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Abstract

Satellites provide the primary dataset for monitoring the earth system and constraining analyses in numerical models. A

challenge for utilizing satellite radiances is the estimation of their biases. High-accuracy non-radiance data are typically

employed to anchor radiance bias corrections. This study provides the first assessment of impacts of dropsonde data collected

during the Atmospheric River (AR) Reconnaissance program that samples ARs over the Northeast Pacific on the radiance

assimilation using the Global Forecast System (GFS) and the Global Data Assimilation System. Including this dropsonde

dataset has provided better anchoring for bias corrections and improved model background, leading to an increase of ˜5-10% in

the amount of assimilated microwave radiance in the lower/middle troposphere over the Northeast Pacific and North America.

The impact on tropospheric infrared radiance is small but also beneficial. This result points to the usefulness of dropsondes,

along with other conventional data, in the assimilation of satellite radiance.
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Key Points:

• Dropsonde data can lead to an increase of 5-10% in the amount of tropo-
spheric radiance for the operational data assimilation system.

• The assimilation of dropsonde data results in reduced total bias corrections
for radiance data needed by modeling systems to use radiances.

• Positive impacts of dropsondes on radiances assimilation lasted for ~1 week
after the last mission of 2020 Atmospheric River Reconnaissance.

Abstract

Satellites provide the primary dataset for monitoring the earth system and con-
straining analyses in numerical models. A challenge for utilizing satellite radi-
ances is the estimation of their biases. High-accuracy non-radiance data are
typically employed to anchor radiance bias corrections. This study provides the
first assessment of impacts of dropsonde data collected during the Atmospheric
River (AR) Reconnaissance program that samples ARs over the Northeast Pa-
cific on the radiance assimilation using the Global Forecast System (GFS) and
the Global Data Assimilation System. Including this dropsonde dataset has
provided better anchoring for bias corrections and improved model background,
leading to an increase of ~5-10% in the amount of assimilated microwave ra-
diance in the lower/middle troposphere over the Northeast Pacific and North
America. The impact on tropospheric infrared radiance is small but also ben-
eficial. This result points to the usefulness of dropsondes, along with other
conventional data, in the assimilation of satellite radiance.

Plain Language Summary

Large biases impact the assimilation of satellite radiances. More accurate obser-
vations from other observing platforms are employed to reduce systematic biases
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in model analyses. This research provides the first evaluation of the impact of
dropsondes on the assimilation of radiances. Dropsonde data were collected
during the 2020 Atmospheric River Reconnaissance (AR Recon). With the U.S.
Global Forecast System and the Global Data Assimilation System, we found
that dropsondes improve the model prediction and help with radiance bias esti-
mates, leading to an increase of ~5-10% in the number of microwave radiance
in the lower- to middle- troposphere over the northeastern Pacific and North
America. Small but positive impacts are also found in tropospheric infrared radi-
ance. This research suggests that AR Recon dropsondes increase the number of
radiance for assimilation, and in future observing networks could be considered
as anchor data to help with the assimilation of satellite data over data-sparse
areas.

1 Introduction

Satellite observations have been a primary dataset for monitoring and modeling
the atmosphere, the land surface, and the oceans (Rao et al., 1990; Andersson
et al., 2005; Posselt et al., 2008; Maier et al., 2021). Some of the largest im-
provements in forecast skill at operational numerical weather prediction (NWP)
centers were associated with either the newly available satellite radiance (Mc-
Nally et al., 2006; Boukabara et al., 2007; Bormann et al., 2013; Eresmaa et
al., 2017) or the development of new data assimilation techniques for radiances
(Courtier et al., 1993; Eyre et al., 1993; Caplan et al., 1997; Bauer et al., 2006;
Geer and Bauer 2011; Zhu et al., 2014a). Proper bias correction is essential
for making optimal use of satellite radiances (Harris and Kelly, 2001; Dee, 2004;
Auligné et al., 2007; Dee and Uppala, 2009; Zhu et al., 2014a; Otkin et al., 2018).
Satellite data can have systematic biases that depend on the sensors, scan angle,
calibrations, latitudes, and seasonality (e.g., Dee, 2004; Li et al., 2019). Addi-
tionally, NWP models used for radiance assimilation can have systematic errors
that stem from imperfect model dynamics, physics, and initial conditions (e.g.,
Bhargava et al., 2018; Zheng et al., 2019). Lastly, approximations in the ra-
diative transfer model can introduce state-dependent biases (e.g., Weng, 2007).
Estimating radiance biases has been challenging because the observation bias is
inseparable from the model bias due to unknown truth. Most operational cen-
ters (e.g., the National Centers for Environmental Prediction (NCEP)) employ
variational bias correction schemes (Derber and Wu, 1998), which assume mod-
els to be unbiased. However, since forecast models have biases, independent
observation types with small or negligible biases, referred to as the “anchor
data”, are required to prevent the analysis from drifting to systematic model
biases and underutilizing satellite data (e.g., Cucurull et al., 2014). It is still
unclear what impact most anchor data have on radiance assimilation and how
effective a model can respond to aditional anchor data.

While there have been a few studies on the anchoring effect of radio occulta-
tion (RO) data on stratospheric satellite channels (Healy, 2008; Cucurull et al.,
2014), no study to date has examined the anchoring impact of conventional ob-
servations (e.g., radiosonde data). In this study, we have investigated the role of
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reconnaissance dropsonde data in affecting the assimilation of satellite radiance
data. We are particularly interested in the dropsondes collected during the At-
mospheric River (AR) Reconnaissance (AR Recon; Lavers et al., 2018; Ralph et
al., 2020; Zheng et al., 2021a) field campaign (e.g., Majumdar, 2016) that aims
to enhance the upstream sampling of landfalling ARs (Zhu and Newell, 1994;
Ralph et al., 2004, 2005, 2017; Guan and Waliser, 2015; Gershunov et al., 2017;
Reynolds et al., 2019; Zhang et al., 2019) in the Northeast Pacific in an effort
to improve forecast skill over the US West Coast at 1-5 day lead times. Overall
positive impact from aircraft dropsondes have been documented in the literature
(e.g., Pu et al., 2008). Recent studies demonstrated the positive impact from
AR Recon dropsondes data through both Forecast Sensitivity and Observation
Impact (FSOI) studies and the full data denial experiments (Stone et al, 2020;
Zheng et al., 2021b).

Over the ocean, satellite radiance is the primary observational dataset used for
informing and updating model initial conditions; however, only a few observa-
tion types are available to anchor radiance assimilation (Hersbach et al., 2020).
Data gaps identified in and around ARs (Zheng et al., 2021a) result in a sub-
stantial reduction in the availability of anchoring data compared to non-AR
regions and indicate that AR Recon data could provide critical anchor data.
Cucurull et al. (2014) demonstrated the ability of the unbiased spaceborne RO
data to improve the bias correction of satellite radiances based on the NCEP
Gridpoint Statistical Interpolation (GSI, Kleist et al., 2009) data assimilation
system. However, both the quality and quantity of the RO data are degraded
toward the lower troposphere, resulting in a limited impact on constraining
model analyses in lower levels. In contrast, the high-quality and high-vertical-
resolution dropsonde data have great potential to anchor lower-level satellite
channels (i.e., surface and cloud-sensitive) because they represent direct obser-
vations from near the ocean surface to the upper troposphere in all-weather
conditions.

The objective of this study is to investigate the ability of AR Recon data to
influence radiance assimilation in Finite-Volume Cubed-sphere dynamical core
(FV3)-based Global Forecast System (GFS, Chen et al., 2019) and the corre-
sponding Global Data Assimilation System (GDAS) at NCEP. This study offers
the first systematic analysis on the anchoring effect of AR Recon dropsondes for
two representative satellite radiance types: 1) microwave soundings, 2) hyper-
spectral infrared soundings. Data denial experiments were designed with the
FV3GFS/GDAS for 2020 AR Recon dropsonde data. The differences between
available radiances in experiments with and without AR Recon data over the
northeastern Pacific and North America (PNA) are explored, as well as the
mechanisms behind the impact of this data on radiance assimilation.

2 Data and Methodology

2.1 Experiment set-up

In this study, we have employed GFS version 15 (Yang and Tallapragada, 2018)
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developed at NCEP and the corresponding GDAS to perform data denial ex-
periments for AR Recon dropsonde data. The GFS maintains a horizontal
resolution of ~13 km and has 64 levels in the vertical with a model top of 0.2
hPa. A hybrid 4-dimensional ensemble-variational (Wang and Lei, 2014; Kleist
and Ide, 2015) method was used in GDAS to assimilate observational data. The
80 ensemble member inputs have a horizontal resolution of ~25 km. GDAS is
cycled four times daily (00, 06, 12, and 18 UTC) with an observational window
of ±3 hours around each analysis time. The background fields are based on
a 9-hour forecast from the previous cycle. Data types used in the data denial
experiments are shown in Table S1.

The experiments run from 0000 UTC 24 January 2020 to 0000 UTC 18 March
2020 and cover 17 AR Recon Intensive Observation Periods (IOPs, Table S2).
The GFS/GDAS was run parallelly with two sets of analyses: 1) control runs
called “Ctrl” that assimilated AR Recon dropsonde data and other routine ob-
servations (Table S1), 2) denial runs called “Deny” that assimilated the same
set of observations as Ctrl but withholding the AR Recon dropsonde data. The
satellite radiances for GDAS were used for this study, and differences in Ctrl and
Deny have been examined. We used the Advanced Microwave Sounding Unit-A
(AMSU-A, Rosenkranz, 2001; Mo, 2011) onboard the NOAA-19 satellite and
the Cross-track Infrared Sounder (CrIS, Han et al., 2013) onboard NOAA-20
as representative radiances for the microwave sounding and the hyperspectral
infrared sounder, respectively. The positive impact of AMSU-A data has been
demonstrated in literature (e.g., Boukabara et al., 2007; Liu et al., 2012), and
its bias corrections are sensitive to RO data (Cucurull et al. 2014). CrIS has
been chosen to represent the infrared radiance because it has a beneficial im-
pact on scales from nowcasting to the medium range (Eresmaa et al., 2017),
and the impact is also sensitive to bias correction algorithms (Li et al., 2019).
Figure 1 shows a snapshot of the AMSU-A channel 1 (weighting function,WF
peaks at the surface) and CrIS channel 85 (WF peaks at the 265 hPa) radiance
distribution for the 6-h assimilation window centered at 0000 UTC 4 February.
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Figure 1 A snapshot of two types of satellite radiance assimilated in the 6-h
time window centered at 0000 UTC 4 February 2020 from the Ctrl experiment.
(a) AMSU-A channel 1 onboard NOAA-19; (b) CrIS channel 85 onboard NOAA-
20. Colored dots are the raw brightness temperature [K] for each radiance data.
The yellow-orange-red shaded are the IVT amplitude [kg m-1 s-1] in the GFS
Final Analysis (FNL). Black dots in (b) correspond to locations of assimilated
dropsondes, while the magenta isolines indicate the FNL mean seal level pressure
[hPa].

2.2 Radiance bias-correction scheme in GSI

The original NCEP radiance bias correction was a two-step process that included
a scan-angle component and a variational air-mass component (Derber and Wu,
1998). The observation operator ℎ̃ in the original scheme can be expressed as
follows:

ℎ̃ (x, 𝛽) = ℎ(x) + 𝑏air (x, 𝛽) + 𝑏angle, (1)

where x represents the model state vector; 𝛽 is the bias correction coefficient,
and ℎ(x) represents the radiative transfer for the radiance of interest. The
scan-angle component is represented by 𝑏angle and is calculated outside the GSI.
The variational air-mass component 𝑏air (x, 𝛽) is updated inside the GSI and is
expressed as a linear combination of N predictors. The original scheme consists
of five predictors, which are the global offset, the zenith angle predictor, the
cloud liquid water (CLW) term, temperature lapse rate predictor, and the square
of the lapse rate.

Zhu et al. (2014a) introduced the enhanced radiance bias correction scheme to
the NCEP GSI, in which the scan-angle component is incorporated into GSI
and is expressed as:

𝑏angle = ∑𝐾
𝑘=1 𝛽𝑁+𝑘𝜙𝑘, (2)

where 𝑏angle is a K-th-order polynomial of scan angle 𝜙. K is typically chosen
as 3 or 4. Note that the original zenith angle predictor is no longer needed in
the enhanced scheme. Therefore, the observation operator ℎ̃ is updated with
the use of equation (2) and can be expressed as:

ℎ̃ (x, 𝛽) = ℎ (x) + ∑𝑁+𝐾−1
𝑘=1 𝛽𝑘𝑝𝑘(x), (3)

where 𝑝𝑘 represents a set of predictors with k = 1, 2, …, N+K-1 and 𝑝1 = 1.
The coefficients are estimated along with x during the minimization of the cost
function 𝐽 (x, 𝛽).
The follow-up study by Zhu et al. (2014b) applied a new emissivity sensitivity
predictor to GSI to account for the land/sea contrasts. With the development
of all-sky radiance assimilation, the CLW predictor term was removed (Zhu et
al., 2016).

3 Results
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3.1 Microwave soundings

3.1.1 All-sky radiance

Channel 1 of AMSU-A onboard NOAA-19 has been chosen to represent all-
sky microwave radiances assimilated by the GDAS. First, the PNA region is
defined as from 40°W-180°W and 20°N-75°N, and the radiance observations that
passed quality control (QC) in GDAS within the PNA region are counted and
investigated. Radiance counts that can pass the QC are mainly impacted by the
observation minus model background departures (OmB) and the bias correction
applied to reduce the OmB. Therefore, we have examined the difference in OmB
and in the total bias correction (TBC) to futher explore how the assimilation
of dropsondes change these metrics.

The number of QC-ed radiance for the AMSU-A channel 1 varies from ~500–900
over the PNA region due to the satellite’s sun-synchronous orbit (Fig. 2a). No
significant differences are seen in the first two weeks of the investigated period
(Fig. 2b). Slightly more radiance data (e.g., 0.3%) is seen in Ctrl than in Deny
from February 8-28 (Fig. 2b). The amount of radiance data in Ctrl significantly
exceeds that in Deny since March 1, with the percentage of increase reaching
the peak value (i.e., 7.4%) on March 9 (IOP 15). After the last IOP (IOP 17)
on March 11, the positive difference in Ctrl and Deny drops rapidly (Fig. 2b).

Figure 2c compares the differences between Ctrl and Deny in the standard de-
viation (STD) of OMB for the brightness temperature. The difference between
Ctrl and Deny in the OmB STD is steadily trending negatively from February
8 to March 10 and trends back toward zero after the last AR Recon IOP (Figs.
2d). The assimilation of dropsondes overall reduces the OmB variation before
performing bias corrections (Figs. 2c-d). This indicates that dropsondes have
improved the model background, likely due to an improvement in model initial
conditions, and the improvement maximizes toward the end of the AR Recon
period.
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Figure 2. Statistics of AMSU-A channel 1 radiance observations that passed
the QC over the PNA region in GDAS for the Ctrl and Deny runs from January
24 to March 18, 2020. (a) radiance counts in Ctrl and Deny, (b) % of radiance
count change (green dots) in Ctrl w.r.t. Deny, and the 7-point running mean
(dark green line); (c) standard deviation (STD, [K]) for OmB in Ctrl and Deny;
(d) % of STD change in Ctrl w.r.t. Deny; (e) absolute value of TBC (Abs. TBC,
[K]) in Ctrl and Deny; (f) % of Abs. TBC change in Ctrl w.r.t. Deny. Each dot
represents data from a 6-hour data assimilation window centered at 0000 UTC
or 1200 UTC. Cyan stars at the bottom of each panel denote 17 AR Recon IOPs
(Table S2).

TBCs have been acknowledged to impact the assimilated radiance data (Cucu-
rull et al., 2014). We further investigated the differences in the absolute value
of the TBC for the two experiments. The TBC amplitude for Ctrl is smaller
than for Deny beyond February 20, reaching a maximum percentage change of
~15-20% during the last AR Recon sequence flight (Figs. 2e-f).

To determine the relationship between radiance counts and the above two met-
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rics, the partial correlation (Stuart et al., 2004) between radiance count change
and each metric withholding the contribution from the other metric was calcu-
lated. The partial correlation between the percentage change of TBC amplitude
in Ctrl and that of the radiance count change is -0.27 (significant at 99% student
t-test level) while the similar metric for STD and the radiance count change is
-0.19 (significant at 95% student t-test level). Consistent results are found for
the similar satellite channel over the Northern Hemisphere (Fig. S1), for other
all-sky channels (e.g., channel 15 shown in Fig. S2), and for the assimilated
data (after assimilation, Fig. S3). These results suggest that with better an-
chor data from dropsondes, the amplitude of bias corrections needed for all-sky
microwave radiances is reduced significantly, which is the dominant factor for
increased radiance data in Ctrl. The improved model background in low levels
from the assimilation of dropsondes also allows more radiance to pass the QC.

To investigate the duration of impact that dropsondes have, 17 data points from
March 10 (IOP 16) through March 18 (end of both experiments) were used to
calculate linear regressions. Differences in two experiments are diminished after
8.4 days for radiance count, 11.7 days for the OMB STD, and 13.0 for the TBC
amplitude after the last dropsondes were deployed. This estimation implies that
it takes 1-2 weeks for the modeling system to repond to the addition or removal
of dropsonde anchor data.
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Figure
3. Same as Fig. 2 but for channel 9 (WF peaks at ~86 hPa).

3.1.2 Lower stratospheric channels

Channels 9-14 of AMSU-A are upper-level channels with weighting functions
peaking in the stratosphere (Fig. S4). The number of radiance data for channel
9 that can pass the QC is twice (Fig. 3a) of that of the all-sky radiance chan-
nel. The Deny and Ctrl do not show any significant differences in the radiance
count, with a maximum difference count of only 2. The two metrics (STD of
OMB and TBC amplitude) for the two experiments show no clear trends nor
significant differences, albeit small fluctuations around zero do exist beyond the
first five days (Figs. 3d, f). These results suggest that the anchoring impact
of dropsondes in the lower stratosphere is insignificant. Consistent results are
found employing other stratospheric channels from AMSU-A (not shown) and
other microwave soundings (e.g., the ATM aboard NOAA-20, Fig. S5).

3.2 Hyperspectral infrared sounders

Infrared radiances have been providing the largest amount of radiance data in
the GFS/GDAS since they became operational and have been demonstrated to
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improve the forecast skill particularly when using the total impact metrics (Ota
et al., 2013). We have examined the anchoring impact of dropsonde data on the
representative operational hyperspectral infrared sounders, including the CrIS
(Han et al., 2013), Infrared Atmospheric Sounding Interferometer (IASI, Collard,
2007; Hilton et al., 2009), and Atmospheric Infrared Sounder (AIRS, Aumann
et al., 2003; McNally et al., 2006). Examination of the CrIS radiance onboard
NOAA-20 that was launched in November 2017, including 1305 channels (GDAS
has used 399 of them, Gambacorta and Barne, 2013) that cover three spectral
bands, short-wave IR (SWIR), mid-wave IR (MWIR), and long-wave IR (LWIR),
is of particular interest to this study. CrIS channel 1022 is a representative
MWIR channel with WF peaking at 585 hPa. The number of the radiance from
this channel is only 200-500 per analysis time over the PNA region likely due to
the removal of cloud-affected pixels (Fig. 4). The radiance change in Ctrl shows
an increasing trend from February 10 with a peak increase of ~20% from March
6-7. However, the OmB STD change does not show a corresponding negative
trend, except for significant negative values from March 7-11. The correlation
between the radiance count change and the OmB std change is weakly positive.
In contrast, the TBC amplitude is negatively correlated with the radiance count
change at the significant level of 99.9%, suggesting that the impact of dropsonde
data on radiance counts is mainly achieved through the reduced TBC amplitude.
The anchoring impact on infrared radiance data is more rapidly reflected than
that on the all-sky radiance data.

A representative LWIR channel (i.e., channel 85) that peaks in the upper tro-
posphere (i.e., ~235 hPa) is also investigated (Fig. S6). Both the STD of OmB
and the amplitude of TBC are smaller (< 0.2 K) for the LWIR channel than
those for the MWIR channel, and the two experiments don’t show a significant
difference for either metrics, despite a small increase (< 5%) of the radiance
count in Ctrl from February 14 to March 6 (Fig. S6). Figure S7 shows a chan-
nel peaking at 662 hPa from IASI onboard Metop-A. While the radiance counts
and the std of OmB in the two experiments are not significantly different, the
amplitude of TBC is slightly smaller (~1.3%) in Ctrl than in Deny, again demon-
strating the dropsondes reduced the TBC amplitude required. Results for AIRS
channels in the lower- to mid-troposphere show the radiance count is more asso-
ciated with the std of OmB than the amplitude of TBC (see Fig. S8 for channel
215). Because of the overall small-amplitude TBCs, the variation of radiance
count is more sensitive to the variation of OmB change. Stratospheric channels
for infrared radiances show negligible differences between Ctrl and Deny (not
shown).
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Figure
4. Same as Fig. 2 but for the CrIS MWIR channel 1022 (WF peaks at 585
hPa).

4 Discussion and Conclusion

Can the dropsonde data collected from Atmospheric River Reconnaissance (AR
Recon) affect the assimilation of satellite radiances? If so, how will the impact
vary across different satellite types or different channels for a similar satellite
type? What mechanism might contribute to the impact? This study has ex-
plored answers to these questions by employing data denial experiments for AR
Recon 2020 with the Global Data Assimilation System (GDAS) at National
Centers for Environmental Predictions. The assimilation of dropsondes can in-
crease the amount of tropospheric radiance data that pass the quality control
by 5-10% over the northeastern Pacific and North America (PNA). The most
substantial impacts are shown in the all-sky microwave radiances (e.g., AMSU-
A channels 1-4 and 15). The increased radiance amount is mainly achieved
by the reduced total bias correction amplitude in the experiment Ctrl that
assimilated dropsonde data. Improved background and the resultant smaller
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observation-minus-background have also contributed to the increased number
of radiance observations that are used in GDAS. Impacts on hyperspectral in-
frared sounders in the mid-to lower-troposphere are overall smaller than that
for all-sky microwave soundings, and the increased amount of radiance data is
more associated with the bias correction procedure for CrIS whereas it is more
related to the improved background for the IASI and AIRS channels. Impacts
on stratospheric channels for both microwave soundings and the infrared are
generally negligible.

High-accuracy RO soundings can anchor satellite data in the stratosphere (Cu-
curull et al., 2014). The anchoring effects shown in Cucurull et al. (2014) are
focused on higher altitudes such as the 10 hPa level. This study examines the
anchoring impact of dropsonde profiles at lower altitudes (i.e., from near the sur-
face to 400 hPa), where dropsondes are the dominant conventional observations
(Zheng et al., 2021a) and RO soundings have degraded quality and quantity.
One notable advantage of RO soundings is its global coverage and availability
for all data assimilation cycles. However, our results have shown that even with
the limited number of AR Recon flights and relatively localized sampling re-
gions, dropsondes can act as effective anchor data for the PNA region and the
Northern Hemisphere, particularly in the lower- to mid-troposphere.

The direct impact of AR Recon dropsonde on forecast skills of numerical weather
models has been demonstrated in Zheng et al. (2021). The present study
demonstrates their indirect impact on the model analysis and the forecasts by
anchoring the assimilation of dropsondes. This study fills a gap in the research
on how conventional data can impact the use of remotely-sensed data and help
to improve the assimilation of radiance channels in the lowest atmosphere, where
most high-impact weather events occur.

AR Recon also produces other observations that can be useful as anchoring data.
Drifting buoys measuring sea level pressure and sea surface temperature are
deployed during AR Recon to supplement the existing Global Drifter Program
buoys. Airborne RO soundings are collected during AR Recon missions (Haase
et al., 2021). These observations can provide critical anchor data over a generally
data-sparse region. Follow-up work could focused on the impact of such data on
radiance assimilation.
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Introduction  

This supporting material includes two supplemental tables to summarize the observation 
types assimilated in the experiments (Table S1) and to list the dates for 17 IOPs during 
2020 AR Recon (Table S2). We consider that this information will provide additional 
detailed contents for readers. 

 
Conventional data Remotely sensed data 

AR Recon flight-level and dropsondes1 
Aircraft/Pilot reports (AI/PIREP) 
Commercial aircraft 
- Aircraft Communications Addressing 

and Reporting system (ACARS) 
- Aircraft Meteorological Data Relay 

(AMDAR) 
Radiosondes (fixed land, ship, and mobile 
land) 
Other reconnaissance flight-level and 
dropsondes (RECCO) except for AR Recon 
data 
Synoptic stations 
Coastal-Marine Automated Network (C-
MAN)  
Tide gauge 
Ships and buoys (drifting and moored) 
 
1 This dataset is not assimilated in the Deny 
experiments. 

Atmospheric Motion Vectors (AMVs) 
Spaceborne GPS radio occultation (RO)  
Next Generation Weather Radar (NEXRAD) wind 
The Advanced Scatterometer wind (ASCAT) 
The Advanced Microwave Sounding Unit-A 
(AMSU-A) onboard Metop-A, Metop-B, Metop-C, 
N15, N18, N19 
Atmospheric Infrared Sounder (AIRS) on Aqua 
Cross track infrared sounder (CRIS) on N20, npp 
Infrared Atmospheric Sounding Interferometer 
(IASI) 
The Special Sensor Microwave Imager/Sounder 
(SSMI/S) on f17 
Geostationary Operational Environmental Satellite 
(GOES) – Sounder 
The Advanced Baseline Imager (ABI) on GOES-R 
series (only monitoring) 
Ozone Monitoring Instrument (OMI) 
Global Ozone Monitoring Experiment (GOME) 

Table S1. List of conventional and remotely sensed data assimilated in the experiments 
with the GDAS system at NCEP. 
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IOPs Dates IOPs Dates 
2020IOP1 24 Jan 2020 2020IOP10 21 Feb 2020 
2020IOP2 29 Jan 2020 2020IOP11 24 Feb 2020 
2020IOP3 31 Jan 2020 2020IOP12 2 Mar 2020 
2020IOP4 4 Feb 2020 2020IOP13 7 Mar 2020 
2020IOP5 5 Feb 2020 2020IOP14 8 Mar 2020 
2020IOP6 6 Jan 2020 2020IOP15 9 Mar 2020 
2020IOP7 14 Feb 2020 2020IOP16 10 Mar 2020 
2020IOP8 15 Feb 2020 2020IOP17 11 Mar 2020 
2020IOP9 16 Feb 2020   

Table S2. List of AR Recon IOPs in 2020 and the targeted analysis dates. All the model 
analyses are at 0000 UTC. 
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