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Abstract

The ocean plays a critical role in reducing the human impact on the climate by absorbing and sequestering CO2. To quantify

the ocean carbon sink, surface ocean pCO2; must be estimated across space and time. Sparse in situ pCO2; observations

began in the 1980s, thus only global ocean biogeochemical models (GOBMs) have been the basis for quantification of the ocean

carbon sink prior to the 1980s. The LDEO-Hybrid Physics Data product (LDEO-HPD) incorporates the physical knowledge

within the GOBMs and corrects these estimates to observations. Here, we extend the LDEO-HPD product back to 1959 using

a climatology of model-observation misfits. LDEO-HPD is closer to independent observations than unadjusted GOBMs. Most

of the improvement from the GOBM prior in LDEO-HPD is attributable to the climatological adjustment, which supports the

use of a climatological adjustment prior to 1982. Air-sea CO2; fluxes for 1959-2020 demonstrate response to atmospheric pCO2

growth and volcanic eruptions.
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Key Points:7

• A temporal extension of an observation-based product for surface ocean pCO2 (LDEO-8

HPD) is presented.9

• An XGB algorithm adjusts ocean models toward in situ data for 1982-2020; a cli-10

matological adjustment is applied for 1959-1981.11

• The ocean carbon sink from 1959-2020 has responded to atmospheric pCO2 growth12

and volcanic eruptions.13
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Abstract14

The ocean plays a critical role in reducing the human impact on the climate by absorb-15

ing and sequestering CO2. To quantify the ocean carbon sink, surface ocean pCO2 must16

be estimated across space and time. Sparse in situ pCO2 observations began in the 1980s,17

thus only global ocean biogeochemical models (GOBMs) have been the basis for quan-18

tification of the ocean carbon sink prior to the 1980s. The LDEO-Hybrid Physics Data19

product (LDEO-HPD) incorporates the physical knowledge within the GOBMs and cor-20

rects these estimates to observations. Here, we extend the LDEO-HPD product back to21

1959 using a climatology of model-observation misfits. LDEO-HPD is closer to indepen-22

dent observations than unadjusted GOBMs. Most of the improvement from the GOBM23

prior in LDEO-HPD is attributable to the climatological adjustment, which supports the24

use of a climatological adjustment prior to 1982. Air-sea CO2 fluxes for 1959-2020 demon-25

strate response to atmospheric pCO2 growth and volcanic eruptions.26

Plain Language Summary27

The ocean removes carbon dioxide (CO2) from the atmosphere and reduces climate28

change caused by humans. The magnitude of this removal can be estimated using com-29

puter models of ocean physics, chemistry, and biology, as well as statistical extrapola-30

tions of observations. The observational record is too sparse to directly reconstruct air-31

sea fluxes prior to 1982, but by combining models and a statistical approach, we make32

an estimate for 1959-present that is substantially informed by observations. The LDEO-33

HPD product for air-sea CO2 exchange includes two periods, with the first previously34

published for 1982-2020 and the second being this extension back in time. For 1959 to35

1981, LDEO-HPD corrects models using the average of data-based corrections derived36

from the observed period. The LDEO-HPD product agrees much better with indepen-37

dent observations than the models alone, and can be used to understand what controls38

year to year changes in the ocean carbon sink.39

1 Introduction40

By absorbing and sequestering carbon dioxide from the atmosphere, the global oceans41

play a critical role in modulating climate change. The ocean has absorbed 37% of fos-42

sil carbon emissions since the start of the industrial age (Friedlingstein et al., 2021). Quan-43

tifying the distribution of carbon emissions across the land biosphere, oceans, and at-44

mosphere is an important support to climate policy (Peters et al., 2017). In order to es-45

timate air-sea fluxes of carbon dioxide, the driver of these fluxes, the partial pressure of46

carbon dioxide in the surface waters (pCO2), must be estimated.47

Global ocean biogeochemical models (GOBMs) explicitly model the physics, biol-48

ogy and chemistry of the ocean carbonate system and resulting pCO2. Observation-based49

products utilize sparse observations of the partial pressure of CO2 (pCO2) from the Sur-50

face Ocean CO2 ATlas (SOCAT) (Bakker et al., 2016), and train a machine learning al-51

gorithm to relate these data to full-coverage observations of associate variables such that52

pCO2 can be estimated at all points in space and time. Although the resulting statis-53

tical models often do not explicitly include the known physics of the ocean carbonate54

system, the results compare well to independent observations of pCO2 (Gregor et al., 2019;55

Denvil-Sommer et al., 2019; Landschützer et al., 2014; Bennington et al., 2022). The mixed56

layer model of Rodenbeck et al. (2013, 2021) does incorporate some physical processes,57

differing from the other machine learning based products.58

While both global ocean biogeochemical models (GOBMs) and observation-based59

products are used to estimate this air-sea gas exchange of CO2 for the recent historical60

period, observation-based products have been limited to the period of in situ observa-61

tions that began in the 1980s. Eight GOBMs were used to quantify the historical air-62

–2–



manuscript submitted to Geophysical Research Letters

Table 1. Global Ocean Biogeochemical Models (GOBMs) and their corresponding references.

Global ocean biogeochemical model Reference

CESM-ETHZ Doney et al. (2009)
FESCOM2-REcoM Gurses et al. (2021)
MICOM-HAMOCC (NorESM1-OCv1.2) Schwinger et al. (2016)
MOM6-COBALT (Princeton) Adcroft et al. (2019)
MPIOM-HAMOCC6 (MPI) Paulsen et al. (2017)
NEMO-PlankTOM5 Buitenhuis et al. (2013)
NEMO-PISCES (IPSL) Aumont et al. (2015)
NEMO3.6-PISCESv2-gas (CNRM) Berthet et al. (2019)

sea CO2 flux prior to the 1980s in the Global Carbon Budget 2021 (Friedlingstein et al.,63

2021). To incorporate the physical knowledge contained within GOBMs, Gloege et al.64

(2022) utilized the machine-learning algorithm XGBoost (Chen & Guestrin, 2016) to learn65

model-observation misfits of simulated surface ocean pCO2. The resulting data prod-66

uct (LDEO-HPD) showed an improved fit compared to the independent data over other67

data products. The resulting historical reconstruction of air-sea CO2 fluxes from the ex-68

tended LDEO-HPD is within the range of other data products, and in agreement with69

2010-2020 mean flux estimates from the Global Carbon Budget 2021 (Friedlingstein et70

al., 2021).71

LDEO-HPD estimated air-sea fluxes beginning in 1982. Here, we extend LDEO-72

HPD back in time by applying the climatology of 2000-2020 estimated GOBM-observation73

misfits to the GOBMs for 1959-1981. As discussed below, this approach is supported by74

the fact that much of the skill in LDEO-HPD against independent modern observations75

is due to the climatological correction.76

This paper is organized as follows. We present the methods and resulting estimated77

air-sea CO2 fluxes for 1959-2020. We then briefly examine the resulting estimated flux78

variability in four basins and globally.79

2 Methods80

The LDEO-HPD data product (Gloege et al., 2022) utilizes the nearly global cov-81

erage of satellite sea surface temperature (SST) (Reynolds et al., 2002), sea surface salin-82

ity (SSS) (Good et al., 2013), chlorophyll-a (Maritorena et al., 2010), geographic loca-83

tion, time of year, the climatology of mixed layer depth (de Boyer Montégut et al., 2004),84

and the machine learning algorithm XGBoost (Chen & Guestrin, 2016) to create a non-85

linear function between observations and the model-data misfit of surface ocean pCO2.86

For the LDEO-HPD global reconstruction (1982-2020), misfits are calculated for each87

of eight (8) GOBMs to observed ocean surface pCO2 (Bakker et al., 2016). Then, each88

of the GOBMs are independently adjusted with these corrections, which is unique to each89

GOBM. Finally, the average of the eight adjusted GOBMs is the final pCO2 estimate.90

The GOBMs used here are the same as used in the Global Carbon Budget 2021 (Friedlingstein91

et al., 2021) (Table 1). The resulting model-data misfits are resolved at 1o latitude by92

1o longitude for each month. The complete description of the LDEO-HPD method and93

the resulting data product are detailed in Gloege et al. (2022).94

2.1 Climatology of Model-Data Misfit95

Given the lack of surface ocean pCO2 observations prior to the 1980s, we must de-96

termine what corrections (model-data misfits) to apply to the models prior to 1982. Ex-97
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Figure 1. (a) Seasonal climatology (2000-2020) of model-data misfit in the Princeton model

according to HPD. (b) Standard deviation of model-data misfit over 2000-2020 in the Princeton

model, by season.

tending the analysis of climatological misfits by Gloege et al. (2022), we examine the in-98

terannual variability of the misfits for 2000-2020. We choose this period to best capture99

interannual variability (Bennington et al., 2022) since chlorophyll-a observations do not100

start until 1998 and a climatology of chlorophyll-a must be used prior (Landschützer et101

al., 2014).102

The seasonal climatology and standard deviation of the model-data misfit for the103

Princeton GOBM is a representative example of the climatological misfit (Figure 1). Mean104

misfits are large in all seasons in the subpolar, equatorial, and Southern Ocean regions105

(Figure 1a). Interannual variability in the model-data misfit is quantified as the misfit106

standard deviation (Figure 1b). Year-to-year changes in misfits are significantly smaller107

in magnitude than the mean, typically less than 5 µatm. Larger standard deviations can108

occur during the biologically productive seasons in the subpolar regions and Southern109

Ocean. The equatorial Pacific exhibits moderate interannual variability in all seasons.110

These patterns of misfit and variability are similar across most of the ocean models (Sup-111

plementary), excepting MPIOM-HAMOCC (Gloege et al., 2022).112

Since interannual variability in the reconstructed model-data misfit is generally small113

compared to the misfit mean, our approach to extending LDEO-HPD to the beginning114

of the model simulations is to use the monthly climatology of the 2000-2020 model-data115

misfit as the 1959-1981 correction for the GOBMs. This correction is separately calcu-116

lated for, and applied to, each of eight GOBMs. The final pCO2 reconstruction is the117

ensemble mean of the eight corrected GOBM pCO2 estimates (modeled pCO2 + recon-118

structed correction).119
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Table 2. Observation-based products (Fay et al., 2021) and their corresponding references.

Data Product Reference

LDEO-HPD Gloege et al. (2022), this paper
JENA MLS Rödenbeck et al. (2021)
CSIR ML6 Gregor et al. (2019)
MPI SOMFFN Landschützer et al. (2014)
CMEMS FFNN Denvil-Sommer et al. (2019)
pCO2 Residual Bennington et al. (2022)

To assess how interannual variability is impacted by the climatological correction,120

comparison to independent data is required. These data do not exist in sufficient num-121

ber for the 1959-1981 period, but do exist after 1990. Thus, we create an alternative re-122

construction, HPDClimatologyTest, that applies the climatology of the model-data mis-123

fit for 2000-2020 to the entire reconstruction period (1959-2020). With HPDClimatologyTest,124

we can assess the impact of a climatological correction on the interannual variability of125

the reconstruction.126

Figure 2 compares the original uncorrected GOBMs (squares), and five observation-127

based products (crosses) to GLODAP and LDEO observations for 1990-2020. The observation-128

based products all have substantially greater skill than the uncorrected GOBMs. HPDClimatologyTest129

(solid blue diamond) has similar skill as the suite of observation-based products (Fig-130

ure 2). This leads to an important finding, which is that most of LDEO-HPD’s skill is131

due to the correction of the GOBM’s climatological mean state and seasonality (Fay &132

McKinley, 2021) rather than their interannual variability. The additional skill achieved133

by adding interannual variability to the corrections (1) is shown by the difference between134

HPDClimatologyTest and LDEO-HPD, which is modest for GLODAP (Figure 2a) and slightly135

larger for LDEO (Figure 2b). This additional increment of skill brings LDEO-HPD clos-136

est to the independent observations of these currently-available observation-based prod-137

ucts (Gloege et al., 2022).138

2.2 CO2 Flux Calculations139

In the previous comparisons, we consider pCO2. To assess the global ocean car-140

bon sink associated with these pCO2 estimates, air-sea CO2 exchange must be calculated.141

We use the same gas transfer velocity, solubility, winds, and ice for LDEO-HPD, other142

observation-based products, and the GOBMs so that differences in these calculations do143

not factor into the resulting comparison (Fay et al., 2021). EN4.2.2 salinity (Good et al.,144

2013); ERA5 winds, sea level pressure, and sea surface temperature; (Bell et al., 2020,145

2019); the wind scaling factor for ERA5 (Gregor & Fay, 2021); and Hadley sea ice frac-146

tional coverage (Rayner et al., 2003) are used. Unreconstructed coastal areas in data prod-147

ucts are filled with the scaled coastal pCO2 climatology (Landschützer et al., 2020), also148

following Fay et al. (2021).149

Air-sea CO2 flux (FCO2) is estimated using a bulk parameterization (Equation 1),150

FCO2 = Kw ·K0 · (1 − icefraction) · (pCOsea
2 − pCOatm

2 ) (1)151

where Kw is the gas-transfer velocity calculated from wind speeds, scaled to the 16.5 cm/hr152

14C bomb flux estimate according to Wanninkhof (1992) and Sweeney et al. (2007) as153

in Gregor and Fay (2021); K0 is the solubility calculated using salinity and SST; pCOatm
2154

is the water vapor corrected atmospheric partial pressure of CO2 from CarboScope (Rödenbeck,155

2005); and pCOsea
2 is the surface ocean pCO2.156

–5–
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Figure 2. Taylor diagrams (Taylor, 2001) depict the skill of each ocean model (squares),

previous data products (crosses), LDEO-HPD (blue cross), and HPDClimatologyTest. The ability

to capture observed pCO2 variability for 1990-2020 is evaluated against two global datasets (a)

GLODAP and (b) LDEO. The red star indicates the standard deviation of each dataset. Dis-

tance along the radius represents the ability to capture observed variability (standard deviation).

The distance along the circumference depicts correlation with the observations, and grey inlaid

circles show unbiased RMSE compared to the observations.

Data products which incorporate observations of surface ocean pCO2 include both157

natural and anthropogenic carbon in the resulting pCO2 and CO2 flux product. This158

is the net CO2 flux (Fnet = Fnatural + Fant). Global ocean biogeochemical models ex-159

clude the natural outgassing of riverine carbon (Fnatural), which caused net CO2 efflux160

from the preindustrial ocean (Aumont et al., 2001). To quantify the anthropogenic air-161

sea CO2 flux, this Fnatural must be subtracted from our net flux, given that the mod-162

els have been corrected toward pCO2 observations consistent with Fnet. Quantifying the163

global air-sea CO2 flux due to decomposition and outgassing of riverine carbon remains164

uncertain and is the topic of current research. Here, as in Gloege et al. (2022) and Bennington165

et al. (2022), we use an average of three estimates: Jacobson et al. (2007): (0.45 +/- 0.18166

PgC/yr), Resplandy et al. (2018): (0.78 +/- 0.41 PgC/yr), and Lacroix et al. (2020): (0.23167

Pg C / yr). The combined estimated efflux due to riverine carbon is 0.49 +/- 0.26 Pg168

C/yr, and we remove the efflux of 0.49 PgC/yr from the estimated annual air-sea CO2169

fluxes calculated using the LDEO-HPD and other data products’ pCO2.170

2.3 Box model171

The box model of McKinley et al. (2020) estimates the global-mean air-sea CO2172

flux that occurs in response to the observed growth of atmospheric pCO2. It also has173

the option to include upper ocean heat content anomalies driven by the 3 most climat-174

ically impactful volcanic eruptions of the last 60 years: Agung in 1963, El Chichon in175

1982, and Mt Pinatubo in 1991 (Crisp et al., 2021). Comparing air-sea CO2 fluxes es-176

timated by the box model for 1960-2019 allows consideration of flux variability with and177

without large volcanic influences and puts LDEO-HPD into context with previous com-178

parisons of the box model to observation-based products (McKinley et al., 2020).179

–6–
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3 Results180

3.1 CO2 Fluxes181

Air-sea CO2 fluxes for 1959-2020 from LDEO-HPD, the eight GOBMs, previously182

published observation-based products, and HPDClimatologyTest demonstrate a long-term183

increasing trend punctuated by interannual variability (Figure 3a). There most signif-184

icant feature of this variability is the slowed growth in uptake during the 1990s (Le Quéré185

et al., 2007; Lovenduski et al., 2007, 2008; Fay & McKinley, 2013; Landschützer et al.,186

2015).187

In LDEO-HPD, interannual variability prior to 1982 is driven by only the GOBMs;188

only the mean flux and seasonality have been adjusted with climatological model-data189

misfits. The adjustment leads to a larger mean flux than most of the GOBMs (Figure190

3a). From 1982 onward, the flux in LDEO-HPD is very similar to HPDClimatologyTest,191

but has larger extremes. These differences are due to the interannually varying adjust-192

ments that are possible only during the observed period. This comparison indicates that193

LDEO-HPD likely underestimates the amplitude of interannual anomalies prior to 1982,194

which is to be expected when there are no data to directly drive the reconstruction to-195

ward extremes (Rödenbeck et al., 2021).196

Examining the spatial patterns of the mean air-sea carbon dioxide fluxes for each197

20 year period in Figure 3b, we see a reduced Pacific equatorial efflux during 1980-1999198

compared to the other periods, consistent with the occurrence of multiple strong El Niño199

events in this period (e.g. 1982-83, 1997-98). In the Northern extratropics, the sink strength-200

ens over time.201

Integrated flux anomalies at each latitude reveal the spatial distribution of inter-202

annual anomalies (Figure 4). Consistent with the global timeseries (Figure 3a), the dom-203

inant feature is the long-term growth (red to blue) of the ocean carbon sink at all lat-204

itudes.205

The Pacific Ocean has large integrated flux variability, with significant anomalies206

occurring on interannual timescales within the equatorial region as a result of ENSO (McKinley207

et al., 2004, 2017; Rödenbeck et al., 2021). The Southern Ocean experiences significant208

carbon sink decadal variations (Le Quéré et al., 2007; Lovenduski et al., 2007, 2008; Land-209

schützer et al., 2015, 2016; Ritter et al., 2017; McKinley et al., 2017; Gruber et al., 2019).210

Significant negative anomalies (greater uptake) occur in the 1980s to early 1990s, with211

anomalies of greatest intensity in 1992-93. After 1997, a strong positive anomaly (reduced212

uptake) emerges and extends for about a decade. From 2009 on, the anomaly is again213

negative in the Southern Ocean. These decadal variations remain after detrending the214

air-sea fluxes (Figure S2). In the Atlantic, latitudes north of 40oN have the most intense215

fluxes. This basin is narrower than the others, and thus has a lower integrated flux and216

lower amplitude interannual variability. The Indian Ocean exhibits significant variabil-217

ity south of 10oS according to the reconstruction; however the region is particularly sparse218

in observations to guide the reconstruction, which should increase its uncertainty (Gloege219

et al., 2021).220

Increased uptake occurs in the Pacific and Southern Oceans immediately follow-221

ing the eruptions of Agung (March 1963), El Chichon (March 1982) and Mt. Pinatubo222

(June 1991). These can also be seen in the detrended flux anomalies (Figure S2). In the223

equatorial Pacific, the El Niño events that tend to follow these eruptions drive signifi-224

cant flux anomalies (Eddebbar et al., 2019). After El Chichon and Pinatubo, slight neg-225

ative anomalies also occur in the Southern Hemisphere Atlantic. The globally-averaged226

box model of McKinley et al. (2020) parameterizes these eruptions as upper ocean heat227

content anomalies; the estimated fluxes correlate highly with LDEO-HPD (Figure S1d,228

r=0.82). If the eruptions are neglected, the correlation decreases (r=0.64). When both229

timeseries are detrended, the correlations remain significant only when the eruptions are230
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Figure 3. (a) Estimated air-sea CO2 fluxes for 1959-2020 (Pg C/yr): LDEO-HPD (blue),

HPDClimatologyTest (cyan), unadjusted GOBMs (grey), Jena MLS (magenta), other observation-

based products (green); comparisons shown in separate panels in Figure S1. HPDClimatologyTest

is identical to LDEO-HPD prior to 1982. (b) Map of mean air-sea CO2 fluxes for 1960-1979,

1980-1999, and 2000-2020 according to LDEO-HPD (mol C / yr).
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Figure 4. Air-sea CO2 flux anomalies in four ocean basins (TgC/yr/olat).
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included in the box model (with eruptions, r=0.51, p<0.05; without, r=-0.23, p=0.13).231

Thus, both the box model and the spatial patterns of flux anomalies (Figure 4) indicates232

the potential for large volcanoes to impact interannual variability of the global ocean car-233

bon sink since 1959. A more detailed study of this issue in the LDEO-HPD product will234

be presented elsewhere.235

4 Discussion and Conclusions236

This work temporally extends the LDEO-HPD data product back in time to be-237

gin in 1959. For 1982-2020, model-data misfits are calculated for each model and each238

month as in Gloege et al. (2022). For 1959-1981, the monthly climatology of this cor-239

rection for 2000-2020 is applied independently to each of eight GOBMs. Across all years,240

the final LDEO-HPD pCO2 estimate is the average across the eight corrected models.241

In comparison to independent data in the modern era, we find that the substan-242

tial improvement over uncorrected GOBMs is due primarily to the correction of the model243

mean and seasonality; i.e. the climatological correction. There are significant regional244

biases in the mean and seasonality of many GOBMs (Fay & McKinley, 2021; Hauck et245

al., 2020), and this observation-based approach can substantially improve these biases246

to bring the resulting estimates closer to observations (Figure 2). At the same time, this247

approach can preserve the GOBMs capability to represent interannual variability (Fig-248

ure 3) that occurs in response to external forcing and internal ocean processes. By com-249

bining the strengths of models and observations with the LDEO-HPD approach, we have250

developed a robust approach to temporally extend this observation-based product back251

to 1959.252

Compared to another recently developed extension, Jena MLS (Rödenbeck et al.,253

2021), the two sink estimates are significantly correlated (r=0.93, p=0 and r=0.66, p=0254

when series are detrended). The two reconstructions span the range of model flux es-255

timates prior to 1990s (Figure 3b), after which observations better constrain the prod-256

ucts. Jena-MLS has a significantly larger estimated trend in the ocean carbon sink over257

the reconstructed period. However, as discussed by Rödenbeck et al. (2021) (their sec-258

tion A2), Jena-MLS in its current version overestimates the flux trend; thus, it likely un-259

derestimates the sink for the pre-observation decades.260

LDEO-HPD indicates that the ocean carbon sink increased over the last 60 years,261

due to the long-term growth of atmospheric pCO2 (Raupach et al., 2014; McKinley et262

al., 2020; Ridge & McKinley, 2021). Long-term growth is punctuated by year-to-year vari-263

ability. Consistent with many earlier studies, the equatorial Pacific and Southern Ocean264

have the largest integrated impact on variations of the sink (Le Quéré et al., 2003; McKin-265

ley et al., 2004; Resplandy et al., 2015; McKinley et al., 2017; Landschützer et al., 2016;266

Hauck et al., 2020). The timing of these changes is consistent with ENSO variability in267

the equatorial Pacific. The Southern Ocean exhibits strong decadal timescale variations268

for which both internal and externally-forced mechanisms have been proposed. Better269

understanding the variability of ocean carbon uptake in the Southern Ocean and across270

the globe is an important task that can be facilitated by observation-based products such271

as LDEO-HPD.272
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S1. Reconstructed Air-Sea CO2 Fluxes

Figure S1 shows the air-sea CO2 fluxes reconstructed by LDEO-HPD as compared to

the eight GOBMs and HPD Climatology Test (Figure S1 a), Jena MLS (Figure S1 b),

other observation-based products (Figure S1 c) and the box model simulations with and

without volcanoes (McKinley et al., 2020) (Figure S1 d).

S2. Anomalies of Detrended Reconstructed Air-Sea CO2 Fluxes

Figure S2 shows the anomalies of detrended air-sea CO2 fluxes in the four ocean basins.

The years of major volcanic eruptions are depicted with vertical grey lines Agung (1963),

El Chichon (1982) and Mt. Pinatubo (1991). The Pacific and Southern Oceans show

clear increases in their ocean sink immediately following the volcanic eruptions.
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Figure S1. (a) Air-sea CO2 fluxes for 1959-2020 according to LDEO-HPD (blue), HPD

Climatology Test (cyan), and the nine unadjusted GOBMs (grey). (b) Air-sea CO2 fluxes for

1959-2020 according to LDEO-HPD (blue) and Jena MLS (magenta) (Rödenbeck et al., 2021).

(c) Air-sea CO2 fluxes for 1959-2020 according to LDEO-HPD (blue) and the other data products

(green). (d) Air-sea CO2 fluxes for 1960-2018 according to LDEO-HPD (blue) and the box model

of McKinley et al. (2020) with volcanoes (red) and without volcanoes (dashed red).
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Figure S2. Detrended air-sea CO2 flux anomalies in four ocean basins (TgC/yr/olat). Major

volcanic eruptions denoted with vertical grey lines (Agung, March 1963; Chichon, April 1982;

Pinatubo, June 1991).
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