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Abstract

The “felt temperature” is the preferred measure of hotness or coldness expressed
to depict human sensory. However, to date, our perception of its spatial pattern
with fine spatiotemporal data remains incomplete. Here, we demonstrated an
empirical statistical approach incorporating atmospheric dynamics theory with
aerodynamic parameters capable of developing hourly datasets at a high spatial
resolution (0.01� x 0.01�). This fusion mechanism model, named the Humidex Re-
construction Model based on Numerical Simulation Data (HRMNSD), employed
reanalysis data and satellite data for both near surface temperature(Tair) and
the dew point temperature(Tdew) to combine their respective advantages in the
correct representation of a turbulent exchange between the surface and the at-
mosphere. We showed the good performance of this model in each season using
the Yangtze River Delta, China as an example. The RMSEs of the Humidex
were 2.47°C (in winter), 2.49°C (in spring), 2.80°C (in summer) and 2.56°C (in
autumn), respectively.

1. Introduction

History shows that heat can be a ruthless killer. In 2021 alone, the death toll
from the record-breaking heatwave that struck the United States and Canada
rose to nearly 200 (Team, 2021). Over 166,000 people died from extreme tem-
peratures from 1998 to 2017 (WHO, 2020).P prior literature (Founda and Santa-
mouris, 2017) reveals the interactions and synergies between urban heat islands
and heat waves and finding their positive feedback, which will increase the risk
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of an urban population’s exposure to heat. By 2020, 56.2% of the world’s
population was urban, and that proportion is projected to increase with rising
incomes and shifts away from employment in agriculture (Ritchie and Roser,
2018). From a physiological perspective, extreme temperatures can acutely im-
pact human health for short periods of time (WHO, 2018), often resulting in
cascading respiratory and cardiovascular diseases and excess mortality. For ex-
ample, heat exhaustion, the result of the body’s overheating, is usually caused
by exposure to high temperatures (particularly when combined with high hu-
midity or strenuous physical activity) within several hours. It can lead to a
life-threatening condition without prompt treatment. We currently lack a com-
prehensive, fine spatiotemporal resolution understanding of urban heat exposure
(Shi et al.,2018; Tuholske et al.,2021). This shortcoming limits our ability to
improve the urban living environment or to guide the development of functional
early risk warning systems to accommodate heat exposure.

Temperature is a cornerstone of heat exposure recognition. Environmental
health research usually decribes the thermal responses of humans as a wide
range of metrics combined with such weather factors (Osczevski, 1995; Keimig
and Bradley, 2002; Wilson, 1967; Rothfusz and Headquarters, 1990; Anderson et
al., 2013; Ravagnolo et al., 2000; Budd, 2008; Zhang et al., 2016; Sirangelo et
al., 2020; Błażejczyk et al., 2013), including the Wind Chill Index (WCI), Heat
Index (HI), Wet Bulb Globe Temperature (WBGT), Humidex index, Universal
Thermal Climate Index (UTCI), etc. The concept of “felt temperature” his-
torically emerged to demonstrate that cold is felt more bitterly with a strong
wind (Ecoten, 2020). Except for wind, the relative humidity of the air (Wan et
al., 2009) and the mean radiant temperature (Kántor and Unger, 2011) are the
key basic parameters determining human comfort. Among these indices, the
Humidex (Wikipedia, 2015), which is widely used, is a relatively simple thermal
comfort index combined with air temperature and humidity. In contrast with
other models needing mean radiant temperature, it has much to recommend it,
since its results can be directly comparable to the air temperature in degrees
Celsius and are suitable for many branches of atmospheric science (Rozbicka
and Rozbicki, 2020b; Pan et al., 2019; Oleson et al., 2015). Moreover, the Hu-
midex is easier to understand and calculate, rendering it commonly used in the
investigation of heat stress (Rainham and Smoyer-Tomic, 2003; Zamanian et al.,
2017; Al-Bouwarthan et al., 2019; Smoyer-Tomic and Rainham, 2001).

In Humidex mapping, spatial interpolation, atmospheric simulation and statis-
tical regression are three common strands of research. As the simplest method,
spatial interpolation based on the first law of geography can generate air tem-
perature (Stahl et al., 2006; DeGaetano and Belcher, 2007;Wang et al., 2017; Xu
et al., 2018) and humidity (Geleyn et al., 1988; .Berndt andHaberlandt, 2018)
maps with high spatial-temporal resolution, usually varying from several meters
to kilometers on a spatial basis and an hour to a year on a temporal. However,
it is affected by the distribution of points to be interpolated, resulting in con-
siderable uncertainties and errors. An atmospheric simulation constructs math-
ematical models around primitive dynamic equations that control atmospheric
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motion (Mistry and Malcolm, 2019). They can predict real-time processes on
a multi-scale, including global flows (Gates, 1976), large-scale atmospheric cir-
culation(Sandu et al., 2019), microscale weather forecasts (Wiersema, 2020),
and sub-microscale turbulent flow over buildings (Auvinen et al., 2020; Tong
et al., 2005). However, sub-micorscale is far from a satisfactory level in high-
resolution mapping due to its complex parameter requirements, expansive time,
and heavy operating load. Remote sensing data have excellent performance in
providing spatially continuous, high-resolution geographic information. How-
ever, the land surface temperature (LST) retrieved from the thermal infrared
data provided by satellite measurements cannot be used as an alternative to
“felt temperature”. These two interactive weather parameters differ, especially
LST and air temperature, which are essential in Humidex calculation. Linear
and nonlinear (Şahin, 2012; Shen et al., 2020; Li and Zha, 2018; Chen et al.,
2015; Hjort et al., 2011) regression models were then built to estimate weather
factors, such as air temperature and humidity, with observation sites and multi-
ple environmental variables from satellites to reconstruct the “felt temperature”
with its index function, as many researchers have done(Ho et al., 2016). For ex-
ample, Hung et al. (2016) employed an empirical approach to map the apparent
temperature (Humidex) by relying on meteorological observations and satellite
layers combined in a random forest regression model. However, the satellite
data present significant limitations for the estimations due to their inevitable
cloud contamination and poor scanning frequency, making real-time monitoring
unrealized.

Until now, the high-resolution mapping of the urban “felt temperature” (the Hu-
midex was used in our study) has stayed in the observation-data-driven stage.
There are two gaps in this observation-data-driven model in estimating meteoro-
logical parameters. First, it does not properly represent the turbulent exchange
between the surface and atmosphere, especially over urban areas with their
high-rise buildings and crisscrossing asphalt roads. Second, it has temporal res-
olution limitation, resulting in the weakness of capturing instantaneous heating
that may cause injuries. To fill these gaps, we established an apparent tem-
perature (Humidex) reconstruction model with fine spatial-temporal-resolution
(hourly, 0.01� x 0.01�), which is beyond the current level (daily, 1km x1km),
combined the satellite data with fine-spatial resolution (0.01� x 0.01�) with the
ERA5 reanalysis data with fine-temporal resolution (hourly) and clear physi-
cal constraints,; and addedaerodynamic parameters (roughness length for nat-
ural surfaces and urban geometric characteristics for artificial surfaces). We
named itthe Humidex Reconstruction Model based on Numerical Simulation
Data (HRMNSD). Besides the Humidex, we presented a statistical downscaling
model of the fusion mechanism for both near-surface temperature and dew point
temperature that can offer basic data for many fields, such as climate change,
agriculture, thermal health, etc.

2. Materials and Methodology

2.1 Data sources
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All the data we used are publicly available. We supply their temporal and
spatial resolutions here, tagged with their sources in Table S1. More details can
be found in the descriptions given in the links.

2.2 Study area

The Yangtze Delta, one of China’s three metropolitan regions, is a triangle-
shaped metropolis centered on Shanghai. It is the most densely populated and
concentrated industrial region and drives China’s economic development, with
the highest degree of regional integration and the most comprehensive trans-
portation system. There may be more than 80 towns with various scales within
10,000 square kilometers. Although it accounts for only 2.2% of the total land
area of China, the Yangtze Delta generated over 20% of China’s GDP and was
home to 16.7% of the national population at the end of 2020 (Dai et al., 2016).
The Yangtze Delta is characterized by a marine monsoon subtropical climate,
with hot and humid summers and cold and dry winters (Wikipedia, 2021). Ex-
treme heat events occur frequently here due to the Western Pacific Subtropical
High in the summer (Li et al., 2015). The rapid expansion of urbanization also
creates a more intense heat wave for positive feedback (Wang et al., 2017).

Figure 1. Overview of the Yangtze Delta and the distribution of mete-
orological stations according to NOAA. The blue triangles represent
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the observation stations with hourly data, while the black triangles
represent the observation stations that collect data every three hours.

2.3 Methodology

Combining satellite data and the theoreticaly framework of their physical pro-
cesses (Tair and Tdew), we proposed various approaches for downscaling the
reanalysis data, with the goal of reconstructing a high-accuracy, spatiotempo-
rally continuous and fine-resolution (hourly, 0.01� x 0.01�) apparent temperature
(Humidex).

2.3.1 Data processing

We first eliminate the discontinuous satellite LST data (LSTMODIS) in time and
space interfered with by cloud cover. A gap-filled method proposed by Shiff
et al. (2021) was used to derive a spatiotemporally continuous LST (LSTc)
dataset at a regional 1-km resolution of MODIS four times per day. The in-
consistency in our study is the replacement of the numeric weather prediction
model data (Climate Forecast System Version 2, CFSv2, for the original) with
the ERA5 reanalysis hourly atmospheric variable (LSTERA5).The core of this
gap-filled model is derivingcloud-free seasonality (climatology) on a pixel-by-
pixel basis using temporal Fourier analysis and filling the climatological gap
with the anomaly data. Subsequently, we introduced a data fusion model (the
enhanced spatial and temporal adaptive reflectance fusion model, ESTARFM;
Zhu et al., 2010) to fuse satellite-based (LSTc, TCWVMODIS) and ERA5-based
(LSTERA5, TCWVERA5) datasets, designed to generate LST and TCWV with
fine resolution (hourly, 0.01� x 0.01�). Here, the ERA5 product of 0.1� was simply
resampled to 0.01� to run the ESTARFM. For the fused data,hourly continuous
ERA5-based datasets providing information on time-series variations were used
to reduce the systematic bias of the linear scaling model (Leander and Buishand,
2007) and the variance scaling model (Chen et al., 2011).

In the following pivotal step, two regression algorithms, named random forest
(RF) and geographically weighted regression (GWR), were employed to down-
scale hourly ERA5-based Tair and Tdew.

For Tair, we split the data into two parts: the artificial surface and the natural
surface. Two sets of covariates were used for urban (we called them the arti-
ficial surface mechanism constrained downscaling indexes, ASMCDI) and non-
urbanized areas (natural surface mechanism constrained downscaling indexes,
NSMCDI) respectively. For the natural surface, we finalized the covariates, in-
cluding the leaf area index(LAI), the digital elevation model (DEM), and the
roughness length for momentum (Zom) and heat(Zoh) via a procedure based on
the Monin−Obukhov similarity theory, which represents the vertical exchange
of heat, momentum, and moisture in the surface layer (Li et al., 2012). For ar-
tificial surfaces, three urban canopy geometry parameters under the framework
of the urban canopy model (UCM; Cao and Lin, 2014) were used to replace the
roughness length to characterize the impact of urban morphology on turbulent
surface exchanges. The three geometry parameters are the plan area index (�),
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the canyon (floor and wall) frontal area index (�c), and the roof frontal area
index (�r), which are necessary for the calculation of urban zo parameterization
schemes. Thus, we write the near-surface air temperature statistical downscal-
ing models for a natural surface and an artificial surface as a nonlinear function,
Eqs.(1) –(2), respectively:

𝑇air ∝ 𝐹 (𝑇surf, 𝐷𝐸𝑀, 𝐿𝐴𝐼, 𝑧𝑜, 𝑒) (1)

𝑇air ∝ 𝐹 (𝑇surf, 𝐷𝐸𝑀, 𝐿𝐴𝐼, 𝜂 , 𝜆𝑐, 𝜆𝑟 , 𝑒) (2)

Where e is the residual caused by humidity and momentum fluctuations which
is hard to quantify. The gravitational acceleration (g) decreases with altitude
(DEM); zo, including zom and zoh, is the surface roughness length used to mea-
sure the capacity of surface elements in absorbing momentum and heat. Tsurf
is the land surface temperature (we used the fusion LSTc here). The leaf area
index (LAI) represents the size of the plant canopy. More details can be found
in our supplemental information (SI). The RF algorithm was chosen here for two
main reasons. One is its insensitivity to outlier disturbances (Robnik-Šikonja,
2004). The other is its advantage in handling complex nonlinear relationships
(Auret and Aldrich, 2012).

For Tdew, the logarithmic correlation between the surface dew point tempera-
ture and the total amount of water vapor in the vertical air column was first
proposed by Reitan (1963). Many studies have examined this relationship across
geographic areas and confirmed that the correlation coefficient varies with sea-
son, latitude, and longitude (Smith, 1966; John, 1974; Viswanadham, 1981).
Thus, the GWR model was applied to interpret this geographic dependence for
the ERA5-based Tdew scale conversion. The regression model here was written
as Eq. (3):

𝑇dew = 𝛽1(𝑥𝑖,𝑦𝑖) + 𝛽2(𝑥𝑖,𝑦𝑖) ln (TCWV) + 𝜀𝑖 (3)

Where xi,yi is the parameter estimated at each location with the coordinates
(xi, yi) and i is the residual of the ith location.We chose the adaptive kernel with
the AICc estimated bandwidth in the process of model estimation. Notably, we
assumed a scale-invariant relationship among variables on all the resolutions we
used (0.1� and 0.01�). We chose four days, including January 15, 2020 (winter),
April 15, 2020 (spring), July 15, 2020 (summer) and October 15, 2020 (autumn),
to test the seasonal performance of this method.

In the end, we reconstructed a fine-resolution apparent temperature using the
Humidex formula and verified the accuracy of our results using hourly obser-
vation data. The validation results were the daily averages of each metric
(correlation coefficient, r2; mean absolute error, MAE; root mean square error,
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RMSE; and Nash−Sutcliffe efficiency index, NSE) validated at all stations. Fur-
thermore, we compared our accuracy with reanalysis-based data to obtain the
downscaled model error, dropping out of the fixed error caused by the numeric
simulation. All the formulas used in our model can be found in Supplmentary
information.

Figure 2. Flowchart of the Humidex reconstruction.

3. Results and Discussion

3.1 Accumulated errors of Tair and Tdew on the Humidex calculation

Table 1 summarizes the performances of downscaling models for both Tair and
Tdew in all seasons based on the correlation coefficient (r2), mean absolute error
(MAE), root mean square error (RMSE) and Nash-Sutcliffe efficiency index
(NSE). Basically, these seasonal downscaling Tair were good quality, with the
MAE ranging from 1.6℃ to 1.9℃ and the RMSE which were generally lower
than 2.5℃. The performance of Tdew can be divided into three grades: The
Tdew downscaling model in winter achieved the best grade for its highest value

7



of r2 (= 0.95) and its lowest value of RMSE(= 1.42℃); the model in spring and
summer achieved the second grade for its relatively ideal correlation coefficient (
> 0.6). Sometimes (for spring), there was a significantly lower RMSE(= 2.73℃)
compared with the other three seasons. In autumn, the model made up the
lowest grade for its poor value of r2 To find the sources of errors, we listed the
accuracy performance of the ERA5-based data and found their evident similarity
to our downscaling results. This demonstrates our guaranteed data accuracy in
data conversion from a coarse resolution (0.1�x0.1�) to fine resolution (0.01� x
0.01�).

To further understand the effect of cumulative transfer errors from the down-
scaled Tair and Tdew on the Humidex calculation, we drew a violin plot that
visualized the distribution of both observed and predicted numeric data. Figure
B1 illustrates such a phenomenon: If the distribution of predicted data was like
the observed one, the Humidex also showed the same characteristic, regardless
of the poor quality of Tdew;. Under the opposite conditions, there were slightly
different patterns in their distributions. This means that the accuracy of the
predicted Tdew did not have a significant effect on the final calculation of the
Humidex. Table 2 verifies this phenomenon with a similar MAE and RMSE for
each season.

Table 1. Validation accuracy for downscaling Tair, downscaling Tdew,
a reconstructed Humidex, ERA5-based Tair and ERA5-based Tdew in
each season. Accuracy is given by MAE, RMSE, r2, and NSE.

Date 01.15 04.15 07.15 10.15 Date 01.15 04.15 07.15 10.15
MAE r2
Tair 1.87 1.68 1.82 1.62 Tair 0.81 0.93 0.81 0.81
Tdew 1.08 1.97 1.12 1.25 Tdew 0.95 0.82 0.88 0.59
Humidex 1.93 1.59 2.11 1.91 Humidex 0.83 0.90 0.74 0.66
ERA5-based Tair 1.07 1.90 1.10 1.18 ERA5-based Tair 0.93 0.92 0.88 0.86
ERA5-based Tdew 1.01 1.92 1.07 1.17 ERA5-based Tdew 0.95 0.85 0.85 0.63
Date 01.15 04.15 07.15 10.15 Date 01.15 04.15 07.15 10.15
RMSE NSE
Tair 2.42 2.32 2.46 2.16 Tair 0.53 0.79 0.22 0.47
Tdew 1.42 2.73 1.56 1.66 Tdew 0.84 0.31 0.27 -0.19
Humidex 2.47 2.49 2.80 2.56 Humidex 0.68 0.80 0.47 0.39
ERA5-based Tair 1.33 2.62 1.58 1.75 ERA5-based Tair 0.86 0.73 0.68 0.65
ERA5-based Tdew 1.34 2.58 1.43 1.52 ERA5-based Tdew 0.86 0.38 0.39 -0.01

3.2 Spatial pattern comparison of Tair and Humidex

Based on the HRMNSD scheme described in the methodology section, the final
products of Humidex were made for the four experimental dates once hourly.
In Figure 3, we aggregated the daily mean Humidex and Tair, and given an
overview box plot on each single day to illustrate their hourly spatial variations
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based on the basic five-number summary (minimum, first quartile, median, third
quartile, maximum) on each single day. The hourly data are shown in SI (Fig.
B2-B13).

Through this figure, we can easily find the similarities and variations of the
spatial pattern between the Humidex and Tair: In winter (January 15), the
Humidex was generally lower than the air temperature, with a 2.3℃ difference
in the daily mean temperature. In spring (April 15), there were striking resem-
blances between the felt temperature (Humidex) and the actual temperature
(Tair, with differences in the daily mean value within 1℃). Spatially, the North
was where the warmth was the most pronounced. In summer (July 15), the daily
mean value was 33.3°C(minimum: 27.0°C, maximum: 43.6°C) of the Humidex
and 24.4°C(minimum: 19.9°C, maximum: 30.5°C) of the air temperature, show-
ing a huge gap ( > 10℃) all day long. In autumn (October 15), the fluctuations
of ”felt” and ”actual” temperatures were mainly concentrated from morning to
noon when the daily average varied within 5℃. For the whole area, the temper-
ature (both humidex and Tair) was relatively higher in the South closer to the
coastline except during spring. The Humidex showed a visible spatial pattern,
roughly dividing the study area into two zones: a hot zone (in Zhejiang and
Shanghai) and a relatively cool zone (in Jiangsu and Anhui).
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Figure 3. Spatial pattern of reconstructed Humidex and downscaled
Tair on (a) January 15, 2020; (b) April 15, 2020; (c) July 15, 2020;
and (d) October 15, 2020. Within each subfigure, the daily average
Humidex product was put on the left with its hourly variation box
plot at the top/bottom and the Tair product was put on the right
with its hourly variation box plot at the top/bottom. The legend is
shared within each subfigure.

3.3 Uncertainty and limitations

Generally, the accuracy of weather parameter estimation (such as air tempera-
ture, humidity, etc.) always decreases in parallel with finer temporal and spatial
resolutions. Taking air temperature as an example, Zhu et al. (2013) reported
an RMSE of 2.97℃ for the 1-km daily minimum air temperature estimation
(7.45℃ for the daily maximum air temperature), whereas Serra et al. (2020)
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provided the statistically derived 1-km air temperature at annual, seasonal, and
monthly scales, whose RMSE varies from 1.5-2.0℃ (annual), from 1.3-2.0℃
(seasonal) and from 1.2-2.1℃ (monthly), respectively. In addition, Hooker et al.
(2018) developed a dataset of monthly air temperatures at a spatial resolution
of 0.05� (about 5-km) with the RMSE varying from 1.0 to 2.2℃. Compared
with the product using the statistical model, simulation techniques generally
produce the air temperature mapping with high temporal resolution and ideal
accuracy (RMSE ranging from 0.5 to 3℃; Masunaga et al., 2018; He et al., 2020),
but rarely in a micro scale (about 1 km or less) because of the high computa-
tional cost. The air temperature product presented in our study has an RMSE
of less than 2.5℃ (ranging from 2.16 to 2.47℃), which is similar to (or even
better than) the daily-resolution product. For the Humidex,mapping with fine
spatial-temporal resolution is rare but more closely related to heat mortality.
For example, Hung et al. (2016) presented a method to estimate the daily Hu-
midex whose RMSE was equal to 2.04℃. The performance of our study (RMSE:
2.34-2.80℃) is broadly similar, but provides a finer temporal resolution (hourly).
What needs to be emphasized is that there are some inevitable limitations and
incomparability among these comparisons over their performance accuracy for
the diversity of their data, model and study area. Broadly speaking, our method
conferred a great improvement on the temporal resolution and filled the hourly
data gap of air temperature, dew point temperature, and Humidex in a micro
scale (kilometer- level) without cutting the high degree of accuracy of numeric
simulation data.

Far more than the stability and accuracy performance, weather parameters pre-
dicted by numeric simulation have a clearer constraint condition on climate
dynamical mechanisms (Kumar et al., 2021; Zhang et al., 2022), which is also
proof of choosing the input parameters in our study. In previous studies, the
LST (Zhang et al., 2016; Zhang et al., 2018; Colombi et al., 2007; Benali et al.,
2012; Vancutsem et al., 2010; Weng, 2009; Sohrabinia et al., 2015; Mutiibwa
et al., 2015; Cao et al., 2021; Zakšek and Schroedter-Homscheidt, 2009; Oyler
et al., 2016), Normalized Difference Vegetation Index (NDVI; Nieto et al., 2011;
Hassaballa and Matori, 2011), DEM (Huang et al., 2017), Distance to Coast
(dos Santos, 2020; Good, 2015), Solar Zenith Angle (Cresswell et al., 1999; Jang
et al., 2004), Julian day (Jang et al., 2004; Emamifar et al., 2013; Janatian et
al., 2017), altitude (Janatian et al., 2017) and the like are the common auxiliary
variables for Tair estimation using advanced statistical methods. Scholars use
these parameters considering the environmental factors affecting the land atmo-
sphere exchange and their performance reported in the literature instead of the
general atmospheric circulation. We confirmed that the selection of the above
variables is absolutely right, whereas it may increase the computational cost
with the inexact boundary conditions. The parameters selected through the
ECMWF land surface mechanism may present more proper constraints along
with simplifying Tair estimation rather than significantly improving accuracy.
In this study, we established a statistically downscaled model based on the re-
analysis data without correcting its systematic error in the pre-process. This
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may highlight the inconsistency of the punctual measurements observed by the
weather station. The main question is: A pixel with coarse resolution (0.1� x
0.1�) is quite heterogeneous; it describes a more complex surface around the fi-
nite environment measured by the ground station. This means thatpunctual
measurements may not be representative of the corresponding reanalysis pixels.
In other words, the systematic error of the reanalysis data will transfer along
with the downscaling, weakening our model.

Another weakness of the HRMNSD is its instability in complex mountainous
terrain or snow and ice cover. Of course, turbulence is generally a characteris-
tic of the interaction between atmospheric flow and the surface (friction and
exchange of thermal, or radiative, energy; Sun et al., 2015; Wyngaard, 1992).
When turbulence circulates among complex mountains, the varied of terrain
makes the stratified atmosphere unstable, which further enhances or reduces
heat or energy transport (North, 1975). Even in large-scale numeric models, the
parameterization of topography-specific regional effects is still missing (Lehner
and Rotach, 2018). An example of poor model performance in mountainous
terrain is atmospheric stability, particularly during cold-air pool episodes, often
leading to an underestimation of inversion strength and an overestimation of
near-surface temperatures (Lehner and Rotach, 2018). Moreover, the exchange
between land surface and atmosphere is also influenced by snow albedo feed-
back processes (Letcher and Minder, 2015; Bishop et al., 2011). Therefore, the
weather parameter downscaling of complex mountainous terrain or of snow and
ice coverage is more challenging than the current model. Fortunately, extreme
heat events generally do not originate in these areas. This makes our model
sufficiently applicable for assessing the heat exposure of inhabitants.

5. Conclusion

Our study provided a feasible scheme for reconstructing a Humidex map with
fine spatial-temporal resolution (hourly, 0.01�x0.01�) by combining the individ-
ual advantages of numeric simulation and remote sensing. The accuracy of our
model is ideal with the population RMSE ranging from 2.47-2.80℃, MAE rang-
ing from 1.59-2.11℃, r2 ranging from 0.66-0.92 and NSE ranging from 0.39-0.80
for the four seasons. Furthermore, we found a diverse spatial pattern between
the near surface temperature and the Humidex (in seasons such as winter and
summer), which revealed that water vapor is a strong weather component in
the temperature ”felt” by the human body to be reckoned with. In the future,
we may reproduce our work in more complex scenarios, such as ice coverage
and rugged terrain. We can map the global dataset with an improved realistic
surface roughness length. Where technically feasible, we can even simulate the
intensity and direction of wind fields and the duration of sunlight to optimize
the mapping of “felt temperature”. More comprehensive datasets could also be
made to cater to more studies based on ”felt temperature” metrics for various
exposures of all kinds of biological groups (e.g. humans, plants, and animals).
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