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Abstract

For nearly a century, the functional response curves, which describe how predation rates vary with prey density, have been

a mainstay of ecological modelling. While originally derived to describe terrestrial interactions, they have been adopted to

characterize aquatic systems in marine biogeochemical, size-spectrum, and population models. However, marine ecological

modellers disagree over the qualitative shape of the curve (e.g. Type II vs. III), whether its parameters should be mechanistically

or empirically defined (e.g. disk vs. Michaelis-Menten scheme), and the most representative value of those parameters. As a case

study, we focus on marine biogeochemical models, providing a comprehensive theoretical, empirical, and numerical road-map

for interpreting, formulating, and parameterizing the functional response when used to prescribe zooplankton specific grazing

rates on a single prey source. After providing a detailed derivation of each of the canonical functional response types explicitly

for aquatic systems, we review the literature describing their parameterization. Empirical estimates of each parameter vary by

over three orders of magnitude across 10 orders of magnitude in zooplankton size. However, the strength and direction of the

allometric relationship between each parameter and size differs depending on the range of sizes being considered. In models,

which must represent the mean state of different functional groups, size spectra or in many cases the entire ocean’s zooplankton

population, the range of parameter values is smaller, but still varies by two to three orders of magnitude. Next, we conduct a

suite of 0-D NPZ simulations to isolate the sensitivity of phytoplankton population size and stability to the grazing formulation.

We find that the disk parameterizations scheme is much less sensitive to it parameterization than the Michaelis-Menten scheme,

and quantify the range of parameters over which the Type II response, long known to have destabilizing properties, introduces

dynamic instabilities. Finally, we use a simple theoretical model to show how the mean apparent functional response, averaged

across sufficient sub-grid scale heterogeneity diverges from the local response. Collectively, we recommend using a type II disk

response for models with smaller scales and finer resolutions but suggest that a type III Michaelis-Menten response may do

a better job of capturing the complexity of all processes being averaged across in larger scale and coarser resolution modal,

not just local consumption and capture rates. While we focus specifically on the grazing formulation in marine biogeochemical

models, we believe these recommendations are robust across a much broader range of ecosystem models.
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Key Points:12

• We review the derivation of the functional response equations, unified across all13

common response types and parameter schemes, which should benefit a range of14

marine models.15

• Zooplankton grazing parameter values vary by 3 to 4 orders of magnitude with16

inconsistent allometric relationships, both in models and experiments.17

• The apparent mean functional response, averaged across sufficient sub-grid scale18

heterogeneity, begins to resembles the shape and parameter sensitivity of a type19

III Michaelis-Menten response even when a local type II disk response is prescribed.20

• We recommend a type II disk response in smaller scale, finer resolution models21

but a type III Michaelis-Menten response in larger scale, coarser resolution mod-22

els.23

• We recommend considering a wide range of K1/2 values, particularly low ones.24

Corresponding author: Tyler Rohr, tyler.rohr@csiro.au
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Abstract25

For nearly a century, functional reizes beingponse curves, which describe how predation26

rates vary with prey density, have been a mainstay of ecological modelling. While orig-27

inally derived to describe terrestrial interactions, they have been adopted to character-28

ize aquatic systems in marine biogeochemical, size-spectrum, and population models. How-29

ever, marine ecological modellers disagree over the qualitative shape of the curve (e.g.30

Type II vs. III), whether its parameters should be mechanistically or empirically defined31

(e.g. disk vs. Michaelis-Menten scheme), and the most representative value of those pa-32

rameters. As a case study, we focus on marine biogeochemical models, providing a com-33

prehensive theoretical, empirical, and numerical road-map for interpreting, formulating,34

and parameterizing the functional response when used to prescribe zooplankton specific35

grazing rates on a single prey source. After providing a detailed derivation of each of the36

canonical functional response types explicitly for aquatic systems, we review the liter-37

ature describing their parameterization. Empirical estimates of each parameter vary by38

over three orders of magnitude across 10 orders of magnitude in zooplankton size. How-39

ever, the strength and direction of the allometric relationship between each parameter40

and size differs depending on the range of sizes considered. In models, which must rep-41

resent the mean state of different functional groups, size spectra or in many cases the42

entire zooplankton community, the range of parameter values is smaller, but still varies43

by two to three orders of magnitude. Next, we conduct a suite of 0-D NPZ simulations44

to isolate the sensitivity of phytoplankton population size and stability to the grazing45

formulation. We find that the disk parameterizations scheme is less sensitive to it’s pa-46

rameterization than the Michaelis-Menten scheme, and quantify the range of parame-47

ters over which the Type II response, long known to have destabilizing properties, in-48

troduces dynamic instabilities. Finally, we use a simple theoretical model to show how49

the mean apparent functional response, averaged across sufficient sub-grid scale hetero-50

geneity, diverges from the local response. Collectively, we recommend using a type II disk51

response for models with smaller scales and finer resolutions but suggest that a type III52

Michaelis-Menten response may do a better job of capturing the complexity of all pro-53

cesses being averaged across in larger-scale and coarser-resolution models, not just lo-54

cal consumption and capture rates. While we focus specifically on the grazing formu-55

lation in marine biogeochemical models, we believe these recommendations are robust56

across a much broader range of population and ecosystem models that use functional re-57

sponse curves.58

1 Introduction59

In the late 1950s, Buzz Holling began studying the predation of sawfly cocoons by60

small mammals (Holling, 1959a) to better understand how predation rates varied with61

prey density, a relationship coined a decade earlier as the functional response (Solomon,62

1949). Holling observed that individual predators consumed more prey at higher prey63

densities, but found that this relationship was not necessarily linear or consistent across64

species. Over the course of three seminal papers, Holling developed a theoretical frame-65

work to describe how different assumptions about the rates at which predators captured66

and consumed their prey could explain observed nonlinearities and variability in the shape67

of functional response curve (Holling, 1959a, 1959b, 1965). Using this mechanistic ap-68

proach, Holling derived three qualitatively distinct response types to describe differences69

in predator-prey interactions and their associated rates. In the ensuing decades, these70

equations have been further generalized (Real, 1977, 1979) and cemented into the bedrock71

of ecological modelling (Beardsell et al., 2021; Denny, 2014).72

Although the functional response was originally developed for terrestrial applica-73

tions (Holling, 1959a), the equations are also common in marine ecological modelling (Evans74

& Parslow, 1985; Fasham, 1995; Franks, Wroblewski, & Flierl, 1986). In the ocean, the75

functional response equations are now routinely used to link trophic dynamics in ma-76
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rine biogeochemical (Law et al., 2017; Moore, Lindsay, Doney, Long, & Misumi, 2013),77

size spectrum (Heneghan et al., 2020), and population models (Alver, Broch, Melle, Bagøien,78

& Slagstad, 2016). They are used to simulate both the rate at which heterotrophic zoo-79

plankton graze on autotrophic phytoplankton (Evans & Parslow, 1985; Franks et al., 1986)80

as well as the transfer of mass and energy further up the food chain in ecosystem (Buten-81

schön et al., 2016) and fisheries models (Maury, 2010; Tittensor et al., 2018, 2021).82

However, there remains a great deal of uncertainty surrounding the formulation of83

the functional response. For example, trade offs between the ecological veracity and nu-84

merical stability of different response types (Gismervik, 2005; Morozov, 2010; Morozov,85

Arashkevich, Reigstad, & Falk-Petersen, 2008) have led to disagreement over which is86

best suited for rapidly growing, easily perturbed, microbial systems common in marine87

ecology (Fasham, 1995; Flynn & Mitra, 2016; Gentleman & Neuheimer, 2008). Even amongst88

mathematically identical curves, there is not a consensus on how to define their param-89

eters, no less prescribe them. While some modellers opt for a parameter scheme that mir-90

rors the Michaelis–Menten (Michaelis & Menten, 1913) and Monod (Monod, 1949) equa-91

tions developed to describe enzyme kinetics and bacterial growth rates (Aumont & Bopp,92

2006; Dutkiewicz et al., 2015; Moore et al., 2013; Vichi, Pinardi, & Masina, 2007), oth-93

ers use a parameter scheme that mirrors the disk equation (Holling, 1959b, 1965) devel-94

oped by Holling to describe terrestrial interactions (Fasham, 1995; Laws, Falkowski, Smith,95

Ducklow, & McCarthy, 2000; Oke et al., 2013; Schartau & Oschlies, 2003b). While the96

parameters used in the Michaelis–Menten scheme are overtly empirical, those used in the97

disk scheme are theoretically mechanistic. Disagreement over which parameter set to use98

can confuse inter-model comparisons and influence the parameter space considered in99

optimization schemes, especially when there are no robust observations to bound them.100

Here, we focus on the formulation of grazing in marine biogeochemical models, which101

are a critical component of coupled earth system models used to simulate climate (Eyring102

et al., 2016; Flato et al., 2013; Taylor, Stouffer, & Meehl, 2012) and are often used to103

drive fisheries models (Maury, 2010; Tittensor et al., 2018, 2021). These models are in-104

creasingly under constrained and over parameterized (Doney, 1999; Matear, 1995; Schar-105

tau et al., 2017; Ward, Friedrichs, Anderson, & Oschlies, 2010). Accurately represent-106

ing grazing is critical to both climate and ecosystem models, as it mediates the biolog-107

ical transport of carbon fixed via net primary production (Behrenfeld, Doney, Lima, Boss,108

& Siegel, 2013; Laufkötter et al., 2015) and transported to higher trophic levels via sec-109

ondary production (Brander, 2007; Scherrer et al., 2020). Still, despite the growing recog-110

nition that biogeochemical models are highly sensitive to the grazing formulation (Ad-111

jou, Bendtsen, & Richardson, 2012; T. Anderson, Gentleman, & Sinha, 2010; Chenillat,112

Rivière, & Ohman, 2021; Fasham, 1995; Flynn & Mitra, 2016; Fussmann & Blasius, 2005;113

Gentleman & Neuheimer, 2008; Gross, Ebenhöh, & Feudel, 2004), it remains challeng-114

ing to constrain global zooplankton dynamics using a limited number of simplified equa-115

tions, state variables, and parameters. Most biogeochemical models represent only 1-2116

zooplankton functional groups, but parameters inferred empirically vary considerably117

across zooplankton species, size and age (Hansen, Bjørnsen, & Hansen, 1997; Hirst &118

Bunker, 2003). Allometric models can vary parameters across size classes, but measured119

allometric relationships are not always robust (Hansen et al., 1997). Even once param-120

eters are chosen, global simulations cannot be easily validated because we lack the re-121

quired spatial resolution in observed distributions of zooplankton biomass and their as-122

sociated grazing parameters (but see Moriarty, Buitenhuis, Le Quéré, and Gosselin (2013);123

Moriarty and O’Brien (2012)). Moreover, equations modellers must parameterize are em-124

pirical and theoretical simplifications and may not be adequate to represent the mean-125

state of diverse communities grazing in fundamentally different ways distributed hetero-126

geneously across a patchy ocean.127

Depending on the model, zooplankton diets range from a single generic phytoplank-128

ton to a complex portfolio of multiple phytoplankton, smaller zooplankton, and detri-129
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tus. When multiple prey are available, the distribution of grazing across them is deter-130

mined by one of many multiple-prey response functions, which can take into account both131

the relative distribution of prey options and their intrinsic desirability (Fasham, Duck-132

low, & McKelvie, 1990). These equations, which are typically extensions of the single-133

prey response functions, have been reviewed in detail by Gentleman, Leising, Frost, Strom,134

and Murray (2003). Here, we focus on the single-prey response functions, which are a135

prerequisite for understanding the multiple-prey response functions and often describe136

their implied behavior when only one prey option is available. While many modern mod-137

els use a multiple-prey response (Aumont, Ethé, Tagliabue, Bopp, & Gehlen, 2015; Stock138

et al., 2020; Totterdell, 2019; Yool et al., 2021), zooplankton grazing with a single-prey139

response remains common in many state-of-the-art CMIP6-class earth system models140

(Christian et al., 2021; Hajima et al., 2020; Law et al., 2017; Long et al., 2021; Tjipu-141

tra et al., 2020)142

By combining theory, empirical data, and numerical models, we consolidate exist-143

ing information and new results to develop a comprehensive guide for how the single-144

prey functional response is employed in marine ecological models to represent grazing.145

We begin by presenting a unified review of how each functional response and its asso-146

ciated parameter schemes are derived, providing detailed insights into how they relate147

to each other from first principles (Section 2). Next we review the mathematical in-148

fluence of different grazing formulations on population stability (Section 3) and sur-149

vey the literature to assess the range of parameter values that have been estimated em-150

pirically and used prescriptively in models (Section 4). Then we conduct a suite of sim-151

ulations to isolate the sensitivity of phytoplankton population size and stability to the152

parameterization of the functional response using four different combinations of response153

type (i.e. II vs. III) and parameter scheme (i.e. disk vs. Michaelis-Menten; Section 5).154

Finally, we use a simple theoretical model to examine the influence of sub-grid scale het-155

erogeneity on the shape of the functional response (Section 6). This work culminates156

with a set of recommendations for the formulation of grazing based on the evidence pre-157

sented (Section 7). These recommendations are tailored to the single-prey representa-158

tion of grazing in marine biogeochemical models, but are broadly applicable to much wider159

usage of the functional response across marine and terrestrial applications.160

2 Derivation of the grazing formulation161

The rate at which prey is grazed by zooplankton is generally expressed as the graz-162

ing rate (G) in units of prey concentration lost per unit time (e.g. mmolC
m3d ). Here, we gen-163

erally refer to prey as phytoplankton, but all results are relevant to grazing on any generic164

single prey (e.g. bacteria, detritus, or other zooplankton). The grazing rate is equal to165

the product of the ambient zooplankton concentration, [Z], and the zooplankton spe-166

cific grazing rate (g), often referred to as the ingestion rate (Franks et al., 1986; Gen-167

tleman & Neuheimer, 2008), which describes the concentration of phytoplankton grazed168

per unit zooplankton per unit time, reducing to units of one over time (e.g. 1/d), such169

that170

G = g[Z]. (1)

To account for the intuitive fact that grazing is less successful when phytoplank-171

ton are scarce, the zooplankton specific grazing rate, g, must vary with the ambient phy-172

toplankton concentration, [P ], particularly when [P ] is low. The mathematical formula173

that describes these relationships is know as the functional response.174

Buzz Holling originally derived the functional response by assuming there was a175

fixed time interval, T , over which predator and prey were exposed (e.g. same location,176

same time, predator is awake), and that predators were assumed to exclusively be cap-177
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turing (e.g. searching, encountering, hunting, attacking) (Tcap) or consuming (e.g. killing,178

handling, processing, eating, digesting) prey (Tcon) during this interval (Holling, 1959a),179

such that180

T = Tcap + Tcon. (2)

The canonical type I, II, and III functional responses (Fig. 1a) were consequently181

derived (Fig. 1b) from different assumptions (Fig. 1c) about the efficiency of the cap-182

ture and consumption processes, the associated total time needed to capture and con-183

sume a given amount of prey, and how those rates and times vary with prey density (see184

Table 1 for a catalogue of terms). However, prey density was originally expressed in dis-185

crete units of prey over a given circular area (or disk). Here, we instead provide a deriva-186

tion of the type I (Section 2.2), II (Section 2.3), and III (Section 2.4) responses ex-187

plicitly for aquatic systems, with units of concentration (mmolC/m3) for phytoplank-188

ton and zooplankton communities and days (d) for time. Further, we show how each func-189

tional response can be described by two sets of parameters: the disk scheme in which190

the consumption and capture processes are explicitly prescribed and mechanistically de-191

fined, and the Michaelis-Menten scheme, in which the maximum grazing rate and half192

saturation concentration of the curve are explicitly prescribed and empirically defined.193

Note, many of these equations have been derived in various forms and various contexts194

before (Aksnes & EGGE, 1991; Caperon, 1967). Here, we present them together, specif-195

ically in the context of zooplankton grazing, with careful attention to how they relate196

theoretically and mathematically to each other and first principles.197

For each derivation, consider some concentration of phytoplankton, [PG] (mmolC/m3),198

that is grazed (i.e. captured and consumed) by the ambient zooplankton community, [Z]199

(mmolC/m3), over the fixed grazing (or exposure) interval, T (d), at a grazing rate of200

G = [PG]
T and a zooplankton specific (i.e. considering the amount of predator present)201

grazing rate of g = [PG]
[Z]T . To derive each functional response type, g([P ]), we must solve202

for g (1/d) in terms of the ambient phytoplankton population, [P ] (mmolC/m3), con-203

sidering their respective assumptions regarding capture and consumption rates.204

2.1 Type 0 response205

A type 0 functional response is described by a straight horizontal line in which a206

zooplankton specific grazing rate is invariant to the ambient phytoplankton population207

(g([P ]) = constant, Fig. 1; magenta). A type 0 response is not ecologically realistic208

for any species, nor does it appear in any models, but for pedagogical purposes assumes209

that the capture process is unaffected by prey scarcity and that the consumption pro-210

cess is negligible.211

2.2 Type I response212

A type I functional response is described by a straight line (Holling, 1959b), in which213

the zooplankton specific grazing rate (g([P ])) increases linearly with the ambient phy-214

toplankton concentration (See Fig. 1; black). Ecologically, a type I response assumes215

that zooplankton capture prey faster when it is more abundant and that the time needed216

to consume it is negligible compared with the time needed to capture it (Tcap >> Tcon).217

Accordingly, zooplankton can spend all of their time capturing prey, such that218

T = Tcap. (3)
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Figure 1. The functional response of the grazing formulation. a. The zooplankton specific grazing rate (or ingestion rate) as a

function of prey density, known as the the functional response curve is plotted for a type I, II, and III response, along with b. a de-

scription of their associated attributes, assumptions, and formulations. Each response type is parameterized such that the maximum

specific grazing rate, gmax, and the half saturation concentration, K1/2, are equal to one. Note, this requires different parameters for

the disk parameter scheme. Dashed lines in a. show what each response reduces to at low and high prey densities.
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Variable Notation
Conceptual

Units
Reduced

Units
Relevant

Relationships
Description

Phytoplankton
concentrations

[P ], [PG ],
[PC ap ], [PCon]

[P ] mmolC
m3

[PG ] =GT = g [Z ]T
[PG ] = [PC ap ] = [PCon]

Concentration of ambient, grazed (i.e.
captured and consumed), captured, and

consumed phytoplankton over
the exposure period, respectively

Zooplankton
concentration

[Z ] [Z ] mmolC
m3 - Concentration of zooplankton biomass

Functional response g([P]) [P ]
[Z ]t i me

1
d

g ([P ]) = ≤[P ] (I)

= gmax

2K1/2
[P ] (I-Rect)

g ([P ]) = gmax≤[P ]

gmax +≤[P ]
(II)

= gmax [P ]

K1/2 + [P ]

g ([P ]) = gmax (1°e°∏[P ]) (II-Iv)

g ([P ]) = gmax≤c [P ]2

gmax +≤c [P ]2 (III)

= gmax [P ]2

K 2
1/2 + [P ]2

Functional description of how the
zooplankton specific grazing rate varies
with the phytoplankton concentration

Half saturation
concentration

K1/2 [P ] mmolC
m3

K1/2 =
gmax

2≤
(II-R)

K1/2 =
gmax

≤
(II)

K1/2 =
°ln(.5)

∏
(II-Iv)

K1/2 =
r

gmax

≤c
(III)

Phytoplankton concentration where g = gmax
2

Maximum grazing
rate

gmax
[P ]

[Z ]t i me
1
d gmax = 1

h
Rate of phytoplankton consumption per

unit zooplankton when food replete

Grazing rate G [P ]
t i me

mmolC
m3d

G = [PG ]

T
G = g [Z ]

Rate at which phytoplankton are
grazed by zooplankton

Phytoplankton specific
grazing loss rate

l [P ]
[P ]t i me

1
d l = G

[P ]
Phytoplankton specific rate at which

phytoplankton are lost to grazing

Zooplankton specific
grazing rate

(i.e. ingestion rate)
g [P ]

[Z ]t i me
1
d g = G

[Z ]

Zooplankton specific rate at which
phytoplankton are grazed. The way in which
g varies with [P ] is the functional response

Clearance rate C l [P ]
[P ][Z ]t i me

m3

mmolC d

C l = G

[P ][Z ]

C l = g

[P ]

Phytoplankton specific rate at which
phytoplankton are grazed per unit zooplankton

Exposure period T ti me d T = Tcap +Tcon
Fixed period over which zooplankton

and phytoplankton are exposed

Capture period Tcap t i me d TC ap = [PG ]
[Z ]≤[P ] Time spent capturing phytoplankton

Consumption period Tcon ti me d
TCon = 0 (I)

TCon = h[PG ]

[Z ]
(II,III)

Time spent consuming phytoplankton

Capture rate C [P ]
t i me

mmolC
m3d

C = [Pcap ]

TC ap

C = E [Z ] (II)

C = ≤c [Z ]2 (III)

Rate at which phytoplankton are
captured by the zooplankton

Zooplankton specific
capture rate

E [P ]
[Z ]t i me

1
d

E = C

[Z ]
E = ≤[P ]

Specific rate at which phytoplankton
are captured per unit zooplankton

Prey capture
efficiency

≤ [P ]
[P ][Z ]t i me

m3

mmolC d

≤= ≤c [P ] (III)

≤=∏gmax (II-Iv)

Rate at which the zooplankton specific
capture rate increases with the

ambient phytoplankton concentration

Prey capture
efficiency coefficient

≤c
[P ]

[P ]2[Z ]t i me
m6

mmolC 2 d
-

Rate at which the prey capture
efficiency increases with the

ambient phytoplankton concentration

Consumption time h [Z ]t i me
[P ] d -

Time it takes for one unit of zooplankton
to eat one unit of phytoplankton

Consumption rate 1
h

[P ]
[Z ]t i me

1
d -

Rate of phytoplankton consumption
per unit zooplankton

Ivlev parameter ∏ 1
[P ]

m3

mmolC d -
Used to parameterize Ivlev equation,

which is qualitatively similar to a type II

Table 1. List of terms relevant to the derivation, parameterization and context of the func-

tional response. Conceptual units distinguish between phytoplankton and zooplankton concentra-

tion and are not reduced.
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The time, Tcap (d), that it takes to capture some concentration of phytoplankton,219

[PCap] (mmolC/m3), can be related to the capture rate, C (mmolC/m
3

d ), or the concen-220

tration of phytoplankton captured per unit time, by the equation221

Tcap =
[PCap]

C
. (4)

The capture rate can then be decomposed into the product of the ambient zooplank-222

ton concentration, [Z] (mmolC/m3), and the zooplankton specific capture rate, E (1/d),223

which describes the concentration of phytoplankton captured per unit zooplankton per224

unit time, such that225

C = E[Z]. (5)

Depending on the zooplankton in question, the zooplankton specific capture rate,226

E (1/d), can represent a passive encounter rate (e.g. filter feeding) or an active search227

and attack rate (e.g. hunting), but does not include the time required to consume phy-228

toplankton once captured. Either way, E (1/d) is assumed to increase linearly with the229

ambient phytoplankton concentration, [P ] (mmolC/m3), to account for the fact that zoo-230

plankton are stochastically more likely to encounter and capture phytoplankton at higher231

ambient phytoplankton concentrations. The rate (per unit phytoplankton) at which the232

zooplankton specific capture rate increases with the ambient phytoplankton concentra-233

tion can be considered the prey capture efficiency, ε ( 1
(mmolC/m3)d ), such that234

E = ε[P ]. (6)

The prey capture efficiency can be thought of as the fraction of the ambient phytoplank-235

ton concentration captured per unit zooplankton per unit time, in which units of (mmolC/m3)
(mmolC/m3)2d236

reduce to 1
(mmolC/m3)d , and reflects the efficiency with which zooplankton can capture237

their prey. Note that the prey capture efficiency is variously referred to as the prey cap-238

ture rate (Schartau & Oschlies, 2003b), attack rate (Gentleman & Neuheimer, 2008), affin-239

ity, and maximum clearance rate. It is also qualitatively similar to the search area de-240

fined by Holling (1959b), but not identical for concentration-based rates.241

Substituting eqs. 5 & 6 into eq. 4 yields,242

Tcap =
[PCap]

ε[P ][Z]
. (7)

Next, we can substitute Tcap for T because of our assumption that no time is needed243

for zooplankton to consume phytoplankton (i.e. Tcon = 0), and substitute [PCap] for244

[PG] because the entire concentration of phytoplankton lost to grazing, [PG], must first245

be captured, [PCap]. Finally, we solve for the rate at which phytoplankton are grazed246

by the zooplankton community (G = gZ = [PG]
T ) as a function of [P ],247

G([P ]) =
[PG]

T
= ε[P ][Z], (8)

and divide by [Z] to yield the zooplankton specific grazing rate, g (1/d), as a function248

of the ambient phytoplankton concentration [P ], such that,249

g([P ]) =
[PG]

T [Z]
= ε[P ]. (9)
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Eq. 9 is the type I functional response, wherein g([P ]) increases linearly with the250

ambient phytoplankton concentration, [P ], at a rate described by the prey capture ef-251

ficiency, ε. This type of response is akin to a food-limited system in which it takes much252

longer to find and capture prey than it takes to consume it, and is analogous to the clas-253

sic Lotka-Voltera equations (Lotka, 1910; Volterra, 1927) used to describe simple predator-254

prey dynamics. Note that here the grazing rate is identical to the capture rate (G = C)255

and the zooplankton specific grazing rate is identical to the zooplankton specific capture256

rate (g = E = ε[P ]). This is because the entire grazing process is assumed to be de-257

scribed by the capture process; however, this is not the case for higher order functional258

responses, in which zooplankton are assumed to spend a non-trivial amount of time con-259

suming phytoplankton in addition to capturing them.260

A standard type I response may be characteristic of passive filter feeders (Jeschke,261

Kopp, & Tollrian, 2004), but can overestimate the zooplankton specific grazing rate of262

mesozooplankton such as copepods (Gentleman & Neuheimer, 2008) by over an order263

of magnitude compared to observations (Frost, 1972; Hansen et al., 1997) because it does264

not account for predator satiation at high prey densities. To account for predator sati-265

ation, the type I response can be extended to a rectilinear response (Chen, Laws, Liu,266

& Huang, 2014; Frost, 1972; Hansen, Bjørnsen, & Hansen, 2014; Mayzaud, Tirelli, Bernard,267

& Roche-Mayzaud, 1998), in which g([P ]) reaches some maximum rate, gmax (d−1) such268

that269

g([P ]) = ε[P ] if [P ] <
gmax
ε

g([P ]) = gmax if [P ] >
gmax
ε

,
(10)

where gmax

ε (mmolCm3 ) describes the prey concentration required to reach the maximum270

zooplankton specific grazing rate, gmax, for a given prey capture efficiency, ε.271

Solving for [P ] when g([P ]) = gmax

2 returns the half saturation concentration, K1/2 =272

gmax

2ε . Note that parameterizing eq. 10 with K1/2 allows one to explicitly define the lo-273

cation of satiation using a single variable (as opposed to gmax

2ε ); however, changing K1/2274

with a fixed gmax necessarily alters the slope of the response, ε, and therefore implicitly275

alters assumptions about the prey capture efficiency.276

2.3 Type II response277

A type II functional response assumes a more gradual transition to satiation by em-278

ploying a rectangular hyperbola with downward concavity (Holling, 1959b), in which the279

zooplankton specific grazing rate (g([P ])) saturates towards a maximum asymptote at280

high phytoplankton concentrations (See Fig. 1; blue). Ecologically, a type II response281

assumes that zooplankton capture prey faster when it is more abundant and that a fixed,282

non-trivial, amount of time is needed to consume it (Tcon > 0), allowing for gradual283

predator satiation as the prey density increases and more time is needed to consume it284

(Jeschke et al., 2004). Note, all assumptions about the capture process and zooplank-285

ton specific capture rate (E = ε[P ]) from the type I response are held.286

The time it takes to consume the captured phytoplankton is parameterized by the287

consumption time, h (d), also commonly referred to as the handling time (Holling, 1959b,288

1965), which is assumed to be equal to the fixed amount of time it takes for one unit of289

zooplankton to eat one unit of phytoplankton. The total time, Tcon (d), needed for con-290

sumption of the entire captured phytoplankton concentration, [PCap] (mmolC/m3), by291

the ambient zooplankton concentration, [Z] (mmolC/m3), can then be expressed as the292

consumption time, h, multiplied by the ratio of the concentration of phytoplankton cap-293
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tured relative to the ambient concentration of zooplankton capturing them (
[PCap]
[Z] ), such294

that295

Tcon =
h[PCap]

[Z]
. (11)

Remembering that all phytoplankton grazed must first be captured (i.e. [PG] = [PCap])296

and substituting Tcap and Tcon into eq. 2 yields297

T = Tcap + Tcon =
[PG]

ε[P ][Z]
+
h[PG]

[Z]
. (12)

Solving for the concentration of phytoplankton lost to grazing, [PG], yields the aquatic298

analogue to the familiar disk equation, originally derived by Holling (1959b) for terres-299

trial predation on a planar disk,300

[PG] =
ε[P ][Z]T

1 + εh[P ]
, (13)

where dividing by T returns the grazing rate,301

G =
[PG]

T
=

ε[P ][Z]

1 + εh[P ]
, (14)

and dividing again by Z returns the zooplankton specific grazing rate, which is the type302

II functional response,303

g([P ]) =
[PG]

[Z]T
=

ε[P ]

1 + εh[P ]
. (15)

Note that by factoring out ε[P ] from the denominator and rearranging eq. 15 as304

g([P ]) =
1

1
ε[P ] + h

, (16)

it becomes clear that when food is limiting the type II disk equation reduces to a type305

I linear Lotka-Voltera functional response with a slope equal to the prey capture efficiency306

(Fig. 1a; dashed blue line). If the consumption rate ( 1
h ) is much faster than the zoo-307

plankton specific capture rate (E = ε[P ]), such that 1
h >> ε[P ] or equivalently h <<308

1
ε[P ] , then eqs. 15 & 16 reduce to g([P ]) = ε[P ] (i.e. eq. 9). This occurs when the309

consumption time, h, is very fast (i.e. type I, Section 2.1.1), or the phytoplankton con-310

centration, [P ], is very low (i.e. a food-limited system).311

Alternatively, we see that eqs. 15 & 16 saturate towards g([P ]) = 1/h when the312

consumption rate ( 1
h ) is much slower than the zooplankton specific capture rate (E =313

ε[P ]), such that 1
h << ε[P ] or equivalently h >> 1

ε[P ] (Fig. 1a; dashed black line).314

This is typical of a food replete system (high [P ]), where more food is captured as soon315

as the previous prey item has been consumed. The maximum grazing rate, gmax (1/d),316

can now be defined by the consumption rate, or one over the consumption time, such317

that gmax = 1
h . Note, however, gmax is approached slowly in a type II response, and318

g([P ]) is still only 80% of gmax even when [P ] > 4K1/2.319

The disk equation (eq. 13) can be simplified by substituting the parameter gmax =320

1
h into eq. 15 and multiplying by gmax

gmax
to arrive at321
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Type II (disk)

g([P ]) =
gmaxε[P ]

gmax + ε[P ]
.

(17)

Henceforth, this will be referred to as the disk parameter scheme. Note, the formulation322

of the disk equation used here differs from the traditional form (eq. 14) because we re-323

placed the handling time with its reciprocal (gmax), making it easier to compare with324

the Michaelis–Menten form of the equation (see below).325

Equation 17 can be rewritten as the familiar Michaelis–Menten equation origi-326

nally derived for enzyme kinetics (Michaelis & Menten, 1913) (or Monod equation de-327

rived for bacterial growth (Monod, 1949)) by defining the half-saturation concentration,328

K1/2 (mmolC/m3), in terms of parameters gmax and ε. Setting g([P ]) = gmax

2 and solv-329

ing for [P ], we find,330

[P ] = K1/2 =
gmax
ε

. (18)

Substituting ε = gmax

K1/2
into eq. 17 and rearranging yields the familiar form,331

Type II (Michaelis–Menten)

g([P ]) =
gmax[P ]

K1/2 + [P ]
.

(19)

Henceforth, this will be referred to as the Michaelis–Menten parameter scheme. Note,332

that in the Michaelis–Menten formulation g([P ]) still reduces to gmax, or 1
h , when [P ] >>333

K1/2 and to gmax
K1/2

, or (eq. 18), when [P ] << K1/2.334

Eq. 19 is mathematically identical to eq. 17. That is, for all parameter sets {gmax, ε},335

there exists a parameter set {gmax,K1/2} that can identically describe g([P ]). As with336

the type I response (eq. 10), the difference is that {gmax, ε} are ecologically indepen-337

dent, while {gmax,K1/2} more directly define the shape of the curve. For example, in-338

creasing gmax in eq. 17 does not affect the prey capture efficiency, ε, but it does increase339

the half-saturation concentration. This makes sense ecologically, as it should require a340

higher phytoplankton concentration for a faster consumption time (i.e. higher gmax) to341

become limiting, given a constant prey capture efficiency. On the other hand, increas-342

ing gmax in eq. 19 does not change the location of K1/2, but implicitly assumes that343

the prey capture efficiency, ε, increases in order to maintain a constant K1/2.344

Note, another common formulation that is qualitatively similar to the type II re-345

sponse is the Ivlev equation (Ivlev, 1961), where346

g([P ]) = gmax(1− e−λ[P ]) (20)

(T. Anderson et al., 2010; C. A. Edwards, Batchelder, & Powell, 2000; Franks & Chen,347

2001; Shigemitsu et al., 2012). However, the Ivlev formulation is strictly empirical and348

cannot be derived mechanistically, but is qualitatively similar to the type II response (See349

Fig. 1a; cyan). All else being equal, the Ivlev equation will yield slower grazing rates350

below the half saturation concentration and faster grazing rates above the half satura-351

tion concentration. As noted elsewhere (Aldebert & Stouffer, 2018; T. Anderson et al.,352

2010; Gentleman et al., 2003), the half saturation point and prey capture efficiency can353

be related to the Ivlev parameter, λ ( 1
mmolC/m3 ), as354
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K1/2 =
−ln(0.5)

λ
ε = λgmax

(21)

2.4 Type III response355

A type III functional response is described by a sigmoidal curve (Jeschke et al., 2004),356

in which the zooplankton specific grazing rate (g([P ])) increases quadratically at low phy-357

toplankton concentrations and approaches saturation much faster at high ones (Fig. 1;358

red). Ecologically, a type III response further assumes that the prey capture efficiency,359

ε ( 1
(mmolC/m3)d ), increases with prey density. That is, the zooplankton specific capture360

rate, E = ε[P ], does not just increase due to a stochastic increase in the likelihood of361

encountering phytoplankton as the ambient phytoplankton concentration increases, but362

zooplankton additionally become more efficient grazers as well, capturing an increasing363

fraction of the ambient phytoplankton concentration. Consequently, specific grazing rates364

increases quadratically at low [P ] and approach saturation much faster than at high [P ].365

Mathematically, this change in behavior can be represented by assuming the prey366

capture efficiency, ε ( 1
(mmolC/m3)d ), is a function of the ambient phytoplankton concen-367

tration, [P ]. In a type III response this function is assumed to be linearly proportional368

to some prey capture efficiency coefficient, εc ( 1
(mmolC/m3)2d ), such that,369

ε = εc[P ], (22)

and370

E = εc[P ]2. (23)

By assuming that the prey capture efficiency, ε, increases linearly with the phyto-371

plankton concentration at a rate described by the prey capture efficiency coefficient, εc,372

we are in turn assuming that the zooplankton specific grazing rate, E, increases quadrat-373

ically with the phytoplankton population (i.e. E = εc[P ]2). Note that higher order func-374

tional responses can be achieved by modifying the relationship between the prey cap-375

ture efficiency and the phytoplankton concentration (e.g. ε = εc[P ]2).376

Following the same derivation as Section 2.3, but now using eq. 23 instead of377

eq. 6 to define the specific capture rate, yields the disk parameterization of the type III378

functional response,379

Type III (disk)

g([P ]) =
gmaxεc[P ]2

gmax + εc[P ]2
.

(24)

As for the type II response, g([P]) reduces to the zooplankton specific capture rate (E =380

εc[P ]2) at low phytoplankton densities (Fig. 1a; dashed red line) and saturates towards381

the consumption rate (1/h) at very high phytoplankton densities (Fig. 1a; dashed black382

line). Now, however, because the zooplankton specific capture rate, E, is described by383

a quadratic function of [P ], the functional response, g(P ), is sigmoidal in shape (Fig.384

1a).385

The prey capture efficiency, ε, in eq. 17 has been replaced with the prey capture386

efficiency coefficient, εc, in eq. 24, which describes how ε varies with [P ]. Units of εc are387
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non-intuitive, but can be considered as the fraction of the phytoplankton population cap-388

tured per unit zooplankton, per unit phytoplankton, per unit time, which reduces to 1
(mmolC/m3)2d .389

Finally, following identical logic to the type II response, eq. 24 can be transformed390

to the Michaelis–Menten function by setting g([P ]) equal to gmax

2 , solving for [P ] to find391

K1/2, and substituting the ensuing value of K1/2 into eq. 24. The result is the Michaelis–Menten392

parameterization of the type III functional response,393

Type III (Michaelis–Menten)

g([P ]) =
gmax[P ]2

K2
1/2 + [P ]2

,
(25)

where,394

K1/2 =

√
gmax
εc

. (26)

Note that the Michaelis-Menten parameter scheme employs the same parameters in each395

response type (K1,2, gmax), while the disk scheme requires a slightly different parame-396

ter set in a type II (ε, gmax) and III (εc, gmax) response.397

Finally, note that where we refer to the disk and Michaelis–Menten parameteriza-398

tion of the type III response, throughout the literature they are often referred to as the399

‘Holling Type III’ and ‘Sigmoidal Type III’ response, respectively. We use the former400

nomenclature to clarify that both functions are sigmoidal in shape and because it allows401

us to refer to the parameter scheme generically without specifying the response type. Through-402

out the review, this is semantically useful for comparisons between parameter schemes403

that are agnostic to response type.404

3 Stability of the grazing formulation405

Past studies have shown that the shape of these theoretical relationships, when em-406

bedded into models and integrated forward in time, influences the dynamical stability407

of the system, and in turn the propensity for phytoplankton extinction (Adjou et al., 2012;408

Dunn & Hovel, 2020; J. Steele, 1974) and excitation (i.e. blooms) (Hernández-Garćıa &409

López, 2004; Malchow, Hilker, Sarkar, & Brauer, 2005; Truscott & Brindley, 1994; Tr-410

uscott, Brindley, Brindley, & Gray, 1994). In particular, Gentleman and Neuheimer (2008)411

have shown how the stabilizing influence of the grazing formulation is determined by the412

sign of the first derivative of the clearance rate ( dCld[P ] ). The clearance rate (Cl) is equal413

to the the functional response (g([P ])) normalized by the ambient phytoplankton con-414

centration (i.e. Cl = g([P ])/[P ]). This is equivalent to the phytoplankton specific loss415

rate to grazing per unit zooplankton (see Table 1) or in other words, the volume of wa-416

ter completely cleared of phytoplankton per unit time, per unit zooplankton (Gentle-417

man & Neuheimer, 2008). Ecologically, higher clearance rates imply individual zooplank-418

ton are either spending less time consuming their prey or more efficiently capturing it.419

Gentleman and Neuheimer (2008) showed how clearance rates vary with prey den-420

sity in different functional response types (see their Fig. 2). In a type I functional re-421

sponse, clearance rates are constant because it is assumed that the prey capture efficiency422

(ε) is constant and the consumption time is negligible (thus constant). In a type II re-423

sponse, clearance rates decrease with increasing prey density because the consumption424

rate is no longer assumed negligible, meaning the more zooplankton graze, the more time425

they need to consume their food, leaving less time to capture it. In a type III response426

clearance rates first increase, then decrease with prey density based on the balance be-427

tween increasing consumption time and increasing prey capture efficiency.428
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The stabilizing influence of the functional response is negative, or destabilizing, when429

clearance rates decrease with increasing prey density ( dCld[P ] < 0). In turn, growing (de-430

caying) phytoplankton populations are subject to decreasing (increasing) per capita graz-431

ing pressure, creating a destabilizing feedback that amplifies changes in phytoplankton432

growth (decay) and increases the likelihood of excitation (extinction). This occurs when433

the functional response has downward concavity, such that a type II response has a desta-434

bilizing influence at all prey densities, while a type III response has a destabilizing in-435

fluence only above K1/2 (Gentleman & Neuheimer, 2008). The stabilizing influence of436

the functional response is positive, or stabilizing when clearance rates increase with in-437

creasing prey density ( dCld[P ] > 0). In turn, growing (decaying) phytoplankton popula-438

tions are subject to increasing (decreasing) per capita grazing pressure, creating a sta-439

bilizing feedback that buffers changes in phytoplankton growth (decay) and decreases440

the likelihood of excitation (extinction). This occurs when the functional response has441

upward concavity, such that a type III response has stabilizing influence below K1/2 (Gen-442

tleman & Neuheimer, 2008). A type I response, in which clearance rates are constant443

( dCld[P ] = 0), has no first order influence on stability.444

The parameterization of the functional response can influence stability in two ways.445

First, increasing gmax or decreasing K1/2 both increase the curvature of the response,446

which directly increases its stabilizing or destabilizing influence. Thus, a type II response447

with a higher gmax or lower K1/2 is more destabilizing at all prey densities. However,448

a type III response is more destabilizing above K1/2 but more stabilizing below K1/2.449

This is illustrated clearly in Figure 5 of Gentleman and Neuheimer (2008), which tracks450

the first derivative of clearance rates ( dCld[P ] ). Second, the parameterization of the func-451

tional response can influence stability indirectly by applying stronger or weaker grazing452

pressure, which in turn drives the size of the phytoplankton population and thus the po-453

sition on the curve at which dCl
d[P ] is considered. For example, if using a type III response454

with a lower K1/2, the functional response will have a more destabilizing influence on455

all phytoplankton populations above K1/2, but faster grazing rates associated with the456

lower K1/2 value make it more difficult for population levels to exceed K1/2, such that457

the overall outcome may be increasing the stabilizing influence of the response. Note,458

in a disk scheme, K1/2 is not parameterized directly and its location varies with both459

parameters.460

4 Parameters of the grazing formulation461

Constrained by computational resources and parsimony, biogeochemical models are462

limited in the number of zooplankton functional groups they can include, making it dif-463

ficult to select parameters that accurately represent the mean state of natural variabil-464

ity across the diverse zooplankton they are trying to simulate. We combine data from465

two extensive reviews by Hansen et al. (1997) and Hirst and Bunker (2003) to show how466

the values of 119 empirically estimated sets of grazing parameters vary across zooplank-467

ton size and species (Fig. 2; filled markers; Fig. 3a-c). We then compare them to the468

values used in 40 modelling studies that have over 70 unique grazing formulations (Table469

2; Fig. 2; empty markers; Fig. 3d-f). Of the 40 models surveyed, 28 include only one470

zooplankton group, meaning they must represent the mean behavior of all global zoo-471

plankton with a single set of parameters. Those that include multiple zooplankton have472

the flexibility to imply different traits for different functional groups by selecting differ-473

ent parameters. However, functional group resolution is still very limited, with only one474

model including more than three (Stock, Powell, & Levin, 2008). To determine if the val-475

ues used in models are ecologically realistic approximations of the mean state, it is es-476

sential to understand how empirical estimates vary and how models attempt to either477

capture or average out this variability.478

The most common partitioning of zooplankton functional groups in models is al-479

lometric (i.e. by size). Accordingly, we have binned all observed and modelled zooplank-480
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ton based on body volume, with nanozooplankton defined as < 103µm3 (∼ nanoflag-481

ellates), microzooplankton defined as 103−106µm3 (∼ dinoflagellates, rotifers and cil-482

iates), mesozooplankton defined as 106−109µm3 (∼ copepods, meroplankton larvae and483

cladocerans) and macrozooplankton as > 109µm3 (none reported). In the models the484

same size classes are assigned based on the relative prey portfolio or other specified de-485

scriptions of each zooplankton functional group. For example, in a model with 2 zoo-486

plankton functional groups nominally called ‘small’ and ‘large’ and prescribed to pref-487

erentially graze on small phytoplankton and diatoms, we would categorize these as ‘mi-488

cro’ and ‘meso’, respectively. The ‘nano-’ and ‘macro-’ designations were only given when489

more than two zooplankton were included or they were classified explicitly as such in the490

study. Models with one generic, unspecified zooplankton were left unclassified.491

For consistent comparison between models and empirical studies, we converted all492

units to mmolC/m3 for prey density and 1/d for rates. In Hirst and Bunker (2003) K1/2493

was reported in chlorophyll units and converted with a C:Chl ratio of 50:1 (T. Ander-494

son et al., 2010). In Hansen et al. (1997), K1/2 was reported in ppm, and converted as-495

suming a carbon density of 0.12 gC/cm3, consistent with the range of carbon densities496

in phytoplankton (Menden-Deuer & Lessard, 2000). Different conversion factors would497

shift the absolute values of K1/2 reported here, but not the size of their range or strength498

of their correlations with size. In modelling studies that used a currency other than car-499

bon, units were converted assuming a fixed Redfield ratio of 106:16:1, unless otherwise500

stated in the study. Finally, eqs. 18 & 26 were used to convert between Michaelis-Menten501

and disk parameters and eq. 21 was used to determine the initial slope (i.e. ε) and half502

saturation concentration (i.e. K1/2) of Ivlev responses. Note, the maximum clearance503

rates reported in Hansen et al. (1997) are synonymous with ε once units have been con-504

verted.505

Predator Vol. (𝜇m3	)		:   Nano (100-103)                  Micro (103-106)                                    Meso (106-109)                        Macro (109-1012)   

Empirical Estimates (solid) :      Nanoflag.        Dinoflag.     Ciliates       Rotifers      Mero. Larvae     Copeods     Cladocerans  

Used in Models (unfilled) :                                      Microzooplankton Mesozooplankton                     MacrozooplantkonUnclassified
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a.

10-1 100 101 102

10-1

100

101

Prey 
Capture E

fficie
ncy, 𝜖

𝑚
!

𝑚𝑚
𝑜𝑙𝐶

𝑑

a.

Figure 2. Parameters of the grazing formulation. a. Empirical estimates of parameters for

>60 zooplankton species (Hansen et al., 1997; Hirst & Bunker, 2003) are plotted with filled

markers. Parameters for different zooplankton functional groups from 40 modelling studies

(Table 2) are plotted with red empty markers. Light red markers denote formulations with a

multiple-prey response and parameters refer to the implied single-prey response when grazing

exclusively on their most preferred prey. Contours for the corresponding prey capture efficiency

(assuming type-II response) are overlaid.
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Figure 3. Allometric Relationships. a-c. Empirical estimates of all grazing parameters are

plotted against zooplankton size and subdivided into size classes. Marker shapes are consistent

with species in Fig. 2. The interquartile range (IQR) is overlaid for each size class along with a

log-linear regression and 95% confidence intervals. A log-linear regression is shown for the com-

plete data set as well (black). Statistically significant correlations have thicker line widths and

detailed statistical information is provided in Table 3a. d-f. Box plots of each grazing parame-

ter in models for each size class. Note, macrozooplankton and nanozooplankton are not included

for empirical and model plots, respectively, because less than two of each were surveyed. Addi-

tionally, εc is not shown for the empirical values because all empirical estimates were fit to a type

II response.

4.1 Empirical estimates506

Grazing parameters for a myriad of different zooplankton have been estimated em-507

pirically via laboratory incubation and dilution experiments. In these studies, specific508

grazing rates were measured at different prey concentrations and then fit to a type II re-509

sponse function. Together, reviews by Hansen et al. (1997) and Hirst and Bunker (2003)510

describe 119 empirical estimates of over 20 functional groups, derived from data on over511

200 species. Looking across all surveyed zooplankton, the values of each grazing param-512

eter vary by over three orders magnitude, with K1/2 ranging from .08-499 mmolC/m3,513

gmax ranging from 0.02-45.6 d−1, and ε ranging from .003-9.5 m3

mmolCd (Fig. 2). While514

some of this variability can be explained statistically by the large variability in zooplank-515

ton size (10−109µm3), the strength of the allometric relationship differs with both the516

parameter in question and whether you are considering all samples or just a subset within517

a certain size class (Fig. 3; Table 3).518

Consistent with Hansen et al. (1997), when considering the entire, combined data519

set there is a statistically significant allometric relationship between zooplankton size and520

both gmax (Fig. 3b; black regression) and ε (Fig. 3c; black regression). This decrease521

in the parameters that describe consumption and capture rates, respectively, is consis-522

tent with the conventional wisdom that grazing rates decrease with predator size (Moloney523

& Field, 1989; Peters & Downing, 1984; Saiz & Calbet, 2007; Wirtz, 2013). However,524

as in Hansen et al. (1997), K1/2 values from the combined data set do not exhibit a sta-525

tistically significant allometric relationship (Fig. 3a; black regression), contradicting the526
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notion that K1/2 should increase with increasing predator size (Ray et al., 2011). This527

can be explained because K1/2 is not an independent, physiological parameter, but rather528

a mathematical description of the curve, relating the other two parameters that mech-529

anistically describe consumption (i.e. gmax) and capture (i.e. ε) rates (see Section 2).530

While all parameters are estimated here empirically, only ε and gmax reflect independent531

trait-based differences in grazing behaviour. Therefore, if gmax and ε both decrease with532

zooplankton size, grazing rates will decrease at low and high concentrations such that533

the half-saturation concentration may increase, decrease, or remain largely unaltered,534

depending of the relative changes. The net effect when considered across all zooplank-535

ton sizes is a flat and not statistically significant (Table 3a).536

Similarly, when grouped into discrete size classes, the mean, median and interquar-537

tile range (IQR) of gmax and ε decrease monotonically from nanozooplankton (Fig. 3;538

green) to microzooplankton (red) to mesozooplankton (blue), while those of K1/2 do539

not (Table 3b). Instead the median value of K1/2 decreases from 23 mmolC/m3 in nanozoo-540

plankton to 8.9 mmolC/m3 in microzooplankton but then increases to 18.1 mmolC/m3
541

in mesozooplankton. Of the three parameters, binning by size class does the best job of542

explaining variability in distributions of gmax, which has the smallest coefficient of vari-543

ability (i.e. std/mean) of all parameters in all size classes. Moreover, using a two sam-544

ple t-test at the 95% confidence level, gmax is the only parameter in which the mean value545

in adjoining size classes are statistically different from one another. For ε, only nano- and546

mesozooplankton have statistically different means, although the difference between micro-547

and mesozooplankton is nearly significant (p=0.1) and may become so if the binning bounds548

were adjusted. For K1/2, the range of values in each size class varies by over two order549

of magnitude and largely overlaps. In turn, there is no statistically significant difference550

between the mean K1/2 value within any two size classes, even nano- and microzooplank-551

ton which differ by ∼ 6 orders of magnitude in volume. Together, empirical estimates552

of gmax appear better constrained by size class than K1/2, or even ε, suggesting that con-553

sumption rates are better correlated than capture rates with zooplankton size class.554

However, these trait-based correlations become more complex when looking at vari-555

ability within a given size class, rather than across them (Fig. 3a-c; Table 3a). Nanozoo-556

plankton parameter values are the most poorly constrained by size. When considered557

in isolation, there is no statistically significant relationship between any of their empir-558

ically derived grazing parameters and size (Fig. 3a-c; green). Microzooplankton pa-559

rameter values, on the other hand, are the best constrained by size. Both gmax (Fig. 3b;560

red) and ε (Fig. 3c; red) exhibit a robust, statistically significant, inverse relationship561

with size, with a higher coefficient of determination (r2) than in any other size class. In562

turn, the correlation between K1/2 and size is flat and not statistically significant (Fig.563

3b; red). This is consistent with decreasing capture and consumption rates that com-564

bine to lower mean grazing rates but not systematically modify K1/2. Mesozooplank-565

ton parameter values are also fairly well constrained by size, but in a qualitatively dif-566

ferent way. When exclusively considering mesozooplankton (Fig. 3a-c; blue), K1/2 and567

gmax both exhibit a statistically significant positive relationship with size, while the re-568

lationship with ε is flatter and not statistically significant. This suggests that consump-569

tion rates in mesozooplankton actually increase with size while capture rates are invari-570

ant, leading to an apparent increase in the K1/2 (see eq. 18). Critically though, this in-571

crease in K1/2 is associated with faster, not slower, grazing on average.572

The most common partitioning in models with multiple zooplankton is into two573

micro- and mesozooplankton groups (Table 2). Nanozooplankton on the other hand only574

appear in one surveyed (Table 2). When considering exclusively empirical variability575

in micro- and mesozooplankton, ignoring nanozooplankton, there is a statistically sig-576

nificant correlation with size for all three parameters. Similar to when considering all577

zooplankton, gmax and ε both decrease with size; however, with nanozooplankton removed,578

the decline in gmax is flatter and less significant (i.e. lower p-value) while the decline in579
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ε is steeper and more significant (Table 3a). In turn, there is now also a statistically580

significant increase in K1/2 with size. Additionally, if only considering the IQR of K1/2,581

there is statistically significant difference in the means value in micro- and mesozooplank-582

ton.583

Accordingly, in biogeochemical models using two discrete zooplankton state vari-584

ables to simulate the mean state of micro- and mesozooplankton, it appears the meso-585

zooplankton class should have slower consumption (i.e. gmax) and capture rates (i.e. ε)586

than microzooplankton. Further, the empirically observed increase in K1/2 means that587

the decrease in ε should be disproportionately larger than that of gmax. However, in dif-588

ferent model configurations one may wish to vary different parameters in different ways,589

depending on the range and resolution of what you are simulating. For example, a size-590

spectrum model of exclusively microzooplankton may wish to decrease both capture and591

consumption rates with size, whereas a size spectrum model of exclusively mesozooplank-592

ton may wish to increase consumption rates with size and leave capture rates constant.593

Finally, it is important to note that the way in which these trait-based correlations594

can be prescribed depends on the parameter scheme. For example, to increase consump-595

tion rates without increasing capture rates in a Michaelis-Menten scheme one must in-596

crease gmax and K1/2 or else otherwise increase ε implicitly as well. This would inad-597

vertently overestimate grazing rates at low prey densities. However, to increase consump-598

tion and capture rates in a Michaelis-Menten scheme one must still increase gmax but599

the change in K1/2 depends on the intended relative difference in the two properties. In600

any scenario, all parameters should be computed and considered explicitly to confirm601

if the correct behavior is being implied at low and high prey densities.602

4.2 Values used in models603

Over 70 independent grazing formulations from 40 modelling studies were surveyed604

(Table 2, Fig. 2; empty markers) to gauge the range of commonly prescribed param-605

eter values and investigate if they vary in a manner consistent with the natural variabil-606

ity measured empirically (Sec. 4.1). A large sampling of prominent modelling studies,607

from canonical 0-dimensional theoretical work (Evans & Parslow, 1985; Franks et al., 1986),608

through slightly more sophisticated NPZD models (Fasham, 1995; Fasham et al., 1990),609

to state-of-the-art CMIP6 earth system models (Aumont et al., 2015; Christian et al.,610

2021; Hajima et al., 2020; Law et al., 2017; Long et al., 2021; Stock et al., 2020; Tjipu-611

tra et al., 2020; Totterdell, 2019; Yool et al., 2021) were included. Surveyed models were612

assessed to determine if their selection of parameter values is representative of the mean613

state of empirically estimated values and if variability therein is consistent with the ob-614

served allometric variability (Fig. 3d-f; Table 3c) or varies with other aspects of the615

grazing formulation (Table 3d).616

Of the 40 models surveyed, 26 include a zooplankton group that grazes with a single-617

prey response, including 5 of 9 IPCC CMIP6 earth system models. This amounts to 40618

of the 70 unique grazing formulations. The others graze on multiple prey (Table 2; grey619

rows & Figure 3; light red markers) and use a K1/2 parameter that is fundamentally620

different from that of the single-prey response (Gentleman et al., 2003). In multiple-prey621

response functions, K1/2 refers to the half saturation ‘concentration’ of the total, preference-622

weighted prey pool, which is not a one-to-one function of the prey distribution. In Ta-623

ble 2, we report this value in parenthesis, but focus our analysis on the implied K1/2624

for the single-prey response for each zooplankton group when grazing exclusively on their625

preferred prey. Gentleman et al. (2003) describe in detail how this value can be calcu-626

lated algebraically from the reduced multiple-prey response based on both innate prey627

preferences (i.e. constants) and assumptions about whether preferences can vary with628

the relative distribution of prey (i.e. switching vs. no switching; Fasham et al. (1990)).629

Although the apparent K1/2 for a given prey item will increase in the presence of other630
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Reference
Dimensions

Location
Zooplankton Grazing Formulation (Single Prey Response)✓

# Z, P
tracers

◆
Functional Resp. Parameter K1/2 gmax

Group Type Scheme (mmolC/m3) (1/d)
Wroblewski (1977) 2 (1P1Z)N coastal upwelling macro II Ivlev 76.18 .52

Evans and Parslow (1985) 0 (1P1Z)N N. Atlantic - IIth M-M 7.28 1
Franks et al. (1986) 0 (1P1Z)N - meso II Ivlev 2.25-45.7 0.16-1.5
Fasham et al. (1990) 0 (1P1Z)N Bermuda meso II M-M 6.6 (6.6) 1

Frost (1993) 1 (1P1Z)C Station P micro IIth M-M 2.23 1.01-1.6
Truscott and Brindley (1994) 0 (1P1Z)N coastal (red tide) meso III M-M 36.6 0.7

Fasham (1995) 0 (1P1Z)N Station P
-
-

II
III

disk
disk

6.6
3.82

1
1

Franks and Chen (1996) 2 (1P1Z)N Georges Bank meso II Ivlev 22.9 .5
Franks and Walstad (1997) 2 (1P1Z)N - meso II Ivlev 22.9 .5
Denman and Peña (1999) 1 (1P1Z)N Station P micro III M-M 2.64 1

Edwards et al. (2000) 2 (1P1Z)N coastal upwelling
micro
macro

II
II

Ivlev
Ivlev

15.3
22.9

4
0.5

Franks and Chen (2001) 3 (1P1Z)N Georges Bank meso II Ivlev 22.9 .5

Denman and Peña (2002) 1 (1P2Z)N Station P
micro
meso

III
III

M-M
M-M

4.96 (4.96)
3.96 (3.96)

1
0.5

Leising et al. (2003) 0 (1P1Z)N
HNLC

equatorial
Pacific

micro
micro
micro
micro

II
IIth

II
III

M-M
M-M
M-M
M-M

0.66
1.45
3.98
1.45

4
4
4
4

Newberger et al. (2003)
Spitz et al. (2003)

0 (1P1Z)N

2 (1P1Z)N coastal upwelling
micro
macro

II
II

Ivlev
Ivlev

76.18
76.18

1.5
0.52

Schartau and Oschlies (2003b) 3 (1P1Z)N N. Atlantic - III disk 6.67 1.58

Aumont and Bopp (2006)
(PISCES)

3 (2P2Z)C global
micro
meso

II
II

M-M
M-M

20 (20)
20 (20)

4
0.7

Gentleman and Neuheimer (2008) 0 (1P1Z)N - -
III, II,
II, IIth

M-M, M-M
Ivlev, M-M

4.68 1.5

Stock et al. (2008) 0 (3P4Z)N Low, Mid, High
Productivity

nano(100µm)
micro(1e4µm)
meso(1e6µm)
macro(1e8µm)

II
II
II
II

M-M
M-M
M-M
M-M

20 (20)
20 (20)
20 (20)
20 (20)

10
3.3
1.1
0.6

Sinha et al. (2010)
(PLANKTOM5.2)

3 (3P2Z)C global
micro
meso

II
II

M-M
M-M

11.6 (15)
0.1 (0.26)

3.5
0.31

T. Anderson et al. (2010) 3 (3P2Z)C global
micro
meso

I, II,
II, III

M-M, M-M,
Ivlev, M-M

1 (1)
3 (3)

4
1

Adjou et al. (2012) 0 (2P1Z)N Station P - II, III M-M, disk 6.6 1
Kriest et al. (2012) 3 (1P1Z)P global - III M-M 9.38 2

Shigemitsu et al. (2012)
(MEM)

1 (2P3Z)N N. Pacific
micro
meso

IIth

IIth
Ivlev
Ivelv

3.38
3.28

.4
0.1, 0.4

Dunne et al. (2013)
(TOPAZ)

3 (1P0Z) global allometric - - - 0.19

Tjiputra et al. (2013)
(NORESM1)

3 (1P1Z)P global - II M-M 4.8 1

Hauck et al. (2013)
(REcoM2)

3 (2P1Z)N global
micro
meso

III
III

M-M
M-M

3.9 (3.9)
7.8 (3.9)

2.4
2.4

Moore et al. (2013)
(BEC)

3 (3P1Z)C global
micro
meso

III
III

M-M
M-M

1.05
1.05

2.05
2.75

Oke et al. (2013)
(WOMBAT)

3 (1P1Z)N global - III disk 9.1 2.1

Dutkiewicz et al. (2015)
(Darwin)

3 (8P2Z)P global
micro
meso

III
III

M-M
M-M

2.86 (2.86)
3.01 (2.86)

1
1

Le Quéré et al. (2016)
(PlanktTOM10)

3 (6P3Z)C global
micro
meso
macro

II
II
II

M-M
M-M
M-M

5 (10)
10 (10)
9 (9)

0.46
0.31
0.03

Law et al. (2017)
(WOMBAT)

3 (1P1Z)N global - III disk 6.57 1.58

Totterdell (2019)
(diat-HadOCC)

3 (2P1Z)N global
micro
meso

II
II

M-M
M-M

3.3 (3.3)
3.3 (3.3)

0.8
0.8

Stock et al. (2020, 2014)
(COBALTv2, COBALT)

3 (3P3Z)N global
micro
meso
macro

II
II
II

M-M
M-M
M-M

8.28 (8.28)
8.28 (8.28)
8.28 (8.28)

1.42
0.57
0.23

Christian et al. (2021)
3 (2P2Z)C global

micro II Ivlev 2.77 1.75
(CANOE) meso II Ivlev 2.77 (2.77) 0.85

Yool et al. (2021, 2013)
(MEDUSA2.0)

3 (2P2Z)N global
micro
meso

III
III

M-M
M-M

7.65 (5.3)
3.36 (1.88)

2
0.5

Long et al. (2021)
(MARBL)

3 (3P1Z)C global
micro
meso

II
II

M-M
M-M

1.2
1.2

3.3
3.15

Hajima et al. (2020)
(MIROC)

3 (2P1Z)N global
micro
meso

II
II

disk
disk

9.36
9.36

2
2

Aumont et al. (2015)
(PISCESv2)

3 (2P2Z)C global
micro
meso

II
II

M-M
M-M

20 (20)
20 (20)

3
0.75

Tjiputra et al. (2020)
(NORESM2)

3 (1P1Z)P global - II M-M 9.76 1.2

Table 2. The parameterization of the grazing formulation in biogeochemical models. The

model currency (C,N, or P) is noted in the superscript in column 1 and units of K1/2 are con-

verted to carbon where required using a Redfield ratio of 106:16:1 (C:N:P) if not noted in the

study. The K1/2 relationship algebraically relates the mathematical half saturation concentration

(g(P ) = gmax/2) to the parameters specified in the model when not parameterized explicitly.

Different zooplankton size classes have separate rows. Values from a given study separated by

commas indicate different simulations. Models with a multiple prey response are highlighted in

grey and reported K1/2 values refer to the implied single-prey response when grazing exclusively

on their most preferred prey. In parentheses is the K1/2 prescribed for bulk ingestion on the total

preference weighted prey field. Models with one zooplankton tracer that grazes separately on two

phytoplankton groups with two distinct single-prey responses (i.e. specific grazing rates on one

prey group are not effected by the concentration of the other) are considered to have a single-

prey response and two implicit zooplankton groups. Implicit functional groups are italicized.
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a) Empirical Estimates: Trait-based Correlation with Size

Size K1/2 gmax ✏
Class p r2 b p r2 b p r2 b

All Sizes
n=119

0.12 0.02 0.04 10�11 0.31 -0.17 10�13 0.37 -0.21

Nano. & Micro.
n = 49

0.06 0.07 -0.10 10�7 0.44 -0.24 0.01 0.12 -0.13

Micro & Meso.
n=94

10�4 0.13 0.17 0.01 0.06 -0.11 10�8 0.29 -0.27

Nanozooplankton
n=19

0.1 0.15 -0.47 0.41 0.04 -0.18 0.35 0.05 0.30

Microzooplankton
n=30

0.68 .008 0.06 10�4 0.33 -0.39 10�3 0.29 -.046

Mesozooplankton
n=64

10�6 0.29 0.47 10�5 0.23 0.34 0.18 0.03 -0.13

b) Empirical Estimates: Sample Statistics by Size Class

Size K1/2 (mmolC/m3) gmax (1/d) ✏ (m3/mmolC/d)
Class mean med. range IQR mean med. range IQR mean med. range IQR

All zooplankton
n=119

40 16
8.3e�2

500
6.4
43

3.7 1.6
2.1e�2

46
0.46
3.8

0.49 8.4e�2 3.4e�3

9.5
2.1e�2

0.27
Nanozooplankton

n=19
37 23

1.7
120

10
62

13 10
1.1
46

7.0
19

1.1 0.40
3.0e�2

9.5
0.22
0.85

Microzooplankton
n=30

25 8.9
0.41
210

4.5
17

3.6 3.0
0.11
12

2.2
4.1

0.71 0.25
9.1e�3

8.8
9.0e�2

0.78
Mesozooplankton

n=64
45 18

8.0e�2

500
5.8
45

1.3 0.77
2.0e�2

8.2
0.29
1.8

0.24 4.0e�2 3.4e�3

9.1
1.0e�2

0.10

c) Values Used in Models: Sample Statistics by Size Class

Size K1/2 (mmolC/m3) gmax (1/d) ✏ (m3/mmolC/d) ⇤ ✏c (m6/mmolC2/d) ⇤⇤

Class mean med. range IQR mean med. range IQR mean med. range IQR mean med. range IQR
All Zoo.

(n=70,47⇤,23⇤⇤)
11 6.6

0.1
76

3.3
11.6

1.7 1.1
3.0e�2

10
0.7
2.4

0.56 0.15
3.3e�3

6.1
3.2e�2

0.32
0.50 0.04

5.0e�4

4
3.3e�2

0.14

Uncat.
(n=14,5⇤,9⇤⇤)

6.3 6.6
3.3
9.4

4.7
7.3

1.5 1.5
1.0
2.4

1.0
2.0

0.19 0.15
0.14
0.32

0.15
0.24

5.6e�2 3.5e�2 2.3e�4

0.16

2.5e�4

7.5
5e�4

4
Nanozoo.

(n=1,1⇤,0⇤⇤)
20 20 - - 10 10 - - 0.51 0.51 - - - - - -

Microzoo.
(n=25,18⇤,7⇤⇤)

9.1 3.3
0.66
76

1.6
9.9

2.4 2.8
0.40
4.0

1.2
4.0

0.96 0.23
1.4e�2

6.1
0.17
1.0

1.2 0.14
3.2e�2

4.0
6.1e�2

2.3
Mesozoo.

(n=24,17⇤,7⇤⇤)
10 6.6

0.10
37

3.1
20

1.0 0.78
0.10
3.2

0.5
1.2

0.44 6.9e�2 1.5e�2

3.1
2.9e�2

0.22
0.31 4.4e�2 5.0e�4

1.9
3.3e�2

0.11
Macrozoo.

(n=6,6⇤,0⇤⇤)
35 21

8.3
76

9
76

0.37 0.43
3.0e�2

0.52
0.23
0.52

1.2e�2 9.9e�3 3.3e�3

2.8e�2
4.7e�3

1.8e�2 - - - -

d) Values Used in Models: Sample Statistics by Grazing Formulation

Grazing K1/2 (mmolC/m3) gmax (1/d) ✏ (m3/mmolC/d) ⇤ ✏c (m6/mmolC2/d) ⇤⇤

Formulation mean med. range IQR mean med. range IQR mean med. range IQR mean med. range IQR
Type III

(n=23,0⇤,23⇤⇤)
6.0 4.0

1.0
37

3.0
6.7

1.7 1.6
0.5
4.0

1
2.1

- - - - 0.50 4.4e�2 5.0e�4

4
3.3e�2

0.14
Type II ( 6=Ivlev)
(n=35,35⇤,0⇤⇤)

8.9 7.3
0.1
20

3.5
11

1.9 1.2
3.0e�2

10
0.8
3.1

0.72 0.20
3.3e�3

6.1
0.10
0.49

- - - -

Ivlev
(n=12,12⇤,0⇤⇤)

29 23
2.7
76

3.3
50

0.97 0.51
0.1
4.0

0.5
1.2

8.5e�2 1.5e�2 4.7e�3

0.44
1.4e�2

0.13
- - - -

Michaelis-Menten
(n=49,32⇤,17⇤⇤)

7.8 5.0
0.10
37

12.8
9.2

1.9 1.2
3.0e�2

10
0.79
3.0

0.77 0.19
3.3e�2

6.1
8.0e�2

0.54
0.66 0.11

5.0e�4

4.0
3.8e�2

0.58
disk

(n=9,3⇤,6⇤⇤)
7.1 6.6

3.2
9.4

6.6
9.2

1.5 1.6
1.0
2.1

1.0
2.0

0.19 0.21
0.15
0.21

0.17
0.21

0.04 3.6e�2 2.3e�2

9.3e�2
2.5e�2

3.6e�2

Single Prey
(n=40,27⇤,13⇤⇤)

13 6.6
0.66
76

2.7
9.8

1.8 1.5
0.1
4.0

1.0
2.4

0.75 0.18
4.7e�3

6.1
1.6e�2

0.55
0.52 3.6e�2 5.0e�4

2.5
2.5e�2

0.57
Multiple Prey

(n=30,20⇤,10⇤⇤)
9.3 7.8

0.1
20

3.3
20

1.6 1.0
3.0e�2

10
0.5
2.4

0.29 0.15
3.3e�3

3.1
3.6e�2

0.23
0.5 7.0e�2 3.3e�2

3.1
3.6e�2

0.23

Table 3. Statistics from empirically estimated and modelled grazing parameters. a. The p-

value (p), coefficient of determination (r2), and slope (b) are displayed for a linear regression fit

between the log10 of zooplankton size (µm3) and the log10 of K1/2, gmax, and ε. Data included

in each model is limited to the size class(es) specified in the left column. Statistically significant

relationship (p<0.05) are highlighted in blue for positive correlations (b>0) and red for negative

correlations (b<0). b,c,d. Sample statistics are shown for b. empirical values sorted by size

classes and c,d. model values sorted by size class and other attributes of the grazing formulation.

The IQR referes to the Inter-quartile range (i.e. middle 50%). Statistics for ε do not include any

type III responses and statistics for εc do not include any type II or Ivlev response. εc is not

shown for the empirical data as a type II response was always assumed.
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prey options, we consider the implied K1/2 for the single-prey response as it is informa-631

tive as to how modellers assume zooplankton behave in optimal conditions, grazing ex-632

clusively on their preferred prey.633

Overall, the full range of grazing parameters used in models varies considerably (Fig.634

2; empty red markers). K1/2 and gmax both vary by over two orders of magnitude,635

from 0.1-76 mmol C/m3 and 0.03-10 1/d, respectively. When converted into a disk pa-636

rameter scheme the range is even larger, with ε in type II (and Ivlev) response functions637

spanning more than 3 orders of magnitude, from 3.3∗10−3 to 6.1 m3

mmolCd , and εc in type638

III response functions spanning nearly 4 orders of magnitude, from 5.2∗10−4 to 4 m6

mmol2Cd .639

Considering that these values are used to represent the mean state of many zooplank-640

ton, they might be expected to vary substantially less than empirical estimates, which641

should be expected to span a large range of natural variability. However, the range of642

model values for each parameter exceeds the interquartile range of empirical estimates643

(Table 3b,c), suggesting that some models may be using unreasonably high or low pa-644

rameter values. This is especially true for model values of ε, which exceed the interquar-645

tile range of empirical estimates by an order of magnitude in both directions. Moreover,646

the mean of model and empirical distributions are not statistically similar (p>0.05; 2-647

sample t-test) for any parameter. However, this comparison may be biased by intended648

differences in the zooplankton functional groups being modelled.649

Breaking down the model values by size class gives a better indication of how rep-650

resentative model values are of empirically estimates (Fig. 3d-f ; Table 3b,c). Focus-651

ing on microzooplankton and mesozooplankton, the most commonly simulated size classes,652

the range of K1/2, gmax, and ε for both size classes falls within the range, but beyond653

the interquartile range, of their respective empirical estimates. However, relative differ-654

ences between the two size classes are generally consistent with observations. Statisti-655

cally, modelled consumption (gmax; Fig. 3e) and capture (ε, εc; Fig. 3f) rates both de-656

cline with zooplankton size and do so in a manner that increases K1/2 (Fig. 3d).657

In particular, variability in gmax across the two size classes is well aligned with the658

observations (Fig. 3b,e; Table 3b,c). The median value (and interquartile range) of659

gmax decreases from 2.75 (1.2-4) in microzooplankton to 0.78 (0.5-1.15) in mesozooplank-660

ton models, compared to from 3.0 (2.2-4) to 0.77 (0.3-1.8) in the empirically measured661

values. Moreover, there is no statistical difference between the mean of the model and662

empirical distributions of gmax in either simulated size class. Unsurprisingly, both sets663

of model and empirical values reported here are consistent with values of 2-4 1/d and664

1 1/d, respectively, reported elsewhere throughout the literature (C. A. Edwards et al.,665

2000; Gismervik, 2005; Lancelot et al., 2005; Leising, Gentleman, & Frost, 2003; Strom666

& Morello, 1998).667

However, allometric variability in capture rates, either prescribed directly by ε (Fig.668

3c,f) and εc or indirectly by K1/2 (Fig. 3a,d), is less consistent with observations. The669

median value (and IQR) of ε decreases from 0.27 (.17-1.79) to 0.14 (.04-.37) in models,670

compared to from 0.25 (.09-0.78) to .04 (.01-.09) in the empirically measured values. This671

smaller drop in ε between size classes in the models is consistent with a smaller increase672

in K1/2 than observed. The median value (and IQR) of K1/2 increases from 3.3 (1.6-9.9)673

to 6.6 (3-9.9) in models, compared to from 8.9 (4.5-17) to 18 (5.8-45) in the empirically674

measured values (Table 3b,c). In turn, the relative decrease in mesozooplankton graz-675

ing at low prey concentrations (where capture rates dominate) may be underestimated676

in models. This is likely happening because most models that include micro- and meso-677

zooplankton use a Michaelis-Menten parameter scheme and vary gmax between size classes678

but not K1/2 (Table 2). While this is consistent with the allometric relationships mea-679

sured across the full range of zooplankton, it may not be when focusing explicitly on the680

difference between micro- and mesozooplankton (Sec 4.1; Table 3a). In turn, models681

that vary both gmax and K1/2 (e.g. T. Anderson et al. (2010)) may be more realistic than682

those that fix K1/2 across size.683
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While the clearest source of variability between model values is justifiably allomet-684

ric, we additionally checked for differences associated with attributes of the grazing for-685

mulation (Table 3d). The only statistically significant difference related to the grazing686

formulation was between capture rates prescribed in Ivlev response types compared to687

those in Holling type III, or even type II, responses. The mean K1/2 used in zooplank-688

ton simulated with an Ivlev response was nearly 5x larger (29 mmolC/m3) than that689

used in a type III response (6.0), and over 3x larger than that used in a qualitatively sim-690

ilar type II response (8.0). Although a disproportionate number of zooplankton simu-691

lated with a Ivlev response are described as macrozooplankton (50%), mean K1/2 val-692

ues for micro- (24) and mesozooplankton (15) simulated with an Ivlev response are also693

much higher than the average value used in non-Ivlev type II response functions (7.8 &694

9.6, respectively). This suggests that K1/2 may be systematically overestimated in Ivlev695

responses, perhaps because the Ivlev parameter is further abstracted from any mecha-696

nistically meaningful value or intuitive characteristic of the curve. Finally, there was no697

statistically significant difference between the mean of any parameter value when com-698

paring those used in Michaelis-Menten versus disk parameter schemes or when compar-699

ing single-prey response types with the implied single prey response from multi-prey re-700

sponse types.701

5 Sensitivity of the grazing formulation702

To isolate the sensitivity of phytoplankton population dynamics to the functional703

response and its parameterization, we extend the sensitivity analysis conducted by Gen-704

tleman and Neuheimer (2008). We use an identical, idealized, 0-dimensional Nutrient-705

Phytoplankton-Zooplankton (NPZ) box model to that of Gentleman and Neuheimer (2008),706

and earlier Franks et al. (1986). This model assumes that phytoplankton (P) grow via707

uptake of external inorganic nutrients (N) and are lost to zooplankton (Z) grazing and708

mortality. Nutrients are returned to the inorganic pool via phytoplankton mortality, zoo-709

plankton mortality and sloppy grazing. Phytoplankton growth follows nutrient limited710

Michaelis-Menten kinetics (Michaelis & Menten, 1913) and both phytoplankton and zoo-711

plankton mortality terms are linear. Mass transfer between N, P and Z pools is described712

by713

dN

dt
= (1− α)g([P ])Z − µmax

N

KN +N
P +mpP +mzZ,

dP

dt
= µmax

N

KN +N
P − g([P ])Z −mpP,

dZ

dt
= αg([P ])Z −mzZ,

(27)

where α is the grazing efficiency, µmax is the phytoplankton maximum specific growth714

rate, KN is the nutrient uptake half saturation constant, mp is the phytoplankton mor-715

tality rate, mz is the zooplankton mortality rate, and g([P ]) is the grazing formulation716

(i.e. eq. 17, 18, 24, or 25). The model is not forced with seasonality in light, mixing717

or other environmental conditions, such that µmax is constant and phytoplankton growth718

is determined only by nutrient availability. Non-grazing parameters and initial condi-719

tions (Table 4b) are identical to Gentleman and Neuheimer (2008), but converted to720

carbon units using a stoichiometric ratio of C:N = 106:16.721

Gentleman and Neuheimer (2008) used this model to assess the change in dynam-722

ical stability when switching between a type II and III response or doubling/halving K1/2723

and gmax. In addition to testing both response types, we go on to test both parameter724

schemes (disk, Michaelis-Menten) and a much larger range of grazing parameters. This725

allows for the comparison of gradients across the parameter space between four differ-726

ent grazing formulations (i.e. Type II-disk, Type III-disk, Type II-Michaelis-Menten, Type727
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a. b.The Grazing Formulation
Other Parameters 

and Initial Conditions
Parameter Value Sensitivity

Range

Æ Grazing efficiency 0.7 0.35, 1.0

µmax
Phytoplankton maximum

specific growth rate
2 d°1 1, 4 d°1

mP
Phytoplankton
mortality rate

0.1 d°1 .05, 0.2 d°1

mZ
Zooplankton
mortality rate

0.2 d°1 0.1, 0.4 d°1

KN
Nutrient uptake

half-saturation constant
6.6 mmolC

m3 3.3, 13.2 mmoC l
m3

N0
Nutrient density
initial condition

10.6 mmolC
m3 5.3, 21.2 mmolC

m3

P0
Phytoplankton density

initial condition
1.3 mmolC

m3 0.65, 2.6 mmolC
m3

Z0
Zooplankton density

initial condition
1.3 mmolC

m3 0.65, 2.6 mmolC
m3

4

Response
Type

Parameter
Scheme Parameters Sensitivity Range

g
([

P
])

II disk
≤

gmax

0.01°10
m3

mmolC d
0.1°45 d°1

III disk
≤c

gmax

0.01°10
m6

mmolC 2d
0.1°45 d°1

II Michaelis-Menten
K1/2

gmax

100°0.1
mmolC

m3

0.1°45 d°1

III Michaelis-Menten
K1/2

gmax

100°0.1
mmolC

m3

0.1°45 d°1

Table 4. List of a. grazing formulations and b. other parameters and initial conditions used

for the NPZ (eq. 27) sensitivity analysis in Section 5.

III-Michaelis-Menten; see Table 4a). Within each grazing formulation, we consider a728

range of log10-spaced values spanning nearly 3 orders of magnitude for both parameters729

(Table 4a). These ranges are all within the range of empirical estimates (Fig. 2; Ta-730

ble 3b). Note that corresponding grid cells in each panel of Figs. 5 & 6 do not equate731

to identical functional response curves; identical parameter values used in different re-732

sponse types or parameter schemes will yield differently shaped curves and thus differ-733

ent dynamics. Instead, when comparing panels, we consider differences in gradients across734

the parameter space.735

All 784 combinations of parameters values for each functional response (i.e. 3136736

total tests) were integrated for 5 years, after which the system either reached steady state,737

quasi state-state (repeating limit cycles), or numerical instability. Integrating any fur-738

ther did not meaningfully change our results. We analyse the final year of each integra-739

tion, which was long enough to capture limit cycles that had a period of anywhere from740

weeks to months. We then assessed how the choice of response type, parameter scheme,741

and parameter values influences prescribed grazing rates (Section 5.1) and in turn drives742

the size (Section 5.2) and stability (Section 5.3) of the phytoplankton population. The743

sensitivity of our results to non-grazing parameters and initial conditions is also exam-744

ined (Table 4b; Section 5.4).745

5.1 Sensitivity of grazing rates746

Modellers can prescribe faster grazing rates by increasing ε, εc, and/or gmax in a747

disk parameter scheme, or decreasing K1/2 and/or increasing gmax in a Michaelis-Menten748

parameter scheme. Note that while ε and gmax modify the curve in the same direction749

when using a disk formulation, K1/2 and gmax modify it in opposite directions when us-750

ing a Michaelis-Menten formulation, meaning that modellers must ensure parameter changes751

do not inadvertently cancel out if modifying both in the same direction. Moreover, the752

sensitivity of the shape of the curve and associated grazing rates to these parameters varies753

with the parameter scheme, response type, and the prey density (or location on the curve)754

in question. To illustrate this, we have provided a schematic showing how proportional755

changes in different parameters modify the curve in different ways at low and high [P ]756

values (Fig. 4). We then quantify these changes by computing the mean grazing rates757

prescribed at low and high [P ] values for all curves defined across the entire parameter758

space (Fig. 5).759
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When using a disk scheme (Fig. 4, green), regardless of response type, grazing rates760

are determined almost entirely by prey capture rates when food is scarce (Low [P ]; Fig.761

4, middle row) and by consumption rates when food is replete (High [P ]; Fig. 4, bot-762

tom row). This is a direct consequence of the underlying theory, but not necessarily ob-763

vious from the terms ‘attack’ or ‘capture rate’. In turn, gmax has almost no bearing on764

the shape of the curve at low [P ] (Fig. 4f, h) and ε (or εc) has little influence on the765

shape of the curve at high [P ]; (Fig. 4i, k). Moving from a type II (Fig. 4, left side)766

to III (Fig. 4, right side) response switches the description of prey capture rates from767

a linear to quadratic function of [P ] (see Section 2), which decreases the sensitivity of768

grazing rates to εc (relative to ε), especially at low [P ] (Fig. e, g).769

When using a Michaelis-Menten parameter scheme (Fig. 4, magenta), grazing rates770

are proportionally, but inversely, affected by changes in K1/2 compared to ε in a disk scheme771

(Fig. 4a, e, i), leading to the dark green overlapping curves in the left-most panel of772

Fig. 4. This occurs because K1/2 is equal to gmax

ε , or equivalently 1
εh (see Sec. 2.3),773

and gmax (and its reciprocal, h) are held constant. However, in a type III response, graz-774

ing rates are substantially more sensitive to K1/2 than εc, (Fig. 4c, g, k), particularly775

at low prey densities (Fig. 4g). Moreover, in both a type II and III response, the Michaelis-776

Menten scheme is dramatically more sensitive to gmax at low prey densities (Fig. 4f,777

h). This is because faster (slower) prey capture rates and thus a larger prey capture ef-778

ficiency are implicitly required for the curve to saturate at a faster (slower) grazing rate779

with the same half saturation concentration.780

Computing the mean grazing rate across low (0−0.5 mmolC
m3 ) and high (10−15 mmolC

m3 )781

phytoplankton concentrations ([P ]) for all grazing formulations considered in our sen-782

sitivity analysis (Table 4) confirms these trends (Fig. 5). In a type II disk formulation,783

grazing rates at low [P ] are almost entirely unaffected by gmax, especially when ε is low784

(Fig. 5a), whereas grazing rates at high [P ] are almost entirely driven by gmax, espe-785

cially when ε is large (Fig. 5b). Introducing the concavity of a Type III response in-786

creases this disparity. In turn, the mean grazing pressure at low [P ] increases with εc but787

is effectively invariant across 3 orders of magnitude change in gmax (Fig. 5c). Alterna-788

tively, mean grazing rates at high [P ] are almost entirely described by gmax unless εc is789

so low that our definition of ‘high [P ]’ no longer falls above the half saturation point of790

the curve (Fig. 5d).791

Using a Michaelis-Menten scheme increases the sensitivity of grazing rates to both792

parameters (Fig. 5e-h), such that gmax has much more influence at low [P ] (Fig. 5e,793

g) and K1/2 has more influence at high [P ] (Fig. 5f, h). However, in a type III response,794

grazing rates are still more sensitive to K1/2 than gmax at low [P ] (Fig. 5g) and more795

sensitive to gmax than K1/2 at high [P ] (Fig. 5h). Increased parameter sensitivity in796

the Michaelis-Menten scheme means that a greater variety of curve shapes and associ-797

ated grazing rates can be described with an equivalent range of parameter values, albeit798

with lower resolution. This means that there should be more variability in model out-799

put derived from equivalent changes in Michaelis-Menten versus disk parameters.800

In other words, in a Michaelis-Menten scheme a smaller range of parameters can801

test the same range of curves, but many intermediate options with be skipped.802

5.2 Sensitivity of phytoplankton population size803

The mean size of the phytoplankton population, [P ], (Fig. 6, left column) is largely804

driven by the shape of the functional response at low phytoplankton concentrations and805

unaffected by the curve as it begins to saturate at high phytoplankton concentrations.806

For example, [P ] is 14% lower in type II than analogously parameterized type III responses807

(i.e. same K1/2 and gmax), despite the fact that a type II response takes much longer808

to reach maximum grazing rates (i.e. saturation), and prescribes slower grazing at all809

prey concentrations above K1/2. This disparity increases to 58% when only considering810
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Figure 4. Schematic of the functional response curve. A type II (a,b) and III (c,d) response

curve is plotted in black with colored windows depicting how the curve varies with proportional

changes to its parameters. Initial parameters were chosen such that the disk and Michaelis-

Menten parameter schemes yield mathematical identical curves (gmax = 1, K1/2 = 6.625).

Colored windows show how the curve varies when its parameters are individually halved (0.5x)

or doubled (2x) within a disk (green) or Michaelis-Menten (magenta) parameter scheme. The

shaded region depicts the range of curves encompassing a 0.5x-2x change in the associated pa-

rameter. Close ups of the same curves are shown below for (e-h) low and (i-l) high phytoplank-

ton concentrations. Annotations in Row 1 show which curves correspond to which parameter

modification. Note the dark green shading in (a,e & i) indicates a complete overlap in the vari-

ability window for both parameter schemes.
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Figure 5. Sensitivity of specific grazing rates. Variability in the mean zooplankton spe-

cific grazing rate averaged across (a, c, e, g) low ([P ] < 0.5mmolC
m3 ) and (b, d, f, h) high

(10 < [P ] < 15mmolC
m3 ) phytoplankton concentrations ([P ]) is shown as a function of the pa-

rameters of the functional response curve using a (a, b, e, f) Type II and (c, d, g, h) Type III

response type, as well as a (a-d) disk and (e-h) Michaelis-Menten parameter scheme. The range

of low and high [P ] correspond to the zoomed in panels of the schematic in Fig. 4. A dashed log

1:1 line is included to assess the relative parameter sensitivity.
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Figure 6. Sensitivity of phytoplankton population dynamics. Variability in the (a, d, g, j.

mean annual phytoplankton concentration, (b, e, h, k. standard deviation, and (c, f, i, l. First

Order Stability of the solution are plotted against the parameterization of the functional response

curve using a (a-c, g-j. Type II and (d-f, j-l. Type III response type as well as a (a-f. disk

and (g-l. Michaelis-Menten parameter scheme. Parameter schemes that yield complete nutrient

utilization or phytoplankton extinction are hatched out with cross or single lines, respectively.

Dynamically unstable regions are bounded with a red contour, while dynamically stable solu-

tions have a near-zero standard deviation and appear blue in b, e, h, k. Numerically unstable

regions are plotted in white. Note that the dynamics and stability of the disk and Michaelis-

Menten parameter schemes are identical when their parameters overlap (i.e. ε = gmax/K1/2 or

εc = gmax/K
2
1/2)
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stable solutions that have neither gone extinct nor reached complete nutrient limitation811

(see Section 5.3). This occurs because [P ] dynamics are more sensitive to grazing when812

prey [P ] is low and a type II response imposes faster grazing than its type III analogue813

below K1/2.814

The out-sized importance of the grazing rates at low [P ] is even more noticeable815

in the type III response. Considering all dynamically solutions, [P ] has a much stronger816

correlation with mean grazing rates at low [P ] (r2 = 0.97) than high [P ] (r2 = −0.53).817

Accordingly, the sensitivity of [P ] to the grazing formulation qualitatively mirrors the818

sensitivity of mean grazing rates at low [P ] to the grazing formulation (Fig. 5, 6, left819

columns). Ecologically, this implies that the size of phytoplankton populations is lim-820

ited by zooplankton capture rates, which dominate when prey is scarce, not consump-821

tion rates, which dominate when prey is abundant and the zooplankton community is822

more likely to be larger and capable of exerting strong grazing pressure, regardless of the823

speed of zooplankton specific grazing rates.824

In turn, [P ] is most sensitive to the parameterization of the response curve when825

the response type and parameter scheme allow for those parameters to most efficiently826

describe the bottom of the response curve. This means [P ] is less sensitive to the param-827

eterization of the functional response in a disk than Michaelis-Menten parameter scheme.828

For example, phytoplankton in a type III disk scheme only experienced extinction or com-829

plete nutrient utilization in 20% of the tested parameter space (Fig. 6d), compared to830

40% when using a type III Michaelis-Menten scheme (Fig. 6j). The size of the inter-831

mediate solution space will vary with other parameter choices and the size of the nutri-832

ent pool; however, the fact remains that a smaller range of parameters is needed to span833

from extinction to complete nutrient utilization in a Michaelis-Menten than disk scheme.834

Similarly, when using a type III response, [P ] is more sensitive to K1/2 and εc than gmax835

in both parameter schemes because they more directly define the shape of the response836

curve when prey is scarce (Fig. 4g, h). The value gmax has almost no influence on the837

size of the phytoplankton population in a type III disk scheme.838

5.3 Sensitivity of phytoplankton population stability839

In the simplified NPZ model, with no seasonal forcing, phytoplankton populations840

tend to quickly reach a seasonally invariant steady state. However, if the destabilizing841

influence of the functional response is large enough, dynamically unstable oscillations (i.e.842

limit cycles) in the phytoplankton population can emerge. The magnitude of the desta-843

bilizing (or stabilizing) influence of the grazing formulation is determined by both the844

curvature the functional response as well as the prognostic feedback of grazing on the845

phytoplankton population, which determines its the position on the curve. We approx-846

imate the magnitude of this stabilizing influence with the First Order Stability (Fig. 6c,847

f, i, l), defined as the first derivative of clearance rates (see Sec. 3) calculated at the848

mean phytoplankton concentration in year 5 of the solution. Larger negative values, for849

example, mean that the grazing formulation has a more destabilizing influence on the850

mean phytoplankton population, but does not necessarily determine if the system is dy-851

namically unstable, as other stabilizing processes could dominate.852

To determine if the system is dynamically unstable, we investigated whether os-853

cillations emerged. The strength of these oscillations was approximated by the standard854

deviation of the phytoplankton population (Fig. 6b, e, h, k). The system was deemed855

stable if it reached roughly steady state by year five of the integration and exhibited a856

near-0 standard deviation (plotted in blue). The system was deemed dynamically un-857

stable if the standard deviation in year 5 is greater than 0.5% of the total nutrient pool.858

The system was further deemed numerically unstable if Matlab’s ode45 solver, a stan-859

dard non-stiff integration technique, was unable to meet the integration tolerance with-860

out reducing the integration time-step below the smallest allowed. This occurs when the861
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initial slope of the functional response curve is exceedingly steep (i.e. high ε), allowing862

for large changes in grazing, even at slow integration time-steps, causing the solution to863

explode toward negative or positive infinity. Such solutions are theoretically attainable864

using a smaller time-step or more sophisticated stiff integration technique but are not865

necessary for our purposes. Here, we only flag the numerically parameter combinations866

as too stiff to be solved with a standard non-stiff integration technique at a reasonable867

time-step.868

The phytoplankton population remains dynamically stable, with a near zero stan-869

dard deviation (Fig. 6b, e, h, k, blue shading), when First Order Stability is positive870

or slightly negative (Fig. 6c, f, i, l). However, the phytoplankton population begins to871

oscillate, exhibiting much larger standard deviations, once First Order Stability becomes872

sufficiently negative. It is possible for a dynamically stable solution with negative First873

Order Stability to emerge if other stabilizing factors dominate the destabilizing influenc-874

ing of the grazing formulation. First Order Stability, as defined here, is only a measure875

of the stabilizing (or destabilizing) influence of the grazing formulation and other fac-876

tors can provide a stabilizing feedback on the phytoplankton population. In this model,877

these factors include nutrient limitation and the size of the zooplankton community, which878

both increasingly dampen phytoplankton population growth as phytoplankton biomass879

accumulates, even if specific grazing rates decline. In more complicated NPZ models other880

factors, including more complex closure schemes such as quadratic zooplankton mortal-881

ity, can provide stability as well (A. M. Edwards & Yool, 2000; J. H. Steele & Hender-882

son, 1992). Conversely, in this simple model, oscillations never occur when First Order883

Stability is positive, even when initial conditions are varied by 0.5-2x (Table 4b). How-884

ever, it is possible that in longer simulations of more complex models with other desta-885

bilizing factors, they may.886

When using a type II response (Fig. 6; rows 1 & 3), First Order Stability is al-887

ways negative and the phytoplankton population in 53% of tested solutions was either888

dynamically unstable (37.5%, red contour), numerically unstable (5.5%, white), or ex-889

tinct (10%, diagonal hash). Increasing gmax and decreasing K1/2 both decrease stabil-890

ity; however, when using a Michaelis-Menten parameter scheme, the First Order Stabil-891

ity is, on average, ∼ 5 times more sensitive to changes in K1/2 than gmax due to its greater892

influence on the curvature of the functional response. In a disk scheme, however, First893

Order Stability is only 0.25 times more sensitive to ε than gmax, because both param-894

eters influence the location of K1/2. Because the stability of the population is much more895

sensitive to gmax than the size of the population, relatively small changes in gmax could896

trigger sudden instabilities with little warning.897

When using a type III response (Fig. 6; rows 2 & 4), First Order Stability is rarely898

negative. Only 5.5% of tested solutions were dynamically (1.7%) or numerically (3.8%)899

unstable and less than 4% led to phytoplankton extinction. First Order Stability becomes900

increasingly stable with increasing gmax and decreasing K1/2 because increasing graz-901

ing pressure drives [P ] below K1/2, where the upward concavity of the response curve902

provides stability and protects against extinction. This holds even though decreasing K1/2903

simultaneously lowers the threshold for instability. There is only negative First Order904

Stability and oscillations in the phytoplankton population when both K1/2 and gmax are905

very low. This occurs because as the gmax approaches the zooplankton mortality rate,906

zooplankton net population growth slows, decoupling [P ] and [Z] and allowing [P ] to es-907

cape grazing pressure and exceed a low K1/2 value.908

5.4 Influence of other parameters909

The sensitivity of phytoplankton population size to the grazing formulation does910

not appear to be qualitatively influenced by the selection of other non-grazing param-911

eters or initial conditions (see Table 4b); however, these choices influence the size of the912
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stable solution space. Nutrient limitation is described by a type II Michaelis-Menten curve913

and thus has similar, but qualitatively opposite, stabilizing properties to the grazing for-914

mulation. The difference is that the saturation of nutrient uptake provides a negative,915

rather than positive, feedback on phytoplankton population growth. In turn, increas-916

ing the maximum phytoplankton specific division rates (µmax) or decreasing the half sat-917

uration concentration for nutrient uptake (KN ) both increase the stability of the sys-918

tem and reduce the number of unstable solutions. On the other hand, our results agree919

with previous work that limiting zooplankton community growth by either increasing920

zooplankton mortality (mZ) or reducing grazing efficiency (α) can increase the desta-921

bilizing influence of a type II (or Ivlev) response (Edwards et al., 2000a, b, GN08) (C. Ed-922

wards, Powell, & Batchelder, 2000; C. A. Edwards et al., 2000; Gentleman & Neuheimer,923

2008). We go on to show that this can even occur in a type III response if mZ > αgmax924

(Fig. 6e,k), thereby decoupling specific grazing rates from bulk grazing pressure (i.e.925

g[Z]). Reallocating the initial distribution of nutrients between the [N ], [P ], and [Z] pools926

had little influence on stability. However, as similiarly shown by Franks and Chen (1996,927

2001), increasing the total nutrient pool increases the number of unstable solutions by928

diminishing the stabilizing influence of nutrient limitation.929

6 Sensitivity to sub-grid scale heterogeneity930

Mechanistic derivations (Sec. 2) and empirical approximations (Sec. 4) of the func-931

tional response are based on communities that are spatially well-mixed. Therefore, the932

shape and sensitivity of the functional response is predicated on the assumption that a933

homogeneously distributed zooplankton community is grazing on a homogeneously dis-934

tributed phytoplankton population. However, the ocean is notoriously patchy, with global935

plankton distributions highly heterogeneous at scales well below the typical resolution936

of even eddy-resolving ocean models (Ohman, 1990; Raymont, 2014). Phytoplankton and937

zooplankton communities are often log-normally distributed (J. Campbell, 1995; Druon938

et al., 2019), such that an increase in the mean plankton concentration is associated with939

a disproportionate increase in smaller areas of high productivity, surrounded by large940

swaths of lower productivity. In turn, the functional response used in global, or even coarse941

regional models, is likely to be implicitly averaged over substantial sub-grid scale het-942

erogeneity.943

Ideally, coarse models should strive to prescribe how mean specific grazing rates,944

g, averaged across a grid-cell, vary with the grid-cell mean phytoplankton population,945

[P ]. However, this apparent mean functional response (g([P ])) can differ substantially946

from the local response of individual zooplankton (g([P ]) when averaged across sufficient947

sub-grid scale heterogeneity. Notably, Morozov and Arashkevich (2008, 2010) have shown948

the emergence of upward concavity in g([P ]) when averaged across a 1-D water column949

model, even though g([P ]) was prescribed with a type II response. These modelling stud-950

ies were further supported by field work (Morozov et al., 2008) and led Morozov to ad-951

vocate for the emergence of the type III response as a more appropriate representation952

of dynamics integrated vertically across the water column (Morozov, 2010). Critical to953

this finding were the conditions that: 1) The vertical distribution of prey becomes more954

heterogeneous as the mean state increases due to nonlinear effects of light attenuation955

and self-shading (Herman & Platt, 1983); and 2) Zooplankton can take advantage of this956

disparity through active vertical migration (Giske, Rosland, Berntsen, & Fiksen, 1997;957

Herman & Platt, 1983; Lampert, 2005). In turn, increasing the mean prey field coincides958

with: 1) An increase in the discrepancy between the depth-averaged prey concentration959

and that of high density layers; and 2) An increase in the relative proportion of zooplank-960

ton grazing in those high density layers. Together, this is capable of yielding an expo-961

nential increase in the mean grazing rate with the mean prey concentration (i.e. Type962

III), even if the local response is linear (i.e. Type II).963
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We further generalize these results by examining a simple non-dimensional system964

(or grid cell) composed of just two regimes: one fraction of high productivity water, and965

one fraction with low productivity water. Unlike Morozov and Arashkevich (2008), in966

which the biological rates in each vertical layer are explicitly linked via the active mi-967

gration of zooplankton and the attenuation of light due to shelf-shading, our two frac-968

tions can be considered independent. This has the advantage of considering the effect969

of averaging across two distinct ecological niches in a coarse grid cell, rather than one970

tightly coupled system. This is an important distinction because because uncoupling the971

system decreases the degree of inherent non-linearity (e.g. in Morozov and Arashkevich972

(2008) increasing phytoplankton growth rates in one layer necessarily decrease growth973

rates in the layer below via shelf-shading). Further, general circulation models have much974

higher vertical ( 10 m) than horizontal resolution (10-100s km), most biogeochemical mod-975

els already resolve self-shading, and future generation models may include active verti-976

cal migration as well (Archibald, Siegel, & Doney, 2019). Thus, future models may ex-977

plicitly account for the mechanisms that lead to the emergence of a type III response in978

the vertical, but still implicitly average across a great deal of ecological heterogeneity hor-979

izontally. In this way our generalized 0-D representation may be a more useful analogue980

to a 3D grid-cell, as it is not tied to specific mechanisms that operate vertically. Our re-981

sults show that averaging across a spatially patchy ocean fundamentally changes the shape982

of the apparent mean functional response, even without direct interaction between the983

oligotrophic and eutrophic parts of the grid cell. We show how this averaging can increase984

apparent mean capture rates, induce upward concavity at low [P ], and increase the sen-985

sitivity of mean specific grazing rates to local consumption rates.986

We assume a generic model grid cell is divided into two regimes, one fraction with987

high productivity eutrophic water, feu and one fraction with low productivity oligotrophic988

water, fol (feu+fol = 1). All zooplankton are assumed to graze according to the same989

local functional response, g([P ]), but the sub-grid scale distributions of phytoplankton990

([P ]eu, [P ]ol) and zooplankton ([Z]eu, [Z]ol) biomass are assumed to be heterogeneous991

and allowed to vary in time. The phytoplankton population is assumed to grow expo-992

nentially with a different growth rate in each region (µol, µeu).993

The concentration of zooplankton biomass in either region is assumed to be pro-994

portional to the distribution of phytoplankton. This is a similar assumption to that made995

by Morozov and Arashkevich (2010), who assume that zooplankton biomass co-varies996

with prey abundance across the water column. In the vertical, this assumption is well997

supported by observations of zooplankton aggregating in food-rich layers (Giske et al.,998

1997; Herman & Platt, 1983; Lampert, 2005). While it is difficult to observe individual999

lateral migration in the open ocean (Pearre, 2003), it is plausible that zooplankton, known1000

to forage vertically between different depths based on the balance between predation risk1001

and hunger (Pearre, 2003; Pierson, Frost, & Leising, 2013), may drift with currents for1002

longer at depth between unsuccessful forays to the surface, before vertically migrating1003

less and staying closer to the surface once they find food (Bandara, Varpe, Wijewardene,1004

Tverberg, & Eiane, 2021). This would lead to a similar consolidation of zooplankton around1005

horizontally distributed high-density prey patches. More importantly, active individual1006

migration of zooplankton is not a necessary assumption here. In the work of Morozov1007

and Arashkevich (2010) and Morozov and Arashkevich (2008), active migration was re-1008

quired to account for shifts in the zooplankton distribution because the short time scale1009

considered precluded substantial population growth (note that many zooplankton - es-1010

pecially microzooplankton and some mesozooplankton and macrozooplankton - exhibit1011

very little vertical migration). However, by considering two distinct ecological niches, as-1012

sumed to exist in the same grid cell but implicitly averaged over larger space and time1013

scales, the population of zooplankton needs only to be assumed to increase faster in re-1014

gions with higher prey abundance (and thus higher grazing and growth rates) for the rel-1015

ative distribution of zooplankton to shift towards more eutrophic patches as the grid cell1016
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mean prey concentration increases. Therefore, no assumptions regarding active migra-1017

tion are required.1018

The concentration of phytoplankton and zooplankton in either fraction of the grid1019

cell (R = eu, ol) can then be computed at a given time as1020

[P ]R = [P ]R,t=0(1 + µR)t (28)

[Z]R = θ
[P ]R

[P ]
, (29)

where [P ]R,t=0 is the initial concentration and θ is the proportionality constant for zoo-1021

plankton biomass. Finally, the apparent grid cell mean specific grazing rate, g, and phy-1022

toplankton concentration, [P ], can be calculated as1023

[P ] = (feu[P ]eu + fol[P ]ol) (30)

g = g([P ]eu)
[Z]eufeu
Ztot

+ g([P ]ol)
[Z]olfol
Ztot

, (31)

where Ztot is the sum of all zooplankton in the grid cell (i.e. Ztot = [Z]eu∗[f ]eu+[Z]ol∗1024

fol). Note that θ cancels out in eq. 31. The spatially-averaged, apparent mean func-1025

tional response, g([P ]), can then be examined by plotting all values of [P ] against g (Fig.1026

7).1027

We consider two scenarios. In the first scenario (Fig. 7a, b), all biology is assumed1028

to be consolidated in the eutrophic fraction of the grid cell (i.e. [P ]ol,t=0, µol, [P ]ol and1029

[Z]ol all equal 0). In this scenario it does not matter what the initial concentration or1030

growth rate of phytoplankton in the euphotic region is because the relative distribution1031

is constant (i.e. [P ]eufeu/[P ]Tot = 1) and the grid-cell mean specific grazing rate, g,1032

reduces to the local response, g([P ]eu). However, [P ] is less than [P ]eu as it is diluted1033

by the oligotrophic fraction. We consider a local type II (Fig. 7a) and type III (Fig.1034

7b) response. In both cases, the qualitative shape of g([P ]) is consistent with the local1035

response; however, there is a decrease in the half saturation concentration of g([P ]) which1036

is proportional to the size of the euphotic fraction of the grid cell, such that K1/2 = feuK1/2.1037

This occurs because all zooplankton are actually grazing on a phytoplankton concentra-1038

tion ([P ]eu) that is 1/feu larger than the grid cell mean. In turn, as biological produc-1039

tivity is consolidated into a smaller fraction of the grid cell, the apparent capture rate1040

appears to increase (i.e. the initial slope of the curve steepens). However, this occurs not1041

because local capture rates increase, but because zooplankton are grazing at saturation1042

in a smaller area.1043

Note that unlike the results of Morozov and Arashkevich (2008) and Morozov and1044

Arashkevich (2010), this deformation of the mean response does not require any assump-1045

tions about how the distribution of phytoplankton or zooplankton biomass varies with1046

the mean concentration. This is not necessarily inconsistent with their findings that such1047

conditions are required for the emergence of a type III mean response because here it1048

is only the apparent parameters of the mean response, not the response type itself, that1049

changes. However, it is clear that a much simpler set of assumptions, only that the ocean1050

is patchy and a given grid-cell likely includes some swaths of relatively oligotrophic wa-1051

ter, can lead to dramatic differences between the local and mean functional response.1052

In the second scenario (Fig. 7c-f) we assume that all water contains at least some1053

biomass, but that phytoplankton population growth is faster in the eutrophic fraction.1054

Here, phytoplankton biomass begins uniformly distributed with an initial concentration1055
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Scenario 1: All Biology in Eutrophic Fraction of Grid Cell

Scenario 2: Some Biology in Oligotrophic Fraction of Grid Cell

Heterogeneity: feu= 5%;  𝜇eu = 2 d-1;   𝜇ol = 1 d-1
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Figure 7. Influence of sub-grid scale heterogeneity. The spatially-averaged, apparent mean

functional response is plotted for several simple examples of sub-grid scale heterogeneity. a,b.

shows what happens if a a. type II or b. III local functional response is used but biological activ-

ity is consolidated in some fraction (see colorbar) of the grid cell, with nothing in the remaining

fraction. Note, the darkest red line (feu=1) is equivalent to the local response. c-f. show what

happens to c,e. the mean functional response and d,f. mean clearance rates (solid black lines)

when the same local type II response is used but some phyto- and zooplankton growth is permit-

ted in the oligotrophic fraction of the grid cell, but at a slower rate. Red and blue lines show the

sensitivity of the mean functional response to changes in c,d. the local response parameters and

e,f. degree of sub-grid scale heterogeneity. The sensitivity of the local response is shaded in the

background of c & d. Above each subplot, the location of the half saturation concentration and

inflection point of the mean response is noted with the corresponding line style.
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of 0.01 mmolC/m3, then grows exponentially at a rate of 2 d−1 in the eutrophic frac-1056

tion and 1 d−1 in the oligotrophic fraction. Zooplankton biomass is still assumed pro-1057

portional to phytoplankton. The eutrophic fraction of the grid cell is now assumed to1058

be 5% and the local grazing response is a Type II disk response with K1/2 = 10 and1059

gmax = 2. We find that even though all zooplankton graze locally with a type II re-1060

sponse (Fig. 7c; thin black line), g([P ]) exhibits upward concavity at low [P ] (Fig.1061

7c; solid black line), akin to a type III response. This is even clearer when looking at1062

mean clearance rates (g/[P ]). Unlike local clearance rates (Fig. 7d; thin black line)1063

which decreases monotonically, mean clearance rates (Fig. 7d; solid black line) ini-1064

tially increase, providing the same stabilizing influence as the type III response (Sec.1065

3). Note, however, g([P ]) is a fundamentally different mathematical curve than the stan-1066

dard type III response. Its apparent mean half saturation constant (K1/2 = 1.7) is sub-1067

stantially lower than that of the local response (K1/2 = 10) and unlike the standard type1068

III response, K1/2 is no longer the location of the inflection point of the curve (i.e. tran-1069

sition from upward to downward concavity) which occurs before K1/2 in g([P ]) (Fig. 7b,c)1070

Still, it is important that the mean of many individual type II responses can yield1071

the upward concavity associated with a type III response when averaged across hetero-1072

geneously distributed plankton populations. Similar to the conditions described by Mo-1073

rozov (2010), the reason for this is that phytoplankton growth is associated with a shift1074

in the relative distribution of zooplankton into the eutrophic region where they can graze1075

faster. This hinges on the assumption that more predators are likely to reside where there1076

is more prey, but is agnostic to the specific mechanisms for how they get there (i.e. pop-1077

ulation growth vs. migration) or their time scales. In turn, as the mean grid cell phy-1078

toplankton concentration increases, the mean specific grazing rate will increase multi-1079

plicatively with an increasing proportion of zooplankton grazing at increasingly fast spe-1080

cific rates, leading to an exponential increase at low [P ]. Note that there was no upward1081

concavity in Scenario 1, despite sub-grid scale heterogeneity. This is because the pro-1082

portion of zooplankton grazing in the eutrophic region did not increase with [P ]. There-1083

fore, for upward concavity to exist in the mean state, we must assume that zooplank-1084

ton are more likely to aggregate where there is more prey, either because they are grow-1085

ing faster locally or because they are actively migrating. This is ecologically and numer-1086

ically important because it can provide dynamical stability and refuge for low phytoplank-1087

ton concentrations without invoking any associated change in the assumptions about the1088

foraging behavior of individual zooplankton.1089

The exact shape of g([P ]) is a function of the local response (Fig. 7c,d) and the1090

evolution of sub-grid scale plankton distributions (Fig. 7e,f). Alterations to the local1091

capture rate (Fig. 7c,d; blue lines) and consumption time (red lines) show how mod-1092

ifications to the local response (thin lines; shaded area) do not directly translate to the1093

mean response (thick lines). As with the local response, increasing (decreasing) capture1094

rates (ε) or decreasing consumption times (h) both decrease the half saturation concen-1095

tration, K1/2, of the mean response. However, g([P ]) is much more sensitive to changes1096

in the consumption time compared to the local response. For the most part, g is more1097

sensitive to changes in h (thick red lines) than ε (thick blue lines) at low [P ], despite hardly1098

any change to g at low [P ] (thin, shaded lines). This is possible because even at low [P ],1099

heterogeneously distributed zooplankton are predominately grazing at or near satura-1100

tion in small patches, where rates of consumption, not capture, drive grazing.1101

Altering the distribution of plankton (Fig. 7e,f), either by increasing population1102

growth rates in the eutrophic fraction (blue lines) or by changing the size of the eutrophic1103

fraction (red lines) also has a pronounced effect on the shape of g([P ]). Increasing (de-1104

creasing) µeu has a qualitatively similar effect to decreasing (increasing) K1/2 because1105

it increases the disparity between eutrophic and oligotrophic plankton populations. Re-1106

ducing sub-grid scale heterogeneity by increasing (decreasing) the size of feu lowers the1107

inflection point and decreases (increases) the extent of upward concavity. At feu = 50%,1108
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g([P ]) begins to qualitatively resemble g([P ]), but K1/2 is still 45% lower than K1/2. Even1109

when we reduced heterogeneity to 20% of the grid cell growing just 10% faster, g([P ])1110

still exhibited increasing clearance rates at very low [P ]. Together, it is clear that the1111

shape of g([P ]) can dramatically diverge from g([P ]) but the degree to which it does is1112

sensitive to the degree of sub-grid scale heterogeneity.1113

Considering that the evolution of natural plankton distributions is much more com-1114

plex than modelled here, a more sophisticated analysis is required to understand which1115

curve best represents their mean state and how varying degrees of patchiness would mod-1116

ify the concavity and parameters of the apparent response. However, provided there is1117

sufficient heterogeneity, when compared to the local response, it appears that g([P ]) should1118

have faster capture rates, be more sensitive to consumption rates at low [P ], and exhibit1119

a larger degree of upward concavity at low [P ], than does g([P ]).1120

7 Recommendations for modellers1121

7.1 Functional Response Choice for Single-Prey Grazing1122

Biogeochemical models are largely split in their use of a type II (or Ivlev) or type1123

III functional response (Table 3). Of all 70 surveyed grazing formulations, 23 use a type1124

III and 35 use a type II (12 used an Ivlev). Of those that graze with a single-prey re-1125

sponse the split is 13, 16, and 14 for type III, II and Ivlev, respectively. Mathematically,1126

when parameterized with analogous parameters (i.e. the same K1/2 and gmax), a type1127

II response is more likely to exert stronger grazing pressure (Sec. 5.2) and produce dy-1128

namically unstable solutions (Sec. 3, 5.3) due to its downward concavity at low prey1129

concentrations. Ecologically, the most realistic option likely depends on the model con-1130

figuration and the system being simulated.1131

Models that use a type III response typically benefit from its stabilizing proper-1132

ties (Gentleman & Neuheimer, 2008). For example, many models require a type III re-1133

sponse to produce realistic blooms rather than unstable oscillations (Hernández-Garćıa1134

& López, 2004; Malchow et al., 2005; Morozov, 2010; Truscott & Brindley, 1994; Truscott1135

et al., 1994). This is because the stabilizing properties of a type III response prevent the1136

extinction of a very small wintertime phytoplankton seed population, while starving the1137

zooplankton community, subsequently permitting a bloom at the onset of rapid changes1138

in bottom-up growth conditions during spring stratification (Behrenfeld et al., 2013; Evans1139

& Parslow, 1985).1140

However, stability is not a sufficient justification to use a type III response. Nat-1141

ural systems have been observed to exhibit dynamical instabilities (McCauley & Mur-1142

doch, 1987) and even when they do not, there are many plausible stabilizing factors that1143

could dominate unstable predator-prey dynamics to dampen limit cycles and stabilize1144

the system (C. A. Edwards et al., 2000; Gentleman & Neuheimer, 2008). For example,1145

only half the parameter combinations tested here actually produced a dynamically un-1146

stable solution when using a type II response (Fig. 6a,g). This was because the desta-1147

bilizing influence of the predator-prey dynamics (i.e. the First Order Stability; Fig. 6c,i)1148

was weak enough to be dominated by the stabilizing influence of nutrient limitation, which1149

buffers changes in the phytoplankton population by decreasing (increasing) division rates1150

when the population is large (small). Similarly, other factors such as quadratic zooplank-1151

ton mortality can create a negative feedback loop which stabilizes population dynam-1152

ics despite the destabilizing influence of the grazing formulation. Selecting a response1153

type that does not represent the true destabilizing (or stabilizing) influence of natural1154

predator-prey dynamics could lead parameter optimization schemes to underestimating1155

(or overestimating) the influence other stabilizing processes. Thus, the stabilizing influ-1156

ence of a type III response is only preferable if it is ecologically representative of the predator-1157

prey dynamics it seeks to represent.1158
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Ecologically, there is disagreement on whether a type II (Hansen et al., 1997; Hirst1159

& Bunker, 2003; Jeschke et al., 2004) or type III (Chow-Fraser & Sprules, 1992; Frost,1160

1975; Gismervik & Andersen, 1997; Sarnelle & Wilson, 2008) response is more appro-1161

priate to represent the grazing behavior of individual zooplankton. Laboratory dilution1162

experiments are often better fit empirically by a type II response (Hansen et al., 1997;1163

Hirst & Bunker, 2003), while a type III response is typically justified by more complex1164

behavior, such as changes in prey refugia, (Wang, Morrison, Singh, & Weiss, 2009), preda-1165

tor learning (Holling, 1965; van Leeuwen, Jansen, & Bright, 2007), predator effort, (Gis-1166

mervik, 2005), or prey switching (Gentleman et al., 2003; Oaten & Murdoch, 1975; Uye,1167

1986). Unfortunately, this behavior is difficult to replicate in a lab (Leising et al., 2003)1168

and large-scale field experiments are challenging and rare.1169

However, despite uncertainty in the true behavior of individual zooplankton in their1170

natural environment, it is possible that a type III response is more representative of their1171

mean state, even if individuals are assumed to exhibit a sub-grid scale type II response1172

(Sec. 6). If plankton are assumed to be heterogeneously distributed and the relative dis-1173

tribution of the zooplankton community is assumed to co-vary with the phytoplankton1174

population, then the mean grazing rate should generally exhibit some degree of upward1175

concavity (Fig. 6c,e) and exert an associated stabilizing influence on mean population1176

dynamics (Fig. 6d, f). Morozov (2010) found similar upward concavity in the mean dy-1177

namics of vertically distributed plankton and argued for a Holling type III response. How-1178

ever, it should be clarified that while the mean behavior of heterogeneous systems likely1179

does exhibit some upward concavity, the function is not exactly sigmoidal in shape and1180

is mathematically distinct from a type III disk response. Importantly, the mean response1181

becomes destabilizing (i.e. downwardly concave) well before the half-saturation concen-1182

tration of the local response (Fig. 6a,b) and varies with the degree of sub-grid scale het-1183

erogeneity (Fig. 6c,d) .1184

In turn, the most ecologically justifiable response type may depend on the resolu-1185

tion of the model in question. For high resolution, small scale models, or those repre-1186

senting systems known to be well-mixed, a type II response is likely to be the most ap-1187

propriate. Even though laboratory incubations are unlikely to translate directly to zoo-1188

plankton feeding behavior in the ocean (Dutkiewicz et al., 2015), there are insufficient1189

observations of individual zooplankton grazing with type III dynamics to justify ignor-1190

ing the many empirical estimates of a type II response (Hansen et al., 1997; Hirst & Bunker,1191

2003). However, a type III response may be a more ecologically realistic representation1192

of the mean state of many zooplankton grazing locally with a type II response on a highly1193

heterogeneous phytoplankton population. Therefore, for coarse-resolution, large-scale mod-1194

els (e.g. global earth system models) a type III response may be more appropriate.1195

7.2 Parameter Scheme for Single-Prey Grazing1196

Throughout the literature, the type II and type III functional responses appear in1197

two distinct, but mathematically equivalent, forms (Table 2): the disk parameter scheme1198

(eq. 17, 24) (Adjou et al., 2012; Fasham, 1995; Law et al., 2017; Oke et al., 2013; Schar-1199

tau & Oschlies, 2003b) and the Michaelis–Menten parameter scheme (eq. 19, 25) (Au-1200

mont & Bopp, 2006; Dutkiewicz et al., 2015; Hauck et al., 2013; Le Quéré et al., 2016;1201

Moore et al., 2013; Stock, Dunne, & John, 2014; Totterdell, 2019; Vichi et al., 2007). Both1202

schemes can describe identical response curves given the right parameterization, but use1203

different information to do so. The disk scheme uses ecologically meaningful quantities1204

to mechanistically determine how grazing rates vary in well-mixed systems. On the other1205

hand, the Michaelis–Menten scheme is an empirical description of the shape of the curve,1206

with no theoretical basis.1207

This distinction would be irrelevant if we had infinite computational power to sam-1208

ple all parameter combinations and a complete set of observations with which to eval-1209
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uate their skill. In this scenario, the optimized cost function (i.e. the agreement between1210

model output and observations) would converge on a mathematically and dynamically1211

identical functional response curve, regardless of whether a Michaelis–Menten or disk scheme1212

was used. However, modern biogeochemical models include dozens of different param-1213

eters, many with a large spread of plausible values (e.g. Section 4), and computational1214

limitations exist (Matear, 1995; Neelin, Bracco, Luo, McWilliams, & Meyerson, 2010).1215

Therefore, it is not practical (or often possible) to test all parameter combinations. More-1216

over, these models are heavily under constrained (Doney, 1999; Matear, 1995; Schartau1217

et al., 2017; Ward et al., 2010), meaning there are insufficient observations to identify1218

a unique parameter set as optimal. Instead, parameter optimization routines must use1219

limited information to decide which parameter sets to test to converge on the optimal1220

solution. Unfortunately, these routines can yield the right result for the wrong reason1221

(T. R. Anderson, 2005) and/or identify local rather than global minima/maxima (Ward1222

et al., 2010), meaning that they do not always converge on the ‘true’ optimal solution.1223

Whether or not a specific search routine is successful (or computationally efficient)1224

is often determined by the path it uses to search the parameter space. Often the direc-1225

tion of this path is determined by back-computing the partial derivatives of the cost func-1226

tion with respect to each parameter and then moving down the steepest gradient in pa-1227

rameter space (Kane et al., 2011). In other algorithms, movement across parameter space1228

is more stochastic, mimicking the evolutionary process by selecting for optimal genomes1229

(i.e. parameter sets) from a population of initial estimates and passing on their param-1230

eters (sometimes with mutations) to future ‘generations’ (Falls et al., 2022). Either way,1231

if search schemes are ‘pointed’ in the wrong direction, say by a partial with a large mag-1232

nitude or a mutation with strong fitness, then they may take much longer to compute1233

or, worse, never converge on the ‘true’ optimal solution. It is therefore important to con-1234

sider the influence of individual parameters on the model solution, as they can help steer1235

parameter search routines.1236

Although gmax and K1/2 in a Michaelis–Menten scheme and gmax and ε (or εc) in1237

a disk scheme form the same basis, they are fundamentally different parameters. Thus,1238

their partials with respect to the functional response, model solution, and cost function1239

will be different, meaning they could point search algorithms in different directions. There-1240

fore, even though it is plausible for an optimization scheme to converge on the same func-1241

tional response regardless of parameter scheme (particularly in simpler models), it would1242

be prudent to use the parameter scheme with partials that most accurately represent re-1243

ality. This would presumably be more likely to ‘point’ in the ‘right’ direction and thus1244

converge on the ‘true’ optimal solution in the most efficient manner. Thus it is useful1245

to consider how the partials of both parameter schemes compare with what we would1246

expect ecologically.1247

The most notable difference between the influence of the individual parameters of1248

the functional response is that independent changes to gmax have a much more pronounced1249

influence on the shape of g([P ]) at low [P ] in the Michaelis–Menten scheme (Section1250

5.1, 5.2). This is because changing gmax in a Michaelis–Menten scheme implicitly changes1251

the initial slope of the response curve (i.e. ε), while changing gmax in a disk scheme con-1252

serves the value of ε, but instead modifies the half saturation concentration (i.e. K1/2)1253

(Section 2). In turn, phytoplankton population growth, which is most sensitive to graz-1254

ing at low concentrations, is much more responsive to changes to gmax in a Michaelis–Menten1255

scheme than in a disk scheme, leading to entirely different model dynamics (Section 5.3).1256

Therefore, the partial derivative of the cost function with respect to gmax could point1257

the search algorithm in entirely different directions depending on which parameter scheme1258

is used. The question is which direction is most ecologically realistic, or more specifically,1259

should zooplankton specific grazing rates at saturation be related to those when food is1260

scarce? We suggest that the answer depends on the system being simulated.1261
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If the system in question is well-mixed, then it is reasonable to assume it gener-1262

ally conforms to the assumptions that underlie the disk parameter scheme and classic1263

Holling-style predator-prey dynamics. In this case there there should be no relationship1264

between grazing rates at very low and very high prey concentrations. This is because1265

grazing is limited by capture rates (ε) when food is scarce versus consumption times (h =1266

1/gmax) when food is replete and these are assumed to be two physiologically distinct1267

processes. Thus, a disk scheme will yield the theoretically correct partial with respect1268

to gmax, in that it has fairly little influence on the model solution, particularly in olig-1269

otrophic (i.e low [P ]) regions. The disk scheme has the added advantage of a strong the-1270

oretical basis, which allows modellers to directly prescribe biologically meaningful quan-1271

tities. In general, this is the simplest way to reduce confusion amongst biologists and mod-1272

ellers and ensure that trait-based relationships are correctly parameterized between func-1273

tional groups (see Section 4).1274

However, the theoretical integrity of the disk response may be limited to well-mixed1275

systems and not necessarily represent the mean state of a patchy ocean, which coarse1276

global models must implicitly average over. In Section 6, we demonstrated how when1277

averaged across a patchy grid cell, decreasing local zooplankton consumption times can1278

substantially increase the grid cell mean grazing rate at low mean [P ], without actually1279

influencing how zooplankton graze locally at low local [P ], where grazing rates remain1280

dominated by capture rates (Fig. 7c). This is possible because a greater proportion of1281

zooplankton are grazing at a prey density closer to saturation than the grid cell mean,1282

which is diluted by large swaths of oligotrophic water, would suggest. In other words,1283

the partial derivative of the apparent mean functional response with respect to gmax is1284

qualitatively more consistent with that of a Michaelis–Menten rather than disk param-1285

eter scheme. In this case, the empirical nature of the Michaelis–Menten scheme is ad-1286

vantageous, as it is not constrained by mechanistic underpining of the disk response, al-1287

lowing the individual influence of each parameter to capture a combination of the local1288

grazing dynamics (as governed by the disk parameters) as well as the time-evolving sub-1289

grid scale distribution of zooplankton and phytoplankton. Therefore, when modelling1290

the mean state of a sufficiently heterogeneous region, it may be more appropriate to use1291

a Michaelis–Menten parameter scheme.1292

Additionally, another potential advantage of the Michaelis–Menten scheme is that1293

population dynamics are more sensitive to proportional changes in its parameters, com-1294

pared to the disk parameters, particularly for a type III response (Section 5.2). This1295

is predominately because εc implicitly varies with the square of K1/2 in a Michaelis-Menten1296

scheme (εc = gmax

K2
1/2

). In turn, the disk scheme is less sensitive to its parameterization,1297

meaning it requires a larger range of parameters to be tested to cover the same range1298

of solutions. For example, a conservative range of observed εc values, from .0001-1 m6

mmolC2d ,1299

can span K1/2
mmolC
m3 values from 1-100 at a fixed gmax (see contours on Fig. 2). The1300

trade off is increased precision in the disk scheme; however, the overwhelming lack of con-1301

sensus on what these parameters actually are (Section 4), especially for the mean state1302

of the entire ocean (Moriarty et al., 2013; Moriarty & O’Brien, 2012), suggests that it1303

is more valuable to consider a wider, but lower resolution, set of parameters to avoid in-1304

advertently constraining the parameter space, rather than trying to focus on an impos-1305

sibly exact value. For example, the parameter search used by Schartau and Oschlies (2003a),1306

who use a disk scheme to represent the mean state of relatively coarse grid cells, chose1307

both parameter values at the boundary of their search space, suggesting a wider range1308

might have found a better solution. Practically speaking, this problem could be addressed1309

by careful conversion. Modellers using a disk scheme could sub sample a wider set of coarser1310

resolution εc values in optimization search schemes; however, modellers must select a search1311

range for dozens, if not hundreds, of parameters, and are less likely to mistakenly con-1312

strain the parameter space if using a Michaelis-Menten scheme, which has a narrower1313

range of realistic parameters and more intuitive units.1314
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Together, the mechanistic and empirical nature of the disk and Michaelis-Menten1315

parameter schemes respectively can be used intentionally to the modellers’ advantage,1316

depending on whether they are trying to represent mechanistically the behavior of zoo-1317

plankton in a well-mixed system or represent empirically the mean state of grazing at1318

the mean phytoplankton concentration of a patchy grid cell. Thus a disk scheme can be1319

used in smaller-scale, higher-resolution models, in which the biological attributes of zoo-1320

plankton are relatively well understood. This allows known, measured values, of ε and1321

h to be directly prescribed and reduces the chance of inadvertently mis-parameterizing1322

their relationship in a Michaelis–Menten scheme. However, a Michaelis–Menten scheme1323

may be more appropriate to represent the mean state of a patchy ocean in larger-scale,1324

lower-resolution models, in which the true parameter values are not well known. This1325

affords the empirical flexibility to account for differences in the system as a whole, not1326

just the local dynamics. This may allow parameter optimization routines to search more1327

efficiently for the ‘true’ apparent mean response, which is necessarily an empirical re-1328

lationship averaged over the effects of many distinct processes, including local grazing1329

behavior rates and any processes that modify plankton distributions (e.g. zooplankton1330

migration, sub-mesoscale nutrient enhancement).1331

7.3 Parameter Search Range for Single-Prey Grazing1332

Given the uncertainty in empirically estimated parameter values, it is necessary to1333

select what range of parameters to test in optimization routines. Although there is a high1334

degree of variability in all parameter values (Fig. 3; Table 3), there is more uncertainty1335

in the correct value of K1/2, or associated attack rates in a disk scheme. Compared to1336

K1/2, the value of gmax is better constrained by size (Sec. 4.1), more consistent between1337

models and observations (Sec. 4.2), and less influential on driving phytoplankton pop-1338

ulation dynamics (Section 5.2). In turn, parameter search schemes should favor test-1339

ing a larger range of K1/2 values than gmax values when resource limited. However, it1340

is reasonable to ask how large a range is appropriate, lest implicitly imposing ecologi-1341

cally unrealistic prey capture rates or selecting values of fringe functional groups to rep-1342

resent the mean state. However, there are insufficient empirical, ecological, and math-1343

ematical arguments to heavily restrict the range of grazing parameters, and K1/2 val-1344

ues as low as 0.1 (mmolCm3 ) and as high as 100 (mmolCm3 ) should be considered.1345

Empirically, reported estimates of K1/2 and gmax fit to a type II response function1346

by Hansen et al. (1997) and Hirst and Bunker (2003) combine to yield a range of ε that1347

spans 4 orders of magnitude, from .003 to 10 m3

mmolC d (Section 3.1; Fig. 2). Moreover,1348

if a type III response had been assumed, K1/2 estimates would remain similar while the1349

range of εc would increase to nearly 7 orders of magnitude, from .00001 to 21 m6

mmolC2 d ,1350

or roughly 1 order of magnitude slower and 3 orders of magnitude faster than the range1351

tested in the parameter optimization search of Schartau and Oschlies (2003a) (0.00056 <1352

εc < .0364). At the species level, the range of plausible K1/2 values appears largely un-1353

constrained by empirical estimates of εc.1354

Ecologically, we do not have a firm understanding of how a myriad of complex in-1355

teractions combine across innumerable zooplankton species and evolve over time to yield1356

a reasonable approximation of the mean state. For instance, juvenile zooplankton have1357

faster metabolic rates (Clerc, Aumont, & Bopp, 2021) and graze with K1/2 an order of1358

magnitude smaller than adults (Hirst & Bunker, 2003; Richardson & Verheye, 1998), sug-1359

gesting the apparent K1/2 of the community could be substantially lower during spawn-1360

ing. On the other hand, most applications of the functional response assume an instan-1361

taneous response between increasing prey and faster grazing rates, while in reality there1362

is likely a longer acclimation time as predators adapt to new conditions (Mayzaud & Poulet,1363

1978). Explicitly including acclimation times can destabilize the response in even the most1364

stable configurations (i.e. type III, quadratic mortality; Gentleman and Neuheimer (2008)).1365

However, one might consider implicitly including them by using larger K1/2 values than1366
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found in dilution experiments, suggesting that the zooplankton community is always adapted1367

to a lower prey density than present. This could be useful for modelling bloom initia-1368

tion, where time scales of prey accumulation are similar to that of predator acclimation1369

(1-6 days), but fails to capture dynamics accurately at steady state or during bloom de-1370

cline. Additionally, filter feeding meso- and macrozooplankton, such as salps and larvaceans,1371

are typically common in low chlorophyll waters and have a much smaller K1/2 than eu-1372

phausiids and copepods that graze in high chlorophyll waters (Hansen et al., 1997; Hirst1373

& Bunker, 2003). If species with slower K1/2 values dominate in more productive ecosys-1374

tems, such that K1/2 increases with chlorophyll (Chen et al., 2014), that would effectively1375

raise the apparent global mean K1/2 value. In turn, the community-wide K1/2 value prob-1376

ably varies spatially and temporally depending on the zooplankton community present1377

and whether it is dominated by juveniles or adults, such that the mean state of a pop-1378

ulation with shifting age and species distributions could have an apparent K1/2 value1379

much different than any individual within.1380

Mathematically, it is not just the ecosystem complexity that is poorly resolved in1381

models, but also its spatial heterogeneity. If the phytoplankton density the average zoo-1382

plankton experiences is larger than the grid cell mean, which is averaged across many1383

square kilometers of implicitly less productive water (J. Campbell, 1995; Druon et al.,1384

2019) then the K1/2 value of the mean response will appear much lower than the actual1385

grazing rate of the zooplankton (Fig. 7a, b). This further increases the range of pos-1386

sible K1/2 values below even the fastest prey capture rates inferred from dilution exper-1387

iments with homogeneous phytoplankton concentrations.1388

Although the full range of empirically observed K1/2 values (0.1-71 mmolC/m3)1389

is likely to be larger than the range of plausible values to represent the mean state, this1390

only applies to the mean value of individuals in well-mixed incubation experiments. Un-1391

certain ecological complexities and spatial heterogeneity both work to expand the range1392

of K1/2 values that plausibly could represent the mean state of myriad dynamics across1393

a patchy ocean. We thus recommend testing a broad range of K1/2 values, particularly1394

on the lower end, in parameter optimization routines.1395

7.4 Recommendations for future models1396

Biogeochemical models are evolving to include an increasingly complex represen-1397

tation of phytoplankton, including dozens of functional groups (Follows & Dutkiewicz,1398

2011), variable composition (Smith et al., 2015), and the flexibility to adapt to chang-1399

ing environments (Anugerahanti, Kerimoglu, & Smith, 2021). With these changes should1400

come similar advances in the representation of zooplankton and zooplankton grazing. No-1401

tably, it is essential that the mean parameterization of the zooplankton field be able to1402

respond to the evolving phytoplankton field to reflect that different zooplankton eat dif-1403

ferent things and do so at different rates. Already, many modern models include mul-1404

tiple zooplankton functional groups (Le Quéré et al., 2016; Stock et al., 2020) and multiple-1405

prey grazing response (Aumont et al., 2015; Yool et al., 2021). Moving forward, it is im-1406

portant to consider how insights into the single-prey response extend to more complex1407

grazing schemes.1408

One concern is that the Michaelis-Menten form of the multi-prey response is over1409

parameterized, requiring an extra parameter to describe the same equation as the cor-1410

responding disk form (Gentleman et al., 2003). In turn, the parameterization of the im-1411

plied single-prey response cannot be prescribed directly, but becomes a function of prey1412

preference and the preference weighted K1/2 used for bulk ingestion. If not careful, this1413

could confuse the interpretation of parameter values and lead modellers to prescribe un-1414

intended single-prey dynamics that may imply inappropriate relationships between func-1415

tional groups. Despite recommendations to parameterize the attributes of the multi-prey1416

response directly with a disk scheme (Gentleman et al., 2003), 29 of 30 multi-prey graz-1417
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ing formulations surveyed here used a Michaelis-Menten scheme, and none used a disk1418

(Table 2). To help assess if this has influenced their parameterization, we compared the1419

implied single-prey response of micro- and meso-zooplankton grazing on their preferred1420

prey and compared them to those directly parameterized in single-prey formulations. In1421

multi-prey formulations the median implied single-prey K1/2 value decreases from 7.71422

in microzooplankton to 4.0 in mesozooplankton. This is qualitatively inconsistent with1423

the observed relationship (Table 3) as well as single-prey formulations in which the me-1424

dian K1/2 value increases from 2.4 in microzooplankton to 9.1 in mesozooplankton. This1425

suggests the models using a Michaelis-Menten multi-prey response may be implying un-1426

intended allometric relationships between functional groups grazing in their optimal con-1427

ditions and highlights that modeller’s who select a Michaelis-Menten multi-prey response1428

must carefully consider the implied relationships between parameter values.1429

Finally, future work is needed to better assess the shape of the apparent mean func-1430

tional response, both in-situ and in models. Higher resolution general circulation mod-1431

els are known to modify local biogeochemical distributions via their representation of nu-1432

trient transport (Harrison, Long, Lovenduski, & Moore, 2018). While it is intractable1433

to estimate the apparent mean functional response exactly, it would be useful to better1434

understand its attributes with deliberate experiments designed to empirically average1435

across high resolution biogeochemical models into coarser grid-cells representative of stan-1436

dard global earth system models. This may help constrain the functional response curve1437

and range of parameter values beyond what has been observed for individual well-mixed1438

zooplankton, and lead to a better understanding of how to represent unresolved processes1439

across the entire system that could influence sub-grid scale heterogeneity.1440

7.5 Implications for other models1441

We focus on grazing in marine biogeochemical models, but these recommendations1442

apply to a much broader range of marine and terrestrial ecological models. Most mod-1443

els in marine and terrestrial systems that involve predator-prey interactions use type I,1444

type II or type III functional responses. We found that when trying to implicitly rep-1445

resent sub-grid scale heterogeneity, a type III (Section 6.1) Michaelis-Menten response1446

(Section 6.2) parameterized with a lower than-expected K1/2 value (Section 6.3) may1447

be a more ecologically realistic way to describe the mean state of patchy predator and1448

prey populations, even if individual interactions are best described by a type II disk re-1449

sponse, parameterized with higher K1/2 values. In the ocean, this would apply to most1450

higher trophic levels simulated in size spectrum (Blanchard, Heneghan, Everett, Trebilco,1451

& Richardson, 2017; Heneghan et al., 2020), population (Alver et al., 2016), ecosystem1452

(Audzijonyte et al., 2019; Butenschön et al., 2016) and fisheries models (Maury, 2010;1453

Tittensor et al., 2018, 2021). Fish, for instance aggregate in schools and feed on sparse,1454

but consolidated, prey patches. These distributions are in turn reflected in global fish-1455

ing effort (Kroodsma et al., 2018). On land, plants and animals are also patchy in time1456

and space, with high prey concentrations rare. Most abundance data for marine and ter-1457

restrial species are overdispersed and/or have an excess of zeros, implying there is a long1458

tail to the right of low abundances (H. Campbell, 2021). The mean state of any of these1459

systems is likely best represented by a low-K1/2, type III, Michael-Menten response; how-1460

ever, the range of possible K1/2 considered should increase with the number of unique1461

species, interactions, and stages of life history being averaged into individual pools.1462

On the other hand, well understood interactions in well mixed systems, may be bet-1463

ter represented by a type II disk response, provided there is a low amount of implicit av-1464

eraging at the species and spatial level. At the species level, this may include models of1465

simple systems with fewer species, such as lakes or polar regions rather than rainforests1466

or coral reefs, or models of more complex systems, but with many explicitly resolved preda-1467

tor groups. At the spatial level, this may include the oligotrophic gyres in the ocean and1468

grasslands or boreal forests on the land. Still, modellers should consider how much im-1469
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plicit averaging is baked into their model and consider if it warrants a more empirical1470

approach before choosing a mechanistic framework (disk) or response type (II) better1471

suited for homogeneously distributed systems.1472

8 Conclusions1473

In marine biogeochemical and ecological modelling, the transfer of carbon and nu-1474

trients between trophic groups, particularly from phytoplankton to zooplankton via graz-1475

ing, is typically represented with one of two functional response curves. However, we find1476

that there is little consensus across biogeochemical models regarding: I) which response1477

type to use (II vs. III); II) whether to describe that curve with mechanistic (disk scheme)1478

or empirical parameters (Michaelis-Menten scheme); and III) what parameter values to1479

use.1480

We examine the single-prey formulation of the functional response in systematic1481

detail to provide theoretical clarity, assess the agreement between observed parameters1482

and those used in models, examine the sensitivity of the response to its parameteriza-1483

tion, and explore how the shape of the curve changes when averaged explicitly over sub-1484

grid scale heterogeneity. Considering these issues collectively, we recommend using a type1485

II disk response in models with smaller scales, finer resolution, and or well understood1486

ecological interactions. However, we suggest that a type III Michaelis-Menten response1487

may be more appropriate for models with larger scales, coarser resolution, and more com-1488

plex ecological and physical processes implicitly being averaged across. In both scenar-1489

ios, a large range of parameter values should be tested in parameter optimization schemes1490

as the interquartile range of empirically observed values spans roughly an order of mag-1491

nitude for all parameters, and the full range spans 3-4. Moreover, averaging across sub-1492

grid scale heterogeneity could lead to K1/2 values well below the mean of empirically es-1493

timated values obtained from experiments in well-mixed solutions. These recommenda-1494

tions are specifically tailored to the single-prey grazing formulation in marine biogeochem-1495

ical models, but also apply to any effort to describe the mean state of multiple interac-1496

tions across coarse grid cells with populations assumed to have heterogeneous sub-grid1497

cell distributions.1498
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