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Abstract

The seasonal Predictability Barrier (PB) of Sea Surface Temperature Anomaly (SSTA) is characterized by a rapid loss of

prediction skills at a specific season in dynamic models. To investigate whether this PB phenomenon is caused by the inherent

nonlinearity of the air-sea coupled system that leads to chaos under certain conditions, a statistical method - Sample Entropy,

was introduced to investigate the spatial-temporal distribution of the chaotic degree of SSTA time series in the tropic Pacific.

The results showed that high chaotic values existed in Niño 3 and Niño 3.4 regions in April and May, and in Niño 4 region

in May and June, which matched the PB timing previously reported in these regions. Furthermore, the chaotic signal moves

westward from March to June longitudinally in the tropical Pacific, leading to a similar linear variation of PB timing along the

longitude.
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Key Points: 12 

 Sample Entropy method is utilized to study the nonlinearity of the seasonal Predictability 13 

Barrier of SSTA in the tropical Pacific 14 

 The seasonal variations of the nonlinear regime of the air-sea coupled system are 15 

responsible for the Predictability Barrier 16 

 Both the Predictability Barrier timing and peak chaotic month show linear variation along 17 

the longitude in the tropical Pacific. 18 
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Abstract 20 

The seasonal Predictability Barrier (PB) of Sea Surface Temperature Anomaly (SSTA) is 21 

characterized by a rapid loss of prediction skills at a specific season in dynamic models. To 22 

investigate whether this PB phenomenon is caused by the inherent nonlinearity of the air-sea 23 

coupled system that leads to chaos under certain conditions, a statistical method - Sample 24 

Entropy, was introduced to investigate the spatial-temporal distribution of the chaotic degree of 25 

SSTA time series in the tropic Pacific. The results showed that high chaotic values existed in 26 

Niño 3 and Niño 3.4 regions in April and May, and in Niño 4 region in May and June, which 27 

matched the PB timing previously reported in these regions. Furthermore, the chaotic signal 28 

moves westward from March to June longitudinally in the tropical Pacific, leading to a similar 29 

linear variation of PB timing along the longitude. 30 

 31 

Plain Language Summary 32 

Accurate predictions of Sea Surface Temperature Anomaly (SSTA) in the tropical Pacific are in 33 

high demand. However, the dynamic models always lost their prediction skill of SSTA during a 34 

certain season, which is known as the seasonal Predictability Barrier (PB). This poor prediction 35 

has two different causes: one is the discrepancy in the model, which means that some critical 36 

physical processes are not well captured in the models; the other is the “Butterfly effect” or 37 

chaos, which will lead to the rapid growth of initial uncertainty in the models and make the air-38 

sea coupled system inherently unpredictable. To investigate whether the PB phenomenon is an 39 

inherent character of the air-sea coupled system, a statistic method - Sample Entropy, is 40 

introduced to investigate the spatial-temporal distribution of the chaotic degree of SSTA time-41 

series in the tropic Pacific. The results showed that the spatial-temporal distribution of the 42 

chaotic degree is consistent with that of the PB timing and indicate that the PB of SSTA is likely 43 

an inherent character of the air-sea coupled system. To overcome the PB of SSTA, more efforts 44 

need to be paid to improve the accuracy of the initial fields in the model in the tropical Pacific. 45 

 46 

1 Introduction 47 

The Sea Surface Temperature Anomalies (SSTA) in the Tropical Pacific Ocean (TPO) play 48 

significant roles in affecting the global climate (Wang & Ting, 2000; Castro et al., 2001; 49 

Marzban & Schaefer, 2001; Fereday et al., 2008; McKinnon et al., 2016). For instance, the 50 

interannual SSTA variability in the TPO, namely the El Niño phenomenon, strongly affects the 51 

climate (e.g., temperature, wind speed, precipitation, etc.) in East Asia (Gao et al., 2006; Wu et 52 

al., 2003, 2010; Yuan & Yang, 2012) and North America (Ropelewski & Halpert, 1986; Hu & 53 

Feng, 2012; Infanti & Kirtman, 2016), as well as the variabilities of sea ice extent and 54 

concentration in the Antarctic and Arctic regions (Yuan, 2004; Dash et al., 2013; Clancy et al., 55 

2021). Accurate predictions of SSTA in TPO are crucial for mitigating the risks of extreme 56 

weather and political decision-making (Solow et al., 1998; Trenberth et al., 1998; Patt & Gwata, 57 

2002; Pierce, 2002). Over the past years, six-month advanced predictions of SSTA have been 58 

achieved in the TPO through the ocean-atmosphere coupled models (Xue et al., 2013; Tang et 59 

al., 2018; Song et al., 2020). However, one-year prediction in advance is still challenged due to 60 

the so-called seasonal Predictability Barrier (PB) (Webster, 1995; Webster & Yang, 1992; van 61 

Oldenborgh et al., 2005; Jin et al., 2008; Tang et al., 2018), which is known as a rapid loss of 62 
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prediction skills in most SSTA forecast models during certain seasons (Torrence & Webster, 63 

1998). 64 

 The Predictability Barrier has been reported globally during various seasons. It has been 65 

found in spring in the eastern TPO (Duan & Wei, 2013), summer in the northern Pacific Ocean 66 

and central TPO (Duan & Wu, 2015; Ren et al., 2016), and winter in the Indian Ocean Dipole 67 

region (Liu et al., 2018). Even though enormous efforts have been dedicated to investigating the 68 

control mechanisms of the PB of SSTA, there is still a need for more results for a better 69 

understanding of the nature of PB (McPhaden, 2003; Li & Ling, 2009; Hu et al., 2014). Some 70 

researchers suggested that the PB of SSTA was triggered by the stochastic noise in the ocean and 71 

atmosphere (Torrence & Webster 1998; Lopez & Kirtman, 2014; Levine & McPhaden 2015; 72 

Mukhin et al., 2021). Others believed that the initial errors of SSTA in the dynamic models were 73 

responsible for the PB of SSTA (Lau & Yang, 1996; Moore, 1999; Samelson & Tziperman 74 

2001; Zheng & Zhu 2010; Larson & Kirtman, 2015; Hou et al., 2019). However, it is unclear 75 

why the initial error in models grows at the quickest rate in these seasons, as the growth of the 76 

initial error in models can be caused by two different factors. One is the discrepancy in dynamic 77 

models - the missing of some key physical processes compared with the real world (Collins et al. 78 

2002). The other is due to the nonlinearity of the system, which can cause small initial errors to 79 

grow exponentially if the system is in a chaotic regime (Lorenz 1963). The latter was suggested 80 

by Samelson and Tziperman (2001) as a possible cause for the PB of SSTA in the TPO, but their 81 

study is based on the numerical model. Hence, whether the model error will affect their results is 82 

unclear. Moreover, previous studies have uncovered the multiple regimes of the coupled ocean-83 

atmosphere system in the TPO owing to nonlinearity, and suggested that ENSO results 84 

fundamentally from the instability of these dynamic regimes (Sun 1997; Liang et al. 2012; Liang 85 

et al. 2017; Hua et al. 2019). Hence, the inherent nonlinearity in the coupled system as a cause 86 

for the PB of SSTA remains to be established.  87 

Recent progress in time series analysis of the nonlinear systems has raised the possibility to 88 

settle this issue, as these statistical techniques allow us to determine the dynamic regime of the 89 

observed coupled system through analyzing observations (Fraedrich, 1987; Kantz & Schreider, 90 

2004; Bradley & Kantz, 2015 among others). Karamperidou et al. (2014) used the local 91 

Lyapunov Exponents to characterize the predictability of active and inactive periods of ENSO in 92 

a climate model, but they did not specifically address the causes for the seasonal PB of SSTA. 93 

Ding and Li (2007) proposed a Nonlinear Local Lyapunov Exponent (NLLE) method to study 94 

the mean error growth rate and predictability limit of chaotic systems. The general idea of the 95 

NLLE method is to calculate the difference between two analogs of the evolution pattern from 96 

the observed time series. If the difference between two analogous time series grows quickly, the 97 

error growth rate of the studied system is large. Utilizing the NLLE method, Li and Ding (2013) 98 

found that the initial errors grow quickly when the prediction was across the spring in the TPO 99 

and suggested that the spring PB might be intrinsic to the real air-sea coupled system. However, 100 

the seasonal mean error growth rate measured by the NLLE method was affected by the error 101 

from previous seasons. When the errors are initiated from different seasons, all these errors will 102 

grow quickly and reach a large value at first, and then have a quick growth rate in the spring 103 

(seen in Fig. 5 in Li and Ding (2013)). Therefore, using the NLLE method cannot determine 104 

unambiguously whether the rapid growth of errors in a certain season results from the inherent 105 

nonlinearity of the studied system or the errors of other seasons. Perhaps because of this reason, 106 

the NLLE method has not been widely used in the study of different systems, which has further 107 
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cast doubt on the validity of this method in the study of the problem of the seasonal barriers for 108 

ENSO predictability. 109 

To ensure that the inherent error originates solely from the time of interest, the Sample 110 

Entropy (SamEn) method (Richman & Moorman, 2000) was chosen to analyze the inherent error 111 

growth rate of SSTA in the entire TPO region and explore its relationship with the seasonal PB 112 

of SSTA. SamEn is the relative estimation of the sum of positive Lyapunov Exponents 113 

(Fraedrich, 1987; Pincus, 1991, 1995; Richman & Moorman, 2000), which can be taken as the 114 

degree of the chaos of dynamic systems (Wolff, 1992). The SamEn method concerns the error 115 

growth rate in the studied period, and the results are not affected by the errors from another 116 

period. The applicability of SamEn and its variations have been well examined in broad 117 

disciplines including physiological time-series analysis (Richman & Moorman, 2000; Lake et al. 118 

2002; Eduardo Virgilio Silva & Otavio Murta, 2012), de-noising for hydrologic signals (Wang et 119 

al. 2014; Li et al. 2019), turbulent experimental data analysis (Kim 2021), and even the stock 120 

markets study (Shi & Shang, 2013).   121 

 122 

2 Data 123 

2.1 Data 124 

Daily ocean temperature data from 1994 to 2015 is obtained from the HYCOM global daily 125 

snapshot 0Z 1/12 degree Global Ocean Forecasting System (GOFS) 3.1 reanalysis datasets 126 

(http://apdrc.soest.hawaii.edu/dods/public_ofes/HYCOM/GLBv0.08), which have been validated 127 

against observations with consistent results reported (Chassignet et al., 2007). The longitude 128 

resolution of the dataset is 0.08° between 0°E-360°E. The latitude resolution is 0.08° between 129 

40°S-40°N and 0.04° between 40°N-90°N and 90°S-40°S. The number of vertical levels is 40. In 130 

the upper 12 m, there are 7 layers, and the vertical interval is about 2 m. Between 15m to 50m, 131 

50m to 100m, and 150m to 400m, there are 8, 6, and 6 layers with the vertical interval of 5m, 132 

10m, and 50m, respectively. The dataset contains the data between 1994–2015, which is the 133 

maximum time range of this HYCOM GOFS 3.1 dataset. In this study, the TPO is defined within 134 

the range of 10ºS-10ºN and 155ºE-90ºW. To reduce the computational cost, the horizontal grids 135 

of HYCOM datasets are interpolated into the same 2° longitude and 2° latitude grids. The finer 136 

grid than the 2° longitude and 2° latitude will not affect the results (the results are not shown). 137 

The longitude and latitude resolution of climatology data are 2° between 155°E-90°W and 10°S-138 

10°N. The daily anomalous data are computed by removing the climatological mean annual 139 

cycle and trend from the SST data at each grid point. 140 

The SSTA forecast data in dynamic models are from the North American Multi-Model 141 

Ensemble (NMME) dataset, which is the state-of-art coupled ensemble model to predict the 142 

SSTA variation in the TPO. It provides monthly retrospective forecasts (or hindcast) data with a 143 

maximum range between 1981 to 2018 (Kirtman et al. 2014). The NMME data set has been 144 

continuously evaluated and shows a good performance of region climate predictability (Barnston 145 

et al. 2019; Becker et al. 2020). The NMME model set contains twenty-nine different models, 146 

but only eight of them cover our study period, which is between 1994 to 2015. Hence, in this 147 

study, the hindcast results from these eight different dynamic models in the NMME model set 148 

were chosen to calculate the forecast error of SSTA in the TPO. The details of these eight 149 

different dynamic models can be found in Table S1. The SSTA forecast data are interpolated into 150 

http://apdrc.soest.hawaii.edu/dods/public_ofes/HYCOM/GLBv0.08
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the same 2° longitude and 2° latitude grids as the HYCOM reanalysis data. Forecast errors are 151 

defined as the difference between the forecast SSTA value and the observed HYCOM SSTA 152 

value. 153 

 154 

2.2 Method 155 

The SamEn method quantifies the self-similarity degree of a time series by examining the 156 

number of instances, that two subsequences in the time series are still similar when the length of 157 

subsequences increases. More details can be found in Delgado-Bonal and Marshak (2019).  158 

For an arbitrary time-series data 𝐻 = {𝐻𝑛|𝐻1, 𝐻2, 𝐻3 … 𝐻𝑁} of length 𝑁, the time series can 159 

be reconstructed to a subsequent matrix: 160 

Ψ𝑚 = [

𝐻1 𝐻2 … 𝐻𝑚

𝐻2 𝐻3 … 𝐻𝑚+1

… … … …
𝐻𝑁−𝑚 𝐻𝑁−𝑚+1 … 𝐻𝑛−1

],                                                       (1) 161 

which contains 𝑚 columns and 𝑁 − 𝑚 rows. 𝑚 is the embedding dimension number (Richman 162 

& Moorman, 2000), which is the minimum time scale considered. 163 

The subsequent vector Ψ𝑖
𝑚 is defined as a row in Ψ𝑚, which can be written as follows: 164 

𝛹𝑖
𝑚 = {𝐻𝑖 , 𝐻𝑖+1 … 𝐻𝑖+𝑚−1}               1 ≤ 𝑖 ≤ 𝑁 − 𝑚.                                        (2) 165 

The distance between two subsequent vectors is defined as the Chebychev distance (Kløve, 166 

2011), which is the absolute value of the elements between these two subsequent vectors: 167 

𝐷𝑖𝑠[𝛹𝑖
𝑚, 𝛹𝑗

𝑚] = 𝑚𝑎𝑥𝑘=1,2,…𝑚|𝐻𝑖+𝑘 − 𝐻𝑗+𝑘| ,                                                           168 

(3a) 169 

𝛹𝑖
𝑚 = {𝐻𝑖 , 𝐻𝑖+1 … 𝐻𝑖+𝑚−1}, 𝛹𝑗

𝑚 = {𝐻𝑗 , 𝐻𝑗+1 … 𝐻𝑗+𝑚−1}   1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 𝑚, 𝑖 ≠ 𝑗.         (3b)       170 

To verify the similarity of two subsequent vectors, the recommended criterion is based on 171 

the standard deviation of the original time series (Richman & Moorman, 2000; Delgado-Bonal & 172 

Marshak, 2019): 173 

 𝐵𝑖,𝑗
𝑚 = {

  1    𝑤ℎ𝑒𝑛 𝐷𝑖𝑠[Ψ𝑖
𝑚, Ψ𝑗

𝑚] ≤ 𝑟 × 𝑠𝑡𝑑(𝐻) 

 0    𝑤ℎ𝑒𝑛 𝐷𝑖𝑠[Ψ𝑖
𝑚, Ψ𝑗

𝑚] > 𝑟 × 𝑠𝑡𝑑(𝐻)
   1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 𝑚, 𝑖 ≠ 𝑗,                 (4)              174 

where 𝑟 × 𝑠𝑡𝑑(𝐻) is a tolerance to determine whether two subsequent vectors are similar. Then 175 

the numbers of similar vectors in the subsequent matrix are calculated by: 176 

𝐵𝑚 =
1

2
∑ ∑ 𝐵𝑖,𝑗

𝑚𝑁−𝑚
𝑗=1

𝑁−𝑚
𝑖=1          1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 𝑚, 𝑖 ≠ 𝑗.                                (5)             177 

Next, Ψ𝑚+1 is defined as another subsequent matrix of 𝐻:  178 
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Ψ𝑚+1 = [

𝐻1 𝐻2 … 𝐻𝑚+1

𝐻2 𝐻3 … 𝐻𝑚+2

… … … …
𝐻𝑁−𝑚 𝐻𝑁−𝑚+1 … 𝐻𝑛

],                                                    (6)      179 

whose number of columns is 𝑚 + 1  and row is 𝑁 − 𝑚 . The subsequent vector of Ψ𝑚+1  is 180 

defined as one row in Ψ𝑚+1: 181 

Ψ𝑖
𝑚+1 = {𝐻𝑖 , 𝐻𝑖+1 … 𝐻𝑖+𝑚}    1 ≤ 𝑖 ≤ 𝑁 − 𝑚.                                             (7)                       182 

Similarly, 𝐵𝑚+1 can be calculated by Ψ𝑚+1:  183 

𝐵𝑚+1 =
1

2
∑ ∑ 𝐵𝑖,𝑗

𝑚+1𝑁−𝑚
𝑗=1

𝑁−𝑚
𝑖=1 ,                                                                      184 

(8a) 185 

 𝐵𝑖,𝑗
𝑚+1 = {

  1    𝑤ℎ𝑒𝑛 𝐷𝑖𝑠[Ψ𝑖
𝑚+1, Ψ𝑗

𝑚+1] ≤ 𝑟 × 𝑠𝑡𝑑(𝐻)

 0    𝑤ℎ𝑒𝑛 𝐷𝑖𝑠[Ψ𝑖
𝑚+1, Ψ𝑗

𝑚+1] > 𝑟 × 𝑠𝑡𝑑(𝐻)
   1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 𝑚, 𝑖 ≠ 𝑗 .          186 

(8b)           187 

Finally, SamEn is defined as the proportion of similar numbers between subsequence 188 

matrixes Ψ𝑚 and Ψ𝑚+1: 189 

𝑆𝑎𝑚𝐸𝑛(𝑚, 𝑟) = −ln (
𝐵𝑚

𝐵𝑚+1).                                                                         (9)                      190 

For three-dimensional geophysical variables, such as SSTA (𝑥, 𝑦, 𝑡)  ( 𝑥  represents the 191 

longitude, 𝑦 represents the latitude, and 𝑡 represents the days), the SamEn of the time series can 192 

be calculated in one single grid point, and get the spatial pattern of the SamEn of SSTA. 193 

 194 

3 Results and Discussion 195 

3.1 Parameter determination for SamEn 196 

The meridional mean SamEn values of SSTA between 1994 and 2015 are investigated 197 

using different parameter values to validate the effect of parameters 𝑚, 𝑟 in the calculation of 198 

SamEn (Fig.1). The typical values of 𝑚 and 𝑟  are between [2, 4] and [0.2, 0.4] following the 199 

previous studies (Ramdani et al., 2009; Zhao et al., 2015; Yin et al., 2020). The value of SamEn 200 

is not considerably affected by changing the m values. The absolute values of SamEn fall as 𝑟 201 

increases, but the relative patterns of SamEn remain the same. The varied factors will not affect 202 

the results since only the relative values of SamEn matter. As a result, the SamEn values in this 203 

investigation were calculated using 𝑚 = 2, 𝑟 = 0.3. 204 
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 205 
Figure 1. The meridional mean of SamEn value of SSTA between 1994 to 2015 using 206 

different parameters (𝒎 = [𝟐, 𝟑, 𝟒], 𝒓 = [𝟎. 𝟐, 𝟎. 𝟑, 𝟎. 𝟒]). 207 

 208 

3.2 Temporal variation of SamEn 209 

Figure 2 shows the monthly SamEn values in Niño 3 (5°N-5°S, 150°W-90°W), Niño3.4 210 

(5°N-5°S, 170°E-120°W) and Niño 4 (5°N-5°S, 160°E-150°W) regions. Distinct annual cycles 211 

can be observed in all three regions. The SamEn value in the Niño 3 region starts to increase in 212 

January, peaks in April with a maximum value of 0.78, and decreases thereafter. The average 213 

value equals 0.54. The temporal variation of SamEn in the Niño 3.4 region is comparable to that 214 

in Niño 3 with a slightly lower average value of 0.51. The SamEn value in Niño 4 region also 215 

starts to increase in January, but peaks in May with a maximum value of 0.74 and decays 216 

afterward. Considering the abovementioned definition of SamEn, the highest degree of chaos 217 

exists in spring in the Niño 3 and 3.4 regions and early summer in the Niño 4 region, which are 218 

consistent with the known spring PB of SSTA in the Niño 3 and 3.4 regions (Duan & Wei, 219 

2013), and the early summer PB in the Niño 4 region (Ren et al., 2016; Hou et al., 2019). The 220 

more chaotic the air-sea coupled system is, the faster the dynamical model's initial error rises, 221 

leading to prediction failure and the PB phenomenon. As a result, monthly fluctuations in the 222 

chaotic degree of the air-sea coupled system may be responsible for the known seasonal PB of 223 

SSTA in these three locales. 224 
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 225 
Figure 2. The monthly sample entropy values (SamEn) of SSTA in the Niño 3, Niño 3.4, 226 

and Niño 4 regions. Error bars represent the 95% confidence interval. 227 

 228 

3.3 Spatial variation of SamEn and PB 229 

Although the temporal variation of the PB in TPO has been extensively investigated in 230 

recent decades (Duan & Wei, 2013; Duan & Wu, 2015; Ren et al., 2016), the spatial pattern of 231 

PB is less well known (Yu & Kao, 2007). The chaotic characteristic of SSTA is investigated as a 232 

function of spatial coordinates (i.e., longitude) in the TPO region using the sample entropy 233 

approach. Fig. 3a shows the spatial pattern of the months when the SamEn values peak. The peak 234 

months in the eastern TPO are primarily between March and May; in the central TPO, it is 235 

mainly in May and June; and in the western TPO, the peak month is after July and exhibits 236 

significant spatial variations. The contour plot of the SSTA SamEn values averaged between 237 

5°S-5°N as a function of longitude coordinates and months is shown in Fig. 3b. From 180° E to 238 

100° W, a linear trend of the peak month and the longitude may be observed. The peak month 239 

moves later as the coordinates shift westward. This result reveals that the chaotic signal might 240 

originate in the eastern TPO during spring, and spread westward to the central TPO. 241 

Furthermore, the average SamEn value decreases as it proceeds from the eastern to the central 242 

TPO. 243 
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 244 
Figure 3. (a) Contour plot of the month when the sample entropy has the maximum value, 245 

the red number represents the peak month; (b) Contour plot of sample entropy value as a 246 

function of longitude and month. The data are averaged between 5° S and 5° N. The green 247 

dashed line represents the 150°W longitude line, which marks the border between eastern 248 

and central TPOs, based on the Niño 3 and Niño 4 regions. 249 

 250 

To link the chaotic degree and the timing of the PB with the forecasting ability, the forecast 251 

errors are examined in the NMME dataset, which are defined as the difference between the 252 

forecast SSTA value in the NMME data set and the observed SSTA value in the HYCOM data, 253 

starting from January. In Fig. 4, the lead time when forecast errors start to grow rapidly shows a 254 

linear variation along the longitude, which is near in March and April in the eastern TPO and 255 

June and July in the central TPO. The evolution of forecast errors starting from other months 256 

displays similar results (More details can be seen in Figure S1). The spatial variation of 257 

forecasting ability is compatible with the fluctuation of the SamEn value, indicating another 258 

evidence showing that the chaotic regime of the air-sea coupled system could be responsible for 259 

the PB phenomenon. 260 
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 261 
Figure 4. Contour plot of the forecast errors as a function of longitude and lead time, the 262 

data are averaged between 5°S and 5°N. The forecast error is computed by the difference 263 

between the forecast SSTA value in the NMME dataset and the observed one in the 264 

HYCOM dataset. The lead time represents the time after the initial forecast. 265 

 266 

5 Conclusions 267 

In this paper, the sample entropy method was utilized to investigate the nonlinear 268 

relationship between the predictability barrier of SST anomaly and the air-sea coupled system in 269 

the tropical pacific based on the HYCOM reanalysis data and NMME forecast model data.  270 

The meridional mean of the SamEn value of SSTA in the TPO is computed to examine the 271 

robustness of the SamEn method with different parameters. When the parameters m and r were 272 

adjusted, the variations of the SamEn value remained the same.  273 

On the monthly scale, the degree of chaos was found to peak in April in Niño 3 and Niño 274 

3.4 regions, May, and June in Niño 4 region, which agree with the known spring PB in Niño 3 275 

and Niño 3.4 regions and summer PB in Niño 4 region. In these peak months, the air-sea coupled 276 

system is more chaotic, in other words, the initial errors will grow faster and finally result in the 277 

corresponding seasonal PB of SSTA. This result indicates that the seasonal variations of the 278 

chaotic characteristics of the air-sea coupled system are likely a cause of the PB of SSTA, and 279 

the known seasonal initial errors growth of SSTA in these regions may not depend on models but 280 

is an intrinsic property. To overcome the PB of SSTA in future dynamic forecasting, more 281 

efforts need to be paid to improve the accuracy of SSTA initial fields, especially when the 282 

models are initiated in March-June.  283 
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We further investigate the monthly variation of the chaotic characteristic averaged between 284 

5°S-5°N along the longitude in the TPO. We found that the most chaotic month increases 285 

linearly from March to June as the longitude moves westward. The time when forecast errors 286 

firstly quickly grow (i.e., PB timing) also has a similar linear variation along the longitude in the 287 

real-time NMME forecast experiment, which indicates another evidence showing that the chaotic 288 

regime of the air-sea coupled system could be responsible for the PB phenomenon. The SamEn 289 

method can be used to determine the PB timing in the TPO. To the best of our knowledge, it is 290 

the first time that the linear variation of PB timing along the longitude in the TPO is found. In the 291 

future, taking the TPO as an entire region instead of separate box regions such as Niño 3 and 292 

Niño 3.4 may be a better choice to study the PB of SSTA in the TPO.  293 

It is unknown which physical mechanisms cause the nonlinear regime variation of the air-294 

sea couple system. Previous researches have shown that the seasonal variations in tropical 295 

background state may play a key role in the spring PB in the eastern TPO (Torrence & Webster, 296 

1998; Mu et al., 2007; Levine & McPhaden, 2015; Larson & Kirtman, 2017; Tian et al., 2019), 297 

but few studies have looked at the PB across the TPO. In the future, the dynamic model will be 298 

used to further investigate the physical processes leading to the seasonal variation of the 299 

nonlinear regime in tropical background states across the entire TPO. 300 

 301 

Open Research 302 

The data used to reproduce the results of this paper are located at 303 

http://apdrc.soest.hawaii.edu/dods/public_ofes/HYCOM/GLBv0.08 for HYCOM reanalysis data, and 304 

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/ for NMME forecast model data. 305 
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Table S1. The NMME model set used in this study. The hindcast data are available for 20 

download at the International Research Institute for Climate and Society (IRI) 21 

(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/)   22 

Model name No. ensemble members Hindcast period  Reference 

CanCM4i 10 1981-2018 Lin et al., 2020 

CanSIPSv2 20 1981-2018 Lin et al., 2020 

COLA-RSMAS-

CCSM3 6 1982-2018 
Kirtman & Min, 

2009 

COLA-RSMAS-

CCSM4 10 1982-2021 Kirtman & Min, 

2009 

GFDL-CM2p5-

FLOR-A06 
12 

 1980-2021 Kirtman et al., 2014 

GFDL-CM2p5-

FLOR-B01 12 1980-2021 Kirtman et al., 2014 

GFDL-CM2p1-

aer04 10 1982-2021 Kirtman et al., 2014 

GEM-NEMO 10 1981-2018 Lin et al., 2020 

 23 
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 36 

Figure S1. The forecast error of predicted tropical SSTA (averaged within 5°S-5°N) from 37 

NMME ensemble hindcasts and forecasts, with the model starting from the different months 38 

(vertical coordinate corresponds to varying lead times).  39 
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