produces Λ(r) = 1 for all r and an index value of h = 0 while131

the heterogeneous, disorganized system reaches rd with an index value of h = 0.68. The132

heterogeneous, organized system falls between the two extremes with h = 0.29. Addi-133

tionally, this system demonstrates a clear, repeated cutoff point equal to multiples of the134

row spacing, ra = 4, due to its periodic nature.135

2.2 Implementation and Data Processing136

All data were processed in MATLAB 2018a on the Coeus HPC cluster at Portland137

State University. Each case was assigned one core on a Intel Xeon E2630 v4 processor138

with 20GB of assigned RAM. Known systems were generated at runtime using algorithms139

by Kroese and Botev (2015). In all cases the cutoff point, ra, was selected as the first140

value with dΛ(ra)/dr ≤ 10−5 and Λ(ra) = 1 × 10−5 or set to the domain size rd.141

–4–



manuscript submitted to Earth and Space Science

(a)

(b)

(c)

Figure 1. Sample domains with lacunarity curves for (a) homogeneous (b) heterogeneous,

organized and (c) heterogeneous, disorganized systems. In each image white squares are occupied

data with a value of 1 and black squares are vacancies with a value of 0. The initial cutoff point

ra = 4 and its periodic repetition at ra = 8 are circled for the heterogeneous, organized system.

3 Results142

3.1 Parameter Response to Defined Systems143

Results are presented for monofractal, clustered, and periodic data representative144

of spatially heterogeneous problems from a variety of disciplines. Each system was se-145

lected to test the measures in response to specific physical features and represented on146

a unit domain D. Because clustered and fractional Brownian monofractal data rely on147

random number generation, 1, 000 realizations were analyzed for each system to ensure148

reported quantities reflect overall system geometry rather than single instances. For these149

systems ra and h are reported as mean quantities with standard deviations.150

A monofractal system is considered through six Sierpiński carpet (Sierpiński, 1916)151

generations with depths of 3, 4, 5, 6, 7, and 8. Spatial heterogeneity within the Sierpiński152

carpet is directly related to fractal depth where increasing depths recursively generate153

smaller features. As expected of monofractal systems, the lacunarity curve is linear un-154

til box sizes approach the cutoff point. A constant ra is observed at ra = 0.67D for all155

fractal depths. This value is the smallest box containing one complete subset of the Sierpiński156

carpet and the central vacancy visible in Figure 2 (a). The influence of small-scale het-157

erogeneity is revealed through the heterogeneity index with sequentially increasing val-158

ues of 0.71, 0.74, 0.77, 0.79, 0.82, and 0.84. As fractal depth increases, the presence of159

additional fine features lead to increased variance at small scales which in turn produces160

higher index values. This behavior is also visible in the Figure 2 (a) where increasing frac-161

tal depth leads to greater differences between Λ(1) and Λ(ra).162

Next we consider a monofractal system composed of five fractional Brownian fields163

(FBF) (Kroese & Botev, 2015) with Hurst parameters, H, of 0.1, 0.3, 0.5, 0.7, and 0.9164

shown in Figure 2 (b). FBF systems are continuously varying where the extent of spa-165

tial patterns within the domain depend on the Hurst parameter. Small Hurst param-166

eters produce rough systems with many small features while large values result in a sin-167

gle smooth feature. In the method developed by Kroese and Botev (2015), the Hurst pa-168

rameter is embedded in a circulant matrix to generate a quarter disk domain with con-169

sistent monofractal behavior at all scales. We selected a random square domain within170

each quarter disk to remove the influence of disk shape from lacunarity analysis. With171

1000 realizations, H = 0.1 generated ra = 0.9 ± 0.1D for 99% of its iterations. At172
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(a) (b) (c)

Figure 2. Single realizations of each system with normalized lacunarity curves. In order:

(a) Monofractal Sierpiński carpet with a fractal depth of 5 and normalized lacunarity curves

for depths of 3, 4, 5, 6, 7, and 8. (b) Monofractal fractional Brownian field (FBF) with a Hurst

parameter of 0.5 and normalized lacunarity curves for Hurst parameters of 0.1, 0.3, 0.5, 0.7, and

0.9. (c) Poisson process point clusters for λ = 50 with normalized lacunarity curves for λ = 50,

100, and 150. White squares are occupied with a value of 1, black squares are vacancies with a

value of 0, and grayscale is used to represent intermediate values between (0, 1).

H = 0.3, the cutoff point grew to ra = 0.96±0.08D with 74% of iterations producing173

suitable values. By H = 0.5, the cutoff point was indistinguishable from the domain174

size at ra = 0.99±0.08D and only 41% of iterations satisfied the cutoff function. The175

proportion of iterations with suitable cutoff values decreased to 22% for H = 0.07 and176

finally 9% for H = 0.9. Only H = 0.1 generated a linear lacunarity curve as antici-177

pated from a monofractal system. Because each domain is a subset of the quarter disk178

field, scales larger than the sampling window are interrupted. As the Hurst parameter179

increases, a larger proportion of scales are disrupted by the sampling window. Because180

only a portion of scales are available in the lacunarity analysis, the resulting curves do181

not display the expected behavior. Furthermore, the lack of cutoff points for FBF sys-182

tems indicate these systems are driven by sample size. In all cases the heterogeneity in-183

dex is computed with rd yielding values of 0.17, 0.09, 0.08, 0.06, 0.03. Because the FBF184

algorithm generates smoothly varying fields, variance between scales is low which in turn185

produces small index values. As the Hurst parameter increases, fewer fine features are186

present within the domain and the system approaches homogeneity as evidenced by low187

index values. Despite the limitations imposed by sample size, the index values are able188

to distinguish the relative roughness of FBF fields and identify low Hurst parameter fields189

as more heterogeneous.190

Point clusters were generated through a two-dimensional Poisson process (Kroese191

& Botev, 2015) with initial point densities of λ = 50, 100, and 150 as shown in Figure192

2 (c). All point densities produced ra = 0.84 ± 0.13D with 96% of iterations develop-193

ing satisfactory cutoff values. Although point density increases between cases, location194

within the domain is governed by the Poisson process resulting in similar cutoff values.195

At a low density (λ = 50) clusters are overdispersed and small relative to domain size.196

Index assignments reflect high spatial heterogeneity with h = 0.98. At a higher den-197

sity (λ = 100) voids between clusters are reduced making the system less heterogeneous198

with h = 0.97. Further increasing point density (λ = 150) causes clusters to merge199

for the least heterogeneous index value of h = 0.96. It is worth noting the index val-200
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ues for each case are extremely high since variance is sensitive to data with a large por-201

tion of empty values. If identical patterns were created by removing points from a uni-202

form domain, cutoff points would remain the same but the index values would be close203

to zero since the majority of points would be occupied.204

3.2 Application to Geophysical Systems205

(a) (b)

(c) (d)

Figure 3. Aerial sea ice images from AMSRIce06 (Krabill, 2006) depicting fracture networks,

melt pools, and open ocean with lacunarity curves. From left to right: (a) raw color image (b)

binary ice occupancy image (c) lacunarity curves for all color images and (d) lacunarity curves

for all occupancy images. In (b), vacancies are black regions with a value of 0 and ice occupancy

is represented with white regions with a value of 1. Image borders were added for presentation

and are not included in analysis.

Further insights are gained through the application of our approach to quantify the206

spatial heterogeneity of sea ice. This system is of particular relevance as sea ice devel-207

ops fractures and melt pools across a large range of scales. Previous studies on sea ice208

have documented increased heat absorption in fragmented floes and variation in the at-209

mospheric boundary layer in response to fracture size (E. Andreas et al., 1979; E. L. An-210

dreas, 1980; Shaw et al., 1991; Drüe & Heinemann, 2001; Tetzlaff et al., 2015). Further-211

more, because the albedo of sea ice is approximately 15 times the albedo of the surround-212

ing ocean (Payne, 1972; Allison et al., 1993; Perovich & Polashenski, 2012), its heat ab-213

sorption and climate impact are directly related to ice structure.214

Arctic sea ice images were selected from the AMSRIce06 aerial photograph database215

(Krabill, 2006). This database contains images from the Chukchi and Beaufort Seas of216

the Arctic Ocean depicting an assortment of sea ice structures in March 2006. Sample217

images were selected to cover the range of possible ice structures including uniform ice,218

open ocean, and fracture networks of varying scales. A simple ratio of ocean to ice pix-219

els is used as a proxy for albedo as a complete study on deriving albedo estimates from220
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aerial ice photographs is beyond the scope of the present work. Binary ice occupancy221

images were created by applying a 15% composite color difference threshold to raw color222

images in GNU Image Manipulation Program 2.8.22. Exposed water from open ocean,223

melt pools, and fracture networks were considered vacancies with a value of 0 while ice224

and snow cover were considered occupied and set to 1. Pixel designations were verified225

by hand for each image and additional artifacts such as aircraft landing gear were re-226

moved. Color images were converted to grayscale and normalized from 0 to 1. The nor-227

malization was performed across all images to provide global maximum and minimum228

values for comparison. In total 19 images were selected and processed. An example is229

shown in Figure 3 and a table containing thumbnails of the complete image set along230

with their corresponding cutoff points and index assignments is provided in Appendix231

B.232

Lacunarity curves for the chosen images are presented in Figure 3 for both grayscale233

and binary ice occupancy images. Grayscale images are sensitive to areas of open ocean234

with ice-ocean interfaces producing large variations in lacunarity across scales. Binary235

occupancy images respond to both continuous ice sheets and open ocean. Because the236

small differences in value from visible shadows and transparent ice are not present in the237

occupancy images, these systems appear homogeneous resulting in uniform lacunarity238

curves. In a similar manner, treating open ocean as voids leads to greater variation in239

lacunarity across scales. In all cases, a suitable value of ra was identified within the do-240

main and heterogeneity index values were assigned.241

Correlations between the heterogeneity index and existing measures are presented242

in Figure 4. The q-statistic proposed by Wang et al. (2016) and spatial diversity index,243

Hs, developed by Claramunt (2005) are included to assess if the proposed metric, h, con-244

tributes additional useful information with regard to spatial heterogeneity. The q-statistic245

is designed to quantify spatial heterogeneity among user defined strata, in this case be-246

tween ice and voids, and is expressed as:247

q = 1 −
∑L

h=1

∑Nh

i=1(Yhi − Y h)2∑N
i=1(Yi − Y )2

(5)

where the study area is composed of N units and h = 1...L stratum with each stratum248

containing of Nh units. Yi and Yhi denote the value of the ith in each sample. This mea-249

sure is similar to lacunarity in that both quantify heterogeneity through variance at dif-250

ferent locations. The primary difference is strata are user defined in the q-statistic whereas251

the lacunarity algorithm automatically partitions data into boxes. Following the proce-252

dure outlined by Wang et al. (2016), strata were defined from ice occupancy images and253

the q-stastic calculated from corresponding grayscale images.254

The index of spatial diversity, Hs, considers heterogeneity through differences be-255

tween the intra-distance of entities in a given class and the extra-distance of entities from256

all other classes as:257

Hs = −
n∑

i=1

dinti

dexti

pilog2(pi) (6)

where n is the number of classes, dinti is the mean distance between members of class i,258

dexti is the mean distance between members of all other classes, and pi is the proportion259

of data contained by class i. Because this measure is based solely on classification and260

distance, values were obtained from occupancy images.261

In order to determine if h is a functional transform of an existing measure, the cor-262

relations in Figure 4 (a) are considered. All correlations produced significant p-values263
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(a) (b)

Figure 4. Heterogeneity correlations between (a) q-statistic and Hs with the proposed index,

h, and (b) all measures with ice occupancy area fractions, used as a simple Albedo surrogate.

In (b), hI increases for small area fractions then declines as ice distribution declines while hB

shows a near linear, increasing relationship with the Albedo surrogate across a wide range of

ice fractions. Subscripts denote input data with I for grayscale images and B binary occupancy

images.

of p ≤ 0.05. However, the R2 fits were poor with values of 0.0256 for q with h from grayscale264

images, 0.0531 for q with h from occupancy images, 0.293 for Hs with h from grayscale265

images, and 0.619 for Hs with h from occupancy images. Both q and Hs show greater266

correlation with h from occupancy images since these measures depend on the same in-267

put data for classification. Regardless, there is not an apparent functional dependence268

for h with either measure.269

The relationship between all measures and ice area fraction is depicted in Figure270

4 (b). The q-statistic increases with area fraction although it demonstrates variability271

below area fractions of 0.3. Hs is highly variable for area fractions below 0.2 and decreas-272

ing afterwards. The R2 values for these measures are 0.402 and 0.540 with p-values of273

0.004 and 3.4×10−4, respectively. Despite significant correlations, both parameters are274

inconsistent when applied to near-homogeneous images and report similar values for im-275

ages with area fractions above 0.5. The heterogeneity index does not display a clear trend276

for grayscale images, producing an R2 of 0.475 and a p-value of 0.001. Initially h increases277

as the system becomes more heterogeneous with the inclusion of additional voids but as278

the ratio of open ocean begins to dominate, h decreases since the system becomes more279

homogeneous. Additionally, index values are small relative to other measures indicat-280

ing the additional fidelity present in the grayscale images serves to reduce variance be-281

tween scales in a similar manner to FBF systems.282

Heterogeneity index values from occupancy images are linear with area fraction pro-283

ducing an R2 value of 0.967 and a p-value of 5.0 × 10−14. Unlike the values obtained284

from grayscale images, h consistently increases with area fraction. This behavior can be285

explained by noting the ice occupancy images with large voids resemble Poission point286

clusters. If the proportion of open ocean were increased further, this system would re-287

duce to point clusters with proportionally higher index values. Therefore, in the context288

of characterizing sea ice structure, the proposed heterogeneity index provides a clear lin-289

ear mapping.290

While the proposed index is useful for identifying trends in spatial heterogeneity,291

it does not provide complete system characterization. By reducing lacunarity curves to292

a single value, information on significant length scales and fractal behavior are obscured.293

Although these features are an integral component of index assignment, it is not imme-294

diately apparent what spatial structures lead to a given index value beyond broad clas-295

sifications. As such, we recommend incorporating the heterogeneity index into compli-296

mentary analyses where specialized techniques follow index assignment to determine the297
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influence of relevant spatial structures. For instance, we noted large areas of continuous298

ice lead to lower index values while images with sparse ice distributions produce higher299

index values. Further analysis could assess the impact connectivity via contiguity indices300

for images with low index values, the fractal behavior of fracture networks through the301

multifractal spectra for images with mid-range index values, the spatial distribution of302

melt pools via the q-statistic for images with mid-range values, and the clustering of pack303

ice for images with high index values. Many of the suggested studies have been performed304

and are listed as examples of how heterogeneity index assignment can inform secondary305

analyses.306

4 Conclusions307

A measure for spatial heterogeneity based on lacunarity was proposed and the cut-308

off point required to encapsulate heterogeneity for a given system identified. The deriva-309

tion of these quantities as well as a method to compute the required lacunarity values310

were detailed. The behavior of the cutoff function and heterogeneity index were docu-311

mented in response to monofractal, clustered, and periodic systems. The heterogeneity312

index was found to describe both the proportion and distribution of mass in a system.313

Systems with fine detail produced higher heterogeneity assignments while smoothly vary-314

ing systems struggled to develop a cutoff point and generated lower index values. Our315

approach was applied to sea ice images where the heterogeneity index based on binary316

ice occupancy images demonstrated a linear trend with area fraction and outperformed317

existing measures.318

Because the heterogeneity index includes information from the full range of scales319

present in a system, it is well suited to quantifying multiscale phenomena. We antici-320

pate our approach will benefit fields where spatial heterogeneity is a driving force be-321

hind observed phenomena by enabling the quantitative characterization of these systems.322

Appendix A Lacunarity Algorithm323

Our approach for calculating lacunarity is built on the gliding box algorithm pro-324

posed by Allain and Cloitre (Allain & Cloitre, 1991). In order to improve computation325

time, box translation is achieved through the dot product. For two-dimensional input326

data, A, of size m×n we define a box matrix, B1, as a k×m rectangular diagonal ma-327

trix where k = m − r + 1. If r = 1, B1 reduces to the identity matrix and for larger328

values of r, takes the form of:329

B1 =


11,1 . . . 11,r

12,2 . . . 12,1+r

. . .
. . .

. . .

1k,m−r . . . 1k,m

 (A1)

The partial sum in one direction is calculated with:330

P = B1 · A (A2)

Next, a new box matrix, B2, of size k×n where k = n− r+ 1 is defined and the sum331

in the second direction is completed with:332

M = B2 · PT (A3)

–10–
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Finally the lacunarity value is calculated from M. This process is repeated for each value333

of r to create the lacunarity curve.334

The same approach is applicable to one-dimensional and three-dimensional input335

data. In one dimension, a single box matrix is sufficient and in three dimensions, an ad-336

ditional box matrix is required. Here the input data must be restructured to create a337

two-dimensional matrix. When A is of size m × n × l, every l plane of m × n data is338

placed sequentially to create a matrix of size m×n · l. The box matrix for this trans-339

formation is of size k ×m where k = m − r + 1. To complete the sum in three direc-340

tions, three such transformations are required to reframe the input data as n × m · l341

and l ×m · n matrices.342

Unlike prior algorithms, our approach is not limited to equidimensional systems.343

When a boundary is encountered, r continues to expand in the remaining unconstrained344

dimensions until reaching the full extent of the domain. However, irregular domains pose345

additional complications since r is no longer representative of a uniform sampling win-346

dow. For example, if a system measured 50×300 units and developed a cutoff point of347

ra = 200 units, the true sampling region would measure 50 × 200 units. This limita-348

tion reduces the amount of new information gained per sample which appears as a change349

in slope on the lacunarity curve each time a dimension is constrained. Consequently, equiv-350

alent systems with different domain sizes may develop identical cutoff points but will yield351

different heterogeneity index values. It is worth noting these limitations are not exclu-352

sive to lacunarity. As a consequence of their operation, box counting metrics in general353

as well as their derived indices are influenced by sample domain. Furthermore, domain354

size limitations are known to obscure the relationship between scales in naturally occur-355

ring systems (Serafino et al., 2021). Therefore, to conduct meaningful comparisons be-356

tween systems, each domain should have an equivalent aspect ratio and range of r.357

–11–
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Appendix B Sea Ice Results358

Table B1: Complete set of selected images from the AMSRIce06
data base with corresponding cutoff and index values. Full reso-
lution raw and ice occupancy images are available alongside the
MATLAB codes used for analysis.

00681 DCP 6103

rd,I = 1.0, ra,B = 0.90

hI = 0.12, hB = 0.28

q = 0.70, Hs = 0.75

00683 DCP 6104

ra,I = 0.67, ra,B = 0.73

hI = 0.05, hB = 0.09

q = 0.54, Hs = 0.86

00717 DCP 6121

rd,I = 1.0, ra,B = 0.88

hI = 0.04, hB = 0.03

q = 0.31, Hs = 1.06

01223 DCP 6330

ra,I = 0.71, ra,B = 0.61

hI = 0.04, hB = 0.007

q = 0.03, Hs = 1.04

01225 DCP 6331

ra,I = 0.98, ra,B = 0.50

hI = 0.05, hB = 0.001

q = 0.009, Hs = 1.45

01225 DCP 6351

rd,I = 1.0, ra,B = 0.79

hI = 0.06, hB = 0.17

q = 0.62, Hs = 0.85

01580 DCP 6478

rd,I = 1.0, rd,B = 1.0

hI = 0.07, hB = 0.25

q = 0.67, Hs = 0.80
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01611 DCP 6693

rd,I = 1.0, rd,B = 1.0

hI = 0.28, hB = 0.37

q = 0.70, Hs = 0.71

01790 DCP 6583

rd,I = 1.0, rd,B = 1.0

hI = 0.06, hB = 0.06

q = 0.38, Hs = 0.93

01792 DCP 6584

rd,I = 1.0, ra,B = 0.62

hI = 0.04, hB = 0.05

q = 0.44, Hs = 0.89

01796 DCP 6586

rd,I = 1.0, ra,B = 0.62

hI = 0.02, hB = 0.02

q = 0.26, Hs = 1.08

01798 DCP 6587

ra,I = 0.95, rd,B = 1.0

hI = 0.06, hB = 0.15

q = 0.74, Hs = 0.91

01800 DCP 6588

rd,I = 1.0, rd,B = 1.0

hI = 0.04, hB = 0.09

q = 0.25, Hs = 0.87

01802 DCP 6589

rd,I = 1.0, ra,B = 0.88

hI = 0.02, hB = 0.01

q = 0.60, Hs = 0.83

01834 DCP 6605

ra,I = 0.77, rd,B = 1.0

hI = 0.11, hB = 0.20

q = 0.64, Hs = 0.72
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01836 DCP 6606

rd,I = 1.0, ra,B = 0.93

hI = 0.10, hB = 0.34

q = 0.63, Hs = 0.72

01838 DCP 6607

ra,I = 0.80, ra,B = 0.90

hI = 0.09, hB = 0.48

q = 0.63, Hs = 0.70

01842 DCP 6609

ra,I = 0.97, ra,B = 0.78

hI = 0.14, hB = 0.39

q = 0.70, Hs = 0.70

01844 DCP 6610

rd,I = 1.0, rd,B = 1.0

hI = 0.12, hB = 0.37

q = 0.65, Hs = 0.71
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