Hydrogeological Properties at the Toe of the Nankai Accretionary
Prism, using Borehole Geophysical and Petrophysical Data within
Hole C0024A, Expedition 358 of [IODP-NanTroSEIZE Project.

Joshua Pwavodi! and Mai-Linh Doan!:!

'Université Grenoble Alpes

January 20, 2023

Abstract

The Nankai Trough is a locus of slow slips, low frequency, and large-magnitude classical earthquakes. It is assumed that high
pore pressure contributes substantially to earthquake dynamics. Hence, a full understanding of the hydraulic regime of the
Nankai accretionary prism is needed to understand this diversity of behavior.We contribute to understanding the full hydraulic
regime within the Nankai accretionary prism by innovatively integrating the drilling and logging data of the NanTroSEIZE
project. We focus on the toe of the Nankai accretionary prism by studying data from hole C0024A drilled during IODP
expedition 358. This drilled hole intersected the Nankai décollement at 813 mbsf, about 3 km from the trench. Pore pressure
was first estimated using Eaton’s method on both drilling and sonic velocity data. Both results show that pore pressure follows
hydrostatics until the top of the hemipelagites, with local pore pressure rising up to 38% above hydrostatic especially crossing
the décollement. Downhole Annular Pressure was also monitored during drilling, and a careful reanalysis of its variation shows
the occurrence and the locus of fluid flow between the formation and the borehole. Primarily, there are two identified fluid
flow anomalies intervals: (1) at the shallow depths <100 mbsf with loose coarse sediments, which could be related to erosional
unloading, landslide, slope instability. (2) Below the décollement (<813 mbsf) at the two asymmetric damage zones. The damage
zones at the footwalls of the major faults are predominantly permeable with significant porosity and permeability values with
orders of magnitude between 10-16 to 10-17 m2 as quantitatively estimated using the Hvorslev equation for a fully penetrating
well in a confined aquifer. Our results show that the formation fluids are getting significantly over-pressurized only a few
hundred meters from the toe of the decollement. The decollement is already impermeable across the fault, and the fluid flow
is channelized along the damage zones. The impermeable decollement acts as a hydraulic barrier inhibiting fluid flow upward,
keeping high pore pressure at the footwall and increasing the structural weakness of the lithologies. It’s therefore probable that

high pressure is also expected further down in the locus of tremors and slow slip events.
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0= DIScussion
* Décollement: 2 strands at 813 & 852 mbsf.

¢ Step in pore pressure when crossing the fault core
= no hydraulic connection between the hanging wall and the footwall

We developed a methodology to characterize the hydraulic state

Hydraulic structure of the déecollement

Implication on Seismotectonics along the C0024A borehole, by processing both drilling and
geophysical data, in both time and space.
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