Observation-based variability in the global ocean carbon sink from 1959-2020

Val Bennington¹, Lucas Gloege², and Galen A McKinley³

¹Lamont Doherty Earth Institute of Columbia University ²Columbia University ³Lamont Doherty Earth Observatory of Columbia University

November 22, 2022

Abstract

The ocean plays a critical role in reducing the human impact on the climate by absorbing and sequestering CO2. To quantify the ocean carbon sink, surface ocean pCO2; must be estimated across space and time. Sparse in situ pCO2; observations began in the 1980s, thus only global ocean biogeochemical models (GOBMs) have been the basis for quantification of the ocean carbon sink prior to the 1980s. The LDEO-Hybrid Physics Data product (LDEO-HPD) incorporates the physical knowledge within the GOBMs and corrects these estimates to observations. Here, we extend the LDEO-HPD product back to 1959 using a climatology of model-observation misfits. LDEO-HPD is closer to independent observations than unadjusted GOBMs. Most of the improvement from the GOBM prior in LDEO-HPD is attributable to the climatological adjustment, which supports the use of a climatological adjustment prior to 1982. Air-sea CO2; fluxes for 1959-2020 demonstrate response to atmospheric pCO2 growth and volcanic eruptions.

Observation-based variability in the global ocean carbon sink from 1959-2020

Val Bennington^{1,2}, Lucas Gloege³, Galen A. McKinley¹

 $^{1}\mathrm{Lamont}\text{-}\mathrm{Doherty}$ Earth Observatory at Columbia University $^{2}\mathrm{Makai}$ Ocean Engineering, Inc. $^{3}\mathrm{NASA}\text{-}\mathrm{GISS}$

Key Points:

1

2

3

4 5 6

7

13

8	• A temporal extension of an observation-based product for surface ocean pCO ₂ (LDEO-
9	HPD) is presented.
10	• An XGB algorithm adjusts ocean models toward in situ data for 1982-2020; a cli-
11	matological adjustment is applied for 1959-1981.
12	- The ocean carbon sink from 1959-2020 has responded to atmospheric pCO_2 growth
13	and volcanic eruptions.

 $Corresponding \ author: \ Val \ Bennington, \ Valerie. Bennington \ Cmakai. com$

14 Abstract

The ocean plays a critical role in reducing the human impact on the climate by absorb-15 ing and sequestering CO_2 . To quantify the ocean carbon sink, surface ocean pCO_2 must 16 be estimated across space and time. Sparse in situ pCO_2 observations began in the 1980s, 17 thus only global ocean biogeochemical models (GOBMs) have been the basis for quan-18 tification of the ocean carbon sink prior to the 1980s. The LDEO-Hybrid Physics Data 19 product (LDEO-HPD) incorporates the physical knowledge within the GOBMs and cor-20 rects these estimates to observations. Here, we extend the LDEO-HPD product back to 21 1959 using a climatology of model-observation misfits. LDEO-HPD is closer to indepen-22 dent observations than unadjusted GOBMs. Most of the improvement from the GOBM 23 prior in LDEO-HPD is attributable to the climatological adjustment, which supports the 24 use of a climatological adjustment prior to 1982. Air-sea CO_2 fluxes for 1959-2020 demon-25 strate response to atmospheric pCO_2 growth and volcanic eruptions. 26

27 Plain Language Summary

The ocean removes carbon dioxide (CO_2) from the atmosphere and reduces climate 28 change caused by humans. The magnitude of this removal can be estimated using com-29 puter models of ocean physics, chemistry, and biology, as well as statistical extrapola-30 tions of observations. The observational record is too sparse to directly reconstruct air-31 sea fluxes prior to 1982, but by combining models and a statistical approach, we make 32 33 an estimate for 1959-present that is substantially informed by observations. The LDEO-HPD product for air-sea CO_2 exchange includes two periods, with the first previously 34 published for 1982-2020 and the second being this extension back in time. For 1959 to 35 1981, LDEO-HPD corrects models using the average of data-based corrections derived 36 from the observed period. The LDEO-HPD product agrees much better with indepen-37 dent observations than the models alone, and can be used to understand what controls 38 year to year changes in the ocean carbon sink. 39

40 1 Introduction

By absorbing and sequestering carbon dioxide from the atmosphere, the global oceans play a critical role in modulating climate change. The ocean has absorbed 37% of fossil carbon emissions since the start of the industrial age (Friedlingstein et al., 2021). Quantifying the distribution of carbon emissions across the land biosphere, oceans, and atmosphere is an important support to climate policy (Peters et al., 2017). In order to estimate air-sea fluxes of carbon dioxide, the driver of these fluxes, the partial pressure of carbon dioxide in the surface waters (pCO₂), must be estimated.

Global ocean biogeochemical models (GOBMs) explicitly model the physics, biol-48 ogy and chemistry of the ocean carbonate system and resulting pCO₂. Observation-based 49 products utilize sparse observations of the partial pressure of CO_2 (p CO_2) from the Sur-50 face Ocean CO₂ ATlas (SOCAT) (Bakker et al., 2016), and train a machine learning al-51 gorithm to relate these data to full-coverage observations of associate variables such that 52 pCO_2 can be estimated at all points in space and time. Although the resulting statis-53 tical models often do not explicitly include the known physics of the ocean carbonate system, the results compare well to independent observations of pCO_2 (Gregor et al., 2019; 55 Denvil-Sommer et al., 2019; Landschützer et al., 2014; Bennington et al., 2022). The mixed 56 layer model of Rodenbeck et al. (2013, 2021) does incorporate some physical processes, 57 differing from the other machine learning based products. 58

⁵⁹ While both global ocean biogeochemical models (GOBMs) and observation-based ⁶⁰ products are used to estimate this air-sea gas exchange of CO₂ for the recent historical ⁶¹ period, observation-based products have been limited to the period of in situ observa-⁶² tions that began in the 1980s. Eight GOBMs were used to quantify the historical air
 Table 1.
 Global Ocean Biogeochemical Models (GOBMs) and their corresponding references.

8	
CESM-ETHZ	Doney et al. (2009)
FESCOM2-REcoM	Gurses et al. (2021)
MICOM-HAMOCC (NorESM1-OCv1.2)	Schwinger et al. (2016)
MOM6-COBALT (Princeton)	Adcroft et al. (2019)
MPIOM-HAMOCC6 (MPI)	Paulsen et al. (2017)
NEMO-PlankTOM5	Buitenhuis et al. (2013)
NEMO-PISCES (IPSL)	Aumont et al. (2015)
NEMO3.6-PISCESv2-gas (CNRM)	Berthet et al. (2019)

Global ocean biogeochemical model Reference

sea CO₂ flux prior to the 1980s in the Global Carbon Budget 2021 (Friedlingstein et al.,
 2021). To incorporate the physical knowledge contained within GOBMs, Gloege et al.

(2022) utilized the machine-learning algorithm XGBoost (Chen & Guestrin, 2016) to learn

model-observation misfits of simulated surface ocean pCO₂. The resulting data prod uct (LDEO-HPD) showed an improved fit compared to the independent data over other

467 uct (LDEO-HPD) showed an improved fit compared to the independent data over other 468 data products. The resulting historical reconstruction of air-sea CO₂ fluxes from the ex-

tended LDEO-HPD is within the range of other data products, and in agreement with
 2010-2020 mean flux estimates from the Global Carbon Budget 2021 (Friedlingstein et
 al., 2021).

LDEO-HPD estimated air-sea fluxes beginning in 1982. Here, we extend LDEO HPD back in time by applying the climatology of 2000-2020 estimated GOBM-observation
 misfits to the GOBMs for 1959-1981. As discussed below, this approach is supported by
 the fact that much of the skill in LDEO-HPD against independent modern observations
 is due to the climatological correction.

This paper is organized as follows. We present the methods and resulting estimated air-sea CO₂ fluxes for 1959-2020. We then briefly examine the resulting estimated flux variability in four basins and globally.

80 2 Methods

The LDEO-HPD data product (Gloege et al., 2022) utilizes the nearly global cov-81 erage of satellite sea surface temperature (SST) (Reynolds et al., 2002), sea surface salin-82 ity (SSS) (Good et al., 2013), chlorophyll-a (Maritorena et al., 2010), geographic loca-83 tion, time of year, the climatology of mixed layer depth (de Boyer Montégut et al., 2004), 84 and the machine learning algorithm XGBoost (Chen & Guestrin, 2016) to create a non-85 linear function between observations and the model-data misfit of surface ocean pCO_2 . 86 For the LDEO-HPD global reconstruction (1982-2020), misfits are calculated for each 87 of eight (8) GOBMs to observed ocean surface pCO_2 (Bakker et al., 2016). Then, each 88 of the GOBMs are independently adjusted with these corrections, which is unique to each 89 GOBM. Finally, the average of the eight adjusted GOBMs is the final pCO_2 estimate. 90 The GOBMs used here are the same as used in the Global Carbon Budget 2021 (Friedlingstein 91 et al., 2021) (Table 1). The resulting model-data misfits are resolved at 1° latitude by 92 1° longitude for each month. The complete description of the LDEO-HPD method and 93 the resulting data product are detailed in Gloege et al. (2022). 94

95 **2.**

2.1 Climatology of Model-Data Misfit

Given the lack of surface ocean pCO₂ observations prior to the 1980s, we must determine what corrections (model-data misfits) to apply to the models prior to 1982. Ex-

Figure 1. (a) Seasonal climatology (2000-2020) of model-data misfit in the Princeton model according to HPD. (b) Standard deviation of model-data misfit over 2000-2020 in the Princeton model, by season.

tending the analysis of climatological misfits by Gloege et al. (2022), we examine the interannual variability of the misfits for 2000-2020. We choose this period to best capture interannual variability (Bennington et al., 2022) since chlorophyll-a observations do not start until 1998 and a climatology of chlorophyll-a must be used prior (Landschützer et al., 2014).

The seasonal climatology and standard deviation of the model-data misfit for the 103 Princeton GOBM is a representative example of the climatological misfit (Figure 1). Mean 104 misfits are large in all seasons in the subpolar, equatorial, and Southern Ocean regions 105 (Figure 1a). Interannual variability in the model-data misfit is quantified as the misfit 106 standard deviation (Figure 1b). Year-to-year changes in misfits are significantly smaller 107 in magnitude than the mean, typically less than 5 μ atm. Larger standard deviations can 108 occur during the biologically productive seasons in the subpolar regions and Southern 109 Ocean. The equatorial Pacific exhibits moderate interannual variability in all seasons. 110 These patterns of misfit and variability are similar across most of the ocean models (Sup-111 plementary), excepting MPIOM-HAMOCC (Gloege et al., 2022). 112

Since interannual variability in the reconstructed model-data misfit is generally small compared to the misfit mean, our approach to extending LDEO-HPD to the beginning of the model simulations is to use the monthly climatology of the 2000-2020 model-data misfit as the 1959-1981 correction for the GOBMs. This correction is separately calculated for, and applied to, each of eight GOBMs. The final pCO_2 reconstruction is the ensemble mean of the eight corrected GOBM pCO_2 estimates (modeled pCO_2 + reconstructed correction).

Table 2. Observation-based products (Fay et al., 2021) and their corresponding references.

Data Froduct	Reference
LDEO-HPD	Gloege et al. (2022), this paper
JENA MLS	Rödenbeck et al. (2021)
CSIR ML6	Gregor et al. (2019)
MPI SOMFFN	Landschützer et al. (2014)
CMEMS FFNN	Denvil-Sommer et al. (2019)
pCO_2 Residual	Bennington et al. (2022)

Data Product | Reference

To assess how interannual variability is impacted by the climatological correction, comparison to independent data is required. These data do not exist in sufficient number for the 1959-1981 period, but do exist after 1990. Thus, we create an alternative reconstruction, $\text{HPD}_{ClimatologyTest}$, that applies the climatology of the model-data misfit for 2000-2020 to the entire reconstruction period (1959-2020). With $\text{HPD}_{ClimatologyTest}$, we can assess the impact of a climatological correction on the interannual variability of the reconstruction.

Figure 2 compares the original uncorrected GOBMs (squares), and five observation-127 based products (crosses) to GLODAP and LDEO observations for 1990-2020. The observation-128 based products all have substantially greater skill than the uncorrected GOBMs. HPD_{ClimatologyTest} 129 (solid blue diamond) has similar skill as the suite of observation-based products (Fig-130 ure 2). This leads to an important finding, which is that most of LDEO-HPD's skill is 131 due to the correction of the GOBM's climatological mean state and seasonality (Fay & 132 McKinley, 2021) rather than their interannual variability. The additional skill achieved 133 by adding interannual variability to the corrections (1) is shown by the difference between 134 HPD_{ClimatologyTest} and LDEO-HPD, which is modest for GLODAP (Figure 2a) and slightly 135 larger for LDEO (Figure 2b). This additional increment of skill brings LDEO-HPD clos-136 est to the independent observations of these currently-available observation-based prod-137 ucts (Gloege et al., 2022). 138

139

2.2 CO₂ Flux Calculations

In the previous comparisons, we consider pCO₂. To assess the global ocean car-140 bon sink associated with these pCO_2 estimates, air-sea CO_2 exchange must be calculated. 141 We use the same gas transfer velocity, solubility, winds, and ice for LDEO-HPD, other 142 observation-based products, and the GOBMs so that differences in these calculations do 143 not factor into the resulting comparison (Fay et al., 2021). EN4.2.2 salinity (Good et al., 144 2013); ERA5 winds, sea level pressure, and sea surface temperature; (Bell et al., 2020, 145 2019); the wind scaling factor for ERA5 (Gregor & Fay, 2021); and Hadley sea ice frac-146 tional coverage (Rayner et al., 2003) are used. Unreconstructed coastal areas in data prod-147 ucts are filled with the scaled coastal pCO_2 climatology (Landschützer et al., 2020), also 148 following Fay et al. (2021). 149

150

Air-sea
$$CO_2$$
 flux (FCO₂) is estimated using a bulk parameterization (Equation 1),

$$FCO_2 = K_w \cdot K0 \cdot (1 - ice_{fraction}) \cdot (pCO_2^{sea} - pCO_2^{atm})$$

(1)

where K_w is the gas-transfer velocity calculated from wind speeds, scaled to the 16.5 cm/hr 14C bomb flux estimate according to Wanninkhof (1992) and Sweeney et al. (2007) as in Gregor and Fay (2021); K0 is the solubility calculated using salinity and SST; pCO₂^{atm} is the water vapor corrected atmospheric partial pressure of CO₂ from CarboScope (Rödenbeck, 2005); and pCO₂^{sea} is the surface ocean pCO₂.

Figure 2. Taylor diagrams (Taylor, 2001) depict the skill of each ocean model (squares), previous data products (crosses), LDEO-HPD (blue cross), and $HPD_{ClimatologyTest}$. The ability to capture observed pCO₂ variability for 1990-2020 is evaluated against two global datasets (a) GLODAP and (b) LDEO. The red star indicates the standard deviation of each dataset. Distance along the radius represents the ability to capture observed variability (standard deviation). The distance along the circumference depicts correlation with the observations, and grey inlaid circles show unbiased RMSE compared to the observations.

Data products which incorporate observations of surface ocean pCO_2 include both 157 natural and anthropogenic carbon in the resulting pCO₂ and CO₂ flux product. This 158 is the net CO_2 flux ($F_{net} = F_{natural} + F_{ant}$). Global ocean biogeochemical models ex-159 clude the natural outgassing of riverine carbon $(F_{natural})$, which caused net CO₂ efflux 160 from the preindustrial ocean (Aumont et al., 2001). To quantify the anthropogenic air-161 sea CO_2 flux, this $F_{natural}$ must be subtracted from our net flux, given that the mod-162 els have been corrected toward pCO_2 observations consistent with F_{net} . Quantifying the 163 global air-sea CO_2 flux due to decomposition and outgassing of riverine carbon remains 164 uncertain and is the topic of current research. Here, as in Gloege et al. (2022) and Bennington 165 et al. (2022), we use an average of three estimates: Jacobson et al. (2007): (0.45 + - 0.18)166 PgC/yr), Resplandy et al. (2018): (0.78 +/- 0.41 PgC/yr), and Lacroix et al. (2020): (0.23) 167 Pg C / yr). The combined estimated efflux due to riverine carbon is 0.49 + - 0.26 Pg 168 C/yr, and we remove the efflux of 0.49 PgC/yr from the estimated annual air-sea CO_2 169 fluxes calculated using the LDEO-HPD and other data products' pCO₂. 170

171 **2.3 Box model**

The box model of McKinley et al. (2020) estimates the global-mean air-sea CO_2 172 flux that occurs in response to the observed growth of atmospheric pCO_2 . It also has 173 the option to include upper ocean heat content anomalies driven by the 3 most climat-174 ically impactful volcanic eruptions of the last 60 years: Agung in 1963, El Chichon in 175 1982, and Mt Pinatubo in 1991 (Crisp et al., 2021). Comparing air-sea CO_2 fluxes es-176 timated by the box model for 1960-2019 allows consideration of flux variability with and 177 without large volcanic influences and puts LDEO-HPD into context with previous com-178 parisons of the box model to observation-based products (McKinley et al., 2020). 179

3 **Results**

181

3.1 CO₂ Fluxes

Air-sea CO_2 fluxes for 1959-2020 from LDEO-HPD, the eight GOBMs, previously published observation-based products, and $HPD_{ClimatologyTest}$ demonstrate a long-term increasing trend punctuated by interannual variability (Figure 3a). There most significant feature of this variability is the slowed growth in uptake during the 1990s (Le Quéré et al., 2007; Lovenduski et al., 2007, 2008; Fay & McKinley, 2013; Landschützer et al., 2015).

In LDEO-HPD, interannual variability prior to 1982 is driven by only the GOBMs; 188 only the mean flux and seasonality have been adjusted with climatological model-data 189 misfits. The adjustment leads to a larger mean flux than most of the GOBMs (Figure 190 3a). From 1982 onward, the flux in LDEO-HPD is very similar to HPD_{ClimatologyTest}, 191 but has larger extremes. These differences are due to the interannually varying adjust-192 ments that are possible only during the observed period. This comparison indicates that 193 LDEO-HPD likely underestimates the amplitude of interannual anomalies prior to 1982, 194 which is to be expected when there are no data to directly drive the reconstruction to-195 ward extremes (Rödenbeck et al., 2021). 196

Examining the spatial patterns of the mean air-sea carbon dioxide fluxes for each 20 year period in Figure 3b, we see a reduced Pacific equatorial efflux during 1980-1999 compared to the other periods, consistent with the occurrence of multiple strong El Niño events in this period (e.g. 1982-83, 1997-98). In the Northern extratropics, the sink strengthens over time.

Integrated flux anomalies at each latitude reveal the spatial distribution of interannual anomalies (Figure 4). Consistent with the global timeseries (Figure 3a), the dominant feature is the long-term growth (red to blue) of the ocean carbon sink at all latitudes.

The Pacific Ocean has large integrated flux variability, with significant anomalies 206 occurring on interannual timescales within the equatorial region as a result of ENSO (McKinley 207 et al., 2004, 2017; Rödenbeck et al., 2021). The Southern Ocean experiences significant 208 carbon sink decadal variations (Le Quéré et al., 2007; Lovenduski et al., 2007, 2008; Land-209 schützer et al., 2015, 2016; Ritter et al., 2017; McKinley et al., 2017; Gruber et al., 2019). 210 Significant negative anomalies (greater uptake) occur in the 1980s to early 1990s, with 211 anomalies of greatest intensity in 1992-93. After 1997, a strong positive anomaly (reduced 212 uptake) emerges and extends for about a decade. From 2009 on, the anomaly is again 213 negative in the Southern Ocean. These decadal variations remain after detrending the 214 air-sea fluxes (Figure S2). In the Atlantic, latitudes north of 40° N have the most intense 215 fluxes. This basin is narrower than the others, and thus has a lower integrated flux and 216 lower amplitude interannual variability. The Indian Ocean exhibits significant variabil-217 ity south of 10° S according to the reconstruction; however the region is particularly sparse 218 in observations to guide the reconstruction, which should increase its uncertainty (Gloege 219 et al., 2021). 220

Increased uptake occurs in the Pacific and Southern Oceans immediately follow-221 ing the eruptions of Agung (March 1963), El Chichon (March 1982) and Mt. Pinatubo 222 (June 1991). These can also be seen in the detrended flux anomalies (Figure S2). In the 223 equatorial Pacific, the El Niño events that tend to follow these eruptions drive signifi-224 cant flux anomalies (Eddebbar et al., 2019). After El Chichon and Pinatubo, slight neg-225 226 ative anomalies also occur in the Southern Hemisphere Atlantic. The globally-averaged box model of McKinley et al. (2020) parameterizes these eruptions as upper ocean heat 227 content anomalies; the estimated fluxes correlate highly with LDEO-HPD (Figure S1d, 228 r=0.82). If the eruptions are neglected, the correlation decreases (r=0.64). When both 229 timeseries are detrended, the correlations remain significant only when the eruptions are 230

Figure 3. (a) Estimated air-sea CO₂ fluxes for 1959-2020 (Pg C/yr): LDEO-HPD (blue), HPD_{ClimatologyTest} (cyan), unadjusted GOBMs (grey), Jena MLS (magenta), other observationbased products (green); comparisons shown in separate panels in Figure S1. HPD_{ClimatologyTest} is identical to LDEO-HPD prior to 1982. (b) Map of mean air-sea CO₂ fluxes for 1960-1979, 1980-1999, and 2000-2020 according to LDEO-HPD (mol C / yr).

Figure 4. Air-sea CO_2 flux anomalies in four ocean basins $(TgC/yr/^{o}lat)$.

included in the box model (with eruptions, r=0.51, p<0.05; without, r=-0.23, p=0.13).
Thus, both the box model and the spatial patterns of flux anomalies (Figure 4) indicates
the potential for large volcanoes to impact interannual variability of the global ocean carbon sink since 1959. A more detailed study of this issue in the LDEO-HPD product will
be presented elsewhere.

²³⁶ 4 Discussion and Conclusions

This work temporally extends the LDEO-HPD data product back in time to begin in 1959. For 1982-2020, model-data misfits are calculated for each model and each month as in Gloege et al. (2022). For 1959-1981, the monthly climatology of this correction for 2000-2020 is applied independently to each of eight GOBMs. Across all years, the final LDEO-HPD pCO₂ estimate is the average across the eight corrected models.

In comparison to independent data in the modern era, we find that the substan-242 tial improvement over uncorrected GOBMs is due primarily to the correction of the model 243 mean and seasonality; i.e. the climatological correction. There are significant regional 244 biases in the mean and seasonality of many GOBMs (Fay & McKinley, 2021; Hauck et 245 al., 2020), and this observation-based approach can substantially improve these biases 246 to bring the resulting estimates closer to observations (Figure 2). At the same time, this 247 approach can preserve the GOBMs capability to represent interannual variability (Fig-248 ure 3) that occurs in response to external forcing and internal ocean processes. By com-249 bining the strengths of models and observations with the LDEO-HPD approach, we have 250 developed a robust approach to temporally extend this observation-based product back 251 to 1959. 252

Compared to another recently developed extension, Jena MLS (Rödenbeck et al., 253 2021), the two sink estimates are significantly correlated (r=0.93, p=0 and r=0.66, p=0254 when series are detrended). The two reconstructions span the range of model flux es-255 timates prior to 1990s (Figure 3b), after which observations better constrain the prod-256 ucts. Jena-MLS has a significantly larger estimated trend in the ocean carbon sink over 257 the reconstructed period. However, as discussed by Rödenbeck et al. (2021) (their sec-258 tion A2), Jena-MLS in its current version overestimates the flux trend; thus, it likely un-259 derestimates the sink for the pre-observation decades. 260

LDEO-HPD indicates that the ocean carbon sink increased over the last 60 years, 261 due to the long-term growth of atmospheric pCO_2 (Raupach et al., 2014; McKinley et 262 al., 2020; Ridge & McKinley, 2021). Long-term growth is punctuated by year-to-year vari-263 ability. Consistent with many earlier studies, the equatorial Pacific and Southern Ocean 264 have the largest integrated impact on variations of the sink (Le Quéré et al., 2003; McKin-265 ley et al., 2004; Resplandy et al., 2015; McKinley et al., 2017; Landschützer et al., 2016; 266 Hauck et al., 2020). The timing of these changes is consistent with ENSO variability in 267 the equatorial Pacific. The Southern Ocean exhibits strong decadal timescale variations 268 for which both internal and externally-forced mechanisms have been proposed. Better 269 understanding the variability of ocean carbon uptake in the Southern Ocean and across 270 the globe is an important task that can be facilitated by observation-based products such 271 as LDEO-HPD. 272

273 Acknowledgments

The authors acknowledge support from NOAA (NA20OAR4310340) and the Data Sci-274 ence Institute of Columbia University. L.G was sponsored by the National Aeronautics 275 and Space Administration (NASA) through a contract with ORAU. The views and con-276 clusions contained in this document are those of the authors and should not be inter-277 preted as representing the official policies, either expressed or implied, of the National 278 Aeronautics and Space Administration (NASA) or the U.S. Government. The U.S.Government 279 is authorized to reproduce and distribute reprints for Government purposes notwithstand-280 ing any copyright notation herein. We acknowledge that all data providers and quality 281 controllers who work tirelessly to maintain the SOCAT database. We also acknowledge 282 the ocean biogeochemical modelers who contribute to the Global Carbon Budget for shar-283 ing their output with us; and we thank J. Hauck specifically for her leadership on this 284 effort. EN.4.2.2 data were obtained from https://www.metoffice.gov.uk/hadobs/en4/ and 285 are © British Crown Copyright, Met Office, [2022], provided under a Non-Commercial 286 Government Licence: 287 http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/ 288 version/2/. 289 Project code available at: https://github.com/valbennington/LDEO_HPD_extension. 290

291 **References**

292	Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O.,
293	Zhang, R. (2019). The GFDL Global Ocean and Sea Ice Model OM4.0: Model
294	description and simulation features. Journal of Advances in Modeling Earth
295	Systems, 11(10), 3167-3211. doi: https://doi.org/10.1029/2019MS001726
296	Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., & Gehlen, M. (2015). PISCES-v2:
297	An ocean biogeochemical model for carbon and ecosystem studies. Geoscien-
298	tific Model Development, 8, 2465–2513. doi: 10.5194/gmd-8-2465-2015
299	Aumont, O., Orr, J. C., Monfray, P., Ludwig, W., Amiotte-Suchet, P., & Probst, J
300	L. (2001). Riverine-driven interhemispheric transport of carbon. Global Biogeo-
301	chemical Cycles, $15(2)$, 393-405. doi: https://doi.org/10.1029/1999GB001238
302	Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A.,
303	Xu, S. (2016). A multi-decade record of high-quality $f \text{CO}_2$ data in version 3
304	of the Surface Ocean CO_2 Atlas (SOCAT). Earth System Science Data, $\mathcal{S}(2)$,
305	383-413. doi: $10.5194/essd-8-383-2016$
306	Bell, B., Hersbach, H., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz Sabater,
307	J., Thépaut, JN. (2019). ERA5 monthly averaged data on single levels
308	from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data
309	Store (CDS). doi: 10.24381/cds.f17050d7
310	Bell, B., Hersbach, H., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz Sabater, J.,
311	Thépaut, JN. (2020). ERA5 monthly averaged data on single levels from
312	1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S)
313	Climate Data Store (CDS).
314	Bennington, V., Galjanic, T., & McKinley, G. A. (2022). Estimating historical air-
315	sea CO_2 fluxes: Incorporating physical knowledge within a data-only approach.
316	Journal of Advances in Modeling Earth Systems, In Review. Retrieved from
317	https://doi.org/10.1002/essoar.10510196.1
318	Berthet, S., Seferian, R., Bricaud, C., Chevallier, M., Voldoire, A., & Ethe, C.
319	(2019). Evaluation of an online grid-coarsening algorithm in a global eddy-
320	admitting ocean biogeochemical model. Journal of Aavances in Modeling Earth
321	Systems, $I1(0)$, $I759$ -1785. doi: https://doi.org/10.1029/2019M5001044
322	Duitennuis, E. I., пазнюка, I., & Quere, U. L. (2013). Combined constraints on
323	giobal ocean primary production using observations and models. Global Bio-
324	$C_{\rm box} = T_{\rm current} C_{\rm current} C_$
325	Ulen, 1., & Guestini, U. (2010). Agroost: A scalable tree boosting system. <i>CoRR</i> ,

326	abs/1603.02754.
327	Crisp, D., Dolman, H., Tanhua, T., McKinley, G. A., Hauck, J., Eggleston, S., &
328	Aich, V. (2021). How well do we understand the land-ocean-atmosphere car-
329	bon cycle? Reviews in Geophysics, in review. doi: 10.1002/essoar.10506293.2
330	de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., & Iudicone, D. (2004).
331	Mixed layer depth over the global ocean: An examination of profile data and a
332	profile-based climatology. Journal of Geophysical Research: Oceans, $109(C12)$.
333	doi: https://doi.org/10.1029/2004JC002378
334	Denvil-Sommer, A., Gehlen, M., Vrac, M., & Mejia, C. (2019). LSCE-FFNN-v1: a
335	two-step neural network model for the reconstruction of surface ocean pCO2
336	over the global ocean. Geoscientific Model Development, 12, 2091–2105. doi:
337	https://doi.org/10.5194/gmd-12-2091-2019
338	Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K., Mahowald, N.,
339	Wanninkhof, R. (2009). Mechanisms governing interannual variability in
340	upper-ocean inorganic carbon system and air-sea CO_2 fluxes: Physical climate
341	and atmospheric dust. Deep Sea Research Part II: Topical Studies in Oceanog-
342	Taphy, 50(8), 040-055. doi: https://doi.org/10.1010/J.dsr2.2008.12.000
343	Eddebbar, T. A., Rodgers, K. D., Long, M. C., Subramaman, A. C., Ale, SP., & Keeling P. F. (2010) Fl niñe like physical and biogeochemical according
344	sponse to tropical eruptions $Iowrnal of Climate - 32(0) - 2627 - 2649 doi:$
345	10 1175/JCLI-D-18-0458 1
340	Fay A B Gregor L Landschützer P McKinley G A Gruber N Gehlen M
348	Zeng J (2021) SeaFlux: harmonization of air-sea CO ₂ fluxes from sur-
349	face pCO_2 data products using a standardized approach. Earth System Science
350	Data, 13(10), 4693-4710. doi: 10.5194/essd-13-4693-2021
351	Fay, A. R., & McKinley, G. A. (2013). Global trends in surface ocean pCO2 from in
352	situ data. Global Biogeochemical Cycles, 27(2), 541–557.
353	Fay, A. R., & McKinley, G. A. (2021). Observed regional fluxes to constrain mod-
354	eled estimates of the ocean carbon sink. Geophysical Research Letters, 48(20),
355	e2021GL095325.
356	Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C.,
357	Hauck, J., others (2021). Global carbon budget 2021. Earth System
358	Science Data Discussions, 1–191.
359	Gloege, L., McKinley, G. A., Landschützer, P., Fay, A. R., Frölicher, T. L., Fyfe,
360	J. C., Takano, Y. (2021). Quantifying errors in observationally based es-
361	timates of ocean carbon sink variability. Global Biogeochemical Cycles, $35(4)$,
362	e2020GB006788. doi: https://doi.org/10.1029/2020GB006788
363	Gloege, L., Yan, M., Zheng, T., & McKinley, G. A. (2022). Improved quantifica-
364	tion of ocean carbon uptake by using machine learning to merge global models
365	and pCO_2 data. Journal of Advances in Modeling Earth Systems, 14. doi: 10.1020/2021mc002620
366	Cood C A Martin M I & Darman N A (2012) EN4: Quality controlled
367	Good, S. A., Martin, M. J., & Rayner, N. A. (2013). EN4: Quality controlled
368	uncertainty estimates Lowrnal of Coordinate Research: Oceana, 118(12)
369	6704 6716 doi: https://doi.org/10.1002/20131C000067
370	Gregor I. & Fay Δ (2021) ScaFlur: harmonized sequair CO2 flures from sur-
371	face nCO2 data products using a standardised approach Zenodo doi: 10.5281/
373	zenodo.5482547
374	Gregor, L., Lebehot, A. D., Kok, S., & Monteiro, P. M. S. (2019). A com-
375	parative assessment of the uncertainties of global surface ocean CO ₂ esti-
376	mates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have
377	we hit the wall? Geoscientific Model Development, 12, 5113–5136. doi:
378	https://doi.org/10.5194/gmd-12-5113-2019
379	Gruber, N., Landschützer, P., & Lovenduski, N. S. (2019). The variable southern
380	ocean carbon sink. Annual Review of Marine Science, 11(1), 159-186. doi: 10

381	.1146/annurev-marine-121916-063407
382	Gurses, O., Hauck, J., Zeising, M., & Oziel, L. (2021). Global ocean biogeochemical
383	modelling with FESOM2-REcoM. In EGU General Assembly Conference Ab-
384	<i>stracts</i> (pp. EGU21–14980).
385	Hauck, J., Zeising, M., Le Quéré, C., Gruber, N., Bakker, D. C. E., Bopp, L.,
386	Séférian, R. (2020). Consistency and challenges in the ocean carbon sink
387	estimate for the global carbon budget. Frontiers in $Marine Science(7)$. doi:
388	$10.3389/\mathrm{fmars}.2020.571720$
389	Jacobson, A. R., Mikaloff Fletcher, S. E., Gruber, N., Sarmiento, J. L., & Gloor, M.
390	(2007). A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide:
391	1. methods and global-scale fluxes. Global Biogeochemical Cycles, $21(1)$. doi:
392	https://doi.org/10.1029/2005GB002556
393	Lacroix, F., Ilyina, T., & Hartmann, J. (2020). Oceanic CO ₂ outgassing and biolog-
394	ical production hotspots induced by pre-industrial river loads of nutrients and
395	carbon in a global modeling approach. Biogeosciences, $17(1)$, 55-88.
396	Landschützer, P., Gruber, N., & Bakker, D. C. E. (2016). Decadal variations and
397	trends of the global ocean carbon sink. Global Biogeochemical Cycles, $30(10)$,
398	1396-1417. doi: https://doi.org/10.1002/2015GB005359
399	Landschützer, P., Gruber, N., Bakker, D. C. E., & Schuster, U. (2014). Recent vari-
400	ability of the global ocean carbon sink. Global Biogeochemical Cycles, 28(9).
401	927-949. doi: https://doi.org/10.1002/2014GB004853
402	Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E.,
403	van Heuven, S Wanninkhof, R. (2015). The reinvigoration of
404	the southern ocean carbon sink. Science, $349(6253)$, 1221-1224. doi:
405	10.1126/science.aab2620
406	Landschützer, P., Laruelle, G. G., Roobaert, A., & Regnier, P. (2020). A uniform
407	pCO ₂ climatology combining open and coastal oceans. <i>Earth System Science</i>
408	Data, 12(4), 2537-2553.
409	Le Quéré C Aumont O Monfray P & Orr J (2003) Propagation of climatic
410	events on ocean stratification, marine biology, and CO ₂ : Case studies over the
411	1979–1999 period. Journal of Geophysical Research: Oceans. 108(C12).
412	Le Quéré C Rödenbeck C Buitenbuis E T Conway T I Langenfelds R
413	Gomez, A others (2007). Saturation of the Southern Ocean CO ₂ sink due
414	to recent climate change. Science, 316(5832), 1735–1738.
415	Lovenduski N Gruber N & Doney S C (2008) Toward a mechanistic under-
415	standing of the decadal trends in the Southern Ocean carbon sink <i>Global Bio</i> -
417	aeochemical Cucles 22 GB3016
419	Lovenduski N Gruber N Doney S C & Lima I D (2007) Enhanced CO ₂ out-
410	gassing in the Southern Ocean from a positive phase of the Southern Annular
419	Mode Global Biogeochemical Cycles 21(2) GB2026
421	Maritorena S. d'Andon O. H. F. Mangin A. & Siegel D. A. (2010) Merged
421	satellite ocean color data products using a bio-optical model: Characteristics
422	benefits and issues Remate Sensing of Environment 11/(8) 1791-1804 doi:
423	https://doi.org/10.1016/j.rse 2010.04.002
424	McKinley C A Fay A B Eddebbar V A Closer L & Lovenduski N S
425	(2020) External forcing explains recent decadal variability of the ocean carbon
420	sink $ACU Advances 1(2) = 2010 AV000149$ doi: https://doi.org/10.1020/
427	$2010 \Delta V_{000140}$
428	McKinley C A Fay A B Lovenduski N S & Pilcher D L (2017) Natural
429	wrightlity and anthronogonic trands in the again earbon sink Annual review
430	of marine science 0 125-150
431	Makinlar C A Followa M I & Marchall I (2004) Machanisma of the set CO
432	fur variability in the equatorial Desife and the North Atlantic Clebel Diverse
433	nux variability in the equatorial racine and the North Atlantic. Global Biogeo-
4.34	chamical Cucles $18(2)$
434	chemical Cycles, 18(2). Poulson H. Ilvino, T. Six, K. D. & Stommler, I. (2017). Incomposition of entering the second state of

436	representation of marine nitrogen fixers into the global ocean biogeochemical
437	model HAMOCC. Journal of Advances in Modeling Earth Systems, $9(1)$, 438 -
438	464.
439	Peters, G. P., Quéré, C. L., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Ily-
440	ina, T., Tans, P. (2017). Towards real-time verification of CO_2 emissions.
441	Nature Climate Change, 7(12), 848-850.
442	Raupach, M. R., Davis, S. J., Peters, G. P., Andrew, R. M., Canadell, J. G., Ciais,
443	P., Le Quere, C. (2014). Sharing a quota on cumulative carbon emissions.
444	Nature Climate Change, $4(10)$, 873–879.
445	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Row-
446	ell, D. P., Kaplan, A. (2003). Global analyses of sea surface temper-
447	ature, sea ice, and night marine air temperature since the late nineteenth
448	century. Journal of Geophysical Research: Atmospheres, 108(D14). doi:
449	https://doi.org/10.1029/2002JD002670
450	Resplandy, L., Keeling, R. F., Rödenbeck, C., Stephens, B. B., Khatiwala, S.,
451	Rodgers, K. B., Tans, P. P. (2018). Revision of global carbon fluxes
452	based on a reassessment of oceanic and riverine carbon transport. <i>Nature</i>
453	Geoscience, 11(7), 504-509.
454	Resplandy, L., Séférian, R., & Bopp, L. (2015). Natural variability of CO ₂ and O ₂
455	fluxes: What can we learn from centuries-long climate models simulations?
456	Journal of Geophysical Research: Oceans, $120(1)$, 384–404.
457	Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002).
458	An improved in situ and satellite SST analysis for climate. Journal of Climate,
459	15(13), 1609-1625.
460	Ridge, S. M., & McKinley, G. A. (2021). Ocean carbon uptake under aggressive
461	emission mitigation. <i>Biogeosciences</i> , 18(8), 2711–2725.
462	Ritter, R., Landschützer, P., Gruber, N., Fay, A., Iida, Y., Jones, S., others
463	(2017). Observation-based trends of the Southern Ocean carbon sink. Geophys-
464	ical Research Letters, 44 (24), 12–339.
465	Rödenbeck, C., DeVries, T., Hauck, J., Le Quéré, C., & Keeling, R. (2021). Data-
466	based estimates of interannual sea-air CO_2 flux variations 1957–2020 and their
467	relation to environmental drivers. <i>Biogeosciences Discussions</i> , 2021, 1–43. doi:
468	$10.5194/\mathrm{bg}$ -2021-304
469	Rödenbeck, C. (2005). Estimating CO ₂ sources and sinks from atmospheric mixing
470	ratio measurements using a global inversion of atmospheric transport (Tech.
471	Rep. No. 6). Max Planck Institute for Biogeochemistry, Jena. Retrieved from
472	http://www.bgc-jena.mpg.de/CarboScope/
473	Rödenbeck, C., Keeling, R. F., Bakker, D. C. E., Metzl, N., Olsen, A., Sabine, C., &
474	Heimann, M. (2013). Global surface-ocean pCO_2 and sea-air CO_2 flux variabil-
475	ity from an observation-driven ocean mixed-layer scheme. Ocean Science, $9(2)$,
476	193 - 216.
477	Schwinger, J., Goris, N., Tjiputra, J. F., Kriest, I., Bentsen, M., Bethke, I.,
478	Heinze, C. (2016). Evaluation of NorESM-OC (versions 1 and 1.2), the
479	ocean carbon-cycle stand-alone configuration of the Norwegian Earth System
480	Model (NorESM1). Geoscientific Model Development, 9(8), 2589–2622. doi:
481	$10.5194/ m{gmd}$ -9-2589-2016
482	Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L.,
483	& Wanninkhof, R. (2007). Constraining global air-sea gas exchange for CO_2
484	with recent bomb 14C measurements. Global Biogeochemical Cycles, $21(2)$.
485	Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single
486	diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.
487	doi: https://doi.org/10.1029/2000JD900719
488	Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over
489	the ocean. Journal of Geophysical Research: Oceans, 97(C5), 7373-7382. doi:
490	https://doi.org/10.1029/92JC00188

Supporting Information for "Observation-based variability in the global ocean carbon sink from 1959-2020"

Val Bennington^{1,2}, Lucas Gloege³, Galen A McKinley¹

 $^{1}\mathrm{Lamont}\text{-}\mathrm{Doherty}$ Earth Institute, Columbia University

 $^2\mathrm{Makai}$ Ocean Engineering, Inc.

³NASA-GISS

Contents of this file

- 1. Text S1-S2 $\,$
- 2. Figures S1-S2

Corresponding author: Val Bennington, Makai Ocean Engineering, Inc. Hawaii, USA. (Valerie.Bennington@makai.com)

March 9, 2022, 9:45pm

S1. Reconstructed Air-Sea CO₂ Fluxes

Figure S1 shows the air-sea CO_2 fluxes reconstructed by LDEO-HPD as compared to the eight GOBMs and HPD Climatology Test (Figure S1 a), Jena MLS (Figure S1 b), other observation-based products (Figure S1 c) and the box model simulations with and without volcanoes (McKinley et al., 2020) (Figure S1 d).

S2. Anomalies of Detrended Reconstructed Air-Sea CO₂ Fluxes

Figure S2 shows the anomalies of detrended air-sea CO_2 fluxes in the four ocean basins. The years of major volcanic eruptions are depicted with vertical grey lines Agung (1963), El Chichon (1982) and Mt. Pinatubo (1991). The Pacific and Southern Oceans show clear increases in their ocean sink immediately following the volcanic eruptions.

References

- McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., & Lovenduski, N. S. (2020). External forcing explains recent decadal variability of the ocean carbon sink. AGU Advances, 1(2), e2019AV000149. doi: https://doi.org/10.1029/2019AV000149
- Rödenbeck, C., DeVries, T., Hauck, J., Le Quéré, C., & Keeling, R. (2021). Databased estimates of interannual sea-air co₂ flux variations 1957–2020 and their relation to environmental drivers. *Biogeosciences Discussions*, 2021, 1–43. doi: 10.5194/ bg-2021-304

March 9, 2022, 9:45pm

Figure S1. (a) Air-sea CO₂ fluxes for 1959-2020 according to LDEO-HPD (blue), HPD Climatology Test (cyan), and the nine unadjusted GOBMs (grey). (b) Air-sea CO₂ fluxes for 1959-2020 according to LDEO-HPD (blue) and Jena MLS (magenta) (Rödenbeck et al., 2021). (c) Air-sea CO₂ fluxes for 1959-2020 according to LDEO-HPD (blue) and the other data products (green). (d) Air-sea CO₂ fluxes for 1960-2018 according to LDEO-HPD (blue) and the box model of McKinley et al. (2020) with volcanoes (red) and without volcanoes (dashed red).

March 9, 2022, 9:45pm

:

Figure S2. Detrended air-sea CO₂ flux anomalies in four ocean basins (TgC/yr/^olat). Major volcanic eruptions denoted with vertical grey lines (Agung, March 1963; Chichon, April 1982; March 9, 2022, 9:45pm Pinatubo, June 1991).