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Abstract

Subseasonal timescales (˜2 weeks - 2 months) are known for their lack of predictability, however, specific Earth system states

known to have a strong influence on these timescales can be harnessed to improve prediction skill (known as “forecasts of

opportunity”). As the climate continues warming, it is hypothesized these states may change and consequently, their importance

for subseasonal prediction may also be impacted. Here, we examine changes to midlatitude subseasonal prediction skill provided

by the tropics under anthropogenic warming using artificial neural networks to quantify skill. The network is tasked to predict

the sign of the 500hPa geopotential height for historical and future time periods in the CESM2-LE across the Northern

Hemisphere at a 3 week lead using tropical precipitation. We show prediction skill changes substantially in key midlatitude

regions and these changes appear linked to changes in seasonal variability with the largest differences in accuracy occurring

during forecasts of opportunity.
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Key Points:6

• Neural networks can be used to evaluate subseasonal predictability under future7

climate change scenarios8

• In CESM2-LE, largest differences in subseasonal predictability provided by the9

tropics mainly occur during forecasts of opportunity10

• Changes in Northern Hemisphere subseasonal prediction skill appear mainly linked11

to changes to seasonal variability in CESM2-LE12
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Abstract13

Subseasonal timescales (∼2 weeks - 2 months) are known for their lack of predictabil-14

ity, however, specific Earth system states known to have a strong influence on these timescales15

can be harnessed to improve prediction skill (known as “forecasts of opportunity”). As16

the climate continues warming, it is hypothesized these states may change and conse-17

quently, their importance for subseasonal prediction may also be impacted. Here, we ex-18

amine changes to midlatitude subseasonal prediction skill provided by the tropics un-19

der anthropogenic warming using artificial neural networks to quantify skill. The net-20

work is tasked to predict the sign of the 500hPa geopotential height for historical and21

future time periods in the CESM2-LE across the Northern Hemisphere at a 3 week lead22

using tropical precipitation. We show prediction skill changes substantially in key mid-23

latitude regions and these changes appear linked to changes in seasonal variability with24

the largest differences in accuracy occurring during forecasts of opportunity.25

Plain Language Summary26

Predictions on 2 week to 2 month (subseasonal) timescales are important for the27

public and private sectors due to the increased preparation time provided to save lives28

and property. In the current climate, signals initiated in the tropics can overpower noise29

in the midlatitudes and ultimately lead to enhanced midlatitude subseasonal prediction30

skill. However, it has been hypothesized that increasing global temperatures due to cli-31

mate change may impact these signals and their sources in the future. Therefore, it is32

important to understand how subseasonal predictability provided by the tropics will be33

affected. Here, we utilize a type of machine learning known as a neural network to in-34

vestigate this question. We find that subseasonal prediction skill provided by the trop-35

ics changes throughout the Northern Hemisphere in a warmer climate and these changes36

appear mainly linked to changes in seasonal variability. In addition, we see that the largest37

differences in accuracy occur during opportunities for enhanced subseasonal prediction38

skill.39

1 Introduction40

Accurate predictions on subseasonal timescales (2 weeks - 2 months) are impor-41

tant for many public and private sectors such as water management and agriculture (White42

et al., 2021). This is because prediction on these timescales provides pivotal lead times43

for saving lives and property in these sectors (White et al., 2021). The tropics is of par-44

ticular importance for this timescale because of intraseasonal phenomena like the Madden-45

Julian Oscillation (MJO; Madden & Julian, 1971, 1972). Quasi-stationary Rossby waves46

generated by upper level divergence associated with MJO convection (Hoskins & Am-47

brizzi, 1993) can modulate midlatitude circulation in the following weeks (e.g. Hoskins48

& Karoly, 1981; Sardeshmukh & Hoskins, 1988; Henderson et al., 2016; Baggett et al.,49

2017; Zheng et al., 2018) and these tropical-extratropical teleconnections are known to50

lead to enhanced midlatitude prediction skill on subseasonal lead times (Tseng et al., 2018).51

Phenomena like the El Niño Southern Oscillation (ENSO), an interannual oceanic mode52

in the tropical Pacific Ocean (Trenberth, 1997), can also impact subseasonal prediction.53

It can do so through modulation of the MJO (e.g. Hendon et al., 1999; Kessler, 2001;54

Pohl & Matthews, 2007) or modulation of the large-scale background state (e.g. Namias,55

1986; Moon et al., 2011; Takahashi & Shirooka, 2014), and both can ultimately impact56

teleconnection propagation (e.g. Stan et al., 2017; Henderson & Maloney, 2018; Tseng57

et al., 2020; Arcodia et al., 2020) and subseasonal prediction skill (e.g. Johnson et al.,58

2014; L. Wang & Robertson, 2019). Therefore, when phenomena like the MJO and ENSO59

are present, they can provide a predictable signal above climate noise and be used to en-60

hance subseasonal prediction skill, known as forecasts of opportunity (Mariotti et al.,61

2020).62
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The current understanding of the importance of the tropics on midlatitude sub-63

seasonal predictability is rooted in our knowledge of the historical climate. However, with64

the climate continuously warming, it is unclear how transferable this knowledge will be65

to a future, warmer climate. Therefore, research on subseasonal timescales has exam-66

ined how the MJO (Maloney et al., 2018) and ENSO (Cai et al., 2021) will change in67

the future as well as the subsequent changes to their teleconnections (e.g. Samarasinghe68

et al., 2021; W. Zhou et al., 2020; Cui & Li, 2021; Meehl et al., 2007; Z.-Q. Zhou et al.,69

2014; Drouard & Cassou, 2019; Fereday et al., 2020; Beverley et al., 2021). It stands to70

reason that these changes will likely impact subseasonal predictability across the North-71

ern Hemisphere, but little work has been done in this area (an example being Sheshadri72

et al., 2021). Here, we utilize the Community Earth System Model Version 2 - Large En-73

semble (CESM2-LE; Rodgers et al., 2021) and simple artificial neural networks to iden-74

tify changes in subseasonal predictability provided by the tropics under future warm-75

ing.76

In recent years, neural networks have been successfully applied to weather and cli-77

mate prediction (e.g. Chapman et al., 2021; Ham et al., 2019; Gordon et al., 2021; Rasp78

& Thuerey, 2021; Weyn et al., 2021; Martin et al., 2022; Labe & Barnes, 2022) due to79

their ability to extract nonlinear relationships from large amounts of data. This makes80

them advantageous for learning nonlinear relationships in the climate system. In addi-81

tion, recent advances in explainability techniques and their application to climate sci-82

ences demonstrate than neural networks can identify physical relationships in the Earth83

system (e.g. McGovern et al., 2019; Toms et al., 2020; Mayer & Barnes, 2021; Daven-84

port & Diffenbaugh, 2021). For example, Mayer and Barnes (2021) demonstrate that neu-85

ral networks can be used to identify subseasonal forecasts of opportunity through the86

neural network’s confidence in a given prediction. They further show that the network87

identifies physically meaningful sources of subseasonal predictability for the North At-88

lantic.89

Here we use artificial neural networks to quantify how subseasonal prediction skill90

provided by the tropics may change under future climate warming. Given the importance91

of forecasts of opportunity for subseasonal prediction in the current climate, we exam-92

ine both total changes to overall prediction skill as well as changes to skill during fore-93

casts of opportunity, in particular. The artificial neural networks identify subseasonal94

prediction skill changes across the Northern Hemisphere in the CESM2-LE. In partic-95

ular, there is an increase in prediction skill over the North Atlantic and western North96

America as well as a decrease over the North Pacific. In addition, this approach shows97

that the greatest changes in skill occur during forecasts of opportunity and that these98

changes appear linked to changes in seasonal variability in the CESM2-LE.99

2 Data and Methods100

2.1 Data101

Here, we examine midlatitude subseasonal prediction skill changes using the first102

10 members from the coupled Community Earth System Model Version 2 - Large En-103

semble (CESM2-LE; Rodgers et al., 2021). CESM2 has both a well represented MJO (Ahn104

et al., 2020) and MJO teleconnections (J. Wang et al., 2022) and thus, is ideal for this105

analysis. We note that the results presented are specifically for the CESM2-LE, and as106

with all model-based results, are dependent on specific model biases (e.g. SST biases;107

Danabasoglu et al., 2020). We use the years 1970-2015 as our ‘historical period’ to rep-108

resent a climate similar to today and compare it to the latter half of the century (2055-109

2100; ‘future period’) under the SSP3-7.0 climate change scenario. We find that 10 mem-110

bers are sufficient for this analysis as the network skill plateaus when at least 5 ensem-111

ble members are used for training, depending on location and time period (Figure S1;112

Text S1). While additional ensemble members could be used, we believe our conclusions113

–3–



manuscript submitted to Geophysical Research Letters

would remain unaffected, as the sign of the change in prediction skill of the 20% most114

confident predictions remains consistent regardless of the number of members examined115

here.116

The CESM2-LE members #1-10 are split into training (members #1-8), valida-117

tion (member #9) and testing data (member #10). To simultaneously detrend and re-118

move the seasonal cycle for each grid point, the 3rd order polynomial fit of the training119

and validation members’ ensemble mean is subtracted from every ensemble member in-120

dividually for each day of the year. We find the conclusions are insensitive to the spe-121

cific members assigned to training, validation and testing (Figure S2).122

We utilize the CESM2-LE tropical precipitation (28.5◦S-28.5◦N) and geopotential123

height at 500 hPa (z500; 31.25◦N-88.75◦N) during the extended boreal winter (November-124

March) since this is when MJO teleconnections tend to be strongest (Madden 1986). Trop-125

ical precipitation anomalies are computed for each member and grid point by standard-126

izing with the training data mean and standard deviation. For computational purposes,127

the z500 field is partitioned into non-overlapping 5◦ x 5◦ boxes, where the average of these128

values is assigned to the center grid point latitude and longitude. This decreases the z500129

resolution from 2.5◦ x 2.5◦ to 7.5◦ x 7.5◦, however, given the large scale structure of z500,130

we do not expect the resolution reduction to impact the conclusions. The sign of the z500131

anomalies are defined by subtracting the training data median from the training, val-132

idation and testing data and converting the anomalies into 0s and 1s depending on the133

sign (negative and positive, respectively).134

Sea surface temperatures (SST) from the first 10 members of the CESM2-LE are135

also used to calculate the Niño 3.4 index for each member, following the NCAR Climate136

Data Guide (2020). The trend and seasonal cycle is removed simultaneously as afore-137

mentioned, and a 5 month running mean is applied prior to standardizing the SSTs with138

each member’s mean and standard deviation. An El Niño/La Niña event is therefore de-139

fined as a standardized Niño 3.4 index value of greater/less than +/- 1σ. We use this140

index to examine any possible role that ENSO may play in the identified changes to sub-141

seasonal predictability.142

2.2 Neural Network Architecture and Application143

The neural network ingests daily tropical precipitation anomalies and makes a pre-144

diction of the sign of z500 at a given grid point at a lead of 21 days (Week 3; Figure 1a).145

Prediction of the sign of z500 at each grid point allows the network freedom to learn im-146

portant patterns and relationships between tropical precipitation and z500. The num-147

ber of input nodes is equal to the number of precipitation grid points (N=3456). The148

first and second layer of the network consist of 128 and 8 nodes, respectively. A softmax149

activation function is applied to the output layer of 2 nodes which transforms the net-150

work output into values which sum to one. These transformed values represent a net-151

work estimation of likelihood, which we refer to as ‘model confidence’, where the pre-152

dicted category is defined as a value greater than 0.5. As shown in Mayer and Barnes153

(2021), when prediction skill increases with model confidence, higher model confidence154

can be used to identify subseasonal forecasts of opportunity.155

We use this network architecture because it has some of the highest validation skill156

for both the historical and the future time periods in the North Atlantic and also per-157

forms well in the North Pacific (Figure S3-S4). We note that slight variations of the hy-158

perparameters (i.e. network depth, nodes per layer, learning rate, ridge regression pa-159

rameter) show similar skill. While one could optimize the architecture and hyperparam-160

eters for every gridpoint individually, we have not done this due to the considerable com-161

putational resources necessary and find it unlikely to lead to substantially different con-162

clusions. For additional information on the network architecture and hyperparameters163

see Text S2.164
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Figure 1. (a) The artificial neural network input (tropical precipitation), architecture (first

hidden layer: 128 nodes, second hidden layer: 8 nodes) and output (sign of z500hPa at a location

‘x’). (b,c) Timeseries of the correct sign predictions of z500 in ensemble member #10 for the

historical (left column) and future (right column) for (b) the North Pacific and (c) the North

Atlantic. Red (blue) dots indicate positive (negative) predictions. Darker dots denote the 20%

most confident predictions, and the grey shading indicates when the standardized Niño 3.4 index

exceeds +/-1σ.

Example correct network predictions for the testing ensemble member #10 are shown165

in Figure 1(b-c) for the historical (left column) and the future (right column) periods166

in (b) the North Pacific and (c) the North Atlantic. The color denotes the sign of the167

prediction and the darker colors denote the (20% most) confident predictions. The ver-168

tical grey shading indicates periods of ENSO events. Figure 1(b-c) demonstrates that169

the networks can accurately and confidently predict both sign anomalies. In addition,170

it shows a possible relationship between confident subseasonal predictions and ENSO events,171

but the amount which confident predictions coincide with ENSO events depends on lo-172

cation and time period. This relationship will be addressed further in section 3.2.173

3 Results174

3.1 Changes in Subseasonal Prediction Skill175

To examine how subseasonal prediction skill provided by tropical-extratropical tele-176

connections changes in a warmer climate, 100 networks are trained for the North Pacific177

(41.25◦N, 205◦E) and the North Atlantic (41.25◦N, 325◦E) for both the historical and178

future periods. These two locations are chosen because they encompass regions known179

to be significantly impacted by the MJO (e.g. Mori & Watanabe, 2008; Cassou, 2008;180

Lin et al., 2009) and ENSO (e.g. Wallace & Gutzler, 1981; Zhang et al., 1996) telecon-181

nections, which subsequently have North American and European impacts. The 100 net-182

works are created by varying their random seed to test the sensitivity of the network to183

the random initialized weights.184

–5–



manuscript submitted to Geophysical Research Letters

Accuracies binned by various model confidence thresholds are shown in Figure 2.185

Accuracy increases with model confidence (moving from left to right), suggesting the net-186

work is identifying forecasts of opportunity for these regions. In addition, we find that187

all networks at almost every confidence level perform better than random chance (Fig-188

ure 2, Text S3). The North Pacific (Figure 2a) has higher accuracy compared to the North189

Atlantic (Figure 2c), likely due to the strong influence of tropical phenomena like the190

MJO and ENSO in modulating the circulation in the North Pacific (e.g. Wallace & Gut-191

zler, 1981; Zhang et al., 1996; Mori & Watanabe, 2008; Roundy et al., 2010; Riddle et192

al., 2013). In the future, subseasonal prediction skill increases in the North Atlantic (Fig-193

ure 2c) and decreases in the North Pacific (Figure 2a) in the CESM2-LE, and this is most194

evident at higher confidence values. If one examines the accuracy for all (100% most con-195

fident) predictions, the North Atlantic and North Pacific accuracies exhibit almost no196

difference between the two time periods. It is when we focus on the higher confidence197

predictions that a clear signal emerges. In other words, the changes in subseasonal pre-198

diction skill are most evident during forecasts of opportunity in these regions.199

Histograms of the accuracies at the 20% most confident threshold (Figure 2 b,d)200

further show that the future period has substantially shifted away from the historical201

period in both regions. The majority of the future North Atlantic accuracies exceed the202

95th percentile of the historical accuracies, and all of the future North Pacific accura-203

cies lie below the 5th percentile of the historical accuracies.204

Figure 2. (a,c) Accuracy versus confidence for 100 trained networks in the North Pacific and

the North Atlantic from testing member #10. Testing samples are subset so that random chance

for all predictions is 50%. Thick grey and red lines denote the median accuracy across the 100

networks at each confidence threshold. Vertical black dashed lines indicate the 20% most con-

fident predictions. (b,d) Histograms of the 100 accuracies at the 20% most confident threshold,

using a bin size of 0.5%. Horizontal grey dashed lines indicate the 5th and 95th percentile bounds

of the historical accuracies at the 20% most confident level.
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To explore whether the results in Figure 2 hold for other regions, we train 10 neu-205

ral networks for each grid point and time period across the Northern Hemisphere. We206

train 10 networks instead of 100 for computational efficiency. To test whether these changes207

in skill in the North Atlantic and North Pacific could be seen with only 10 networks, we208

conducted a bootstrapping analysis (Text S4; Figure S5) following the method used to209

create Figure 3, and find that 10 networks are sufficient for identifying these changes.210

Figure 3 shows the resulting mean testing accuracy of the top three of the 10 networks211

for each location. The top three networks are defined as the networks with the three high-212

est 20% most confident validation accuracies. We use the top three networks so that the213

mean accuracies for each region are not as influenced by models that learn very little or214

not at all.215

For all predictions (Figure 3a-b) and 20% most confident predictions (“confident216

predictions” from here on; Figure 3d-e), the locations of highest skill are in regions as-217

sociated with the Pacific/North America pattern (PNA; Wallace & Gutzler, 1981). The218

higher accuracies over PNA regions suggests the network is most likely identifying fore-219

casts of opportunity associated with teleconnections from the MJO and/or ENSO (e.g.220

Wallace & Gutzler, 1981; Zhang et al., 1996; Mori & Watanabe, 2008; Roundy et al., 2010;221

Riddle et al., 2013). We also find that the spatial coherence in accuracies across networks222

corresponds to the networks correctly predicting many of the same days for neighbor-223

ing grid points (not shown). In the future period (Figure 3b,e), there is an additional224

region of higher accuracies spread across Asia and the North Atlantic. Overall, the con-225

fident predictions have higher accuracies than all predictions, indicating that higher model226

confidence predictions exhibit greater skill.227

Figure 3. (a,b,d,e) Mean testing accuracy of the best 3 models for (a,b) all and (b,e) the 20%

most confident predictions. (c,f) Difference in accuracy between the future and the historical

time periods for (c) all and (f) the 20% most confident predictions, where red (blue) indicates an

increase (decrease) in accuracy in the future. The grey and white ‘x’ indicate the North Pacific

and North Atlantic regions (from left to right) used in Figures 1,2.

In the future, spatially coherent increases in skill are seen across Asia, along the228

west coast of North America, across the southern United States and throughout the North229

Atlantic (Figure 3c,f) while decreases are seen over the North Pacific, Canada and west-230

ern Europe. While the change in skill over East Asia is substantial, it appears that the231

overall skill in East Asia for both time periods does not harness any subseasonal vari-232

ability, but rather comes about exclusively from seasonal variability or longer timescales233
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(Figure S8-S9). As a result, these changes in skill are not addressed further here. The234

difference plots for both all and the confident predictions (Figure 3c,f) have similar spa-235

tial patterns of changes in accuracy, however, the confident predictions show the largest236

changes in skill. Specifically, the absolute maximum change in skill for all predictions237

is about 5% while the absolute maximum change in skill for confident predictions is about238

10%. This further demonstrates that the greatest changes to subseasonal prediction skill239

provided by the tropics occur during forecasts of opportunity across the Northern Hemi-240

sphere, consistent with Figure 2.241

3.2 Tropical Drivers of Changing Midlatitude Skill242

Seasonal variability can have a large influence on subseasonal variability and pre-243

diction skill. In the tropics, ENSO can modulate the MJO (e.g. Hendon et al., 1999; Kessler,244

2001; Pohl & Matthews, 2007) and the basic state (e.g. Namias, 1986; Moon et al., 2011;245

Takahashi & Shirooka, 2014), and ENSO teleconnections can (de)constructively inter-246

fere with MJO teleconnections (e.g. Stan et al., 2017; Henderson & Maloney, 2018; Hen-247

derson et al., 2020; Tseng et al., 2020; Arcodia et al., 2020). Recent studies have iden-248

tified possible changes to both MJO and ENSO variability (Maloney et al., 2018; Cai et249

al., 2021) as well as their teleconnections (e.g. Fredriksen et al., 2020; Beverley et al.,250

2021; W. Zhou et al., 2020; Samarasinghe et al., 2021) under future climate warming.251

Thus, the changes in midlatitude subseasonal prediction skill seen in Figures 2 and 3 could252

be a reflection of changes to subseasonal variability, seasonal variability, or through a com-253

bination of changes to both.254

We find that the increase in skill along the west coast of North America and in the255

North Atlantic is supported by previous research on MJO and ENSO teleconnections in256

a warmer climate. In particular, the subseasonal skill increase along the west coast of257

North America (Figure 3f) appears to be associated with a north-eastward shift of higher258

accuracies over the North Pacific in the future (Figure 3d-e). This is consistent with re-259

search showing that PNA patterns initiated by ENSO (e.g. Meehl & Teng, 2007; Meehl260

et al., 2007; Müller & Roeckner, 2008; Kug et al., 2010; Z.-Q. Zhou et al., 2014; Fredrik-261

sen et al., 2020; Beverley et al., 2021) and the MJO (Wolding et al., 2017; W. Zhou et262

al., 2020; Jenney et al., 2021; J. Wang et al., 2022) are projected to shift eastward in a263

warmer climate in a variety of climate models, including CESM2 (Fredriksen et al., 2020;264

J. Wang et al., 2022). In the North Atlantic, increased skill is also consistent with re-265

search suggesting that the North Atlantic may become more sensitive to MJO telecon-266

nections (Samarasinghe et al., 2021) and that the ENSO-NAO teleconnection may strengthen267

(Drouard & Cassou, 2019; Fereday et al., 2020) in the future. The decrease in skill over268

the North Pacific is also consistent with recent research using a variety of CMIP6 mod-269

els that suggests the ENSO teleconnection amplitude over the North Pacific may weaken270

in a warmer climate (e.g. Fredriksen et al., 2020; Beverley et al., 2021).271

To gain insight into the neural network’s identified sources of predictability, we ap-272

ply explainable AI to create heatmaps of the relevant regions of the input tropical pre-273

cipitation the network uses to make confident and correct predictions (see Text S5; Bach274

et al., 2015; Montavon et al., 2019). In the North Pacific and North Atlantic, the net-275

work tends to focus on the tropical equatorial Pacific, typically associated with ENSO276

(Figure S6). In the North Pacific, the future decrease in skill is associated with a decrease277

in relevance of the ENSO region (Figure S6a-d). For the North Atlantic, the future in-278

crease in skill is associated with an increase in relevance of the ENSO region (Figure S6e-279

h). These explainability results suggest that the changes in subseasonal prediction skill280

may be related to changes in the importance of the ENSO region (i.e. seasonal variabil-281

ity), even though both subseasonal and seasonal variability are contributing to the to-282

tal skill (Figure S8-S9). This changing role of ENSO in both regions is also evident in283

the prediction timeseries in Figure 1. In the North Atlantic (Figure 1c), the confident284

predictions in the historical period are scattered throughout the years, whereas in the285
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Figure 4. (a,b,d,e) Frequency of a positive sign anomaly 21 days following a standardized

Niño 3.4 Index value of greater/less than +/- 1σ. Values greater (less) than 0.5 frequency in-

dicate that positive (negative) sign anomalies are more frequent. (c,f) Difference in frequency

between the future and historical time period. The left (right) column is for La Niña (El Niño).

The grey ‘x’ indicate the North Pacific and North Atlantic regions (from left to right) used in

Figures 1,2.

future period, the confident predictions correspond more frequently with ENSO events286

(darker dots mainly occur in the grey shading). The opposite is seen for the North Pa-287

cific (Figure 1b). Given the results of this analysis, we next examine if the changes in288

midlatitude subseasonal prediction skill are related to changes in ENSO teleconnections.289

We analyze the relationship between ENSO teleconnections and subseasonal pre-290

diction skill changes across the Northern Hemisphere by calculating how often a posi-291

tive z500 anomaly occurs 21 days following an El Niño/La Niña event (Figure 4). This292

metric quantifies the consistency of specific teleconnections following ENSO events and293

thus, demonstrates the downstream influence of ENSO on specific regions. Therefore,294

any regional changes to the consistency between the two time periods implies changes295

to the impact of ENSO in that region. Over the North Pacific, the consistency of the z500296

sign following both ENSO phases decreases (Figure 4c,f), suggestive of a reduction in297

the influence of ENSO teleconnections. Furthermore, the large decrease in skill over Canada298

(Figure 3f) aligns with the decrease in El Niño teleconnection consistency in the future299

(Figure 4f). Over the North Atlantic, there is a slight increase in ENSO teleconnection300

consistency which may be related to the projected strengthening of the ENSO-NAO tele-301

connection in the future (Drouard & Cassou, 2019; Fereday et al., 2020). Lastly, the in-302

crease in skill along the west coast of North America (Figure 3f) aligns with an increase303

in consistency of La Niña teleconnections (Figure 4c). Thus, we hypothesize that the sub-304

stantial changes in subseasonal prediction skill in regions across the Northern Hemisphere305

are connected to changes in ENSO teleconnections in the CESM2-LE.306

We provide further evidence of the role of seasonal variability in changes to sub-307

seasonal prediction skill through an additional neural network analysis in the North Pa-308

cific and North Atlantic. We filter out 60+ day variability from the z500 anomalies (Text309

S6) to remove low-frequency signals such as those from ENSO teleconnections. With this310

filtering, there is almost no change in skill between the historical and future period in311

the North Pacific (Figure S7c-d). This demonstrates that the decrease in skill in this re-312

gion is mainly a result of changes to seasonal variability. In the North Atlantic, the in-313

–9–



manuscript submitted to Geophysical Research Letters

crease in skill is still seen, but to a reduced degree when the lower frequencies are removed314

(Figure S7e-f). This suggests that seasonal variability is playing a role in subseasonal315

prediction skill changes in this region, however, there is also likely a contribution from316

subseasonal variability to these changes. This is consistent with research that suggests317

the North Atlantic may become more sensitive to MJO teleconnections in the future (Samarasinghe318

et al., 2021).319

The influence of seasonal variability on subseasonal prediction skill changes can be320

further examined in the North Pacific and North Atlantic by training the neural networks321

to instead predict the sign of unfiltered z500 anomalies on seasonal lead times. In the322

North Pacific, we find that changes in skill at 60 and 90 day leads are similar to that for323

a lead of 21 days. This again implies that the changes in subseasonal prediction skill seen324

in the North Pacific are due to changes in seasonal variability. In the North Atlantic, the325

change in skill for the seasonal lead time is larger than the 21 day lead time. This dif-326

ference in the change suggests that the network is focusing on different sources of pre-327

dictability for the 21 day prediction compared to the 60 or 90 day predictions, imply-328

ing again that the change in skill in the North Atlantic is not purely due to seasonal vari-329

ability changes in the future (Figure S8-S9).330

4 Conclusions331

While accurate subseasonal predictions are important for society (White et al., 2021),332

this timescale is known to exhibit limited predictability (Vitart et al., 2017). One method333

to improve prediction skill on subseasonal timescales is to utilize Earth system states which334

are known to provide enhanced subseasonal predictability when they are present (forecasts335

of opportunity; Mariotti et al., 2020). Previous research has examined how specific Earth336

system states important for subseasonal prediction (e.g. MJO and ENSO) and their tele-337

connections may change in a warmer climate (e.g. Maloney et al., 2018; Cai et al., 2021;338

J. Wang et al., 2022). To address whether these projected changes ultimately impact sub-339

seasonal predictability, we use the CESM2-LE and simple artificial neural networks to340

quantify and understand how subseasonal predictability provided by the tropics may change341

in a warmer climate. We find that there are changes to subseasonal prediction skill across342

the Northern Hemisphere and the largest differences in skill mainly occur during fore-343

casts of opportunity.344

Our results are supported by recent research on changes to MJO and ENSO tele-345

connections. In particular, the increase in skill along the west coast of North America346

is consistent with the projected eastward shift of MJO and ENSO teleconnections in the347

future (e.g. Jenney et al., 2021; J. Wang et al., 2022; Fredriksen et al., 2020; Beverley348

et al., 2021). In addition, our results suggest there is a contribution from both subsea-349

sonal and seasonal variability changes to the increase in prediction skill in the North At-350

lantic. This is consistent with research suggesting the North Atlantic becomes more sen-351

sitive to the MJO (Samarasinghe et al., 2021) and ENSO (Drouard & Cassou, 2019; Fere-352

day et al., 2020) in the future. We also identify a substantial decrease in skill over the353

North Pacific and from our analysis, hypothesize that this decrease is mainly driven by354

a reduced influence of ENSO teleconnections to this region in the future. Overall, while355

both MJO and ENSO teleconnections are projected to change in the future, our anal-356

ysis demonstrates that changes to ENSO and its teleconnections (e.g. seasonal variabil-357

ity) at least partially explain substantial changes in subseasonal prediction skill across358

the North Hemisphere in the CESM2-LE. Changes to subseasonal variability may still359

play a role in changes to subseasonal prediction skill in certain locations (e.g. North At-360

lantic), but further work is needed to understand and quantify its contribution. In ad-361

dition, we only explored the Niño 3.4 index as a metric for ENSO variability, and future362

work could further extend this to other metrics that capture ENSO dynamics and that363

may also account for possible changes in ENSO variability under climate change.364
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Using the CESM2-LE, we show that neural networks are a useful tool for identi-365

fying and understanding future changes in predictability. In addition, we find that changes366

in subseasonal prediction skill across the Northern Hemisphere are often largest during367

forecasts of opportunity, suggesting that future research on prediction skill changes should368

focus on periods of enhanced predictability. While this research addresses changes in bo-369

real wintertime subseasonal predictability provided by the tropics, future research should370

also examine how other seasons and sources of predictability may be affected in a warmer371

climate. This could include identifying possible changes to the importance of the strato-372

sphere for subseasonal prediction or changes to boreal summer subseasonal predictabil-373

ity due to changes to the importance of the boreal summer intraseasonal oscillation (B. Wang374

& Rui, 1990). Furthermore, although this work examines subseasonal predictability changes375

by the end of the century, examining how quickly these changes may be detected is also376

worthy of study. Ultimately, this research demonstrates the utility of neural networks377

to quantify and gain physical insight into changes in subseasonal predictability in future378

climates.379

Open Research380

CESM2 Large Ensemble data (precipitation, SSTs and z500) are provided by the381

University Corporation for Atmospheric Research/National Center for Atmospheric Re-382

search (https://www.cesm.ucar.edu/projects/community-projects/LENS2/data-sets383

.html).384

Acknowledgments385

This research is partially funded by the NSF Graduate Research Fellowship under grant386

006784 and partially funded by the Regional and Global Model Analysis program area387

of the U.S. Department of Energy’s Office of Biological and Environmental Research as388

part of the Program for Climate Model Diagnosis and Intercomparison project.389

The authors declare that they have no conflict of interest.390

References391

Ahn, M., Kim, D., Kang, D., Lee, J., Sperber, K. R., Gleckler, P. J., . . . Kim, H.392

(2020, June). MJO propagation across the maritime continent: Are CMIP6393

models better than CMIP5 models? Geophys. Res. Lett., 47 (11), 741.394

Arcodia, M. C., Kirtman, B. P., & Siqueira, L. S. P. (2020). How MJO teleconnec-395

tions and ENSO interference impacts US precipitation. J. Clim..396

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W.397

(2015, July). On Pixel-Wise explanations for Non-Linear classifier decisions by398

Layer-Wise relevance propagation. PLoS One, 10 (7), e0130140.399

Baggett, C. F., Barnes, E. A., Maloney, E. D., & Mundhenk, B. D. (2017, July).400

Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales.401

Geophys. Res. Lett., 44 (14), 2017GL074434.402

Beverley, J. D., Collins, M., Hugo Lambert, F., & Chadwick, R. (2021, August).403

Future changes to el niño teleconnections over the north pacific and north404

america. J. Clim., 34 (15), 6191–6205.405

Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.-S., . . .406

Zhong, W. (2021, August). Changing el niño–southern oscillation in a warming407

climate. Nature Reviews Earth & Environment , 2 (9), 628–644.408

Cassou, C. (2008, September). Intraseasonal interaction between the Madden-Julian409

oscillation and the north atlantic oscillation. Nature, 455 (7212), 523–527.410

Cassou, C., Kushnir, Y., Hawkins, E., Pirani, A., Kucharski, F., Kang, I.-S., &411

Caltabiano, N. (2018, March). Decadal climate variability and predictability:412

–11–



manuscript submitted to Geophysical Research Letters

Challenges and opportunities. Bull. Am. Meteorol. Soc., 99 (3), 479–490.413

Chapman, W. E., Monache, L. D., Alessandrini, S., Subramanian, A. C., Mar-414

tin Ralph, F., Xie, S.-P., . . . Hayatbini, N. (2021, October). Probabilistic415

predictions from deterministic atmospheric river forecasts with deep learning.416

Mon. Weather Rev., -1 (aop).417

Cui, J., & Li, T. (2021, October). Changes in MJO characteristics and impacts in418

the past century. J. Clim., -1 (aop), 1–1.419

Danabasoglu, G., Lamarque, J. Bacmeister, J., Bailey, D. A., DuVivier, A. K., Ed-420

wards, J., . . . Strand, W. G. (2020, February). The community earth system421

model version 2 (CESM2). J. Adv. Model. Earth Syst., 12 (2), 106.422

Davenport, F. V., & Diffenbaugh, N. S. (2021, July). Using machine learning to an-423

alyze physical causes of climate change: A case study of U.S. midwest extreme424

precipitation. Geophys. Res. Lett..425

Drouard, M., & Cassou, C. (2019, December). A modeling- and Process-Oriented426

study to investigate the projected change of ENSO-Forced wintertime telecon-427

nectivity in a warmer world. J. Clim., 32 (23), 8047–8068.428

Fereday, D. R., Chadwick, R., Knight, J. R., & Scaife, A. A. (2020, October). Trop-429

ical rainfall linked to stronger future ENSO-NAO teleconnection in CMIP5430

models. Geophys. Res. Lett., n/a(n/a), e2020GL088664.431

Fredriksen, H.-B., Berner, J., Subramanian, A. C., & Capotondi, A. (2020, Novem-432

ber). How does el niño–southern oscillation change under global warming—a433

first look at CMIP6. Geophys. Res. Lett., 47 (22).434

Friedman, J. H. (2012, July). Fast sparse regression and classification. Int. J. Fore-435

cast., 28 (3), 722–738.436

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning437

(Vol. 1). MIT press Cambridge.438

Gordon, E. M., Barnes, E. A., & Hurrell, J. W. (2021, November). Oceanic439

harbingers of pacific decadal oscillation predictability in CESM2 detected440

by neural networks. Geophys. Res. Lett., 48 (21).441

Ham, Y.-G., Kim, J.-H., & Luo, J.-J. (2019, September). Deep learning for multi-442

year ENSO forecasts. Nature, 573 (7775), 568–572.443

Henderson, S. A., & Maloney, E. D. (2018, July). The impact of the Madden–Julian444

oscillation on High-Latitude winter blocking during el niño–southern oscillation445

events. J. Clim., 31 (13), 5293–5318.446

Henderson, S. A., Maloney, E. D., & Barnes, E. A. (2016, June). The influence447

of the Madden–Julian oscillation on northern hemisphere winter blocking. J.448

Clim., 29 (12), 4597–4616.449

Henderson, S. A., Vimont, D. J., & Newman, M. (2020, June). The critical role of450

Non-Normality in partitioning tropical and extratropical contributions to PNA451

growth. J. Clim., 33 (14), 6273–6295.452

Hendon, H. H., Zhang, C., & Glick, J. D. (1999, August). Interannual variation of453

the Madden–Julian oscillation during austral summer. J. Clim., 12 (8), 2538–454

2550.455

Hoskins, B. J., & Ambrizzi, T. (1993, June). Rossby wave propagation on a realistic456

longitudinally varying flow. J. Atmos. Sci., 50 (12), 1661–1671.457

Hoskins, B. J., & Karoly, D. J. (1981, June). The steady linear response of a spheri-458

cal atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 (6), 1179–459

1196.460

Jenney, A. M., Randall, D. A., & Barnes, E. A. (2021, July). Drivers of uncertainty461

in future projections of Madden–Julian oscillation teleconnections. Weather462

Clim. Dynam., 2 (3), 653–673.463

Johnson, N. C., Collins, D. C., Feldstein, S. B., L’Heureux, M. L., & Riddle, E. E.464

(2014, February). Skillful wintertime north american temperature forecasts465

out to 4 weeks based on the state of ENSO and the MJO. Weather Forecast.,466

29 (1), 23–38.467

–12–



manuscript submitted to Geophysical Research Letters

Kessler, W. S. (2001, July). EOF representations of the Madden–Julian oscillation468

and its connection with ENSO. J. Clim., 14 (13), 3055–3061.469

Kingma, D. P., & Ba, J. (2014, December). Adam: A method for stochastic opti-470

mization.471

Kug, J.-S., An, S.-I., Ham, Y.-G., & Kang, I.-S. (2010, May). Changes in el niño472

and la niña teleconnections over north Pacific–America in the global warming473

simulations. Theor. Appl. Climatol., 100 (3), 275–282.474

Labe, Z. M., & Barnes, E. A. (2022, May). Predicting slowdowns in decadal climate475

warming trends with explainable neural networks. Geophys. Res. Lett..476

Lin, H., Brunet, G., & Derome, J. (2009, January). An observed connection between477

the north atlantic oscillation and the Madden–Julian oscillation. J. Clim.,478

22 (2), 364–380.479

Madden, R. A., & Julian, P. R. (1971, July). Detection of a 40–50 day oscillation in480

the zonal wind in the tropical pacific. J. Atmos. Sci., 28 (5), 702–708.481

Madden, R. A., & Julian, P. R. (1972, September). Description of Global-Scale482

circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 (6),483

1109–1123.484

Maloney, E. D., Adames, Á. F., & Bui, H. X. (2018, December). Madden–Julian os-485

cillation changes under anthropogenic warming. Nat. Clim. Chang., 9 (1), 26–486

33.487

Mamalakis, A., Ebert-Uphoff, I., & Barnes, E. A. (2021, March). Neural network488

attribution methods for problems in geoscience: A novel synthetic benchmark489

dataset.490

Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., . . .491

Albers, J. (2020, January). Windows of opportunity for skillful forecasts492

subseasonal to seasonal and beyond. Bull. Am. Meteorol. Soc..493

Martin, Z. K., Barnes, E. A., & Maloney, E. (2022, May). Using simple, explainable494

neural networks to predict the Madden-Julian oscillation. J. Adv. Model. Earth495

Syst..496

Mayer, K. J., & Barnes, E. A. (2021, May). Subseasonal forecasts of opportunity497

identified by an explainable neural network. Geophys. Res. Lett..498

McGovern, A., Lagerquist, R., Gagne, D. J., Eli Jergensen, G., Elmore, K. L.,499

Homeyer, C. R., & Smith, T. (2019, November). Making the black box more500

transparent: Understanding the physical implications of machine learning.501

Bull. Am. Meteorol. Soc., 100 (11), 2175–2199.502

Meehl, G. A., Tebaldi, C., Teng, H., & Peterson, T. C. (2007, October). Current and503

future U.S. weather extremes and el niño. Geophys. Res. Lett., 34 (20).504

Meehl, G. A., & Teng, H. (2007, October). Multi-model changes in el niño telecon-505

nections over north america in a future warmer climate. Clim. Dyn., 29 (7-8),506

779–790.507

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K.-R. (2019).508

Layer-Wise relevance propagation: An overview. In W. Samek, G. Montavon,509

A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpret-510

ing, explaining and visualizing deep learning (pp. 193–209). Cham: Springer511

International Publishing.512

Moon, J.-Y., Wang, B., & Ha, K.-J. (2011, September). ENSO regulation of MJO513

teleconnection. Clim. Dyn., 37 (5), 1133–1149.514

Mori, M., & Watanabe, M. (2008). The growth and triggering mechanisms of the515

PNA: A MJO-PNA coherence. . 2 , 86 (1), 213–236.516

Müller, & Roeckner. (2008). ENSO teleconnections in projections of future climate517

in ECHAM5/MPI-OM. Climate Dynamics, 31 , 533–549.518

Namias, J. (1986, July). Persistence of flow patterns over north america and adja-519

cent ocean sectors. Mon. Weather Rev., 114 (7), 1368–1383.520

Ncar climate data guide. (2020). https://climatedataguide.ucar.edu/climate521

-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni. (Accessed: 2022-2-522

–13–



manuscript submitted to Geophysical Research Letters

11)523

Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). Determination524

press San Francisco, CA.525

Pohl, B., & Matthews, A. J. (2007, June). Observed changes in the lifetime and526

amplitude of the Madden–Julian oscillation associated with interannual ENSO527

sea surface temperature anomalies. J. Clim., 20 (11), 2659–2674.528

Rasp, S., & Thuerey, N. (2021, February). Data-driven medium-range weather529

prediction with a resnet pretrained on climate simulations: A new model for530

WeatherBench. J. Adv. Model. Earth Syst., 13 (2).531

Riddle, E. E., Stoner, M. B., Johnson, N. C., L’Heureux, M. L., Collins, D. C., &532

Feldstein, S. B. (2013, April). The impact of the MJO on clusters of winter-533

time circulation anomalies over the north american region. Clim. Dyn., 40 (7),534

1749–1766.535

Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G.,536

Deser, C., . . . Others (2021). Ubiquity of human-induced changes in climate537

variability. Earth System Dynamics Discussions, 1–22.538

Roundy, P. E., MacRitchie, K., Asuma, J., & Melino, T. (2010, August). Modula-539

tion of the global atmospheric circulation by combined activity in the Madden–540

Julian oscillation and the el niño–southern oscillation during boreal winter. J.541

Clim., 23 (15), 4045–4059.542

Samarasinghe, S. M., Connolly, C., Barnes, E. A., Ebert-Uphoff, I., & Sun, L. (2021,543

March). Strengthened causal connections between the MJO and the north at-544

lantic with climate warming. Geophys. Res. Lett., 48 (5).545

Sardeshmukh, P. D., & Hoskins, B. J. (1988, April). The generation of global ro-546

tational flow by steady idealized tropical divergence. J. Atmos. Sci., 45 (7),547

1228–1251.548

Sheshadri, A., Borrus, M., Yoder, M., & Robinson, T. (2021, December). Midlat-549

itude error growth in atmospheric GCMs: The role of eddy growth rate. Geo-550

phys. Res. Lett., 48 (23).551

Simpson, I. R., Deser, C., McKinnon, K. A., & Barnes, E. A. (2018, October). Mod-552

eled and observed multidecadal variability in the north atlantic jet stream and553

its connection to sea surface temperatures. J. Clim., 31 (20), 8313–8338.554

Stan, C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. D., & Schumacher,555

C. (2017, December). Review of Tropical-Extratropical teleconnections on556

intraseasonal time scales: The subseasonal to seasonal (S2S) teleconnection557

Sub-Project. Rev. Geophys., 55 (4), 902–937.558

Takahashi, C., & Shirooka, R. (2014, September). Storm track activity over the559

north pacific associated with the Madden-Julian oscillation under ENSO condi-560

tions during boreal winter. J. Geophys. Res., 119 (18), 10,663–10,683.561

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2020, September). Physically in-562

terpretable neural networks for the geosciences: Applications to earth system563

variability. J. Adv. Model. Earth Syst., 12 (9).564

Trenberth, K. E. (1997). The definition of el nino. Bull. Am. Meteorol. Soc., 78 (12),565

2771–2778.566

Tseng, K.-C., Barnes, E. A., & Maloney, E. D. (2018, January). Prediction of the567

midlatitude response to strong Madden-Julian oscillation events on S2S time568

scales: PREDICTION OF Z500 AT S2S TIME SCALES. Geophys. Res. Lett.,569

45 (1), 463–470.570

Tseng, K.-C., Maloney, E., & Barnes, E. A. (2020, May). The consistency of MJO571

teleconnection patterns on interannual time scales. J. Clim., 33 (9), 3471–572

3486.573

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., . . .574

Zhang, L. (2017, January). The subseasonal to seasonal (S2S) prediction575

project database. Bull. Am. Meteorol. Soc., 98 (1), 163–173.576

–14–



manuscript submitted to Geophysical Research Letters

Wallace, J. M., & Gutzler, D. S. (1981, April). Teleconnections in the geopoten-577

tial height field during the northern hemisphere winter. Mon. Weather Rev.,578

109 (4), 784–812.579

Wang, B., & Rui, H. (1990, March). Synoptic climatology of transient tropical in-580

traseasonal convection anomalies: 1975–1985. Meteorol. Atmos. Phys., 44 (1),581

43–61.582

Wang, J., Kim, H., & DeFlorio, M. J. (2022). Future changes of PNA-like MJO tele-583

connections in CMIP6 models: underlying mechanisms and uncertainty. Jour-584

nal of Climate, 1–40.585

Wang, L., & Robertson, A. W. (2019, May). Week 3–4 predictability over the united586

states assessed from two operational ensemble prediction systems. Clim. Dyn.,587

52 (9), 5861–5875.588

Welch, B. L. (1947). The generalisation of student’s problems when several different589

population variances are involved. Biometrika, 34 (1-2), 28–35.590

Weyn, J. A., Durran, D. R., Caruana, R., & Cresswell-Clay, N. (2021, June). Sub-591

seasonal forecasting with a large ensemble of deep-learning weather prediction592

models. J. Adv. Model. Earth Syst..593

White, C. J., Domeisen, D. I. V., Acharya, N., Adefisan, E. A., Anderson, M. L.,594

Aura, S., . . . Wilson, R. G. (2021, November). Advances in the application595

and utility of subseasonal-to-seasonal predictions. Bull. Am. Meteorol. Soc.,596

-1 (aop), 1–57.597

Wolding, B. O., Maloney, E. D., Henderson, S., & Branson, M. (2017, March). Cli-598

mate change and the madden-julian oscillation: A vertically resolved weak599

temperature gradient analysis. J. Adv. Model. Earth Syst., 9 (1), 307–331.600

Zhang, Y., Wallace, J. M., & Iwasaka, N. (1996, July). Is climate variability over the601

north pacific a linear response to ENSO? J. Clim., 9 (7), 1468–1478.602

Zheng, C., Kar-Man Chang, E., Kim, H.-M., Zhang, M., & Wang, W. (2018, Au-603

gust). Impacts of the Madden–Julian oscillation on Storm-Track activity,604

surface air temperature, and precipitation over north america.605

Zhou, W., Yang, D., Xie, S.-P., & Ma, J. (2020, July). Amplified Madden–Julian606

oscillation impacts in the Pacific–North america region. Nat. Clim. Chang.,607

10 (7), 654–660.608

Zhou, Z.-Q., Xie, S.-P., Zheng, X.-T., Liu, Q., & Wang, H. (2014, December). Global609

Warming–Induced changes in el niño teleconnections over the north pacific and610

north america. J. Clim., 27 (24), 9050–9064.611

–15–



GEOPHYSICAL RESEARCH LETTERS

Supporting Information for “Quantifying the Effect

of Climate Change on Midlatitude Subseasonal

Prediction Skill Provided by the Tropics”

Kirsten J. Mayer 1and Elizabeth A. Barnes 1

1Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Contents of this file

1. Text S1 to S7

2. Figures S1 to S9

Corresponding author: Kirsten J. Mayer, kirsten.j.mayer@gmail.com

May 5, 2022, 9:32pm



X - 2 :

Overview In the supporting information, we provide details on the robustness of our re-

sults to changes in the number of training ensemble members and variations in the neural

network architecture and hyperparameters. The sensitivity of the results to the choice of

members used for validation and testing are examined as well. We also include information

about the random chance and bootstrapping analysis, and provide additional information

on the neural network explainability technique and the seasonal filtering results, along

with the corresponding figures. Confidence versus accuracy diagrams for seasonal predic-

tions are also included.

Text S1: Network Sensitivity to the Number of Training Members To test

whether 8 training ensemble members (members #1-8) are sufficient for this analysis, 100

neural networks are trained with different sized training sets, starting with only 1 mem-

ber and increasing to 8 members iteratively (moving left to right in Figure S1). Figure

S1a,b includes the accuracies of the testing member (#10) for all predictions and Figure

S1c,d includes the accuracies for the corresponding 20% most confident predictions. In

the North Pacific (Figure S1a,c), the skill for the historical and future periods plateaus

at about 5 training members for both all and the most confident predictions. The North

Atlantic (Figure S1b,d) shows more skill variability with training size, but generally main-

tains the same range of skill for each period when 3 or more ensemble members are used.

The skill variability in the North Atlantic may be related to different multidecadal vari-

ability states within each ensemble member (e.g. Simpson et al. 2018). Different lower

frequency/background states can ultimately impact how well and what the network learns
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and thus, impact the skill of the network. For example, the skill of the network is reduced

for historical predictions in the North Atlantic by adding ensemble member #5 to the

training dataset (Figure S1b,d). However, the skill then rebounds to comparable values

to the smaller training datasets when members #1-8 are used for training. This suggests

that the network has enough data to learn about these various multidecadal predictability

states simulated in the previous individual ensemble members. While the Pacific is also

impacted by longer timescales, it is more prominently impacted by decadal variability

instead (e.g. Cassou et al. 2018).

Text S2: Network Architecture and Sensitivity to Hyperparameters The neural

network used in this study consists of two layers of 128 and 8 nodes, respectively. The

rectified linear unit “relu” activation function is applied to the hidden layers. Categorical

cross entropy is used for the loss function and the batch size is set to 256 samples. Adam

(Kingma and Ba 2014) is used as an optimizer with a learning rate of 0.001. We reduce the

learning rate exponentially by e−0.1 for each epoch after 10 epochs to assist the network

in minimizing the loss. To reduce overfitting on the training data, ridge regression (L2 =

1.0; Friedman 2012) is applied to the first hidden layer and early stopping is implemented.

Ridge regression is used to direct the network to account for spatial autocorrelation within

the input field (tropical precipitation). Early stopping monitors the validation prediction

accuracy, so when the validation prediction accuracy does not increase for more than 20

epochs, the network stops training and reverts back to the network weights from 20 epochs

before. Otherwise, the network concludes training at 100 epochs. We find that a patience
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of 20 epochs is useful for this problem to reduce overfitting since the network never trains

for the full 100 epochs when early stopping is implemented. The output layer consists of 2

nodes and uses the softmax activation function. The softmax activation function converts

the output into two numbers which sum to 1 and can be interpreted as the likelihood

of a given prediction, referred to as “model confidence”. A more detailed description

of network training for a similar artificial neural network is provided in the supporting

information of Mayer and Barnes (2021) and additional information on artificial neural

networks in general can be found in Nielsen (2015) and Goodfellow et al. (2016).

To test the sensitivity of our conclusions to the network architecture and hyperparameter

choice, the learning rate, ridge regression parameter, nodes per layer and the number or

layers were all varied and the validation accuracy compared (Figure S3-S4). Figure S3 (S4)

shows results for the North Pacific (Atlantic), where the validation member #9 accuracy

of 10 trained models with different initial weights are shown for each hyperparameter

variation and time period. The network hyperparameters and architecture for this analysis

were ultimately chosen because it has some of the highest validation skill for both the

historical and the future time period in the North Atlantic, but also performs well in the

North Pacific (Figure S3-S4). We initially focus on the skill of the network in the North

Atlantic because it is more difficult for the network to predict than the North Pacific. We

also see that slight variations of these hyperparameters show similar skill to the network

chosen.

We note that for the North Pacific hyperparameter sweep (Figure S3), validation mem-

ber #9 shows a decrease in skill for all predictions between the historical and the future
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period which is not seen with the testing member (Figure 2a). We believe that the de-

crease in skill in the validation data between the two time periods is likely a result of

slight overfitting of the validation during the historical time period due to its use for early

stopping (not shown).

Text S3: Random Chance Analysis To calculate random chance for each network

across all confidence levels, 1000 time series are created with an equal number of 0s and

1s to represent ‘truth’. Corresponding ‘predicted’ time series are created by randomly

selecting values between 0 and 1 (confidence values) and subsequently, creating time se-

ries of the predicted class (0 or 1) from these confidence values. The accuracy of these

predictions is then calculated for each time series at each percent confidence threshold.

The 95th percentile and below of this distribution is shaded in light blue in Figure 2a,c.

Text S4: Accuracy Bootstrapping Analysis Due to the computational costs of train-

ing 100 networks for each grid point in the Northern Hemisphere, 10 neural networks are

trained for each location instead. To check whether these changes identified in the North

Pacific and North Atlantic with 100 networks can be seen using only 10 networks, and to

provide a reference of the magnitude of significant skill changes for the other grid points

in Figure 3, we used the 100 models trained for both the North Pacific and North Atlantic

to conduct a bootstrapping analysis.

For each location, from the 100 models trained, 10 models are randomly selected and

the top three networks are chosen, defined using the three highest 20% most confident
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validation accuracies. The mean of the 20% most confident testing accuracies is then

calculated for these three models, identical to the method used to calculate the testing

accuracy for each grid point in Figure 3. This is repeated 1000 times for each time period

with the resulting distributions plotted in Figure S5. For each region, we find that the

direction of change in skill for 10 networks is the same as that for 100 networks, and the

future accuracy is statistically different than the historical time period using a one-sided

Welch’s t-test (Welch 1947) at a 95% confidence level (p-value < 0.0001). For the North

Pacific (Atlantic), we test whether the future period is statistically less (greater) than the

historical. Therefore, we find that 10 networks is sufficient for identifying these subsea-

sonal prediction skill changes.

Text S5: Layer-wise Relevance Propagation Layer-wise Relevance Propagation

(LRP; Bach et al. 2015; Montavon et al. 2019) is a neural network (attribution) ex-

plainability technique that creates a heatmap of the estimated “relevance” of the input

for a given prediction. Here, we use the LRPz rule, which has been shown to perform well

for specific geoscience applications. This is especially true compared to methods which

neglect negative preactivations (e.g. LRP alpha=1, beta=0). These methods have been

shown to impact the relevance magnitude and assign the same sign relevance independent

of whether they contribute positively or negatively to the final prediction (Mamalakis et

al. 2021). For an individual prediction, LRPz backpropagates relevance information from

an output node through the network to create a heatmap of the estimated regions of the

input that the network found most relevant for its prediction, where positive (negative)
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relevance denotes positive (negative) contributions to the final output. The softmax acti-

vation function is removed before back propagation and the heatmap for each prediction

is normalized by dividing by the absolute maximum relevance value in that map. Figure

S6 shows the average of the correct and confident predictions’ heatmaps for an example

neural network. We find that other networks produce similar LRP maps to this example.

In both the North Pacific and North Atlantic, the differences in relevance between the

two time periods are most evident in the equatorial Pacific. In the North Pacific, the

relevance of this region is generally reduced and the focus shifts westward in the future

period. In the North Atlantic, the relevance of this region increases in the future, mainly

over the western equatorial Pacific. The change in relevance of the equatorial Pacific

corresponds with the change in prediction skill for both regions and suggests that the

network’s changing focus in the equatorial Pacific is related to the changes in subseasonal

prediction skill.

Text S6: Seasonal Filtering Analysis To further examine the possible role of seasonal

variability influencing future subseasonal prediction skill, we task the neural network to

predict the sign of z500 anomalies using only z500 variability on shorter than 60 day

(subseasonal) timescales. The z500 anomalies are filtered by removing the forward 60 day

running mean. This filtering is used to direct the network to focus on tropical precipitation

specifically related to midlatitude subseasonal variability in the z500 anomalies. Thus,

changes to prediction skill between the two time periods are a result of changes in the

ability to specifically predict midlatitude variability with shorter than 60 day periods.
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We use this approach to identify if the changes in skill are mainly related to changes

in midlatitude subseasonal variability or if the changes are related purely to changes in

seasonal variability, or a combination of the two. We note that this filtering analysis

could have been conducted for the main paper, however, we wanted to retain seasonal

variability information to identify possible skill changes that could be seen in a typical

subseasonal forecast. For each time period and region, 100 networks are again trained

and their accuracies across model confidence thresholds are computed (Figure S7).

Overall, the removal of seasonal variability reduces the information the network can

use for its predictions, so the filtering leads to a decrease in skill for both time periods

compared to the unfiltered predictand. In the North Pacific (Figure S7a-b), there is vir-

tually no difference between the historical and future period when seasonal variability is

removed because the historical skill decreases more than the future skill, resulting in sim-

ilar accuracies across model confidence thresholds. This implies that the historical period

relies more on seasonal variability for subseasonal prediction than the future period, con-

sistent with the LRP analysis. The lack of skill change between the two time periods also

implies that the change in subseasonal prediction skill seen in the unfiltered analysis is

related to midlatitude seasonal variability instead of subseasonal. In the North Atlantic,

we see that the future period still has higher prediction skill compared to the historical,

although, the overall skill for both time periods is reduced (Figure S7c-d). A reduction

in skill for both time periods is expected because the LRP maps suggest that both time

periods rely, at least partially, on the ENSO regions for the predictions. However, even

with midlatitude seasonal variability removed from z500, there is still an increase in skill
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from the historical to the future time period over the North Atlantic, suggesting there are

other shorter timescale variability contributors to the increase in midlatitude subseasonal

prediction skill in the future.

Text S7: Seasonal Predictions To check whether the neural networks are using more

than seasonal information for their predictions, we train 100 neural networks for East Asia,

the North Pacific and the North Atlantic for leads of 60 and 90 days (Figure S8-S9). East

Asia is also analyzed here because of the unexpected increase in subseasonal prediction

skill in the future (Figure 3). By training the networks at seasonal lead times, we can

assess whether the prediction skill in each region only comes from seasonal variability. In

other words, if only seasonal variability is contributing to the prediction skill, there should

be no difference in skill between a lead of 21 days and a lead of 60 or 90 days.

We see that in East Asia (Figure S8a-b, S9a-b) the neural networks have similar skill

whether trained at a lead of 21, 60 or 90 days. This suggests that the skill seen at 21

days is likely skill from seasonal variability alone. On the other hand, the North Pacific

(Figure S8c-d, S9c-d) and the North Atlantic (Figure S8e-f, S9e-f) both show higher skill

at a lead of 21 days, suggesting that in these regions the neural network is using more

than seasonal variability for its predictions. Lastly, Figures S8 and S9 demonstrate that

the changes in skill between the historical and future periods at a lead of 21 days (Figure

2), are similar to those for seasonal lead predictions, particularly in the North Pacific. In

the North Atlantic, the change in skill is larger for the seasonal lead predictions than the

21 day lead. This implies that the networks for the 21 day lead prediction use sources of
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predictability other than seasonal variability to make predictions, ultimately impacting

how much the skill changes between time periods. Overall, this analysis again suggests

that seasonal variability is playing a role in the changes to subseasonal prediction skill,

but the magnitude of the seasonal influence varies by region.
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Figure S1. Box and whisker plots of (a,b) all prediction and (c,d) the 20% most confident

prediction accuracies for testing ensemble member #10 for the (a,c) North Pacific and (b,d)

North Atlantic using increasing numbers of ensemble members for training. Training members

#1-8 are used for the main analysis. The black (red) denotes the historical (future) period and

the x-axis are the members used to train. The dots indicate individual accuracy for each of the

100 models trained. The white line across each box is the median of the models and the edges

of the boxes are the 25th and 75th percentiles.
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Figure S2. As in main text Figure 3, but with ensemble members #3-10 for training, member

#2 for validation and member #1 for testing.
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Figure S3. Validation (member #9) box and whisker plots of accuracies for 10 trained

models in the North Pacific for variations combinations of the learning rate, ridge regression

(L2), nodes per layer, and number of layers. Networks accuracies for a learning rate of 0.001

(0.0001) are in the left (right) column. Ridge regression values (denoted in the bottom left of

each figure) increase from top to bottom and the network depth increases from left to right,

where the number(s) represent the number of nodes per layer.
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Figure S4. As in Figure S2, but for the North Atlantic.
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Figure S5. Histograms of bootstrapped top 3 models’ mean 20% most confident testing

accuracies with a bin size of 0.5% for (a) the North Pacific and (b) the North Atlantic, where

grey and red refer to the historical and future, respectively.
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Figure S6. Example average layer-wise relevance plots for the 20% most confident and correct

predictions in the North Pacific (a-d) and the North Atlantic (e-h). The top two panels for each

locations (a-b, e-f) are the historical period and the bottom two panels for each location (c-d,

g-h) are the future period. The left column includes heatmaps for the negative predictions and

the right column includes heatmaps for the positive predictions. Red (blue) colors indicate the

location had a positive (negative) contribution to the correct prediction. The percentage at the

top of each panel is the precision of each sign prediction and ‘N’ is the number of samples in

each average.
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Figure S7. As in Figure 2 in the main text, but with 60+ day z500 anomaly variability

removed from the predictand.

May 5, 2022, 9:32pm



X - 18 :

Figure S8. Accuracy versus confidence for 100 trained networks for the (left) historical and

(right) future time period at leads of 21 (pink) and 60 (teal) days in (a,b) East Asia, (c,d) the

North Pacific and (e,f) the North Atlantic. Accuracies are calculated using the testing member

#10 and the thicker lines denote the median accuracy across the 100 networks at each confidence

threshold. The pink lines are the same as the red/grey lines included in Figure 2 for the respective

location and time period. May 5, 2022, 9:32pm
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Figure S9. As in Figure S8, but for a lead of 90 days.
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