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Abstract

Clouds are primary modulators of Earth’s energy balance. It is thus important to understand the links connecting variabilities

in cloudiness to variabilities in other state variables of the climate system, and also describe how these links would change in

a changing climate. A conceptual model of global cloudiness can help elucidate these points. In this work we derive simple

representations of cloudiness, that can be useful in creating a theory of global cloudiness. These representations illustrate how

both spatial and temporal variability of cloudiness can be expressed in terms of basic state variables. Specifically, cloud albedo

is captured by a nonlinear combination of pressure velocity and a measure of the low-level stability, and cloud longwave effect

is captured by surface temperature, pressure velocity, and standard deviation of pressure velocity. We conclude with a short

discussion on the usefulness of this work in the context of global warming response studies.
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Abstract15

Clouds are primary modulators of Earth’s energy balance. It is thus important to un-16

derstand the links connecting variabilities in cloudiness to variabilities in other state vari-17

ables of the climate system, and also describe how these links would change in a chang-18

ing climate. A conceptual model of global cloudiness can help elucidate these points. In19

this work we derive simple representations of cloudiness, that can be useful in creating20

a theory of global cloudiness. These representations illustrate how both spatial and tem-21

poral variability of cloudiness can be expressed in terms of basic state variables. Specif-22

ically, cloud albedo is captured by a nonlinear combination of pressure velocity and a23

measure of the low-level stability, and cloud longwave effect is captured by surface tem-24

perature, pressure velocity, and standard deviation of pressure velocity. We conclude with25

a short discussion on the usefulness of this work in the context of global warming response26

studies.27

Plain Language Summary28

Clouds are important for Earth’s climate, because they affect a large portion of the29

planet’s energy balance, and hence its mean temperature. To better understand how the30

interplay between cloudiness and energy balance would change in a changing climate,31

we need a better theoretical understanding of how many clouds are distributed over the32

planet, and how this connects with the state variables of the climate system such as tem-33

perature and wind speed. As our theoretical understanding is currently limited, in this34

work we illustrate the simplest way one could represent the spatiotemporal distribution35

of clouds over the whole planet. We believe that these simple representations will pave36

the way for a conceptual theory of global cloudiness and its impact on the energy bal-37

ance. We show that the impact of cloudiness on both solar and terrestrial radiation bal-38

ance can be captured well with only a few predictive fields, like surface temperature or39

vertical wind speed, combined simply and using only three tunable parameters.40

1 Introduction41

Clouds are one of the most fascinating, important, and complex components of Earth’s42

climate system (Siebesma et al., 2020). Despite their importance, we lack theoretical un-43

derstanding of what controls planetary-wide cloudiness. For example, while we have a44

good understanding of the microphysics of cloud generation and radiative transfer through45

clouds (Houze, 2014; Cotton et al., 2014; Siebesma et al., 2020), it is difficult to use these46

theories to make claims about global cloudiness. Earth System Models (ESMs) and other47

bottom-up approaches do couple cloud formation to the global circulation. However, so48

far they have not been proven effective in constraining global cloudiness variability (Sherwood49

et al., 2020; Zelinka et al., 2020). This makes it difficult to transparently establish links50

between variability in global cloudiness and Earth’s energy balance, or how this link would51

change in a changing climate.52

Conceptual models could be useful in elucidating how the main features of cloudi-53

ness connect to the energy balance, and how these connections may respond to large scale54

climatic changes. However, existing conceptual work on large-scale cloudiness is sparse.55

The majority of theory relevant to cloudiness is about the general circulation. Existing56

work has focused on specific regions or regimes, such as the tropics (Pierrehumbert, 1995;57

Miller, 1997), the Walker circulation (Peters & Bretherton, 2005), or the formation of58

midlatitude storms (Charney, 1947; Eady, 1949; Pierrehumbert & Swanson, 1995), among59

others, and further research may link circulation with cloud formation at large, but still60

local, scales (Carlson, 1980). What is missing is a conceptual framework that both closes61

the top-of-atmosphere energy budget (and hence by necessity considers the planet as a62

whole), but also includes clouds. A suitable candidate for such a framework would be63
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a an energy balance model (Budyko, 1969; Sellers, 1969; Ghil, 1981; North & Kim, 2017)64

that explicitly represents dynamic cloudiness.65

In this work we derive simple representations, or “recipes”, for global cloudiness,66

which can be potentially included in energy balance models, helping link variations in67

the energy budget and state variables of such models to variations in cloudiness and vice-68

versa. These representations therefore need to capture all main features of cloudiness,69

which are the global mean value, mean seasonal cycle, coarse spatial variability, and the70

difference between the shortwave and longwave impact of cloudiness. To derive them,71

we will use a quantitative top-down approach, where global cloudiness is directly decom-72

posed into contributions from several simpler spatiotemporal fields. These fields are the73

“ingredients” of the recipe, which we refer to simply as predictors (in the sense of sta-74

tistical predictors). A model useful in theoretical work is one that can explain the most75

with the least amount of information, and therefore in this work the main objective is76

to derive minimal representations that use a few predictors.77

Similar top-down approaches have been used frequently in the literature in the con-78

text of the empirical cloud controlling factors framework (Stevens & Brenguier, 2009).79

For tropical low clouds there are several studies summarized in the review by Klein et80

al. (2017), and see also Myers et al. (2021) for ESMs vs. observations. Attention has also81

been given to the midlatitude cloudiness (a summary of existing work on extratropical82

cloud controlling factors can be found in Kelleher and Grise (2019) and see also Grise83

and Kelleher (2021) for ESMs vs. observations). Our approach differs from past empir-84

ical approaches in that we fit absolute cloudiness, not anomalies, and we fit cloudiness85

fields over all available space and time.86

Section 2 describes how we define cloudiness, which predictors to consider, how to87

fit predictor models on observed cloudiness, and how to judge the quality of the fits. Then,88

Sect. 3 presents the main analysis and results on how well the models capture cloud albedo89

and cloud longwave radiative effect. A summary and discussion of potential impact for90

sensitivity studies concludes the paper in Sect. 4.91

2 Fitting global cloudiness92

2.1 Quantifying cloudiness93

To fit any model, a definition of cloudiness that is both quantitatively precise but94

also energetically meaningful is required. For the shortwave part, we use the energeti-95

cally consistent effective cloud albedo (in the following, just “cloud albedo”), C, estimated96

using the approach of Datseris and Stevens (2021). C is a better way to quantify short-97

wave impact of cloudiness than the shortwave cloud radiative effect (CRE), because a98

large amount of variability of the latter actually comes from the variability of insolation99

(Datseris & Stevens, 2021). For the longwave part the CRE, L, is a good representation100

of the radiative impact of clouds. From it, a cloud effective emissivity can be constructed101

which can be added to an energy balance model directly similarly to the albedo. Both102

C,L are derived from monthly-mean CERES EBAF data (Loeb et al., 2018) using 19103

years of measurements (2001-2020).104

2.2 Predictors considered105

The predictors considered in this study, listed below, are obtained from ERA5 data106

(Hersbach et al., 2020) using 19 years of data (2001-2020). Pressure velocity ω500, es-107

timated inversion strength EIS, surface wind speed Vsfc, sea surface temperature SST,108

and stratospheric specific humidity q700, have been used numerous times in the litera-109

ture. ω500 is known to be important for both shortwave and longwave cloud radiative110

effects (Bony et al., 1997; Norris & Weaver, 2001; Bony et al., 2004; Norris & Iacobel-111
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lis, 2005), and EIS, Vsfc,SST, q700 have been used to fit cloud cover anomalies in a va-112

riety of regimes, see e.g., Klein et al. (2017); Kelleher and Grise (2019) and references113

therein for a more detailed discussion. Do note that the connections between predictors114

and cloudiness in the literature are analyzed for specific regimes (such as tropical sub-115

sidence regions, or North midlatitudes, etc.), while here we depart from past work by test-116

ing their potential in fitting cloudiness globally.117

We included CTE, the estimated cloud top entrainment index, because Kawai et118

al. (2017) present it as an improvement over EIS. Both q700, qtot (with qtot the total col-119

umn water vapor) are a proxy for the moisture of an atmospheric column, and expected120

to be relevant when fitting L. In our analysis however, q700 gives consistently better fits121

when used in place of qtot, keeping all other aspects fixed (not shown). Thus, we will not122

discuss qtot more in this study. Using specific humidity at 700hPa instead of at surface123

results in only minor improvement of fit quality throughout the analysis (also not shown).124

The fraction of updrafts ωup is useful because it is bounded in [0%, 100%], like C,125

and given that we fit absolute values instead of anomalies, it does not penalize the fits126

with negative values (that exist in ω500). It can also be used as a statistical weight to127

distinguish between regions of large scale subsidence, see e.g., Bony et al. (1997). The128

standard deviation of ω500, ωstd, which can be thought of as a simple quantifier of stormi-129

ness, has been shown to be a useful predictor of cloudiness by Norris and Iacobellis (2005)130

due to the nonlinear connection between vertical motion and cloud generation. Another131

argument favoring ωstd is that it relates cloudiness with the moisture of the air column132

better than ω500, see Sect. 3.3.133

2.3 Fitting process134

Let Y be a measure of cloudiness (C of L from Sect. 2.1) and Xi be some predic-135

tor fields, for i = 1, . . . , n,. Y,Xi are global spatiotemporal fields. We assume that with136

sufficient accuracy we can write137

Y ≈ M = f(X1, . . . , Xn; p1, . . . , pm)
e.g.
= p1X1 + p2X2 + p3X1X2 (1)

with pj , for j = 1, . . . ,m some parameters to be estimated (all pj ∈ R). In the fol-138

lowing we call f the “cloud fitting function”. Naturally, different forms for f and/or sets139

of predictors will yield a better fit for C or L respectively, as each captures different as-140

pects of cloudiness. Given a specific form for f , and a set of predictors Xi, the param-141

eters pj of the model are estimated via a standardized nonlinear least square optimiza-142

tion (Levenberg, 1944; Marquardt, 1963). The minimization objective is the squared dis-143

tance between Y derived from CERES observations, and M produced by Eq. 1. Details144

on the data pre-processing before doing the fits are provided in the Supplementary In-145

formation.146

This approach of fitting models with free parameters to observed data is similar147

to the cloud controlling factors framework (CCFF), but there are some key differences148

with typical CCFF studies. First, we fit absolute cloudiness, not anomalies, and hence149

the mean value of Y , and its seasonal cycle, must be captured by the fit. The importance150

of capturing the mean value and mean seasonal cycle is further enforced by the fact that151

the inter-annual variability of cloudiness is small in decadal timescales (Stevens & Schwartz,152

2012; Stephens et al., 2015), and hence the mean seasonal cycle captures the majority153

of the signal. Because we want to capture the mean, f is generally allowed to be non-154

linear. Second, we fit across all available space and time without any restrictions to spe-155

cial regions of space or specific cloud types. We discuss in more detail the differences with156

typical CCFF studies in the Supplementary Information.157
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2.4 Quantitatively measuring fit quality158

To quantify fit quality with an objective measure that is independent of what pre-159

dictors are used, we chose the normalized root mean square error (NRMSE), defined as160

ϵ(Y,M) =

√∑
n(Yn −Mn)2∑
n(Yn − Ȳ )2

(2)

with Y,M as in Eq. 1, Ȳ the mean of Y and n enumerates the data points. This error161

measure is used routinely in e.g., spatiotemporal timeseries prediction (Isensee et al., 2019),162

and is a statistic agnostic of the values of Y,M that can compare fit quality across dif-163

ferent ways of fitting. If ϵ > 1 the mean value of Y is a better model than M (equiv-164

alently, the variance of the observations is smaller than the mean square error between165

fit and observations). There are several ways to compute ϵ: on full spatiotemporal data,166

on zonally and temporally averaged data, or on the seasonal cycles of tropics (0o-30o)167

and midlatitudes (30o-70o). Each measure highlights a different aspect of fit quality and168

all measures were taken into account when deciding the best fits.169

3 Results & Discussion170

In this section we present the “best” fits for cloud albedo C and longwave cloud171

radiative effect L. The “best” fits are the most minimal fits, that accommodate intuitive172

physical justification, but also provide good fit quality (i.e., low values for ϵ). Only the173

requirement is small error ϵ is objective, while the rest have at least partly a subjective174

nature. Additionally, fits that use simpler predictors, that can be more straightforwardly175

represented in a conceptual framework, are preferred. If two fits have approximately equal176

error ϵ, but one uses a simpler predictor (e.g., surface temperature SST versus atmospheric177

specific humidity q700), the first fit is “better”.178

3.1 Two predictor linear model179

The simplest model one can use for the cloud fitting function f is one that com-180

bines two predictors and two free parameters in a linear manner: f = p1X1 + p2X2.181

Even if this model does not yield a good fit for cloudiness, it is advantageous to start182

with it nevertheless. All possible linear combinations given all possible predictors of Sect. 2.2183

are only 36, and they can already highlight which predictors are worth a closer look for184

which measure of cloudiness. The results are in Fig. 1, which showcases two different er-185

ror measures (error in temporally and zonally mean cloudiness, and median of errors in186

seasonal cycle of cloudiness), and how these errors depend on which predictors are used187

for the linear fit.188

The majority of combinations result in low fit quality (ϵ ≥ 0.9). Nevertheless, Fig. 1189

reveals some useful information. For C, a measure of the inversion strength is necessary190

for a decent fit and the combination of ωup and CTE result in the best case scenario. For191

L, the most important predictor seems to be ωstd, which gives decent fits in both space192

and time for a wide selection of second predictors (while ω500 gives decent fits only in193

time). A second important predictor for L seems to be q700 or SST.194

3.2 Best fit for cloud albedo C195

While it is already clear in the literature that ω500 is an important predictor for196

shortwave impact of clouds (Sect. 2.2), the fact that ωup performs so much better in a197

linear model hints that the bounded nature of albedo, C ∈ [0%, 100%], is important.198

Negative predictor values yield low fit quality and also penalize fitting well positive val-199

ues. One way to counter this would be to use ωup as probability weight multiplying other200

predictors. An alternative would be to use appropriate nonlinear functions of the more201
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Figure 1. Error in temporally and zonally mean cloudiness (lower-right triangle of heatmap),

and error in mean seasonal cycle (upper-left triangle of heatmap), as a function of which pre-

dictors of the x and y axis combine into a linear model f = p1X1 + p2X2 for fitting cloud

albedo (left plot) or longwave cloud radiative effect (right plot). Red outline highlights the three

combinations with the lowest error in each category, while black dashed outline highlights the

combination with lowest error overall (by multiplying the two errors). It is possible that e > 1

because we are fitting without intercept.

basic ω500. Regardless the choice, CTE must also be included in the model, as it is nec-202

essary to capture the important contribution of low clouds.203

A model that satisfies all these requirements, and achieves the best fit, is204

C = 50p1 (tanh(p2ω500 + p3CTE) + 1) (3)

where we used the nonlinear function x → 50(tanh(x)+1) to map predictors to [0%, 100%].205

The results of the fit (i.e., estimating the parameters p1, p2, p3 that give least square er-206

ror between Eq. 3 and the observed CERES C) are in Fig. 2. The model fit captures all207

main features of cloud albedo, and achieves ϵ = 0.54 over the full space and time, ϵ =208

0.19 in the zonal and temporal average, and ϵ = 0.65 in seasonal cycle. The shortwave209

cloud radiative effect (which in our study is simply the multiplication of C with the in-210

solation I, and then averaging), is 57.1 W/m2 in CERES and 57.45 W/m2 when using211

the model fit. The inclusion of the parameter p1 is necessary, because in observations212

cloud albedo does not saturate to 100%, but to much lower values (see Fig. 2). We also213

note that using EIS instead of CTE in the model decreases fit quality significantly, be-214

cause, while EIS and CTE both capture subtropical low cloud albedo well, only CTE also215

captures midlatitude low cloud albedo well, while EIS does not. Thus, as suggested by216

Kawai et al. (2017), CTE is indeed an improvement over EIS.217

Adding more predictors increases fit quality only slightly. E.g., adding a factor p4Vsfc218

inside the tanh function decreases time and zonal mean error to ϵ = 0.18 from ϵ = 0.19219

and seasonal cycle error to e = 0.6 from e = 0.65, as well as captures hemispheric asym-220

metries in C slightly better. That the decrease in error is so small gives confidence that221

that the basic physics governing cloud albedo are already captured by Eq. 3. Further fine-222

tuning of the model only captures higher order details that will likely not be included223

in a conceptual theory anyway.224
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Figure 2. Results of fitting cloud albedo C (units of %) with the simple model of Eq. 3.

First row are time-averaged maps. See also Fig. 4 for a zonally averaged version. Second row

are the contributions of different terms in the model. Third row shows how well the model cap-

tures temporal variability. First two panels are the mean seasonal cycles (with semi-transparent

bands noting the standard deviation around each month) in the tropics (0-30o) and extratropics

(30-70o). The mean value of all cycles has been subtracted, and SH cycles are offset for visual

clarity. The third panel is a map of the Pearson linear correlation coefficient between the time-

series of the model and CERES data at each grid point. Units of ω500 in Pa/s and CTE in K,

and p1 = 0.4, p2 = 6.87, p3 = 0.08. We multiply ω500 with −1 before any analysis so that ω500 > 0

means updrafts.

The middle row of Fig. 2 provides some insights on the contribution of each pre-225

dictor. Both CTE and ω500 contribute to midlatitude cloud albedo, but CTE slightly226

more so. In the tropics ω500 contributes the albedo of the convective regimes (ITCZ, Mar-227

itime Continent), and CTE the albedo of the low stratocumulus decks (subsidence re-228

gions). CTE is in some sense a more important predictor than ω500, because if we set229

explicitly p2 = 0 in Eq. 3, we get lower error of ϵ = 0.7 in full space and time, ver-230

sus the error of ϵ = 0.9 we would get if we set explicitly p3 = 0 instead. Alternative231

models to Eq. 3 can give similar results using ωup instead of ω500. For example, using232

f = p1ωup + p2CTE(1− ωup) provides similar, but slightly worse, fit quality with ϵ =233

0.57 over full space and time and ϵ = 0.23 over time and zonal mean. However, ω500234

is a simpler predictor than ωup, and hence a model with ω500 is more minimal (and thus,235

“better”).236
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3.3 Best fit for longwave cloud radiative effect L237

Fitting L is more complex for mainly two reasons. First, the longwave effect of a238

cloud depends strongly on the infrared opacity, and hence moisture content, of the at-239

mospheric column overshadowed by the cloud. Moisture content though is, at least partly,240

controlled by temperature. Warm and humid atmospheres are already almost opaque241

to longwave radiation, and hence the presence of a cloud would make little difference.242

In contrast, in a cold and dry atmosphere a cloud would bring a lot of extra absorption243

of outgoing longwave radiation and hence large L. Second, cloud height matters a lot244

for its effective emissivity (as cloud height sets its temperature), while cloud height does245

not have a significant effect on cloud albedo (keeping all other factors fixed).246

These considerations likely explain why we were not able to find a model that had247

as good of a fit for L as it had for C when restricting the model to using at most two248

predictors. After an analysis of several different linear and nonlinear combinations, the249

“best” model we could construct was of the form250

L = p1ωstd + p2ω500 + p3SST (4)

(notice how Eq. 4 has 0 intercept by force, so that it must capture the mean from the251

predictors, and not from a tunable parameter). The results of the fit are in Fig. 3. Sim-252

ilarly with C, the fit captures all main features of L. The fit errors are e = 0.63 over253

full space and time, e = 0.46 in time and zonal mean and e = 0.41 in mean seasonal254

cycle. The mean LCRE is 27.27 W/m2 in CERES and 27.30 in our model fit W/m2. Spa-255

tial variability is captured worse for L versus C, but temporal variability is captured bet-256

ter. A factor that contributes to this is that the temporal variability of L is much sim-257

pler than it is for C (e.g., relative power of 12-month periodic component is much larger258

in L timeseries, leading to simpler seasonal cycle temporal structure).259

We now give some physical intuition on the choice of predictors. Monthly-mean ω500260

is a proxy to cloud height (persistent updrafts and with larger magnitude should result261

in higher clouds). The surface temperature SST is a proxy for the emissivity of the air262

column without a cloud, because the potential total moisture content of atmospheric columns263

is a monotonically increasing function of temperature under first approximation. Using264

q700 instead of SST captures spatial variability worse but improves the capturing of tem-265

poral variability. Given that SST is a more basic predictor than q700, and is directly rep-266

resented in conceptual energy balance models, SST is preferred. Furthermore, and as was267

the case with C, adding more predictors, or additional nonlinear terms of existing pre-268

dictors such as a factor p4ωstdSST, increases fit quality but only slightly.269

Interestingly, ωstd is the most important predictor for L. Even though ω500 cap-270

tures a broader range of values (∼ 40 versus the ∼ 30 of ωstd), absence of ωstd signif-271

icantly lowers fit quality in all combinations of cloud fitting functions f and predictors272

we tested, even when including ω500 in all of them. The spatial structure of ωstd is the273

most similar to the spatial structure of L, with the main difference being that for ωstd274

the peak values in tropics and extratropics have equal magnitude, while for L the trop-275

ics peak values have 33% more magnitude. Hence, some other predictor must lower the276

extratropical magnitude of ωstd, and here this role is fullfilled by SST in Eq. 4 (or q700,277

if one uses it instead of SST).278

A physical connection between ωstd and L can be thought of as follows: persistent279

updrafts, that are captured by ω500, lead to a moist atmosphere and hence weak L, mostly280

irrespectively of cloud height. On the other hand, consistent pumping of air up and down281

(high ωstd, but almost zero ω500) would leave the atmosphere dry (for at least half the282

time), but the formed clouds would linger longer above the dry atmosphere and have a283

disproportionately strong effect, yielding high L. In the midlatitudes both L and ωstd284

have their latitudinal maximum in the middle of the Ferrel cell (40-45o), where ω500 ≈285

0. Of course, monthly-mean ω500 ≈ 0, but in the hourly timescale there is a lot of ver-286
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Figure 3. As in Figure 2 but now for longwave cloud radiative effect L. Units of L in W/m2,

ω500, ωstd in Pa/s, SST in K, and p1 = 42.68, p2 = 208.9, p3 = 0.06558.

tical motion, as captured by the high values of ωstd. This reflects the fact that the cen-287

ter of the Ferrell cell coincides with the centre of the midlatitude storm tracks. In the288

tropics, ω500 and ωstd have little differences in their latitudinal structure.289

3.4 Comparison with ERA5 and reduced data290

For obtaining reference values of the errors we report here, we also compare the out-291

come of our analysis with using direct ERA5 radiation output to measure C or L. Cal-292

culating L is straightforward, however, we cannot compute the energetically consistent293

effective cloud albedo from ERA5, because it requires cloud optical depth, a field not ex-294

ported by ERA5. Instead, we can compute the cloud contribution to atmospheric albedo295

αCLD (specifically, Eq. 3 from Datseris and Stevens (2021)), which has only small dif-296

ferences with C. αCLD also has the downside of not having a time dimension due to ab-297

sence of sunlight for large portions of the data(Datseris & Stevens, 2021).298

We also present fits and their errors for fitting reduced data directly, specifically299

temporally and zonally averaged data. Fitting reduced data increases fit quality, because300

this case neglects higher-order effects that contribute to e.g. zonal or temporal structure.301

If, however, the fit quality increases only slightly, that gives confidence that the basic con-302

nections captured by our models are indeed the most important ones and hence also dom-303

inate full spatiotemporal variability. The results are in Fig. 4.304

Two conclusions can be readily drawn: (1) our fits have smaller error ϵ than does305

the cloudiness inferred from ERA5 radiation output, (2) fitting the simplified version of306
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Figure 4. Temporally and zonally averaged data (and their errors e, Eq. 2, versus the CERES

curve) of CERES, our model fits, and direct ERA5 output for (a) the longwave cloud radiative

effect L and (b) the cloud contribution to atmospheric albedo αCLD. In (a), “FIT” is over all

space and time, and “FTZ” is a fit over temporally and zonally averaged data. In (b), “FIT” is a

fit over temporally averaged data (no time information can be used), and “FTZ” is as before.

temporally and zonally averaged data increases fit quality only slightly, further validat-307

ing the fit quality. Additionally, the best parameters of the fits change little when do-308

ing the zonal-only fit (e.g., for C, parameters become p1 = 0.4, p2 = 8.25, p3 = 0.077309

versus those reported in Fig. 2). This means that the contribution of each predictor does310

not change fundamentally in the reduced version, giving us even more confidence that311

the simple models of Eqs. 3, 4 capture the basic physics well.312

4 Conclusions313

The goal of this work was to identify ways one can accurately represent observed314

global cloudiness using as few and as simple components as possible. We have shown that315

the combination of pressure velocity ω500 and a measure of temperature inversion CTE316

are enough to capture all main features of cloud albedo, while surface temperature SST,317

standard deviation of hourly pressure velocity ωstd, and ω500, capture all main features318

of longwave cloud radiative effect. Our model fits naturally have some discrepancies with319

observations, but none are major. E.g., southern ocean C is underestimated, temporal320

variability of C is not captured well, especially in southern ocean, L of Maritime Con-321

tinent is underestimated, among others. Even though we only fitted over ocean here, in322

fact the fits do not perform much worse when considering the whole planet without adding323

more information to the cloud fitting functions f (not shown). We also note that the pre-324

dictors used in the presented models were favored because of their simplicity, but also325

because they can be potentially connected with equator-to-pole temperature gradients.326

This may allow incorporating cloudiness in energy balance models, a possibility which327

we outline in the Supplementary Information.328

Equations 3 and 4, and the analysis of Sect. 3, can also be used to quantify the re-329

sponse of cloudiness to a change in the climate system. For example, quantify how a change330

in the variability of the circulation or inversion strength would impact global cloudiness331

and hence the energy balance. But also, the equations can provide spatially localized in-332

formation on such changes, such as in which areas of the globe would circulation changes333

impact global cloudiness the most. These applications seem useful for e.g., better quan-334

tifying cloud sensitivities in the context of global warming.335
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The exact parameter values pj in Eqs. 3 and 4 have been derived from fitting on336

current climate and their values may change for different climates. Thankfully, this change337

is not very large. We confirmed that by doing the fit of Sect. 3.2, but for each hemisphere338

individually. As far as circulation patterns and cloudiness distributions are concerned,339

the two hemispheres have significant differences. Recall that the parameters of the fit340

for the whole globe were p = {0.4, 6.87, 0.08}. For only north hemisphere, we obtained341

{0.38, 7, 0.07} and for only south {0.41, 6.89, 0.086}. Because the parameter sets have342

little differences in each case, this gives more confidence that the equations capture the343

basic physical connections instead of being a case of overfitting.344

Acknowledgments345

We thank Hauke Schmidt for helpful discussions. The datasets used were monthly mean346

CERES EBAF (Loeb et al., 2018; Kato et al., 2018; Doelling et al., 2013; Rutan et al.,347

2015) for surface & top of the atmosphere radiation fields, and cloud properties, monthly348

mean ERA5 (Hersbach et al., 2020) for temperature, pressure, humidity, and hourly mean349

ERA5 for pressure velocity. The code we used is available online (Datseris, 2022). It uses350

the Julia language (Bezanson et al., 2017), and the packages: GLM.jl, LsqFit.jl, Climate-351

Base.jl, and DrWatson (Datseris et al., 2020). Figures were produced with the matplotlib352

library (Hunter, 2007). The code can also be be used to fit any arbitrary spatiotempo-353

ral field with any combination of functional forms and predictor fields.354

Author contributions. G.D. performed the primary analysis and wrote the first draft.355

All authors contributed key ideas that shaped the study, and helped revise the draft.356

References357

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh ap-358

proach to numerical computing. SIAM Review , 59 (1), 65–98. Retrieved from359

https://epubs.siam.org/doi/10.1137/141000671 doi: 10.1137/141000671360

Bony, S., Dufresne, J.-L., Treut, H. L., Morcrette, J.-J., & Senior, C. (2004, March).361

On dynamic and thermodynamic components of cloud changes. Climate Dy-362

namics, 22 (2-3), 71–86. Retrieved from https://doi.org/10.1007/s00382363

-003-0369-6 doi: 10.1007/s00382-003-0369-6364

Bony, S., Lau, K.-M., & Sud, Y. C. (1997). Sea surface temperature and large-365

scale circulation influences on tropical greenhouse effect and cloud radia-366

tive forcing. Journal of Climate, 10 (8), 2055 - 2077. Retrieved from367

https://journals.ametsoc.org/view/journals/clim/10/8/1520-0442368

1997 010 2055 sstals 2.0.co 2.xml doi: 10.1175/1520-0442(1997)010⟨2055:369

SSTALS⟩2.0.CO;2370

Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the371

Earth. Tellus, 21 (5), 611–619. doi: 10.3402/tellusa.v21i5.10109372

Carlson, T. N. (1980). Airflow through midlatitude cyclones and the comma373

cloud pattern. Monthly Weather Review , 108 (10), 1498 - 1509. Re-374

trieved from https://journals.ametsoc.org/view/journals/mwre/375

108/10/1520-0493 1980 108 1498 atmcat 2 0 co 2.xml doi: 10.1175/376

1520-0493(1980)108⟨1498:ATMCAT⟩2.0.CO;2377

Charney, J. G. (1947, oct). The dynamics of long waves in a baroclinic westerly378

current. Journal of the Atmospheric Sciences, 4 (5), 136–162. Retrieved from379

http://journals.ametsoc.org/doi/10.1175/1520-0469(1947)004%3C0136:380

TDOLWI%3E2.0.CO;2 doi: 10.1175/1520-0469(1947)004⟨0136:TDOLWI⟩2.0.CO;381

2382

Cotton, W. R., Bryan, G., & Van Den Heever, S. C. (2014). Storm and cloud dy-383

namics (2nd ed.). Academic Press.384

Datseris, G. (2022). Code for our paper “minimal recipes for global cloudiness”. Zen-385

odo. doi: 10.5281/zenodo.6565962386

–11–



Datseris, G., Isensee, J., Pech, S., & Gál, T. (2020). Drwatson: the perfect side-387

kick for your scientific inquiries. Journal of Open Source Software, 5 (54), 2673.388

Retrieved from https://doi.org/10.21105/joss.02673 doi: 10.21105/joss389

.02673390

Datseris, G., & Stevens, B. (2021, August). Earth’s albedo and its symmetry. AGU391

Advances, 2 (3). Retrieved from https://doi.org/10.1029/2021av000440392

doi: 10.1029/2021av000440393

Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen,394

C., . . . Sun, M. (2013, June). Geostationary enhanced temporal inter-395

polation for CERES flux products. Journal of Atmospheric and Oceanic396

Technology , 30 (6), 1072–1090. Retrieved from https://doi.org/10.1175/397

jtech-d-12-00136.1 doi: 10.1175/jtech-d-12-00136.1398

Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1 (3), 33–52.399

Ghil, M. (1981). Energy-Balance Models: An Introduction. In Climatic varia-400

tions and variability: Facts and theories (pp. 461–480). Dordrecht: Springer401

Netherlands. Retrieved from http://link.springer.com/10.1007/402

978-94-009-8514-8 27 doi: 10.1007/978-94-009-8514-8 27403

Grise, K. M., & Kelleher, M. K. (2021). Midlatitude cloud radiative effect sensitiv-404

ity to cloud controlling factors in observations and models: Relationship with405

southern hemisphere jet shifts and climate sensitivity. Journal of Climate,406

34 (14), 5869–5886. doi: 10.1175/JCLI-D-20-0986.1407

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,408

J., . . . Thépaut, J.-N. (2020, June). The ERA5 global reanalysis. Quarterly409

Journal of the Royal Meteorological Society , 146 (730), 1999–2049. Retrieved410

from https://doi.org/10.1002/qj.3803 doi: 10.1002/qj.3803411

Houze, R. A., Jr. (2014). Cloud dynamics (2nd ed.). Academic Press.412

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science413

& Engineering , 9 (3), 90–95. doi: 10.1109/MCSE.2007.55414

Isensee, J., Datseris, G., & Parlitz, U. (2019, October). Predicting spatio-415

temporal time series using dimension reduced local states. Journal of Non-416

linear Science, 30 (3), 713–735. Retrieved from https://doi.org/10.1007/417

s00332-019-09588-7 doi: 10.1007/s00332-019-09588-7418

Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling, D. R.,419

. . . Ham, S.-H. (2018, May). Surface irradiances of edition 4.0 clouds and the420

earth’s radiant energy system (CERES) energy balanced and filled (EBAF)421

data product. Journal of Climate, 31 (11), 4501–4527. Retrieved from422

https://doi.org/10.1175/jcli-d-17-0523.1 doi: 10.1175/jcli-d-17-0523.1423

Kawai, H., Koshiro, T., & Webb, M. J. (2017, November). Interpretation of424

factors controlling low cloud cover and low cloud feedback using a unified425

predictive index. Journal of Climate, 30 (22), 9119–9131. Retrieved from426

https://doi.org/10.1175/jcli-d-16-0825.1 doi: 10.1175/jcli-d-16-0825.1427

Kelleher, M. K., & Grise, K. M. (2019). Examining Southern Ocean cloud428

controlling factors on daily time scales and their connections to midlat-429

itude weather systems. Journal of Climate, 32 (16), 5145–5160. doi:430

10.1175/JCLI-D-18-0840.1431

Klein, S. A., Hall, A., Norris, J. R., & Pincus, R. (2017). Low-Cloud Feedbacks432

from Cloud-Controlling Factors: A Review. Surveys in Geophysics, 38 (6),433

1307–1329. doi: 10.1007/s10712-017-9433-3434

Levenberg, K. (1944). A method for the solution of certain non-linear problems in435

least squares. Quarterly of Applied Mathematics, 2 (2), 164–168. Retrieved436

from https://doi.org/10.1090/qam/10666 doi: 10.1090/qam/10666437

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., . . .438

Kato, S. (2018, January). Clouds and the earth’s radiant energy system439

(CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA)440

edition-4.0 data product. Journal of Climate, 31 (2), 895–918. Retrieved from441

–12–



https://doi.org/10.1175/jcli-d-17-0208.1 doi: 10.1175/jcli-d-17-0208.1442

Marquardt, D. W. (1963, June). An algorithm for least-squares estimation of non-443

linear parameters. Journal of the Society for Industrial and Applied Mathemat-444

ics, 11 (2), 431–441. Retrieved from https://doi.org/10.1137/0111030 doi:445

10.1137/0111030446

Miller, R. L. (1997). Tropical thermostats and low cloud cover. Journal of Climate,447

10 (3), 409–440. doi: 10.1175/1520-0442(1997)010⟨0409:TTALCC⟩2.0.CO;2448

Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., & Caldwell,449

P. M. (2021). Observational constraints on low cloud feedback reduce un-450

certainty of climate sensitivity. Nature Climate Change, 11 (6), 501–507.451

Retrieved from http://dx.doi.org/10.1038/s41558-021-01039-0 doi:452

10.1038/s41558-021-01039-0453

Norris, J. R., & Iacobellis, S. F. (2005, November). North pacific cloud feedbacks in-454

ferred from synoptic-scale dynamic and thermodynamic relationships. Journal455

of Climate, 18 (22), 4862–4878. Retrieved from https://doi.org/10.1175/456

jcli3558.1 doi: 10.1175/jcli3558.1457

Norris, J. R., & Weaver, C. P. (2001). Improved techniques for evaluating GCM458

cloudiness applied to the NCAR CCM3. Journal of Climate, 14 (12), 2540–459

2550. doi: 10.1175/1520-0442(2001)014⟨2540:ITFEGC⟩2.0.CO;2460

North, G., & Kim, K.-Y. (2017). Energy balance climate models. Weinheim, Ger-461

many: Wiley-VCH.462

Peters, M. E., & Bretherton, C. S. (2005). A simplified model of the Walker circula-463

tion with an interactive ocean mixed layer and cloud-radiative feedbacks. Jour-464

nal of Climate, 18 (20), 4216–4234. doi: 10.1175/JCLI3534.1465

Pierrehumbert. (1995, may). Thermostats, Radiator Fins, and the Local Runaway466

Greenhouse. Journal of the Atmospheric Sciences, 52 (10), 1784–1806. Re-467

trieved from http://journals.ametsoc.org/doi/10.1175/1520-0469(1995)468

052%3C1784:TRFATL%3E2.0.CO;2 doi: 10.1175/1520-0469(1995)052⟨1784:469

TRFATL⟩2.0.CO;2470

Pierrehumbert, & Swanson. (1995, jan). Baroclinic Instability. Annual471

Review of Fluid Mechanics, 27 (1), 419–467. Retrieved from http://472

fluid.annualreviews.org/cgi/doi/10.1146/annurev.fluid.27.1.419473

doi: 10.1146/annurev.fluid.27.1.419474

Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T., Caldwell,475

T. E., & Loeb, N. G. (2015, June). CERES synoptic product: Methodol-476

ogy and validation of surface radiant flux. Journal of Atmospheric and Oceanic477

Technology , 32 (6), 1121–1143. Retrieved from https://doi.org/10.1175/478

jtech-d-14-00165.1 doi: 10.1175/jtech-d-14-00165.1479

Sellers, W. D. (1969, jun). A Global Climatic Model Based on the Energy480

Balance of the Earth-Atmosphere System. Journal of Applied Meteorol-481

ogy , 8 (3), 392–400. Retrieved from http://journals.ametsoc.org/482

doi/abs/10.1175/1520-0450{\%}281969{\%}29008{\%}3C0392{\%483

}3AAGCMBO{\%}3E2.0.CO{\%}3B2http://journals.ametsoc.org/doi/484

10.1175/1520-0450(1969)008{\%}3C0392:AGCMBO{\%}3E2.0.CO;2 doi:485

10.1175/1520-0450(1969)008⟨0392:AGCMBO⟩2.0.CO;2486

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Harg-487

reaves, J. C., . . . Zelinka, M. D. (2020, December). An assessment of earth’s488

climate sensitivity using multiple lines of evidence. Rev. Geophys., 58 (4).489

Siebesma, A. P., Bony, S., Jakob, C., & Stevens, B. (Eds.). (2020). Clouds and490

climate. Cambridge University Press. Retrieved from https://doi.org/10491

.1017/9781107447738 doi: 10.1017/9781107447738492

Stephens, G. L., O’Brien, D., Webster, P. J., Pilewski, P., Kato, S., & Li, J.-l. (2015,493

mar). The albedo of Earth. Reviews of Geophysics, 53 (1), 141–163. Re-494

trieved from http://doi.wiley.com/10.1002/2014RG000449 doi: 10.1002/495

2014RG000449496

–13–



Stevens, B., & Brenguier, J.-L. (2009). Cloud-controlling factors: low clouds.497

In J. Heintzenberg & R. J. Charlson (Eds.), Clouds in the perturbed climate498

system (chap. 8). The MIT Press. Retrieved from https://doi.org/499

10.7551/mitpress/9780262012874.001.0001 doi: 10.7551/mitpress/500

9780262012874.001.0001501

Stevens, B., & Schwartz, S. E. (2012, May). Observing and modeling earth’s energy502

flows. Surveys in Geophysics, 33 (3-4), 779–816. Retrieved from https://doi503

.org/10.1007/s10712-012-9184-0 doi: 10.1007/s10712-012-9184-0504

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi,505

P., . . . Taylor, K. E. (2020, January). Causes of higher climate sensitivity in506

CMIP6 models. Geophys. Res. Lett., 47 (1).507

–14–



Supplementary Information: Minimal recipes for global
cloudiness

George Datseris1, Joaquin Blanco2, Or Hadas3, Sadrine Bony4, Rodrigo
Caballero2, Yohai Kaspi3, Bjorn Stevens4

1Max Planck Institute for Meteorology, Hamburg, Germany
2Department of Meteorology, Stockholm University, Stockholm, Sweden

3Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
4Sorbonne University, LMD/IPSL, CNRS, Paris, France

1 Table of fields

For convenience, in Table 1 we list all fields used in our study.

Symbol Description Reference

C Energetically consistent effective cloud albedo Datseris and Stevens (2021)
L Longwave cloud radiative effect Loeb et al. (2018)
ω500 Pressure velocity at 500hPa Grise and Kelleher (2021)
ωstd Standard deviation of ω500 within a month Norris and Iacobellis (2005)
ωup Fraction of updrafts of ω500 within a month Bony et al. (1997)
Vsfc 10-meter wind speed Brueck et al. (2015)
SST Sea surface temperature (SST) Qu et al. (2015)
qtot Total column water vapor -
q700 Specific humidity at 700hPa Myers and Norris (2016)
EIS Estimated inversion strength Wood and Bretherton (2006)
CTE Estimated cloud top entrainment index Kawai et al. (2017)

Table 1. Fields to-be-predicted (C,L) and predictors considered in this study. An indicative

reference for each is given as well. We multiply ω500 with −1 in this study, so that ω500 > 0

means upwards motion.

2 Data pre-processing

All predictors, with the exception of ωstd, ωup, are obtained from monthly-mean
ERA5 data. The standard deviation ωstd, and fraction of updrafts ωup, of ω500, are de-
rived from hourly ω500 data, aggregated over monthly periods. Using up to 6-hourly sam-
pled data yields little quantitative difference in ωstd, ωup.

All data, including the CERES EBAF monthly-mean data, have been transformed
into an equal area grid of cell size ≈ 250km, from their standard orthogonal longitude-
latitude grids. This is very important, otherwise statistical weights need to be used in
the nonlinear least squares optimization process. Additionally, only data over ocean (a
spatiotemporal mask is defined when CERES auxiliary ocean fraction is > 50%) are con-
sidered, as, favoring simplicity, we would like to derive minimal models that do not deal
with the complexities of including a land type contribution. Data were also limited to
± 70o, to avoid potential CERES measurement artifacts near the poles.

Corresponding author: George Datseris, george.datseris@mpimet.mpg.de

–1–



3 Comparison with Cloud Controlling Factors Framework

At a fundamental level, our methodological approach (described in Sect. 2.3 of main
text) is similar with the well-known Cloud Controlling Factors Framework (CCFF) (Stevens
& Brenguier, 2009; Klein et al., 2017). We are fitting some measure of cloudiness using
a function of predictors. However, there are some key differences worth highlighting in
more detail.

The first is that the data used here are not anomalies. This means that the mean
value of Y , and its seasonal cycle, must be captured by the fit. The importance of cap-
turing the mean value and mean seasonal cycle is further enforced by the fact that the
inter-annual variability of cloudiness is small in decadal timescales (Stevens & Schwartz,
2012; Stephens et al., 2015), and hence the mean seasonal cycle captures the majority
of the signal (e.g., for hemispherically averaged all-sky reflected shortwave radiation, 99%
of the variability (Datseris & Stevens, 2021)). Since the cloud fitting function is expected
to capture the mean, it can be a nonlinear function (and if it is linear, then it must have
intercept 0 by force). Another argument behind allowing nonlinear functions is that, gen-
erally speaking, a theory of cloudiness should be able to predict cloudiness over a broad
range of different climatic states, not just small deviations from a reference climate (which
justifies using a linear framework).

A second difference with typical CCFF studies is that we fit across all available space
and time without any restrictions to special regions of space or cloud types (i.e., f does
not depend on space). Typically in CCFF the fitted parameters (which are linear coef-
ficients) are either aggregated over some specific region of Earth (e.g., subtropical sub-
sidence regions like in Myers and Norris (2016)), or are fitted for each spatial point of
the planet (e.g., like in Grise and Kelleher (2021)), or the focus is exclusively on a spe-
cific cloud type (e.g., low clouds like in Myers et al. (2021)). A third difference is that
the cloud fraction (or cloud cover) is never considered as a quantifier of cloudiness, while
the majority of CCFF studies use cloud fraction as the predictive field. Cloud fraction
however does not have any energetic meaning, and cannot be used to connect clouds to
the energy balance, and as a consequence, also cannot be used in a conceptual energy
balance model.

4 Potential connection with energy balance models

In the introduction of the main text we discussed the benefits of including cloudi-
ness in an energy balance model. There are two steps in achieving this in practice. First,
express cloudiness as a function of simpler physical quantities. Second, represent these
quantities in an energy balance model. In this work we achieved the first step. To ac-
complish the second step, one would have to express predictors ω500, ωstd,CTE as func-
tions of temperature, or temperature differences (which are the typical state variables
of energy balance models). While this task is certainly a subject of future research on
its own right, the choice of predictors was such that there are physically sensible qual-
itative connections to start from. The discussion of this section may help guide future
work on the subject.

The theory behind the baroclinic instability (Charney, 1947; Eady, 1949; Pierre-
humbert & Swanson, 1995) states that midlatitude storms are driven by the equator-to-
pole temperature gradient. Hence, larger temperature gradient would lead to stronger
storms, reflected by a larger ωstd in the midlatitudes. The mean circulation in the Fer-
rel cell (represented by ω500) will likely also increase due to continuity and the increased
momentum carried by the storms. In the tropics, the Held-Hou model (Held & Hou, 1980)
establishes a proportionality between the strength of the Hadley circulation ω500 and gra-
dients in potential temperature, which in first approximation can be taken as the sur-
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face temperature. We have noticed that in the tropics the spatial structure of ω500 and
ωstd are very similar, but why this is the case is not obvious.

The estimated cloud top entrainment index CTE is harder to express in terms of
temperatures. Measures like CTE (or EIS or the Lower Stratospheric Stability) capture
the temperature inversion magnitude between the boundary layer and surface (Wood &
Bretherton, 2006). In the tropical subsidence regions, this inversion strength can be con-
ceptually tied to temperature gradient between the warm equator and colder ocean of
subtropics as follows: The free tropospheric temperature is, to a first approximation, ho-
mogenized by gravity waves to the value in the convecting regions (weak temperature
gradient approximation (Sobel et al., 2001)). Surface temperature in the tropical sub-
sidence regions however reflects the colder ocean temperature. The connection of EIS
with the underlying ocean temperature in the case of midlatitudes is less clear. Concep-
tually, a temperature inversion can occur in cyclonic storms due to kinematic (or alter-
natively, mechanical) reasons: warm air masses from the midlatitudes are forced on top
of the cold polar fronts, creating a temperature inversion scenario. However, more re-
search on the subject is necessary to make more concrete claims.

Given these considerations, it seems that a promising way to express these predic-
tors (and hence cloudiness) in an energy balance model is via the equator-to-pole tem-
perature gradient. Future research should focus on validating this claim in more detail,
but also make the qualitative connections we drew here quantitative by providing clear
functional forms that connect, e.g., mean ω500 or ωstd with equator-to-pole temperature
gradient.
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