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Abstract

Drought Early Warning Systems (DEWSs) aim to spatially monitor and forecast risk of water shortage to inform early, risk-
mitigating interventions. However, due to the scarcity of in-situ monitoring in groundwater-dependent arid zones, spatial drought
exposure is inferred using maps of satellite-based indicators such as rainfall anomalies, soil moisture and vegetation indices. On
the local scale, these coarse-resolution proxy indicators provide a poor inference of groundwater availability. The improving
affordability and technical capability of modern sensors significantly increases the feasibility of taking direct groundwater level
measurements in data-scarce, arid regions on a larger scale. Here, we assess the potential of in-situ monitoring to provide a
localized index of hydrological drought in Somaliland. We find that calibrating a lumped groundwater model with a short
time series of high-frequency groundwater level observations substantially improves the quantification of local water availability
when compared to satellite-based indices over the same validation period. By varying the calibration length between 1-30
weeks, we find that data collection beyond 5 weeks adds little to model calibration at all three wells. This suggests that a
short monitoring campaign is suitable to improve estimations of local water availability during drought, and provide superior
performance compared to regional-scale satellite-based indicators. A short calibration period has practical advantages, as it
allows for the relocation of sensors and rapid characterization of a large number of wells. A monitoring system with this

contextualized, local information can support earlier financing and better targeting of early actions than regional DEWSs.
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Key Points:

e Advancements in sensing technologies give renewed feasibility to in-situ
groundwater monitoring in data-scarce, drought-prone countries.

 Calibrating groundwater models with short observation records (weeks)
substantially improves on satellite-based drought exposure indicators.

o Improved water availability assessment with in-situ sensors provides op-
portunities for better drought early warning and risk-mitigation.

Abstract

Drought Early Warning Systems (DEWSs) aim to spatially monitor and forecast
risk of water shortage to inform early, risk-mitigating interventions. However,
due to the scarcity of in-situ monitoring in groundwater-dependent arid zones,
spatial drought exposure is inferred using maps of satellite-based indicators such
as rainfall anomalies, soil moisture and vegetation indices. On the local scale,
these coarse-resolution proxy indicators provide a poor inference of groundwa-
ter availability. The improving affordability and technical capability of modern
sensors significantly increases the feasibility of taking direct groundwater level
measurements in data-scarce, arid regions on a larger scale. Here, we assess
the potential of in-situ monitoring to provide a localized index of hydrological
drought in Somaliland. We find that calibrating a lumped groundwater model
with a short time series of high-frequency groundwater level observations sub-
stantially improves the quantification of local water availability when compared
to satellite-based indices over the same validation period. By varying the cali-
bration length between 1-30 weeks, we find that data collection beyond 5 weeks
adds little to model calibration at all three wells. This suggests that a short mon-
itoring campaign is suitable to improve estimations of local water availability
during drought, and provide superior performance compared to regional-scale
satellite-based indicators. A short calibration period has practical advantages,
as it allows for the relocation of sensors and rapid characterization of a large
number of wells. A monitoring system with this contextualized, local informa-
tion can support earlier financing and better targeting of early actions than
regional DEWSs.
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1 Introduction

Drought-prone regions host many of the world’s least developed countries, which
are experiencing increasing drought risk as a result of population pressures and
increasing drought frequencies (UNDRR, 2015). For example, estimated fatal-
ities from Somalia’s 2011 drought exceeded 250,000, and a further drought in
2017 required humanitarian assistance for 6 million people (FAO 2018, FAO,
2019). Drought Early Warning Systems (DEWSs) aim to monitor and forecast
drought risk, enabling early interventions that mitigate the most severe socio-
economic impacts. To formulate this risk, DEWSs require evidence of drought
intensity and community exposure collected by monitoring systems (UNDRR,
2015).

1.1. Current Drought Monitoring Methods for Early Warning

A range of regional-scale, satellite-based indicators are used to monitor physical
drought development. The Standardized Precipitation Index (SPI) is a popular
indicator for monitoring meteorological drought (McKee et al., 1993; Van Loon,
2015). The SPI indicates rainfall anomaly compared to the long-term average
for that chosen time period (Sheffield et al., 2014). For agricultural drought
(Van Loon, 2015), satellite-based indicators are used such as soil moisture and
the Normalized Difference Vegetation Index (NDVI; Liang et al., 1994; NASA
Worldview, 2022; Tarpley et al., 1984). These indicate available soil moisture for
vegetation growth, which in turn indicates crop failure in areas where agricul-
ture is non-irrigated (Brown, 2014; FEWS NET, 2021; FSNAU, 2021; Sheffield
et al., 2014). However, in most arid zones during late dry seasons, water avail-
ability for human consumption depends on groundwater supply. As such, these
surface indicators are not ideal for assessing hydrological droughts — the most
intense form of drought that causes water shortages (Tallaksen and Van Lanen,
2004; Van Loon, 2015). Nevertheless, these same satellite-based indicators of
meteorological and agricultural drought are used by DEWSs to infer the spatial
intensity of hydrological drought by proxy because of a paucity of direct ground-
water observations (Brown, 2014; FSNAU, 2021; FEWS NET, 2021; Kalisa et
al., 2018; Sheffield et al., 2014; UCSB, 2021).

In practice, these indicators show abnormally large declines during the early
stages of drought, and thus provide some evidence to trigger a national or re-
gional early warning at a good lead-time ahead of the highest intensity phase
of drought. However, despite useful lead-times, the spatial accuracy of these
indicators is low due to the coarse resolution and measurement uncertainty of
the satellite-data used as inputs (FSNAU, 2021; Sheffield et al., 2014; Karnieli
et al., 2010; Sheffield et al., 2014). Furthermore, the extent to which seasonal
changes in these indicators reflect actual underlying groundwater levels is un-
known — aquifer recharge and well recovery depends heavily on drainage basin
characteristics and human activity. As a result, these coarse physical drought
indicators are used by practitioners with caution when determining which com-
munities are most locally exposed to hydrological drought (Karnieli et al., 2010,
Okpara et al., 2017).



During drought development, these physical indicators are viewed alongside sea-
sonal climate forecasts from international organizations such as the GHACOF
(Greater Horn of Africa Climate Outlook Forum), the Famine Early Warning
Systems Network (FEWS NET), the National Oceanic and Atmospheric Admin-
istration (NOAA) and the UK Met Office, which give a low-certainty prediction
of how the drought may evolve in future months (Brown, 2014; FEWS NET,
2021; FAO, 2021; Dinku et al., 2018; Mwangi et al., 2014). For shorter-range
forecasts, the popular United States Geological Survey’s Early Warning Explorer
(USGS EWX) tool provides open access to the latest 15-day pentadal rainfall
forecasts (UCSB, 2021). Meteorological forecasts are also compromised by a
low spatial resolution and high uncertainty, particularly at longer lead-times.
Furthermore, the scarcity of national hydrological monitoring programs in Sub-
Saharan Africa prevents national agencies from augmenting these forecasts with
local data (Brown et al., 2014; Stephens et al., 2016). Therefore, combining low
resolution indicators of physical drought intensity with these forecasts results in
high uncertainty about current and future drought exposure at the local scale
(Boluwade, 2020; Dinku et al., 2018).

As a result of these limitations, drought managers, including national agencies
and international NGOs, depend on national socio-economic data to spatially
monitor drought exposure through evidence of drought impacts (FAO, 2018;
FSNAU, 2021). These data are the primary source of information used to
plan and finance early interventions with prioritized communities (Brown, 2014;
Buchanan-Smith and McCelvey, 2018; FSNAU, 2021; Stephens et al., 2016). In
Somalia and Somaliland, this information is made available in real-time by the
United Nations Food and Agriculture Organization’s Food Security and Nutri-
tion Analysis Unit’s (UN FAO FSNAU) Early Warning Early Action dashboard
(FSNAU, 2021). It presents monthly data on market prices, livestock prices,
migration data, disease prevalence, wages and nutrition. For example, by Octo-
ber 2016, when the socio-economic impacts of the 2016/17 drought first became
apparent, the socio-economic indicators had reached the ‘alarm’ phase over 200
times across all of Somalia’s administrative regions, over double the previous
year’s level (FSNAU, 2021).

Socio-economic data is fundamental for monitoring vulnerabilities to drought
(Brown et al., 2014; UNDRR, 2015); however, an over-dependence on socio-
economic data for monitoring real-time drought exzposure is problematic for
DEWSs. Requiring signals from socio-economic drought impacts for an early
warning to be triggered means that opportunities for early, lifestyle-preserving
interventions have already been missed. A further limitation is the coarse spa-
tial and temporal resolution of the socio-economic indicators, with monthly data
aggregated by FAO FSNAU in Somalia for each administrative region (Brown et
al., 2014; FSNAU, 2021). This has the effect of smoothing out localized drought
impacts, to the extent that DEWSs have little information on relative exposure
at the community level. This can lead to poorly targeted and ill-timed inter-
ventions which may fail to mitigate the onset of malnutrition, economic losses,
community displacement, famine and conflict in the most exposed communities



(Brown et al., 2014; FAO, 2014; Stephens et al., 2016).
1.2. Modern Sensors for In-Situ Groundwater Monitoring

The limitations of using regional methods to monitor hydrological drought ex-
posure illustrate the need for alternatives. Despite advice in 2003 by UN FAO
that data on groundwater-level fluctuations are “essential as a basis for man-
agement” (FAO, 2003), methods to monitor drought still widely omit in-situ
groundwater data (Lewis and Liljedahl, 2010). Reasons have included the high
economic cost of data collection, the labor-intensive nature of monitoring, dif-
ficulties with community participation and a lack of hydrological expertise to
process the data (Ajoge, 2019; Calderwood et al., 2020; Frommen et al., 2019;
Pozzi, 2013).

Advances in sensing technology have reduced the cost and complexity of in-situ
monitoring to a level where it can now be implemented on an unprecedented
scale (Buytaert et al., 2016; Calderwood et al., 2020; Paul and Buytaert, 2018;
Open Geospatial Consortium, 2021). Modern automatic sensors have lower
costs, greater accuracy, higher-frequency measurements, real-time telemetry,
longer battery lives and now require less labor and expertise for installation and
data processing (Calderwood et al., 2020; Paul and Buytaert, 2018). However,
the long-term maintenance of in-situ sensors remains resource intensive. There-
fore, in proposing a scalable method for groundwater monitoring, understanding
the optimal duration of in-situ data collection for useful and cost-effective mon-
itoring is crucial.

Here we explore whether short-term, high frequency monitoring can be used
to calibrate a groundwater model sufficiently to enable accurate predictions of
groundwater availability at the local scale, using a case study of three abstrac-
tion wells in Maroodi Jeex, Somaliland. The paper is structured as follows.
First, we describe the groundwater model and calibration procedure. Then, by
varying the calibration length between 1-30 weeks, we assess the value of addi-
tional calibration weeks for model performance. From this, a 7-week calibration
is used to evaluate how effectively the model simulates observed groundwater
availability compared to satellite-based proxy indicators. The calibrated wells
are then simulated between 2015-20, to illustrate how the model can be used to
index hydrological drought during the 2016/17 and 2019 Horn of Africa drought
events. This is followed by a discussion of how this method can be scaled-up
to a large number of wells, and how the information can be used in DEWSs to
inform the planning of early and effective interventions during droughts.

2 Method
2.1 Modelling approach

In data-scarce regions, simple conceptual groundwater models are favored over
process driven models (Beven, 2001; Mackay et al., 2014). Here, we use a mod-
ified version of the quasi-physically based AquiMod model to simulate the local
water table in response to satellite derived rainfall and evapotranspiration rates



(Mackay et al., 2014). The model (fully described in Supporting Information)
provides a simple and efficient method to simulate time-dependent well water
levels based on a conceptual representation of groundwater systems, with a pa-
rameter set small enough to deploy automated calibration procedures at low
runtimes (Beven, 2001; Mackay et al., 2014). Model inputs, comprised of daily
rainfall and actual evapotranspiration values for an area surrounding the pump-
ing well, were obtained from satellite data (Maidment et al., 2017; Sheffield
et al., 2014). The model was calibrated against in-situ groundwater-level data
using a Monte Carlo approach (Mackay et al., 2014; Pianosi et al., 2015).

2.2 Input data

Daily precipitation and actual evapotranspiration data for the period 2015-2020
were obtained from, respectively, TAMSAT (Tropical Applications of Meteorol-
ogy using Satellite Data; Maidment et al., 2017) and AFDM (African Flood
and Drought Monitor; Sheffield et al., 2014). For point-scale applications, there
is higher uncertainty associated with the daily rainfall product when used at
its finest 4 km spatial resolution, particularly when employing temporal down-
scaling from the initial 5-day cumulation product. To reduce this uncertainty,
we averaged daily rainfall over a 40 km square (Maidment et al., 2017). Daily
AFDM actual evapotranspiration data has a spatial resolution of 27 km. The
lower spatial variability of evapotranspiration means it is associated with less
uncertainty than the rainfall input (Sheffield et al., 2014). Average evapotran-
spiration over 54 x 54 km was calculated for model input.

Groundwater levels at 15-minute intervals were obtained using pressure trans-
ducers in three shallow, large-diameter wells in Maroodi Jeex, Somaliland. Shal-
low wells provide an ideal target for DEWSs because they typically run dry
before deeper boreholes and thus provide an earlier drought signal in rural ar-
eas (MacAllister et al., 2020). Sensor installation took place on 21 July 2017,
at sites < 10 km apart (Figure 1). The wells, although close geographically,
display markedly different behavior (Figure 4b, 4c & 4d) due to differences in
construction, local geology and usage. A 7-month time series of data was col-
lected for the three wells, which reflected some of the outstanding challenges of
continuous data collection in this environment including logistics, battery sup-
ply and staffing (Paul and Buytaert, 2018). The three datasets were each used
for separate calibrations of the modified AquiMod model.
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Figure 1: Location of the three shallow, large diameter wells in Maroodi Jeex,
Somaliland.

2.3 Groundwater Model

We use a modified form of AquiMod (Mackay et al., 2014) to estimate aquifer
recharge (R) and calculate groundwater drainage (Q,), outputting a daily wa-
ter balance for the well. The groundwater drainage component represents the
loss (e.g., due to regional flow) from the aquifer, where the well is abstracting
water at a rate (Q,,). The unconfined (saturated) aquifer module is represented
as a single homogeneous, isotropic layer, above which is an equally homoge-
neous unsaturated module that is, in turn, overlain by a soil module (Figure
2). Precipitation (P) enters the top soil module following losses due to actual
evapotranspiration (AE). If the soil moisture (SM) exceeds the maximum soil
moisture capacity (SM,, .. ), the surplus water becomes soil drainage (SD) to the
unsaturated zone module. This drainage is then delayed by being distributed
over time using a Weibull distribution to provide recharge (R) to the saturated
module. In the saturated container, recharge from soil drainage is the sole input.
The main output is the volume of groundwater drained (Q,), which represents
losses from the local groundwater system. This captures the regional flow re-
sponse of the aquifer and assumes that the groundwater level drains from the
system at a rate proportional to its height (Hg) above the minimum drainage
level (H ; Cuthbert, 2014).
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Figure 2: Modified AquiMod lumped catchment regional model for a single
unconfined aquifer layer.

The model has been adapted from the single layer AquiMod model in Mackay et
al. (2014) by lumping the parameters used to calculate groundwater drainage
(Qg; Figure 2). This allows the model to be reduced to a single vertical spatial
dimension, where groundwater drainage (Q,) is calculated according to the dif-
ference in the height of the groundwater level (Hg) above the base of the aquifer
(Hg pmin, Which is set equal to the pump inlet depth, Hy, ,;,, as this is the ‘effec-
tive’ locally accessible depth of aquifer) factored by a time constant ‘’ [day™].
This removes the need to represent groundwater flow using Darcy’s law and thus
avoids needing to determine the hydraulic conductivity at an unknown distance
to an outlet on the boundary of the model. This simplification removes two
additional parameters that would otherwise require calibration. The model con-
ceptualization and the adapted equations are fully described in the Supporting
Information.

Equation 1 calculates the change in groundwater level (Hg) for each timestep,
by dividing the balance between the total recharge (R), drainage (Q,) and well-
abstraction (Q,,) by specific yield (S;) and a nominal area around the well (A):

(1)

If the area is sufficiently large whereby R & Q, » Q,,, as is common in shallow
wells with low abstraction volumes, then the impacts on the regional groundwa-
ter level due to abstraction can be ignored and the recharge and groundwater
drainage modeled as fluxes (r & Ag; respectively). Equation 1 is then discretised
using an explicit forward difference scheme and integrated on a time step of one
day, using daily recharge values obtained from the soil and unsaturated zone
modules. This gives a continuous daily time-series of the unpumped ground-
water level elevation (H,) for each well site (Figure 4b, 4c, 4d; Veness et al.,
2022).

2.4 Calibration Method
We calibrated the model using Monte Carlo and Global Sensitivity Analysis

HW min



(GSA) methods (Ochoa-Tocachi et al., 2018; Pianosi et al., 2015). Following sen-
sitivity analysis, we focused on calibrating 4 sensitive parameters, while setting
the remaining parameters to fixed values estimated from prior understanding of
the aquifer and general hydrological systems. We sampled 10,000 combinations
from a uniform distribution using Latin Hypercube Sampling (LHS; McKay et
al., 1979). Input ranges were set following a manual calibration and an initial
scoping study of parameter sensitivity.

In this study, the AquiMod calibration is modified so that H,; is calibrated
to the maximum water level in the observed data for day ‘i’ (Hy ; yax)- In ab-
straction wells, pumping causes partial recovery (H,) to the unpumped water
table (H,). This difference is at a minimum following well recovery, immedi-
ately before the onset of the following abstraction event. Therefore, calibrating
H, ; to these daily observed peaks in groundwater level changes H, to a simula-
tion of ‘available groundwater level’ in that well. This requires an assumption
that daily partial well recoveries reach a constant distance from the natural un-
pumped water level, which was considered appropriate based on the observed
well recoveries. In datasets where H,; — H,,; constant, this method can be
coupled to a pumping model to include the effect of variable abstraction rates
on the modelled water level (see Supporting Information). For example, given
the variable abstraction drawdowns and partial recoveries seen in Well 3 (Figure
4d), coupling a pumping model may improve the fit in future implementations.

2.5 Calibration Length Analysis

To assess the relationship between calibration length and model performance,
the calibration period was varied at weekly intervals between 1-30 weeks. The
Root Mean Square Error (RMSE) score was calculated for the full 30-week
combined calibration and validation period each time (Pianosi et al., 2015). This
method highlights an ‘optimal’ calibration period for groundwater modelling in
this context, if additional weeks of in-situ observations have diminishing value
in improving model performance and the challenges of monitoring outweigh the
benefits. Following this, a 7-week calibration was selected as a suitable duration
and used for further analysis.

The RMSE was calculated for each parameter set during the 7-week calibration
period up to 6 September 2017 (4.5-week at Well 3, due to later sensor in-
stallation date), with the best scoring parameter set being the closest to zero.
The best scoring set from the calibration’s RMSE was then calculated in a 23-
week validation (Table 1). The fit of the validations (Figure 4b, 4c and 4d)
are compared to satellite-based indicators of NDVI, soil moisture and SPI-3
(Figure 4a). It is plotted alongside an uncalibrated simulation of the original
AquiMod model at each well (Mackay et al., 2014), using literature derived
parameter values and an understanding of the wells’ locations in the alluvial,
unconfined aquifer (see Supporting Information; Allen et al., 1998; Ascott et al.,
2020; Domenico and Schwartz, 1990; FAO SWALIM, 2021; Jackson et al., 2016;
Johnson; 1967; Lohmann, 1972; Mackay et al., 2014).



Table 1 — Parameter input ranges, calibrated parameter values and RMSE
scores for the top scoring calibration sets at Wells 1, 2 and 3.

ParameteiUnits Input Calibratiolmput Calibratiolnput Calibration

Range  (Well Range  (Well Range  (Well
(Well 1) (Well  2) (Well  3)
1) 2) 3)

Sy - -0.12 —-0.01 —0.045
day™? Se-4 —  7.29e-4 BHe® — 1.02¢*  2e-4 -  2.65e-4
le-3 1.5e4 4e-4
k - - 15 -8 - 30
(Weibull)
- - 30 - 30 - 30
(Weibull)
Hy (1=0) m
(fixed)
SMIH‘(IX m
(fixed)
SM,

initial
(fixed)
Hg,min
(fixed)
RMSE m

(cali-

bra-

tion)

RMSE m - - -
(valida-

tion)

NDVT and Soil Moisture Active Passive (SMAP) data were downloaded at Well
2’s coordinates from NASA Worldview (NASA Worldview, 2022), and daily
SPI-3 values from Princeton’s African Flood and Drought Monitor (Sheffield
et al., 2014). NDVT is generated by the Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument and downloaded in 16-day intervals at
a 250 m spatial resolution (NASA Worldview, 2022). The SMAP layers show
a daily composite of surface soil moisture in cm?/cm?, calculated by the Single
Channel Algorithm V-Pol for the daily half-orbit passes by the SMAP radiome-
ter and posted to the 9-km EASE-Grid 2.0 (NASA Worldview, 2022). SPI-3
is calculated from bias-corrected Multisatellite Precipitation Analysis (TMPA)
and hybrid reanalysis data (Huffman et al., 2007; Sheflield et al., 2014).

2.6 Model Simulations during 2016/17 & 2019 Droughts

Using the 7-week (4.5 week for Well 3) calibration parameters, the models were



simulated from January 2015 — December 2020 using historic rainfall and evap-
otranspiration as inputs (Sheffield et al., 2014; Maidment et al., 2017). The
initial heads to start the model have been estimated by comparing January
2015 SPI-3/6/12 values with January 2018, for which there is corresponding ob-
served groundwater level data, and assessing a likely groundwater level relative
to the January 2018 level. The 2016/17 drought event is highlighted from the
date the Somalia government declared drought (Guled, 2017) to the final ob-
served rains of the following Gu rainy season. The 2019 drought is highlighted

from the declaration date of drought emergency made by Oxfam (Barter, 2019),
to the final Gu rains that year.

A critical level is defined for each well, below which the regular abstraction
drawdowns observed during the dry season would not be possible. This is due to
the water level falling below the pump inlet depth during abstraction drawdown,
causing a ‘dry pump. A ‘regular’ dry season drawdown was calculated as the
mean drawdown depth (m) during the final 50 observed dry season abstractions

at each well. This value was then added to the pump inlet depth (H,, ,;,) to
calculate the well’s critical level.

3 Results & Discussion

3.1 Calibration Length Analysis
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Figure 3 — RMSE for the full calibration and validation period, with calibration
lengths varied at weekly intervals.

The analysis shows that there is little further improvement in calibration perfor-
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mance after extending to 5 weeks (Figure 3). At this period (3 weeks at Well 3),
the calibration window is long enough to include the start of the wet season, with
groundwater level observations that have increased because of recharge. This
causes the recharge parameters of Sy, and k to become sensitive and trained
in the calibration. It is therefore essential to have a calibration period that cap-
tures observations from both the wet and dry seasons for sufficient calibration
of the model. The remaining error in RMSE score at the longest calibrations
will be sourced from input inaccuracies from the rainfall and evapotranspiration
data, as well as modelling uncertainty with processes uncaptured by the simple,
lumped parameter model (Ascott et al., 2020; Mackay et al., 2014). Follow-
ing this analysis, a 7-week calibration is presented as a suitable duration that
equally captures the dry and wet seasons (Figure 4b, 4c & 4d).

3.2 Model Performance
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Figure 4 — (a) Normalized satellite-based proxy indicators of physical drought
intensity compared to Well 2’s observed daily maximum water levels. Calibra-
tions of (b) Well 1, (¢) Well 2 and (d) Well 3 are shown to compare performance
with the proxy indicators and an uncalibrated AquiMod groundwater model.
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Observed water levels and the corresponding calibration targets set at the daily
maxima are shown for comparison of fit.

The satellite-based indicators (Figure 4a) are not suitable as proxies of local
groundwater level. Soil moisture approaches its minimum months before the
observed wells and remains at a flat minimum level throughout the long dry
season. SPI-3 represents rainfall anomaly instead of absolute rainfall, so is
unlikely to follow groundwater levels closely due to its calculation. NDVI shows
the closest fit to observed groundwater levels, but it underestimates the dry
season water level decline and suffers from a low temporal resolution.

Compared to the regional indicators, the calibrated model provides a substan-
tially improved representation of observed groundwater levels (Figure 4b, 4c &
4d). The locally calibrated simulations capture the unique response of each well
to recharge and dry periods, giving a reliable indication of water availability.
In comparison, the poor performance of the uncalibrated groundwater model
highlights the need for a local calibration, as literature-derived parameters fail
to capture significant differences in well properties.

3.3 Simulating the 2017 & 2019 Droughts

To demonstrate the model’s use as a localized index of groundwater availabil-
ity, the calibrated wells are simulated during the two most recent droughts in
Somaliland (Figure 5). These water levels are put into the context of local wa-
ter availability by plotting each well’s critical level, below which a full, regular
abstraction drawdown would not be possible (Section 2.6).
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Figure 5 — 2015-20 simulations of the three wells using the 7-week calibration
parameters. Water levels are normalized to the distance between the top of the
well and the pump inlet depth. The two droughts are indicated from the dates
that humanitarian crises were declared by the Somalia president (2017; Guled,
2017) and Oxfam (2019; Barter, 2019). The critical level is the level below which
the mean observed dry-season abstraction drawdown would not be possible due
to water level falling below the pump inlet.

The lowest water levels are seen during the two documented droughts (Figure
5; Barter, 2019; FEWS NET, 2021; FSNAU, 2021; Guled, 2017). Wells 1 and
2 fall below their critical level during the two droughts, indicating that reg-
ular abstraction drawdowns would have been restricted. This indicates that
those wells suffered abstraction shortages during the two droughts, which may
have required interventions depending on the function of the well and the socio-
economic context of the community using it for water supply.

During long dry seasons where recharge is typically zero from January — early
March (Figure 5, Maidment et al., 2017), this real-time visualization of water
level decline enables an approximation of the lead-time before the wells reach
their critical levels. However, in practice, the model inputs can simply be re-
placed by forecast data to simulate this lead-time for each well. On a lead-time
of 1-2 weeks, datasets such as the 15-day CHIRPS-GFES pentadal rainfall fore-
casts can be used (UCSB, 2021). If forecasting months ahead, seasonal forecasts
from GHACOF (Mwangi et al., 2014) can be used to project future water levels
under different rainfall scenarios. Forecasts of water availability can therefore
provide an indication of local drought exposure at the lead-time of the input
forecast data.

4 Conclusions

This study finds that groundwater models with short calibrations, capturing
1-2 months of wet and dry season observations, offer substantial improvements
in quantifying local groundwater availability when compared to satellite-based
indicators used to infer this by proxy (Brown, 2014; FEWS NET, 2021; FSNAU,
2021; Kalisa et al., 2018; UCSB, 2021). Furthermore, by presenting water lev-
els relative to each well’s unique critical depth, the method provides a local
and contextualized indicator that translates water levels to water availability
(Sutanto et al., 2019).

By using modern sensors with short observation periods, the barriers to scaling-
up these methods in a national-scale monitoring system are reduced. The low
cost of the sensors addresses the economic hurdle of monitoring (Paul et al.,
2020), and the short residence time means the sensors can be relocated to cali-
brate a large number of wells. The short, high frequency sensor measurements
also capture abstraction behaviors, which enable the important contextualizing
calculation of each well’s critical water level. Although some serious challenges
and ethical considerations in implementation remain, such as monitoring system
governance, sensor security and community consent to participation (Buytaert
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et al., 2014; Paul and Buytaert, 2018), this study highlights the renewed tech-
nical feasibility of large-scale groundwater monitoring for hydrological drought
exposure.

For DEWSs, maps of real-time and forecasted water levels can be presented
for the monitored wells relative to their critical depths. This enables stakehold-
ers to compare spatial drought intensity and exposure between regions, whilst
also having detailed water availability information at the local community scale.
Stakeholders can then view this information alongside vulnerability data to des-
ignate interventions to communities in proportion of overall drought risk (UN-
DRR, 2015). These interventions commonly include provision of emergency
water supplies, other lifestyle-sustaining supplies and cash transfers (Brown et
al., 2014, Stephens et al., 2016). Furthermore, with forecast-based financing
systems in need of more evidence to confidently trigger earlier anticipatory fi-
nancing release (Stephens et al., 2016), maps of spatial drought exposure and
intensity can be used to trigger the release of financing. A recent growth in
parametric insurance policies for drought, seeking to payout ahead of peak im-
pacts based on hydrological parameter thresholds being exceeded, also suggests
demand for groundwater availability as a more accurate parameter to index
these policies (Okpara et al., 2017).

The methodology outlined in this report is deliberately parsimonious, and it
aims to serve as a demonstration of technical feasibility upon which greater
complexity can later be introduced. There are considerable limitations in these
methods from a traditional hydrological modelling perspective, from input un-
certainties to the lumping of model parameters and the use of empirical ‘critical
level’ calculations (Mackay et al., 2014; Maidment et al., 2017; Sheffield et al.,
2014). However, groundwater modelling in a data-scarce region is intrinsically
bound to modelling limitations that cannot be resolved without collecting exten-
sive field-data, and this is simply not a feasible requirement across a monitoring
network in this context (Beven, 2001). That said, data-scarce, drought-prone
regions such as Somalia and Somaliland can benefit the most from groundwater
models for drought modelling, forecasting and early warning. Therefore, we
have proposed a viable method of generating a useful, localized groundwater
availability index for DEWSs, that remains mindful of the fundamental require-
ment of a groundwater monitoring solution to be technically and practically
feasible.
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