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Abstract

This study presents a new method of centroid moment tensor (CMT) data inversion to estimate time-dependent regional stress

fields. A Gaussian process (GP) is applied to resolve a computational difficulty of the existing basis function expansion method

in analyzing high-dimensional data including time dependence. A critical step in the formulation is an analytical derivation

of the relationship of the covariance function, which is a key ingredient of GP, between CMT data and a model stress field

based on an observation equation. Applications to CMT data in and around Japan after the 2011 Tohoku earthquake show the

efficiency and validity of the method, which clarifies that the stress field has small-scale heterogeneity in space and long-term

stability in time for most regions. Additionally, significant temporal variations are observed around the margin of the focal

region of the 2011 event, the sense of which is opposite in the landward side and the oceanward side. GP would be particularly

effective in geophysical inversions of high-dimensional data distributed in a broad region.

Hosted file

essoar.10510737.1.docx available at https://authorea.com/users/525865/articles/596072-time-

variable-stress-inversion-of-centroid-moment-tensor-data-using-gaussian-processes

1

https://authorea.com/users/525865/articles/596072-time-variable-stress-inversion-of-centroid-moment-tensor-data-using-gaussian-processes
https://authorea.com/users/525865/articles/596072-time-variable-stress-inversion-of-centroid-moment-tensor-data-using-gaussian-processes


Tomohisa Okazaki1, Yukitoshi Fukahata2, and Naonori Ueda1

1RIKEN Center for Advanced Intelligence Project, Japan.
2Disaster Prevention Research Institute, Kyoto University, Japan.

Corresponding author: Tomohisa Okazaki (tomohisa.okazaki@riken.jp)

Key Points:

• Gaussian processes are applied to invert time variation of stress fields from
centroid moment tensor data in tractable computational costs.

• The relation between stress and centroid moment tensors is analytically
derived as a covariance function based on an observation equation.

• The estimated stress field exhibits small-scale heterogeneity in space,
whereas exhibits long-term stability in time.

Abstract

This study presents a new method of centroid moment tensor (CMT) data inver-
sion to estimate time-dependent regional stress fields. A Gaussian process (GP)
is applied to resolve a computational difficulty of the existing basis function ex-
pansion method in analyzing high-dimensional data including time dependence.
A critical step in the formulation is an analytical derivation of the relationship
of the covariance function, which is a key ingredient of GP, between CMT data
and a model stress field based on an observation equation. Applications to CMT
data in and around Japan after the 2011 Tohoku earthquake show the efficiency
and validity of the method, which clarifies that the stress field has small-scale
heterogeneity in space and long-term stability in time for most regions. Addi-
tionally, significant temporal variations are observed around the margin of the
focal region of the 2011 event, the sense of which is opposite in the landward
side and the oceanward side. GP would be particularly effective in geophysical
inversions of high-dimensional data distributed in a broad region.

Plain Language Summary

The stress state in the Earth’s crust is important to understand the generation
of earthquakes and tectonic processes, and can be estimated from inversion anal-
yses of seismological data. In this study, using the Gaussian process in machine
learning, we develop a method for estimating 4-D spatiotemporal stress fields,
which is difficult to obtain in an existing method due to high computational
costs. The Gaussian process, which is suitable for high-dimensional data, has
usually been applied to regression and classification problems. To use the Gaus-
sian process for the stress inversion, we derive a physical relation between stress
and seismological data. The developed inversion method is applied to centroid
moment tensor data after the 2011 Tohoku earthquake, Japan. The 3-D stress
fields obtained by the developed and the existing methods are consistent, which
guarantees the validity of the developed method. The 4-D stress field obtained
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by the developed method shows significant temporal variations around the mar-
gin of the large slip area of the Tohoku earthquake. The Gaussian process would
be useful for inverse modeling of various high-dimensional geophysical data.

1 Introduction

The stress state in the Earth’s crust is crucial to understand the generation of
earthquakes and tectonic processes such as mountain building. Because direct
measurements of the stress state are costly and limited to shallow parts of the
crust, the stress state is commonly estimated from other sources of information.
Stress inversion was initially applied to geological data (e.g., Angelier, 1979),
and later extended to seismological data of focal mechanisms (e.g., Gephart &
Forsyth, 1984; Michael, 1987; Angelier, 2002) and P-wave first motions (e.g.,
Rivera & Cisternas, 1990; Horiuchi et al., 1995; Abers & Gephart, 2001).

These methods have usually assumed a uniform (0-D) stress state. Therefore,
model regions have been subdivided to discuss spatial and temporal variations
of the stress field (e.g., Hardebeck & Hauksson, 2001). However, this may lead
to apparent changes of the stress field due to scattering of earthquake data.
To rectify it, Hardebeck & Michael (2006) developed a damped least-square
method of focal mechanism data, which minimized the difference in the stress
state between adjacent subareas. This was further extended to a nonlinear
inversion with a fully Bayesian formalism (Carlson et al., 2018). Iwata (2018)
also constructed a spatially continuous inversion method of P-wave first motion
data. These methods were applied to estimate 1-D temporal and 2-D spatial
variations of regional stress fields.

The aforementioned inversion methods are based on the Wallace-Bott hypoth-
esis that a slip on a fault occurs in parallel to the direction of the maximum
shear stress on that fault (Wallace, 1951; Bott, 1959), but its validity has been
controversial (Pollard et al., 1993; Twiss & Unruh, 1998). On the other hand,
Terakawa & Matsu’ura (2008) proposed a stress inversion method using centroid
moment tensor (CMT) data that did not assume the Wallace-Bott hypothesis.
It instead assumes that stress release due to earthquakes is proportional to
stress field surrounding them, which is expected to hold statistically (McKenzie,
1969). The formulation of Terakawa & Matsu’ura (2008) naturally incorporated
the spatial extent of earthquake faults, and estimated spatially continuous stress
fields. Terakawa & Matsu’ura (2010) applied the method to illuminate the 3-D
spatial variation of the stress field in and around Japan. The estimated field
clarified large-scale stress states caused by plate interactions as well as charac-
teristic local stress patterns. Modeling the temporal variation of regional stress
fields may reveal tectonic loading and stress changes due to large earthquakes.
Therefore, this study performs the CMT data inversion to estimate 4-D spa-
tiotemporal variation of stress fields.

However, the basis function expansion (BFE) method used in Terakawa &
Matsu’ura (2008, 2010) turns out computationally intractable for 4-D data.
In their method, the computational cost scales with the number of model pa-
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rameters 𝑀 : memory consumption 𝒪(𝑀2) and computational amount 𝒪(𝑀3).
𝑀 exponentially increases with data dimensions, because basis functions must
be placed in each dimension. As a result, computation is prohibitive for high-
dimensional data, which is known as the curse of dimensionality (Bellman, 1957).
In regression analysis, the Gaussian process (GP) has been applied to overcome
this problem (e.g., Rasmussen and Williams, 2006). GP performs a regression
based on Bayesian inference by defining covariance functions on the data space.
The computational cost of GP scales with the number of data 𝑁 irrespective
of data dimensions: memory consumption 𝒪(𝑁2) and computational amount
𝒪(𝑁3). This approach thus resolves the difficulty in analyzing high-dimensional
data.

This study applies GP to perform the CMT data inversion. However, there
is a critical difference between regression and inversion analyses. Regression
analyses construct a fitting model that interpolates (and extrapolates) observa-
tional data, which requires data and a model belong to the same physical space.
It is therefore sufficient to specify a covariance function in this physical space.
In contrast, inversion analyses infer a model that has a different physical unit
from observed data. Data and a model must have some physical relationships
(i.e. observation equation), and covariance functions are defined on both the
data and model spaces. In this study, by deriving an analytical expression of a
covariance function that relates CMT data and a stress field, we make it pos-
sible to apply GP to CMT data to estimate a stress field. As we will see, this
formulation considerably reduces the computational cost in a 3-D analysis, and
realizes a 4-D analysis in a tractable computational cost.

Recent studies utilized deep neural networks to estimate focal mechanisms
(Kuang et al., 2021), P-wave first motion polarities (Uchide, 2020), and CMT
solutions (Steinberg et al., 2021), which constitute datasets for stress inversions.
These networks were applied to waveform data of individual earthquakes. On
the other hand, this study utilizes GP to invert regional stress fields from CMT
data in target regions.

The remainder of the article is organized as follows. Section 2 describes the for-
mulation of the CMT data inversion including its solution methods. In Section
3, these methods are applied to observational data in and around Japan. Sec-
tion 4 discusses general features of BFE and GP as inversion methods. Section
5 presents conclusions of this study.

2 Formulation

This section formulates the CMT data inversion including the solution methods.
The key concept of CMT data inversion and its solution method using BFE are
outlined in Sections 2.1 and 2.2, respectively, following the work of Terakawa
& Matsu’ura (2008). Section 2.3 presents a review of GP regression (e.g., Ras-
mussen and Williams, 2006). In Section 2.4, we develop a solution method of the
CMT data inversion using GP, and describe the inclusion of time dependence.

2.1 Centroid moment tensor data inversion
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The CMT data inversion estimates a stress field from CMT solutions of earth-
quakes. Based on a premise that stress release due to earthquakes is propor-
tional to the stress field around them, Terakawa & Matsu’ura (2008) derived a
relationship between CMT data and a stress field as

𝑀ij (x, 𝐿) = 𝑀0
(2𝜋𝐿2)3/2 ∫ 𝜏ij(�) exp (− 1

2𝐿2 |� − x|2) 𝑑� + 𝐸ij. (1)
Here, 𝑀ij (x, 𝐿) is a CMT solution of an earthquake with a centroid position
x and a fault dimension 𝐿, 𝑀0 is a seismic moment, 𝜏ij(�) is a stress field at
a position �, and 𝐸ij is an observational error. 𝐿 is related with the seismic
moment 𝑀0 as 𝐿 = 𝑐𝑀1/3

0 with a constant 𝑐, and incorporates the effect of
finite faults into stress fields.

Because estimation errors of CMT data are expected to be proportional to 𝑀0,
we normalize Eq. (1) as

𝑚ij (x, 𝐿) = ( 1
2𝜋𝐿2 )3/2 ∫ 𝜏ij(�) exp (− 1

2𝐿2 |� − x|2) 𝑑� + 𝑒ij, (2)
where 𝑚ij (x, 𝐿) is a normalized CMT solution. Then, observational errors obey
independent and identically distributed Gaussian distribution: 𝑒ij ∼ 𝒩(0, 𝜎2

𝑛).
Eq. (2) constitutes an observation equation in the CMT data inversion. In the
following, we omit the subscripts ij of tensor components and denote as 𝜏 (x)
and 𝑚 (x, 𝐿) for brevity of notation.

2.2 Basis function expansion

Terakawa & Matsu’ura (2008) solved this inverse problem using BFE as formu-
lated in Yabuki & Matsu’ura (1992). The stress field is expressed as a linear com-
bination 𝜏 (x) = � (x)𝑇 a of 𝑀 fixed basis functions � (x) = (Φ1 (x) , … , Φ𝑀 (x))𝑇

with a vector of model parameters a. The observation equation and prior infor-
mation are represented as probability distributions of a, using hyperparameters
𝜎𝑛 (observational error) and 𝜌 (penalty on the roughness of a model), respec-
tively. By combining the two probability distributions using Bayes’ rule, the
optimal values of the model parameters â and its covariance matrix C[â] are
obtained as

â = (H𝑇 H + 𝛼2R)−1 H𝑇 d̃, (3)

C[â] = 𝜎2
𝑛 (H𝑇 H + 𝛼2R)−1. (4)

Here, d̃ = (𝑚1, … , 𝑚𝑁)𝑇 is a vector of 𝑁 observed CMT data, H is an 𝑁 × 𝑀
matrix that represents the observation equation, R is an 𝑀 × 𝑀 matrix that
represents prior information, and 𝛼 = 𝜎𝑛/𝜌. The optimal values of the hyperpa-
rameters are determined by minimizing Akaike’s Bayesian information criterion
(Akaike, 1980), which is equivalent to maximizing the marginal likelihood in
this problem setting. The mean and variance of the stress 𝜏∗ at an estimation
position x∗ are given by

𝜇∗= � (x∗)𝑇 â , (5)

𝜎2
∗ = � (x∗)𝑇 C[â]� (x∗). (6)
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Computational cost scales with the size of the 𝑀 × 𝑀 matrix (H𝑇 H + 𝛼2R)
in Eqs. (3) and (4).

2.3 Gaussian process regression

This subsection outlines a method of GP regression using the notation of stress
fields. GP is a stochastic process that can be regarded as an infinite-dimensional
Gaussian distribution over functions. Suppose that an unknown stress field 𝜏(x)
obeys a GP 𝜏 ∼ GP(𝜇, 𝑘) with a mean function 𝜇(x) and a covariance function
𝑘 (x𝑖, x𝑗). This means that 𝜏(x) at arbitrary finite positions (x1, … , x𝑛) obeys
a multivariate Gaussian distribution:

⎛⎜
⎝

𝜏 (x1)
⋮

𝜏 (x𝑛)
⎞⎟
⎠

∼ 𝒩 ⎛⎜
⎝

⎛⎜
⎝

𝜇 (x1)
⋮

𝜇 (x𝑛)
⎞⎟
⎠

, ⎛⎜
⎝

𝑘 (x1, x1) ⋯ 𝑘 (x1, x𝑛)
⋮ ⋱ ⋮

𝑘 (x𝑛, x1) ⋯ 𝑘 (x𝑛, x𝑛)
⎞⎟
⎠

⎞⎟
⎠

. (7)

The two functions 𝜇 (x) and 𝑘 (x𝑖, x𝑗) describe our prior knowledge on the stress
field 𝜏 (x) without observational data. Let us set

𝜇 (x) = 0, (8)

𝑘 (x𝑖, x𝑗) = 𝜎2
𝑠 exp (− 1

2𝜎2
𝑙

|x𝑖 − x𝑗∣
2). (9)

Eq. (8) states that stress shows no preferred directions a priori. The covariance
function in Eq. (9) is called a squared exponential kernel, and states that the
stress field smoothly varies with characteristic amplitude 𝜎𝑠 and correlation
length 𝜎𝑙. The prior distribution of stress 𝜏∗ at a position x∗ is thus given by:

𝜏∗ ∼ 𝒩 (𝜇 (x∗) , 𝑘 (x∗, x∗)) = 𝒩(0, 𝜎2
𝑠). (10)

Suppose that we have 𝑁 direct measurements of the crustal stress d =
(𝜏1, … , 𝜏𝑁)𝑇 with an observational error 𝜎𝑛, and seek an estimate 𝜏∗ at an
arbitrary position x∗. This corresponds to a regression problem. According to
the model assumption (Eq. 7), the joint distribution of d and 𝜏∗ is given by:

(d
𝜏∗

) ∼ 𝒩 ((0
0) , (K + 𝜎2

𝑛I k∗
k𝑇

∗ 𝑘∗∗
)), (11)

where Kij = 𝑘(x𝑖, x𝑗), (k∗)𝑖 = 𝑘 (x𝑖, x∗), and 𝑘∗∗ = 𝑘 (x∗, x∗) are covariance
functions evaluated at data and estimation positions, and I is the 𝑁 × 𝑁 unit
matrix. Using the formula of a conditional distribution of Gaussian distributions,
the posterior distribution of 𝜏∗ for given data d is calculated as

𝜏∗|d ∼ 𝒩(𝜇∗, 𝜎2
∗ ), (12)

𝜇∗=k𝑇
∗ (K + 𝜎2

𝑛I)−1d, (13)

𝜎2
∗ =𝑘∗∗−k𝑇

∗ (K + 𝜎2
𝑛I)−1k∗. (14) The optimal values of the hyperparameters

𝜎𝑠, 𝜎𝑙 and 𝜎𝑛 are determined by maximizing the marginal likelihood (marginal-
ization over the function values; see Rasmussen and Williams, 2006), which is
given by
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𝐿(𝜎𝑠, 𝜎𝑙, 𝜎𝑛) = (2𝜋)−𝑁/2 ∣K + 𝜎2
𝑛I∣−1/2 exp [− 1

2 d𝑇 (K + 𝜎2
𝑛I)−1 d]. (15)

Here, the dependence on 𝜎𝑠 and 𝜎𝑙 is contained in the matrix K (eq. 9).

As shown in Eqs. (13) and (14), computational cost scales with the size of
the 𝑁 × 𝑁 matrix (K + 𝜎2

𝑛I) in GP. BFE estimates 𝜇∗ and 𝜎∗ through the
estimation of model parameters a and C (a), whereas GP directly estimates 𝜇∗
and 𝜎∗ from observational data d without introducing model parameters. This
leads to a good scalability in high-dimensional data.

2.4 Gaussian process inversion

We now formulate the CMT data inversion using GP. Suppose that we have
CMT solutions of 𝑁 earthquakes d̃ = (𝑚1, … , 𝑚𝑁)𝑇 instead of stress measure-
ments. Then, the joint distribution of d̃ and 𝜏∗ would be written as:

( d̃
𝜏∗

) ∼ 𝒩 (( ̃�
0) , (K̃ + 𝜎2

𝑛I k̃∗
k̃𝑇

∗ 𝑘∗∗
)). (16)

A major difference from Eq. (11) is that two physical quantities, 𝑚 (x, 𝐿) and
𝜏 (x), are involved in a single expression. Two points must be clarified: (i)
the mean and covariance functions of CMT solutions, ̃�𝑖 = ̃𝜇(x𝑖, 𝐿𝑖) and K̃ij =
�̃� ((x𝑖, 𝐿𝑖), (x𝑗, 𝐿𝑗)), must be properly defined; (ii) different kinds of variables
𝜏 (x) and 𝑚 (x, 𝐿) must be properly treated in the cross term k̃∗.

For (i), we should note that the mean and covariance functions of CMT solutions
cannot be arbitrarily defined; instead, they must be related with those of the
stress field (Eqs. 8 and 9) through the observation equation (Eq. 2). The
expressions of the mean and covariance can be analytically derived as

̃𝜇 (x, 𝐿) = 0, (17)

�̃� ((x𝑖, 𝐿𝑖), (x𝑗, 𝐿𝑗)) = 𝜎2
𝑠 ( 𝜎2

𝑙
𝜎2

𝑙 +𝐿2
𝑖 +𝐿2

𝑗
)

3/2
exp [− |x𝑖−x𝑗∣2

2(𝜎2
𝑙 +𝐿2

𝑖 +𝐿2
𝑗 ) ]. (18)

The derivation is presented in Appendix A. Eq. (17) states that CMT solutions
show no preferred direction a priori. In Eq. (18), the spatial dependence appears
only as the distance between centroid positions |x𝑖 − x𝑗∣, which indicates no
special position or direction. The correlation length is (𝜎2

𝑙 + 𝐿2
𝑖 + 𝐿2

𝑗)1/2: larger
earthquakes affects the stress field over a broader area. The variance at x𝑖 = x𝑗

is 𝜎2
𝑠 [𝜎2

𝑙 /(𝜎2
𝑙 + 𝐿2

𝑖 + 𝐿2
𝑗 )]3/2: larger earthquakes have weaker influence on the

stress field at the centroid position. These characteristics satisfy the reciprocal
relationship defined in eq. (2), in which the contribution of each earthquake to
the stress field is independent of seismic moment.

For (ii), as shown in Eq. (2), a CMT solution 𝑚 (x, 𝐿) is modeled as a weighted
average of the stress field 𝜏(x) using the Gaussian distribution with a charac-
teristic length 𝐿. Because the Gaussian distribution converges to Dirac’s delta
function as 𝐿 → 0, we obtain the following relation:

𝑚 (x, 0) = ∫ 𝜏 (�) 𝛿(� − x)𝑑� = 𝜏(x) . (19)
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This indicates that the stress field 𝜏(x) can be regarded as a CMT solution
𝑚 (x, 0) of length L = 0. In other words, the model space (stress) can be
regarded as a subspace of the data space (CMT solution). The consistency is
certainly satisfied as �̃� ((x𝑖, 0), (x𝑗, 0)) = 𝑘 (x𝑖, x𝑗), which can be verified from
Eqs. (9) and (18). Therefore, the cross term between the data and the model
is calculated from the covariance function �̃� on the data space as

(k̃∗)𝑖 = �̃� ((x𝑖, 𝐿𝑖), (x∗, 0)) = 𝑠2 ( 𝜎2
𝑙

𝜎2
𝑙 +𝐿2

𝑖
)

3/2
exp [− |x𝑖−x∗|2

2(𝜎2
𝑙 +𝐿2

𝑖 ) ]. (20)
In this way, the procedure of GP regression (Eqs. 12–14) can be applied to the
CMT data inversion, under the modification in Eqs. (16)–(20).

When a time-dependent stress field 𝜏 (x, 𝑡) is modeled, the covariance function
can be naturally extended as

𝑘((x𝑖, 𝑡𝑖) , (x𝑗, 𝑡𝑗)) = 𝜎2
𝑠 exp (− 1

2𝜎2
𝑙

|x𝑖 − x𝑗∣
2 − 1

2𝜎2
𝑡

|𝑡𝑖 − 𝑡𝑗∣
2), (21)

where 𝜎𝑡 is a hyperparameter corresponding to the correlation time. On the
other hand, the observation equation (Eq. 2) remains unchanged, considering
that stress release should be determined by the stress state at the timing of
earthquake occurrences. Then, the covariance function of CMT data 𝑚 (x, 𝑡, 𝐿)
is expressed as

�̃� ((x𝑖, 𝑡𝑖, 𝐿𝑖), (x𝑗, 𝑡𝑗, 𝐿𝑗)) = 𝜎2
𝑠 ( 𝜎2

𝑙
𝜎2

𝑙 +𝐿2
𝑖 +𝐿2

𝑗
)

3/2
exp [− |x𝑖−x𝑗∣2

2(𝜎2
𝑙 +𝐿2

𝑖 +𝐿2
𝑗 ) − 1

2𝜎2
𝑡

|𝑡𝑖 − 𝑡𝑗∣
2].

(22)

3 Applications

We applied the CMT data inversion methods of BFE and GP to real data in
and around Japan. The CMT data from just after (not including) the M9.0
Tohoku earthquake (11 March 2011) until 31 December 2019 were obtained
from the F-net broadband seismograph network operated by the National Re-
search Institute for Earth Science and Disaster Resilience (NIED). The events
satisfying the seismic moment 𝑀0 ≥ 1015 [Nm] were selected in the analysis;
we confirmed that these events follow the Gutenberg-Righter law of magnitude-
frequency distributions. A seismic moment was converted to a fault dimension
by

𝐿 = 4 × 10−5 ( 𝑀0[Nm]
3𝜋 )

1/3
[km], (23)

following the empirical relation used in Terakawa & Matsu’ura (2008).

Here, we summarize the display procedure of inversion results. Stress fields are
mostly shown at 10 km depth. The beach balls are colored based on the rake
angle to distinguish mechanism types (Table 1). We also use the stress regime 𝐴𝜙
(Simpson, 1997) to visualize a continuous change of stress fields. This quantity
is based on Anderson’s theory that one of the three principal axes should be
nearly vertical at the ground surface (Anderson, 1905), but the quantity 𝐴𝜙 can
be discontinuous where this assumption breaks down. Therefore, light colors
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are used where the dip angle of the most vertical axis is less than 60∘ (less than
50∘ for T axis) on the basis of the criterion of Frohlich (1992).

The certainty of estimations can be measured by the ratio 𝑟 = ‖�∗‖ /𝜎∗ of the
norm of a posterior mean to a posterior standard deviation. The quantities
in the right hand side are defined by Eqs. (5) and (6) in BFE, and by Eqs.
(13) and (14) in GP (the norm is computed for the six components of stress).
𝑟 > 1 indicates that the estimated stress pattern is statistically significant,
whereas 𝑟 ≪ 1 indicates that the estimated stress pattern is unreliable because
of inconsistent or too sparse data points. In the following, beach balls are plotted
by large markers for 𝑟 > 1 and by small markers for 1 ≥ 𝑟 > 0.1, and 𝐴𝜙 is
plotted for 𝑟 > 1.

Table 1. Classification of mechanism types based on the rake angle.

Mechanism type Range of rake angle (deg)
Normal (−120, −60)
Reverse (60, 120)
Normal-oblique (−150, −120) or (−60, −30)
Reverse-oblique (30, 60) or (120, 150)
Strike-slip Otherwise

3.1 Stress field in a local region

First, the two methods are compared with the same dataset in the Tohoku
region. The model area is set as the 400 km × 400 km square with the center
at (142∘𝐸, 39∘𝑁) down to 100 km depth, where earthquake occurrences were
strongly activated after the 2011 Tohoku earthquake (Fig. 1a, b). The number
of data is 𝑁 = 2423. In BFE, tricubic B-splines are placed with 20 km and
10 km intervals in horizontal and vertical directions, respectively (Terakawa &
Matsu’ura, 2010), which results in the number of model parameters 𝑀 = 9375.
As a result, GP reduces the memory consumption by ~1/15 and computational
amount by ~1/60.

The optimal values of the hyperparameters in GP are listed in Table 2. The
observational error 𝜎𝑛 = 0.27 is identical to that in BFE, which implies the
consistency of the two methods. The stress amplitude 𝜎𝑠 = 0.42 is not much
larger than 𝜎𝑛. This may be caused by scattered orientations of earthquake
slips, which utilize existing weak faults (McKenzie, 1969). It should be noted
that Eq. (2) does not hold for individual events, but is satisfied statistically.
Because 𝜎𝑛 contains this scattering of CMT data, 𝜎𝑛 can be comparable to 𝜎𝑠.
The correlation length 𝜎𝑙 = 14 km indicates small-scale heterogeneities of the
stress field.

The estimated stress fields are shown in Figure 1c–f. BFE (Figure 1c, e) and GP
(Figure 1d, f) produce similar spatial changes of stress patterns to one another
where the estimation is statistically reliable (𝑟 > 1). This suggests the validity
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of GP as a CMT data inversion method. On the other hand, in inland areas with
few events, amplitudes of the stress estimated by GP, which is often 𝑟 ≤ 0.1,
is significantly smaller than that by BEF, which is 𝑟 > 0.1 for the whole area
(Figure 1c, d). To see this more clearly, the norm of mean ‖�∗‖ and uncertainty
𝜎∗ of the estimated stress fields are shown in Figure 2. For regions with many
earthquakes, stress fields of a large mean with a small standard deviation are
obtained by both methods. For regions with few earthquakes, however, small
but finite mean values are estimated by BFE, whereas almost 0 mean values are
estimated by GP. This difference results from the difference in prior information,
which will be discussed in Section 4.4.

Table 2. List of the optimal values of the hyperparameters.

Section Region Number
of data

Time
depen-
dence

𝜎𝑠 𝜎𝑛 𝜎𝑙
(km)

𝜎𝑡
(year)

Tohoku No –
Japan No –
Japan Yes
Northeast
Japan

Yes

Southwest
Japan

Yes

9



Figure 1. Comparison of the CMT data inversion methods of BFE and GP. (a)
Distribution of earthquakes in the Tohoku region. Colors represent focal depths.
A large star denotes the centroid location of the 2011 Tohoku earthquake. (b)
Focal mechanisms of earthquakes with depths less than 20 km. Colors repre-
sent mechanism types. A large beach ball denotes the focal mechanism of the
2011 Tohoku earthquake. (c, d) Beach ball representation of the stress fields
estimated by BFE (c) and GP (d). Beach balls are plotted by large markers
for the region with 𝑟 > 1, by small markers for 1 ≥ 𝑟 > 0.1, and no marker for
𝑟 ≤ 0.1, where 𝑟 represents the estimation certainty (see the text). (e, f) Stress
regime 𝐴𝜙 estimated by BEF (e) and GP (f). 𝐴𝜙 is plotted for the region with
𝑟 > 1.
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Figure 2. Mean (left) and uncertainty (right) of the stress fields in the To-
hoku region estimated by BFE (top) and GP (bottom). (a, c) Norm ‖�∗‖of the
posterior mean. (b, d) Posterior standard deviation 𝜎∗.

3.2 Stress field in and around Japan

Next, the stress state in and around Japan is estimated only by GP. The number
of data is 𝑁 = 9965 (Figure 3a, b), while the model region constructed by
Terakawa & Matsu’ura (2010) has 𝑀 = 146, 848 basis functions. As a result,
GP reduces the memory consumption by ~1/200 and computational amount
by ~1/3200. In fact, the model region was divided to nine subareas to reduce
the computational cost in Terakawa & Matsu’ura (2010). GP enables us to
perform the inversion analysis for the whole area at one time. The locations of
seismic events span wider than 20∘ in latitude and longitude, and so the spherical
geometry of the Earth cannot be ignored. Therefore, the spatial distance, |x𝑖 −
x𝑗|, in covariance functions is calculated according to the geographic coordinate
system.

The optimal values of the hyperparameters are listed in Table 2. The correlation
length 𝜎𝑙 = 21 km is larger than that in the Tohoku region. This suggests that
the stress state in the Tohoku region has smaller-scale heterogeneities than in
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whole Japan. On the other hand, 𝜎𝑠 and 𝜎𝑛 have similar values, which suggests
similar scattering of individual focal mechanisms. The estimated stress field
is shown in Figure 3c and d. General features are similar to previous studies
that analyzed earthquakes before the 2011 great Tohoku event (Terakawa &
Matsu’ura, 2010; Yukutake et al., 2015) except for the focal area of the 2011
event where the stress state is a normal fault type in this study. In the Pacific
Ocean, the stress state is a reverse fault type along the trench axes and a normal
fault type in the outerrise. In the Japanese Islands, the stress state is a reverse
fault type in Hokkaido and northeast Japan and a strike-slip fault type in central
and southwest Japan.

12



Figure 3. (a) Distribution of earthquakes in and around Japan used in the
analysis of Section 3.2. Colors represent focal depths. Two boxes indicate
the regions analyzed in Section 4.4. (b) Mechanism types of earthquakes with
depths less than 20 km. Colors represent mechanism types. (c) Beach ball
representation of stress fields. (d) Stress regime 𝐴𝜙. See Figure 1 for color
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representations.

3.3 Time variation of the stress field in and around Japan

Finally, the 4-D spatiotemporal variation of the stress state is estimated in and
around Japan. The dataset is the same as in Section 3.2. Therefore, the com-
putational cost of the GP inversion is almost identical to the time-independent
modeling in Section 3.2. In contrast, if we perform the BFE inversion, the num-
ber of basis functions 𝑀 is much larger, because the number of basis functions in
the time axis is multiplied, which leads to practically too heavy computational
cost.

The estimated optimal values of the hyperparameters are listed in Table 2.
The optimal values of 𝜎𝑠, 𝜎𝑛, and 𝜎𝑙 are almost equal to those in the time-
independent modeling, though the optimal value of 𝜎𝑙 slightly increases because
𝜎𝑙 has a negative correlation with 𝜎𝑡. The optimal value 𝜎𝑡 = 15 years is
longer than the data period (~8.8 years), which suggests that the stress state is
stable for a long term. To examine the dependence of the result on the hyper-
parameters, the log marginal likelihood is plotted against each hyperparameter
in Figure 4. 𝜎𝑠, 𝜎𝑛, and 𝜎𝑙 are well constrained. As for the correlation time
𝜎𝑡, a short-term variation (𝜎𝑡 < 10 years) is clearly disfavored, whereas a solu-
tion with long-term stability (𝜎𝑡 → ∞) is acceptable. This indicates that time
variation is basically insignificant during the analysis period.

Figure 5 shows time variation of the estimated stress fields during the analysis
period. By setting 𝑡1 at 1 June 2011 and 𝑡2 at 1 June 2019, the change of the
stress field and its uncertainty are calculated as

Δ�∗(x) = �∗ (x, 𝑡2) − �∗ (x, 𝑡1), (23)

Δ𝜎2
∗ (x) = 𝜎2

∗ (x, 𝑡1) + 𝜎2
∗ (x, 𝑡2). (24)

We should note that this does not represent a change before and after the
2011 event, but represents a temporal change after the 2011 event. The result
shows insignificant changes (𝑟 ≤ 0.1) in most regions. Small changes (𝑟 > 0.1)
appear along the trench axes in the Pacific Ocean, and around Niigata and
Kumamoto on land. They well correspond to the areas with many seismic
events during the analysis period (Figure 3a, b). A significant change (𝑟 > 1) is
observed around the focal area of the 2011 Tohoku earthquake. For comparison,
the coseismic slip distribution estimated from teleseismic P-wave data (Yagi &
Fukahata, 2011) are plotted in Figure 5c and d. The regions with significant
stress change coincide with the margin of large slip areas (~1–10 m). The inner,
land-side areas show a change to normal fault types, while the outer, trench-side
areas show a change to reverse fault types. Let us focus on a southern part (36–
37∘N). This area exhibited reverse fault types before the 2011 event (Terakawa
& Matsu’ura, 2010), but a significant number of normal fault type aftershocks
occurred after the 2011 event (e.g., Imanishi et al., 2012). The estimated result
suggests that the stress state has gradually returned to reverse fault types in the
off Ibaraki region, whereas remains in normal fault types in the off Fukushima
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region, as illustrated by the 2016 MW 7.0 off Fukushima earthquake. This may
indicate a long-lived influence of the stress change in this area.

Figure 4. Relation between the log marginal likelihood and the hyperparame-
ters. Dependence on one hyperparameter is plotted by fixing the other hyper-
parameters at the optimal values given in Table 2.
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Figure 5. Time variation of the estimated stress fields from 1 June 2011 to
1 June 2019. (a) Beach ball representation of the change of the stress fields.
(b) Stress regime 𝐴𝜙 of the change of the stress fields. (c) Enlarged map of
(a) in the Tohoku region. (d) Enlarged map of (b) in the Tohoku region. The
trench axis (Bird, 2003) and the estimated slip distribution of the 2011 Tohoku
earthquake (Yagi & Fukahata, 2011) are plotted in (c) and (d). See Figure 1
for color representations. F, Fukushima; I, Ibaraki; K, Kumamoto; N, Niigata.

4 Discussion

In this section, we systematically compare general features of BFE and GP as
inversion methods.

4.1 Computational cost

A primary motivation of developing a CMT data inversion method with GP is
an issue of computational costs. The computational bottleneck of both inversion
methods lies in the calculation of inverse matrices. The size of matrices is equal
to the number of model parameters 𝑀 in BFE whereas to the number of data
N in GP. The number of data per basis function (𝑁/𝑀) controls the relative

efficiency of the two methods. Computational costs and suitable problems of
the two methods are summarized in Table 3.

GP is more efficient for 𝑁/𝑀 < 1 (i.e., underdetermined problems). This in-
equality holds well for problems with high-dimensional, relatively sparse data
for large model regions. CMT solutions are high-dimensional (3-D or 4-D) and
usually determined only for large earthquakes, and the CMT data inversion is
usually suitable for the estimation of background stress fields in a wider area
(Iwata et al., 2019). Therefore, the CMT data inversion is a typical problem
for which GP is effective. In general, modeling of time dependence adds one
additional dimension, which leads to a larger number of 𝑀 , whereas 𝑁 is un-
changed. Therefore, GP is particularly effective for time-dependent modeling.
On the other hand, BFE is more efficient for 𝑁/𝑀 > 1 (i.e., overdetermined
problems). For instance, slip inversion on a 2-D fault using dense InSAR data
(e.g., Fukahata & Wright, 2008) falls into this category. A suitable inversion
method depends on individual problems.

Table 3. Computational costs and suitable problems.

Item Basis function expansion Gaussian process
Controlling factor Number of model parameters 𝑀 Number of data 𝑁
Memory consumption 𝒪(𝑀2) 𝒪(𝑁2)
Computational amount 𝒪(𝑀3) 𝒪(𝑁3)
High-dimensional data � �
Large model region � �
Dense data � �
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4.2 Model region

In BFE, a set of basis functions are defined before an analysis. Basis functions
should be placed densely enough to resolve data variation, and a model region
should be taken large enough to mitigate the artifact caused by model bound-
aries. These requirements must be balanced with an increasing computational
cost. In addition, some problems require a careful treatment of basis functions at
the model boundaries (Fukahata & Wright, 2008; Okazaki et al., 2021). When
continental-scale data are analyzed, basis functions must be set to conform a
spherical Earth (Tape et al., 2009). A careful design is necessary to suppress
modeling errors arising from the setting of model regions.

On the other hand, GP does not require to set a model region. Prior information
and data distributions automatically determine the range of reliable estimations.
The sphericity of the Earth can be easily incorporated by computing the geo-
graphical distance between two positions appropriately (Section 3.2). GP is free
from modeling errors related with the setting of model regions.

4.3 Hyperparameters

Both methods introduce hyperparameters in modeling. A common parameter
𝜎𝑛 represents observational errors in data. The other hyperparameters are dif-
ferent from one another. 𝜌 in BFE is an abstract parameter that controls the
relative importance of data fitting and model smoothness. This type of parame-
ter has been used in other stress inversions (Hardebeck & Michael, 2006; Iwata,
2018). In contrast, covariance functions of GP define physical hyperparame-
ters: characteristic amplitude 𝜎𝑠, correlation length 𝜎𝑙, and correlation time
𝜎𝑡. Therefore, optimal values of them provide direct insights on the nature of
inverted fields, as described in Section 3.

In both methods, optimal values of the hyperparameters are determined by
maximizing the marginal likelihood. In a time-independent model, BFE has
two hyperparameters. In fact, the optimization can be analytically solved for
one variable (Yabuki & Matsu’ura, 1992), and the grid search is needed for
only one variable. GP has three hyperparameters, and the grid search requires
more explorations. Nevertheless, the gradient of the marginal likelihood can be
analytically computed for GP, and the gradient ascent method can be applied
for a model with many hyperparameters.

4.4 Prior information

Both methods are based on Bayesian inference, and prior information is essential
for stable estimations. In BFE, prior information is represented as a probabil-
ity distribution of model parameters. Yabuki & Matsu’ura (1992) imposed a
penalty on the roughness of solutions, which has been widely adopted in later
applications. These constraints are called indirect prior information (Matsu’ura
et al., 2007), and results in the interpolation and extrapolation of solutions into
no data areas. This produces a plausible result in a whole model region, but
may yield a poor-constrained model where data are sparse. In GP, on the other
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hand, prior information is represented as mean and covariance functions on the
data space. It is known that GP regression can be regarded as Bayesian linear
regression using (possibly an infinite number of) basis functions whose prior dis-
tribution penalizes the magnitude of model parameters (Rasmussen & Williams,
2006). This corresponds to direct prior information in Matsu’ura et al. (2007).
A posterior mean 𝜇∗ converges to a prior mean 𝜇 (typically zero) beyond the
range of correlation from data points. Therefore, a nontrivial posterior mean
suggests the significance of estimates, but no information is obtained where data
are sparse. Direct prior information can be easily introduced in BFE, whereas
it cannot be easily removed in GP because the convergence to a prior mean is
a fundamental property.

As shown in Table 2, the optimal value of the correlation length 𝜎𝑙 is significantly
different between the Tohoku region (Section 3.1) and whole Japan (Section 3.2).
This suggests a spatial dependence of the characteristic length on regions. As
an experiment, optimal values of the hyperparameters are searched for north-
east Japan (many earthquakes) and southwest Japan (fewer earthquakes) shown
in Figure 3a. The obtained correlation length 𝜎𝑙 is approximately three times
longer in southwest Japan than in northeast Japan (Table 2). This indicates
that a single hyperparameter value cannot correctly capture the variation of
stress fields with different spatial scales. Spatial (and temporal) uniformity of
prior information is a common limitation on the present modeling in both meth-
ods. In BFE, Fukuda et al. (2004, 2008) introduced a time-varying smoothing
regularization in the inversions of transient crustal deformation, although its
application to real data still seems to be not easy (Kano et al., 2018; Sakaue et
al., 2019). In GP, the limitation results from the use of a stationary covariance
function that depends only on the difference (x𝑖 − x𝑗) and (𝑡𝑖 − 𝑡𝑗). Introducing
a nonstationary covariance functions (e.g. Paciorek & Schervish, 2004) may
resolve this limitation.

5 Conclusions

A continuous spatiotemporal variation of the seismogenic stress field was esti-
mated from the CMT data inversion. Because an inversion with BFE is com-
putationally prohibitive for 4-D data, an inversion method based on GP was
developed to perform inversions in a tractable computational cost. An essential
step in the formulation is the analytical derivation of the covariance function
of CMT solutions (Eq. 18) from that of stress (Eq. 9) and the observation
equation (Eq. 2).

The analysis in a local region (Section 3.1) showed that the two methods pro-
duced consistent estimations where data were dense, whereas a significant dif-
ference in the estimation certainty was found where data were sparse. This
resulted from the difference in prior information (Section 4.4). GP enabled us
to perform an inversion analysis for whole Japan at one time (Section 3.2). The
estimated stress field exhibited a small-scale (~20 km) heterogeneity. GP also
enabled a 4-D time-dependent modeling in a similar computational cost to a
3-D time-independent modeling (Section 3.3). The estimated stress field exhib-
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ited a longer term stability than the data period, although a significant time
variation was found around the margin of the large slip area of the 2011 Tohoku
earthquake.

As an inversion method, GP does not require the design of model regions, and
its hyperparameters has clear physical meanings. GP instead requires more
hyperparameters to be optimized than the BFE method, and estimated fields
inevitably converge to a prior mean where data are sparse. The inversion with
GP is computationally efficient in a high-dimensional modeling. This approach
would therefore be effective to estimate 3-D and/or 4-D field variations in various
geophysical data inversions.

Appendix A

In this appendix, we derive the mean and covariance functions ̃𝜇 and �̃� (Eqs.
17 and 18) of CMT solutions 𝑚(x, 𝐿) from those of stress 𝜏(x) (Eqs. 8 and
9). First, we consider the mean function ̃𝜇. Because 𝑚(x, 𝐿) is linearly related
to 𝜏(x) (Eq. 2) that obeys a GP, 𝑚(x, 𝐿) also obeys a GP. Hence, the mean
function is calculated from the observation equation (Eq. 2) as

̃𝜇 (x, 𝐿) = 𝔼 [𝑚 (x, 𝐿)] = 𝔼 [( 1
2𝜋𝐿2 )

3
2 ∫ 𝜏 (�) exp (− 1

2𝐿2 |� − x|2) 𝑑�]. (A1). Be-
cause the expectation value 𝔼[⋅] operates only on a random variable 𝜏 (�), we
obtain

̃𝜇 (x, 𝐿) = ( 1
2𝜋𝐿2 )

3
2 ∫ 𝔼[𝜏 (�)] exp (− 1

2𝐿2 |� − x|2) 𝑑� = 0, (A2)
For the second equal sign, we used Eq. (8): 𝔼 [𝜏 (�)] = 𝜇 (x) = 0. Similarly, the
covariance function is calculated using Eq. (2) as

�̃� ((x𝑖, 𝐿𝑖), (x𝑗, 𝐿𝑗)) = 𝔼 [𝑚(x𝑖, 𝐿𝑖)𝑚(x𝑗, 𝐿𝑗)] = ( 1
2𝜋𝐿𝑖𝐿𝑗

)
3

∬ 𝔼[𝜏 (�𝑖) 𝜏 (�𝑗)] exp (− 1
2𝐿2

𝑖
|�1 − x1|2 − 1

2𝐿2
𝑗

|�2 − x2|2) 𝑑�𝑖𝑑�𝑗.
(A3)
Substituting 𝔼 [𝜏 (�𝑖) 𝜏 (�𝑗)] = 𝑘 (�𝑖, �𝑗) = 𝜎2

𝑠 exp (− 1
2𝜎2

𝑙
|�𝑖 − �𝑗∣

2) (Eq. 9) for
Eq. (A3), we obtain

�̃� ((x𝑖, 𝐿𝑖) , (x𝑗, 𝐿𝑗)) = 𝜎2
𝑠 ( 1

2𝜋𝐿𝑖𝐿𝑗
)

3
∬ exp (− 1

2𝜎2
𝑙

|�𝑖 − �𝑗∣
2 − 1

2𝐿2
𝑖

|�𝑖 − x𝑖|
2 − 1

2𝐿2
𝑗

|�𝑗 − x𝑗∣
2) 𝑑�𝑖𝑑�𝑗.

(A4)
Finally, integration with respect to �𝑖 and �𝑗 by completing the square in the
exponential function gives the desired result (Eq. 18).
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