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Abstract

In developing countries like Bangladesh, river discharge monitoring networks are designed unseemly, operated poorly, and

often fail to reach their purposes resulting in the unavailability of sufficient data to describe the behavior of such systems. In

these cases, water-related decisions may create problems for the environment, the regional economy, and society. This paper

has investigated the application of Shannon’s Information Theory to design and evaluate an efficient discharge monitoring

network for the Surma River. A 1-D model has been formulated to extract all discharge data at different points of Surma

River using MIKE 11. The appropriate monitoring station locations were determined by optimizing two conflicting objective

functions (joint entropy and total correlation) using the Non-dominated Sorting Genetic Algorithm-II and Greedy algorithm.

The study demonstrates that an informative yet less redundant monitoring network configuration can be found through the

greedy algorithm.
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Key Points:

• The greedy algorithm is found very effective in designing the discharge
monitoring network.

• Monitors have been placed where there is a connection of hydrological
features like tributaries and wetlands with the River.

• Four monitoring stations are not enough for the Surma River.

Abstract

In developing countries like Bangladesh, river discharge monitoring networks
are designed unseemly, operated poorly, and often fail to reach their purposes
resulting in the unavailability of sufficient data to describe the behavior of such
systems. In these cases, water-related decisions may create problems for the
environment, the regional economy, and society. This paper has investigated
the application of Shannon’s Information Theory to design and evaluate an effi-
cient discharge monitoring network for the Surma River. A 1-D model has been
formulated to extract all discharge data at different points of Surma River using
MIKE 11. The appropriate monitoring station locations were determined by op-
timizing two conflicting objective functions (joint entropy and total correlation)
using the Non-dominated Sorting Genetic Algorithm-II and Greedy algorithm.
The study demonstrates that an informative yet less redundant monitoring net-
work configuration can be found through the greedy algorithm.
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Plain Language Summary

In developing countries like Bangladesh, river discharge monitoring networks
are designed unseemly, operated poorly, and often fail to reach their purposes,
resulting in the unavailability of sufficient data to describe the behavior of such
systems. In these cases, water-related decisions (such as distributing water
resources among different stakeholders and flood forecasting) may negatively
impact the environment, the regional economy, and society. This paper has
investigated the application of Shannon’s Information Theory to design and
evaluate an efficient discharge monitoring network for the Surma River. The
Surma River has only four monitoring stations in place. The study demonstrates
that the number and positions of those monitoring stations are not optimal, and
a more informative yet less redundant network is possible.

1 Introduction

The hydrologic cycle plays a pivotal role in managing water resources and con-
trolling the climate (Fekete et al., 2012). Among different components of the
hydrologic cycle, river discharge plays a significant role. In various parts of
the world, river systems are the primary source of fresh water supply. River dis-
charge is also the most accurately measured component of the water cycle where
appropriate monitoring stations are in place (Grabs et al., 1996; Gutowski et al.,
1997; Hagemann & Dümenil, 1997). A well-managed River discharge monitor-
ing network is a prerequisite in allocating the water resources among different
stakeholders, flood forecasting, hydraulic structure design, estimation of reser-
voir capacity, computing river water balance. On the other hand, a poorly
managed monitoring system or insufficient information on river discharge and
water-related decisions may negatively impact the environment, the regional
economy, and society (Mason et al., 2003).

Bangladesh is a riverine country with 257 rivers, including 59 transboundary
rivers (Islam, 2016). There are 344 water level monitoring stations in 127 rivers,
while the rest are unmonitored (BWDB, 2020). Small rivers are very susceptible
to an intensive precipitation event as they respond to such events much quicker
than large rivers. Flash flood, a common phenomenon in Bangladesh, especially
in the northeastern part, can cause severe flooding within some hours (BWDB,
2020). In Bangladesh, like other developing countries, monitoring networks
are designed unseemly, operated poorly, and often fail to reach their purposes,
resulting in the unavailability of sufficient data to describe the behavior of such
systems (Alfonso et al., 2013). Besides, due to financial constraints and shifting
monitoring priority, there is a continuous decline in water monitoring (Pilon et
al., 1996; Mishra & Coulibaly, 2009 ). Therefore, finding the optimal number
and their position is critical in designing a monitoring network.

There are some general recommendations for the placement of the monitoring
network (Rodda, 2011), such as point of a regular and stable river bed, where
parallel velocities remain uniform throughout a cross-section and avoid bent
reaches, strong backwater effects, flow bifurcations, and aquatic growth (Al-
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fonso et al., 2013). Besides, some methods in the literature exist that deal with
the design and evaluation of monitoring river discharge data. Statistical method
(Moss & Karlinger, 1974; Moss & Tasker, 1991), entropy-based method (Husain,
1989; Yang & Burn, 1994), and methods that include direct surveys to assess
users’ needs are the most common (Davar & Brimley, 2007). Furthermore, one
paper regarding monitoring network design was derived from water quality data
(Telci et al., 2009). A comprehensive review of available methods for evaluating
monitoring networks is presented by Mishra and Coulibaly (2009). Mishra and
Coulibaly (2009) conclude that among those three basic types of methodology,
entropy-based methods have got the most attention from researchers and are
among the most promising approaches for network design. Entropy-based meth-
ods are the byproducts of the Information theory, which was first introduced
by Shannon (1948) to measure the information content in a dataset and applied
to diverse research areas, including solving water resource problems. A second
comprehensive review by Keum et al. (2017) mainly focuses on applying the
entropy-based method in designing water monitoring network design. They cat-
egorize four areas where the application of entropy concept was used to design
the water monitoring network. Those are (1) precipitation (Ridolfi et al., 2011;
Yeh et al., 2011; Awadallah, 2012; Mahmoudi-Meimand et al., 2016); (2) stream-
flow and water level (Alfonso et al., 2010a; Alfonso et al., 2010b; Alfonso et al.,
2013; Alfonso et al., 2014; Stosic et al., 2017; Werstuck & Coulibaly, 2017); (3)
water quality (Lee et al., 2014; Banik et al., 2015; Banik et al., 2017a; Banik et
al., 2017b; Boroumand & Rajaee, 2017); and (4) soil moisture and groundwater
networks (Uddameri & Andruss, 2014; Kornelsen & Coulibaly, 2015; Leach et
al., 2016; Hosseini & Kerachian, 2017;). Though few studies have been found in
designing the discharge/water level monitoring network in the River (Mahjouri
& Kerachian, 2011; Alfonso et al., 2013; Lee et al., 2014; Mishra & Coulibaly,
2014; Stosic et al., 2017; Mokin et al., 2018), there is no study found in the
literature in the case of the Bangladeshi rivers.

This paper focuses on a case study of designing and evaluating the discharge
monitoring station of the Surma river using the entropy-based method, which
was first introduced by Amorocho & Espildora (1973) in the water resource
field. In the first phage, a 1-D model has been developed for the Suram river
to extract the time series of discharge data. Afterward, two entropy contents
(Joint entropy and total correlation) have been used to design and evaluate the
optimal placement of the monitoring stations in the Surma river. Nondomi-
nated sorting genetic algorithm II (NSGA-II by Dev et al., 2002) and Greedy
algorithm (Alfonso et al., 2013; Banik et al., 2017a) have been used to optimize
the monitoring network.

2 Materials and Methods

The River is a natural stream whose behavior can be significantly affected by
the presence of tributaries. Especially in the case of discharge, their effect can
be significant. The optimal monitoring network would be monitors that provide
the maximum information content and capture independent information. There
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are two objectives. The first objective, providing maximum information content
at each gauging site, can be achieved by maximizing the joint entropy of selected
gauges. To fulfill the second objective of minimizing dependency or redundancy,
the concept of Total Correlation has been used. The amount of information
among two variables 𝑋1, 𝑋2 is known as the Joint Entropy and can be expressed
as:

𝐻 (𝑋1, 𝑋2) = − ∑𝑛
𝑖=1 ∑𝑚

𝑗=1 𝑝 (𝑥1𝑖, 𝑥2𝑗 ) logp (𝑥1𝑖, 𝑥2𝑗) (1)

where 𝑝 (𝑥1𝑖, 𝑥2𝑗) is the joint distribution between variables 𝑋1 and 𝑋2, n and
m are the number of elementary events in 𝑋1 and 𝑋2 respectively.

Total Correlations among N variables can be expressed as:

𝐶 (𝑋1, 𝑋2, … .., 𝑋𝑁) = ∑𝑁
𝑖=1 𝐻 (𝑋𝑖) − 𝐻(𝑋1, 𝑋2, … .., 𝑋𝑁) (2)

In this case, the optimization problem can be expressed in following mathemat-
ical formulation.

min {C(X1, X2, ……….., XN)} (3)

max {H(X1, X2, ……….., XN)}

Here the decision variables represent the geographical location of N gauges. Two
approaches have been used to solve this optimization problem. One is the multi-
objective optimization using NSGA-II, while the other is the greedy algorithm.
More detailed information on this theory can be found elsewhere (Alfonso et al.,
2013 and Banik et al., 2015).

The methodology consists of three parts.

Part 1: Generating time series of discharge data.

Part 2: Quantization and evaluation of entropy pattern.

Part 3: Optimization process.

2.1 Generating time series of discharge data

In order to prepare time-series data that can be used for information theory
analysis, a 1D-hydrodynamic model was developed using MIKE11. The model
includes 150 km of Surma River with points placed approximately every 500
m. The hydrological data from July 2016 to June 2017 was used with the
complete data records at the tributaries and hydrologic stations. Discharge
data obtained from the Sylhet station was used to calibrate the model. Once
the model was calibrated, discharge data was extracted from the result file. The
model’s description and its calibration are described in the paper’s third section.

2.2 Quantization and evaluation of entropy pattern

Although there are some nonparametric methods to estimate mutual informa-
tion (see, e.g., Moon et al. 1995), a histogram-based frequency analysis is used
in this paper. For this purpose, the discharge data matrix must be quantized
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first. Quantization is a procedure of constraining a continuous set of values to
a discrete set. The quantization process rounds a value x to its nearest lowest
integer multiple of a, namely xq to give:

𝑥𝑞 = 𝑎[ 2𝑥+𝑎
2𝑎 ] (4)

The calculation of joint entropy and total correlation is related to probability cal-
culation, which requires the information to be integer values. So, the quantized
data matrix of this case will have the following properties:

The minimum value of the data matrix will be zero, and there will be no negative
values. It will be quantized by another factor to round the values to their nearest
integer value.

The entropy pattern is different for different sections of the River, and it is
calculated from the quantized discharge data with the help of MATLAB. It is
further used to develop an entropy map that shows high and low entropy zones.
The possible location of the monitors will be at the places where a change in
entropy takes place.

2.3 Optimization process

• Multi-objective optimization

The problem can be solved by posing it as a multi-objective optimization prob-
lem (MOOP). This problem provides a set of quasi-optimal, non-dominated
solutions that draw a Pareto front. Generally, objective functions conflict with
each other, and therefore a solution that satisfies all the objectives at a time may
not exist. The MOOP searches for a set of decision variables that simultaneously
satisfy constraints and optimize objective function values. MOOP has been suc-
cessfully used to solve water-related optimization problems (e.g., Alfonso et al.,
2010a; Barreto et al., 2009; Preis & Ostfeld, 2010). This paper uses NSGA-II, an
elitist non-dominated sorting genetic algorithm for multi-objective optimization
(Deb et al., 2002). It utilizes Simulated Binary Crossover (SBN) and Polynomial
Mutation as genetic-related operations. Two objectives were chosen where joint
entropy was maximized, and total correlation was minimized.

• Rank-based greedy algorithm

The greedy algorithm is a single objective optimization procedure. Alfonso et
al. (2013) have used two single objectives (Joint entropy and total correlation)
separately while optimizing the discharge monitoring network of Magdalena
River. In this paper, we also considered both objective functions. Moreover, as
the natural process is complex, a single objective optimization might not fulfill
the expected result. To benefit from multi-objective optimization in a greedy
framework, we introduced another objective function in terms of fitness score
(shown in equation 5) in the range of 0-1 by combining two objectives, the joint
entropy, and total correlation.

fitness = min {[(1- Cmax-C
Cmax-Cmin

) + (1- H-Hmin
Hmax-Hmin

)] ÷2} (5)
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Cmax and Cmin are the system’s maximum and minimum total correlation, re-
spectively, while Hmax and Hmin are the system’s maximum and minimum joint
entropy, respectively.

The first two single objective algorithms are shown in figure 1a), while the other
that combines both algorithms into a fitness score is shown in figure 1b). The
most informative sensor will be chosen as the first one in all three algorithms,
while the remaining sensors will be selected either with the specific objective
function (equation 3) or with the fitness function (equation 5).

Fig.1: Flowchart of the greedy algorithm. (a) To solve single objective function
(b) To solve two objectives as fitness function

3 Study area, model development, and calibration

3.1 Study area
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Bangladesh is located in South Asia, slightly above sea level in the Bay of Bengal,
which is formed by the confluence of three of Asia’s greatest rivers, the Ganges,
Brahmaputra, and Meghna Rivers, forming the world’s largest water basin and
delta (Hossain et al., 2021). This riverine country is divided into three major
river systems- Ganges-Padma, the Brahmaputra-Jamuna, and Meghna-Surma.
The Surma River is one of the most important rivers of the Meghna-Surma
system, and the system originates in the Indian hills of Shillong and Megha-
laya. The primary source is the Barak River which has a large catchment area
in eastern Assam’s ridge and valley topography bordering Myanmar. When it
reaches the Bangladeshi border at Amalshid in Sylhet district, it splits into the
Surma and Kushiyara rivers. The Surma River, which flows north of the Sylhet
basin, receives Right Bank tributaries from Shillong’s Khasia and Jaintia Hills.
These steep, flashy rivers originate in one of the world’s wettest regions. From
the Tripura Hills, the Kushiyara receives left bank tributaries, the most impor-
tant of which is the Manu. There are numerous internal drainage depressions
(haors), meandering flood channels, and abandoned river courses between the
Surma and Kushiyara, frequently inundated during the monsoon season. The
two rivers merged at Markuli and became the Meghna after passing through
Bhairab. The Padma and the Meghna meet in Chandpur, where they flow to
the sea under tidal impact.
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Fig.
2: Study area showing different boundaries and calibration point

The study area (Figure 2) of this research has been chosen from the start of the
Surma River at Kanaighat, Sylhet to Sunamganj, which is 150 km long. The
model included tributaries which are the rivers Dhalagang, Jhalukhali, Piyan
(active) and Sarigowain. Among these, Dhalagang does not discharge into the
Surma River. Instead, it is a tributary of the Piyan (active) River, so the data
from this tributary has only been used to build the model. These tributaries
were included as point sources of discharge. The upstream boundary condition
for the Surma river is the discharge series at Kanaighat, and the downstream
boundary is the water level series at Sunamganj. Discharges were obtained
through rating curves at Sunamganj, Muslimpur, Islampur, Jaflong, Sarighat,
and Kanaighat. After providing five files necessary for the model; a river network
file, a cross-section file, a boundary file, and a simulation file, the model was
run with a time step of 1 minute. Figure 2 also shows four existing monitoring
stations within the 150 km course of the Surma river.

3.2 Model development
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A 1D-hydrodynamic model is necessary to design and evaluate discharge moni-
toring networks. Therefore, the upper part of the Surma River (Kanaighat to
Sunamganj) has been modeled on the MIKE11. Rainfall events have not been
included in this model. The analysis of the River under the response of rainfall
events is beyond the objectives of this study. However, this developed model
can be updated and complemented for other uses.

The information of water levels and discharges of river stations, river network,
and bathymetry is obtained from the Institute of Water Modelling (IWM),
Bangladesh, to develop the 1D- hydrodynamic model of the Surma River be-
tween Kanaighat and Sunamganj. The data used are described in detail as
follows.

• Water level and discharge

Daily and multiannual water level and discharge data for the upper Surma River
and its tributaries range from 1978 to 2017. The model was built from July 2016
to June 2017.

• Boundary condition

The boundaries of the model are the 2016-2017 discharge of Kanaighat (up-
stream) and the 2016-2017 water level of Sunamganj (downstream). The time
series of the four tributaries (Muslimpur, Islampur, Jaflong, and Sarighat) were
included as point sources.

• River network, bathymetry, and cross-sections

The model of the Surma river has been developed using a network point every
500 meters. Thus, the Surma river contains 301 points with chainage ranging
from 0 km at Kanaighat (upstream) to 150 km at Sunamganj (downstream).
The bathymetry and cross-section information of all those 301 points were col-
lected from the Department of Surveying of IWM, Bangladesh.

3.3 Model calibration

In
hydrologic modeling research, proper model calibration reduces uncertainty
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in model simulations (Engel et al., 2007). Calibration is traditionally done
manually.

Fig. 3: Comparison of actual and simulated data of water level and discharge
at Sylhet station

It entails modifying model input parameter values to generate simulated results
within a given range of measured data. The discharge data at Sylhet station
was used to calibrate the model. After calibrating the model, a comparison of
actual and simulated data at Sylhet station was performed to ensure that the
River’s flows and water levels remained consistent (Figure 3). Moreover, the
performance of the calibrated model was evaluated through three parameters,
namely, RMSE-observations standard deviation ratio (RSR), Nash-Sutcliffe effi-
ciency (NSE), and Percent bias (PBIAS). The standard values and the obtained
values for the calibrated model are shown in table 1. From the table, it is clear
that the performance of the calibrated model is excellent.

Table 1: Standard performance rating of three parameters with obtained value

Performance Rating RSR NSE PBIAS (%) Reference
Very Good 0 ~ 0.5 0.75 ~ 1 � ±10 Moriasi et al. (2007)
Good 0.5 ~ 0.6 0.65 ~ 0.75 ±10 ~ ±15
Satisfactory 0.6 ~ 0.7 0.5 ~ 0.65 ±15 ~ ±25
Unsatisfactory > 0.7 < 0.5 � ±25
Model 0.0036 0.9964 0.741

4 Results

In this section, the entropy map of the Surma river has been produced and
analyzed using the data created after calibrating the 1D model. Afterward,
the results obtained from two optimization processes have been discussed and
compared. Finally, a sensitivity analysis on the quantization parameter has
been performed to evaluate its impact on the optimization process.

4.1 Analysis of the entropy map of Surma River

The entropy map obtained from the discharge time series data and the map
of mean discharge of Surma river are shown in figure 4, where the Jhalukhali
tributary is staying downstream. The first thing to be noticed is that the entropy
increases at points where tributaries discharge into the River. This finding
aligns with Alfonso et al. (2013), where the authors found the same phenomena
in the case of the Magdalena River in Columbia. The tributaries Sarigowain,
Piyan (active), and Jhalukhali show significant increments in entropy due to
their strong influence in terms of discharge. Most of the upstream of the Surma
River shows the same entropy with very little change because no tributaries
flow into it. Intriguingly, the lowest entropy value occurs in this part of the
River. The lowest entropy is because the discharge range is minimal in this
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part, and upon applying the equation for quantization with a = 100 m3/s the
resulting quantized series has only a few unique values in the frequency analysis
the variation in entropy is very little here.

Secondly, small decreases of entropy can also be seen as the effect of some
haors, which are Zilkar Haor, Pathar Churi Haor, and Kalner Haor. Haors are
the wetlands located in the northeastern part of Bangladesh, and they receive
surface runoff water from rivers during the monsoon. However, the change of
entropy that occurs here because of the contribution of

Fig.
4: (a) Entropy map in bits for a = 100 m3/s and (b) mean discharge map of
2016-17 in m3/s for Surma River

discharge from the River to the haors. It is not that significant because it only
happens during the rainy season.

Thirdly, some changes in entropy can be observed at the central part, beginning
of the upstream, and in a tiny downstream region of the River. Sylhet City
lies beside the center portion of the River, and many small natural channels
discharge the City’s runoff into the River, which is the cause of change in en-
tropy in the central part of the River. The most likely reason for changes near
upstream and downstream is the existence of small haors in these regions. Haor
is a complex system of reservoirs that absorb the peak flows of the River, thus
lowering the discharge range and diminishing the entropy.

The entropy map gives a complete overview of changes in the entropy of the
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Surma River. Entropy is continuously increasing from upstream to downstream.
A significant change in entropy occurred when the tributary Sarigowain met
Surma River. Before this point, the entropy was almost constant because no
significant flow was added or subtracted from the River. After this point, the
entropy increases because of other tributaries’ influence. Some decreases in the
entropy happen due to the presence of wetlands. However, they are tiny com-
pared to the entropy increases due to the inflows from the tributaries. Finally,
at the point where the Jhalukhali River discharges into the Surma River, the
entropy is the maximum.

4.2 Multi-objective optimization approach

The multi-objective optimization approach is solved using NSGA-II (Deb et al.,
2002). For this approach, the evolutionary parameters must be defined, namely,
the number of populations and generations. The number of decision variables
(number of monitors to be placed along the River) must also be specified. A
sensitivity analysis was performed on both evolutionary parameters, and it was
found that 100 population and 100 generations were the optimal numbers. A
series of simulations were run with the populations and generations (P, G):
(100,100) and the number of monitors 2-13 to get the optimal number of moni-
tors for the Surma River network. Joint entropy was maximized to find out the
optimal number. The optimization result can be found in figure 5. It is evident
from the figure that after eight monitors, the joint entropy does not significantly
increase. Therefore, eight monitors will be the optimal number for the Surma
River. Further experiments were carried out to find the optimal position of the
monitors in which four different populations and generations were used with
the following combinations (P, G): (100,50), (100,100), (200,50), (200,100) for
monitors from 7 to 10.

[CHART]

Fig. 5: Optimal number of monitors for Surma River

Figure 6 shows the optimization result for 7-10 monitors. The Pareto front is
shown with black filled circle in all four figures. From those four figures, it
is evident that the increment of very little joint entropy will cost a substan-
tial total correlation after eight monitors. In other words, the monitors are
giving shared information, making those additional monitors redundant. As
multi-objective optimization produces a set of near-optimal solutions, choosing
a particular solution requires further criteria or judgment. For instance, the
amount of information gathered by the set of monitors might be more critical
than minimizing the redundant information and vice versa. At the same time,
some might search for a compromise solution between two objectives. For this
reason, three different solutions (A, B & C) have been chosen to show their
position geographically. Solution A and C are extreme-end solutions (minimum
total correlation and maximum joint entropy, respectively), while the other is
a compromised solution considering the minimum distance from the origin.

The sensor placements of solutions A, B, and C, as mentioned in figure 7, are
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NSGA-A, NSGA-B, and NSGA-C, respectively, for ten monitor cases. NSGA-A
is the extreme solution where the minimum value of total correlation is consid-
ered, and NSGA-C is the extreme solution in terms

Fig. 6: Pareto front obtained from the NSGA-II optimization showing extreme
and compromised solutions for 7-10 monitors. The legend shows the number of
population and generation used during optimizations.

of maximum joint entropy. The other solution NSGA-B is the compromise be-
tween two objectives. One thing is clear from the figure that the more we go
from solution NSGA-A to NSGA-C, the more the monitors are placed down-
stream. The solution NSGA-C maximizes the joint entropy, and more entropy
can be found in the downstream end. Another observation is that the moni-
tors are placed where there is a change in entropy for most cases. A similar
observation was also reported in Alfonso et al. (2013).
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4.3 Greedy optimization approach

Three greedy approaches have been studied in the paper. They are minimization
of total correlation (Greedy-TC), maximization of joint entropy (Greedy-JE),
and the minimization of the fitness score (equation 5), which is a combination of
two objective functions (Greedy-JE_TC). The first two are a conventional single
objective greedy algorithm, while the last can be viewed as a multi-objective
optimization within a greedy framework. In all three cases, the first monitor
was chosen to have the most entropy value. The chronological placement of ten

Fig.
7: Sensor placement of six different solutions on the entropy map coming from
NSG-II and Greedy optimizations

monitors for all three approaches are shown in figure 7. From a conceptual point
of view, the three solutions NSGA-A, NSGA-B, and NSGA-C are analogous to
the Greedy-TC, Greedy-JE_TC, and Greedy-JE, respectively, and are com-
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pared in figure 7. Few exciting observations can be made from figure 7. First,
the changes in the distribution of monitors from left to right for both NSGA
and Greedy are pretty similar. Second, monitors are placed at the upstream
and downstream ends in five out of six solutions. Third, solution NSGA-A or
Greedy-TC might not be a good solution since the monitors are concentrated in
a specific location of the River. Fourth, looking at the joint entropy and total
correlation of all six solutions, the greedy algorithm performs slightly better
than the NSGA-II, especially Greedy-JE is a clear winner over NSGA-C. Banik
et al. (2017b) also found similar results in the case of a wastewater network.
They claimed greedy algorithm performs better over NSGA-II, especially at the
extreme end of the Pareto front. Fifth, the Greedy-JE solution seems to cover
all the vital River features in the forms of either tributary (Jhalukhali, Active
Piyan, and Sarigowain), hoar (Kalner, Pathor Churi and Zilkar), or the City
water discharges (Sylhet City Corporation). Therefore, if the discharge moni-
toring stations are placed in those positions, the water resources in that region
can be effectively and efficiently managed.

There are four existing discharge monitoring stations in the Surma River. Those
are currently placed in 1, 7, 10, and one close to 10, as shown in solution Greedy-
JE of figure 7. The joint entropy covered by those four sensors is only 6.049 bits,
significantly less than the system joint entropy of 6.803 bits. At the same time,
we found from figure 5 that eight monitors will be appropriate for Surma River.
So, skipping the last two monitors, which give a joint entropy of 6.69 bits, the
Greedy_JE solution will be a good option for this River.

5 Conclusions

A discharge monitoring station is critical for the effective management of water
resources. An insufficient number of monitors and the unplanned position may
lead to inefficient flood management and inappropriate allocation of water re-
sources among different stakeholders. A case study on designing the discharge
monitoring network of Surma River is presented in this paper. The following
key findings were obtained from this study.

• After analyzing the entropy map, it has been revealed that the entropy
increases where the tributaries meet the River and decreases where the
portion of water channels away from the River (e.g., haor). In the later
part of the analysis, the monitors were chosen (especially the Greedy-JE
solution) where any hydrological feature meets the River.

• Currently, there are four monitors for the Surma River, which has been
found insufficient from the information theory point of view. Eight moni-
tors could be sufficient, as further increases in number do not significantly
increase the information content.

• NSGA-II will not give a definitive answer to the optimal network design
as two conflicting objectives were fought against each other. To get a
definite answer, one needs to apply an additional criterion on the near-
optimal solutions (Pareto front). In that case, the solution with maximum
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joint entropy could be a better choice as it will cover most of the system’s
information.

• Very interesting to observe that the Greedy-JE solution places the moni-
tors where other hydrological features interact with the River. Under nor-
mal circumstances, the monitoring campaign also follows a similar fashion.
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