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Abstract

Spacecraft equipped with magnetometers provide useful magnetic field data for a variety of applications such as monitoring the

Earth’s magnetic field. However, spacecraft electrical systems generate magnetic noise that interfere with geomagnetic field data

captured by magnetometers. Traditional solutions to this problem utilize mechanical booms to extend magnetometers away

from noise sources. This solution can increase design complexity, cost, and introduce boom deployment risk. If a spacecraft is

equipped with multiple magnetometers, signal processing algorithms can be used to compare magnetometer measurements and

remove stray magnetic noise signals. We propose the use of density-based cluster analysis to identify spacecraft noise signals

and compressive sensing to separate spacecraft noise from geomagnetic field data. This method assumes no prior knowledge

of the number, location, or amplitude of noise signals, but assumes that they are independent and have minimal overlapping

spectral properties. We demonstrate the validity of this algorithm by separating high latitude magnetic perturbations recorded

by SWARM from noise signals in simulation and in a laboratory experiment using a mock CubeSat apparatus. In the case of

more noise sources than magnetometers, this problem is an instance of Underdetermined Blind Source Separation (UBSS). This

work presents a UBSS signal processing algorithm to remove spacecraft noise and eliminate the need for a mechanical boom.
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Key Points:6

• We present the first use of compressive sensing with cluster analysis to separate7

spacecraft noise from geomagnetic field data.8

• We demonstrate the separation of phase-delayed signals in simulation as well as9

in a laboratory experiment using SWARM residual geomagnetic field data.10

• The method enables high fidelity magnetic field measurements from resource con-11

strained and magnetically noisy spacecraft such as boomless CubeSats.12
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Abstract13

Spacecraft equipped with magnetometers provide useful magnetic field data for a vari-14

ety of applications such as monitoring the Earth’s magnetic field. However, spacecraft15

electrical systems generate magnetic noise that interfere with geomagnetic field data cap-16

tured by magnetometers. Traditional solutions to this problem utilize mechanical booms17

to extend magnetometers away from noise sources. This solution can increase design com-18

plexity, cost, and introduce boom deployment risk. If a spacecraft is equipped with mul-19

tiple magnetometers, signal processing algorithms can be used to compare magnetome-20

ter measurements and remove stray magnetic noise signals. We propose the use of density-21

based cluster analysis to identify spacecraft noise signals and compressive sensing to sep-22

arate spacecraft noise from geomagnetic field data. This method assumes no prior knowl-23

edge of the number, location, or amplitude of noise signals, but assumes that they are24

independent and have minimal overlapping spectral properties. We demonstrate the va-25

lidity of this algorithm by separating high latitude magnetic perturbations recorded by26

SWARM from noise signals in simulation and in a laboratory experiment using a mock27

CubeSat apparatus. In the case of more noise sources than magnetometers, this prob-28

lem is an instance of Underdetermined Blind Source Separation (UBSS). This work presents29

a UBSS signal processing algorithm to remove spacecraft noise and eliminate the need30

for a mechanical boom.31

Plain Language Summary32

Magnetometers are instruments designed to measure magnetic fields. They are used33

for a variety of purposes such as monitoring the magnetic field of the Earth from space-34

craft. Spacecraft systems such as solar panels and reaction wheels generate magnetic noise35

that interferes with magnetometer readings. If the spacecraft has multiple magnetome-36

ters, each noise source will have a different magnitude at each magnetometer depend-37

ing on the location of the noise source. The system which describes the magnitude of38

each noise source at each magnetometer is called a mixing matrix. We propose the use39

of unsupervised machine learning to estimate the mixing matrix. Once the mixing ma-40

trix is estimated, the Earth’s magnetic field can be separated from spacecraft magnetic41

noise using a method called Compressive Sensing.42

1 Introduction43

Spacecraft equipped with magnetometers can be used to capture in situ measure-44

ments of magnetic phenomena in the geospace environment. These measurements are45

necessary to answer key questions about the nature of the Earth’s magnetosphere and46

its interaction with interplanetary magnetic fields. Understanding how the heliosphere47

directs the flow of energy, mass, and momentum between the Sun and Earth is critical48

for a number of applications such as space weather modeling, space exploration, and cli-49

mate science. A number of missions use spacecraft equipped with magnetometers to mea-50

sure magnetic fields. For example, The European Space Agency’s SWARM mission uses51

a constellation of three satellites to provide high fidelity magnetic field measurements52

used to model the Earth’s magnetic field and study the Earth’s dynamo (Fratter et al.,53

2016). Magnetometers provide invaluable data for space science research, however, the54

quality of the data is often limited by magnetic noise generated by the spacecraft. Elec-55

trical systems onboard a spacecraft generate stray magnetic fields that interfere with mag-56

netic field measurements germane to scientific investigation. The presence of these stray57

magnetic fields is a significant obstacle for missions which utilize magnetic field data (Russell,58

2004; Ludlam et al., 2009).59
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On satellites, stray magnetic fields can be generated by subsystems such as solar60

panels, reaction wheels, battery currents, and magnetorquers. Satellite magnetometers61

are typically fixed at the end of a mechanical boom to reduce the magnitude of noise gen-62

erated by the spacecraft. For example, the mission SWARM uses two magnetometers63

mounted on a 4.3 meter boom (McMahon et al., 2013). However, the use of a boom is64

not always possible in designs such as rovers and CubeSats where gravity and cost are65

limiting factors. Booms are also problematic on non-magnetic spacecraft such as DMSP,66

which are equipped with a tri-axial fluxgate magnetometer on the end of a telescoping67

boom, but still faces issues with spacecraft noise (Kilcommons et al., 2017).68

The use of a single magnetometer on a spacecraft requires characterization of the69

spacecraft’s magnetic signature in order to remove stray magnetic fields. In the case of70

the spacecraft Cassiope, a software update changed the behavior of the spacecraft’s flux-71

gate magnetometer (MGF). Special spacecraft maneuvers to decrease the spacecraft’s72

noise signature were required in order to recalibrate the MGF (Miles et al., 2019). Al-73

gorithms to autonomously identify spacecraft noise would allow Cassiopie to do in situ74

MGF calibration without special spacecraft maneuvers.75

In spacecraft with multiple magnetometers, the traditional way to cancel stray mag-76

netic field noise is to perform gradiometry. Gradiometry is a technique which compares77

magnetometer signals and calculates the gradient of between them (Ness et al., 1971; Ream78

et al., 2021). The calculated gradient is used to identify and suppress noise signals. This79

method requires spatial knowledge of the magnetometers and assumes that the magnetic80

noise sources are dipole structured. More recently, Imajo et al. (2021) proposed the use81

of Independent Component Analysis (ICA) to separate geomagnetic field data, captured82

by the satellite Michibiki-1, from stray magnetic field noise. Imajo et al. (2021) apply83

ICA by assuming that there are M-1 noise signals recorded by M magnetometers. The84

satellite, Michibiki-1, has one magnetometer mounted on the end of a short boom, and85

another mounted at the base of the boom on the spacecraft. Because there are two mag-86

netometers, Imajo et al. (2021) assume a single geomagnetic field and noise signal for87

each cartesian axis. This algorithm separates signals based on statistical independence,88

and works well when the number of noise sources is not more than the number of mag-89

netometers (Naik & Kumar, 2009). Spacecraft typically have an abundance of noise gen-90

erating electrical equipment, so this condition is rarely met. Sheinker and Moldwin (2016)91

proposed an analytical method which uses a pair of magnetometers to adaptively can-92

cel magnetic interference without prior knowledge of the noise signal. This method is93

designed for the case in which a single noise source is present, and does not account for94

the presence of multiple noise sources. Although, the method may be applied to remove95

multiple noise sources by adding more magnetometers. Other methods employ state es-96

timation of the magnetic fields generated by spacecraft subsystems by examining space-97

craft housekeeping data. Deshmukh et al. (2020) uses a supervised machine learning al-98

gorithm in order to estimate the transfer function of housekeeping currents to stray mag-99

netic fields. Total knowledge of a spacecraft’s magnetic signature would allow for per-100

fect interference cancellation, however, housekeeping telemetry provides an incomplete101

image of a spacecraft’s current distribution. For low cost applications with a large num-102

ber of spacecraft, such as CubeSat constellations, it is advantageous to use an algorithm103

that does not rely on prior knowledge of the spacecraft’s magnetic signature or requires104

human analysis.105

In this work, we present the application of the unsupervised machine learning al-106

gorithm, Density Based Spatial Clustering of Applications with Noise (DBSCAN), and107

compressive sensing to separate the geomagnetic field signal from stray magnetic field108

noise. The separation of geomagnetic signals from stray magnetic fields is an instance109

of Underdetermined Blind Source Separation (UBSS). UBSS is a class of problems in which110

there are m listeners, B(k) ∈ Cm, and n noises sources, S(k) ∈ Cn, such that m <111

n. The source signals combine in an unknown mixing matrix K ∈ Cm×n. UBSS is a112
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topic that has been thoroughly researched in other fields such as acoustics and radar sig-113

nal processing. The system used to model UBSS is defined by the following relationship.114

B(k) = KS(k) (1)

In the field of acoustics, this problem is famously referred to as the cocktail party115

problem. In the cocktail party problem, there is a room full of people each having con-116

versations. An array of microphones is placed in the room to record the concurrent con-117

versations. The microphone recordings are then used to separate each individual voice.118

Guo et al. (2017) demonstrate the separation of four human voices using three micro-119

phones. He et al. (2021) also demonstrate the separation of six flutes recorded by three120

microphones using the DBSCAN algorithm.121

Due to the spatial structure of magnetic fields, the same algorithms developed to122

solve the cocktail party problem can not be directly applied to magnetic noise cancel-123

lation. A magnetic noise signal, s(t), will appear to have a different phase and magni-124

tude at each magnetometer depending on the radial distance and magnetic latitude of125

the magnetometer with respect to the noise source. This structure will change depend-126

ing on the geometry of the noise source. In magnetic underdetermined blind source sep-127

aration, the mixing matrix, K, represents the gain and phase of each signal at each mag-128

netometer. DBSCAN is used to estimate the mixing matrix, K. Once K is known, com-129

pressive sensing is used to restore the geomagnetic field signal from the noisy magnetome-130

ter data.131

We present two experiments to validate this algorithm. The first experiment sep-132

arates four computer-simulated noise signals from an ambient magnetic field signal. The133

second experiment separates the same ambient magnetic field signal using real magnetic134

field data recorded using an experimental CubeSat apparatus with copper coil generated135

signals and three PNI RM3100 magnetometers (Regoli et al., 2018). The aim of this work136

is to develop a robust signal processing algorithm to remove spacecraft noise and elim-137

inate the need for a mechanical boom. This work focuses on developing a noise cancel-138

lation algorithm for geomagnetic field data, but can also be applied to remove noise in139

measurements of planetary magnetospheres and interplanetary magnetic fields.140

2 Methodology141

We apply an iterative approach to identifying spacecraft noise and reconstructing142

the geomagnetic field signal. Noise signals may be present at different orders of magni-143

tude or frequency spectra. In order to increase the discoverability of a noise signal, we144

iteratively look at limited frequency bands by using a bandpass filter on the input sig-145

nals to analyze the signals over a smaller frequency space. Noise signals are identified146

by transforming the magnetometer data into a sparse domain and clustering the trans-147

formed data. After the noise signals are identified, we use compressive sensing to recon-148

struct the geomagnetic field with the noise signals removed.149
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2.1 Signal Preprocessing150

The separation of magnetic field signals from stray magnetic fields is analogous to151

a problem thoroughly researched in other fields such as acoustics and is called Under-152

determined Blind Source Separation (UBSS). This problem has been heavily investigated153

for microphone and radar arrays, but the unique structure of a magnetic dipole intro-154

duces new complications which have not been well-researched. The placement of mag-155

netometers at different magnetic latitudes makes the magnetic noise signal appear to be156

phase-delayed, despite mixing instantaneously. As a result, time-frequency domain mix-157

ing model, B(t,k) = KS(t,k), can be represented as the following system:158


B1(t, k)
B2(t, k)

...
Bm(t, k)

 =


1 k12∠φ12 k13∠φ13 ... k1n∠φ1n
1 k22∠φ22 k23∠φ23 ... k2n∠φ2n
...

...
...

. . .
...

1 km2∠φm2 km3∠φm3 ... kmn∠φmn



S1(t, k)
S2(t, k)

...
Sn(t, k)

 (2)159

In this mixing system, the geomagnetic source signal we seek to recover, S1(t,k), is as-160

sumed to be identical at each magnetometer a priori. In the geospace environment, this161

allows us to observe phenomena such as ULF waves which have frequencies less than 5162

Hz (Jacobs et al. 1964). The phases, φij , in the mixing matrix, K, account for the dif-163

ference of a signal seen by magnetometers at different magnetic latitudes.164

Once the magnetometer signals, b(t), have been filtered through a bandpass, they165

are transformed into the Time-Frequency (TF) domain using a Fourier transform in or-166

der to increase signal sparsity. Sparsity is a precondition of both mixing matrix estima-167

tion and compressive sensing, however, spacecraft noise signals are not often sparse in168

the time domain. Typically, the Short-Time Fourier Transform (STFT) is used because169

signals that are present in multiple time windows will provide more data points to be170

clustered. In this work, we use the Non-Stationary Gabor Transform (NSGT) to trans-171

form magnetometer signals into the Time-Frequency domain. NSGT has advantages over172

the STFT because it allows the user to evolve the window size with respect to frequency173

(Jaillet et al., n.d.). As a result, high and low frequencies are not limited to the same174

Window size, and frequency resolution is greatly increased. NSGT also improves the rep-175

resentation of transient signals with respect to traditional transforms. We perform the176

Non-Stationary Gabor Transform to obtain the UBSS model B(t,k) = KS(t,k). The mix-177

ing system of a sparse time-frequency bin where only the signal, Sj(t,k), is present can178

be defined by a single mixing vector:179


‖B1(t, k)‖
‖B2(t, k)‖

...
‖Bm(t, k)‖

 =


k1j
k2j
...

kmj

 ‖Sj(t, k)‖ (3)

Equation (3) can be rewritten element-wise as:

‖Sj(t, k)‖ =
‖B1(t, k)‖

k1j
=
‖B2(t, k)‖

k2j
= ... =

‖Bm(t, k)‖
kmj

(4)

Equation (4) is equivalent to the symmetric form of a line with slope defined by the mix-180

ing vector of the noise signal. In order to exploit this relationship, we define a time-frequency181

space H ∈ R2m in which each phase and magnitude of the m magnetometer signals are182

an axis. Sparse TF points will draw straight lines through the origin in the H-domain183

with a slope proportional to the signal’s mixing vector.184
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Figure 1. Six computer generated signals plotted against each other in the frequency domain.

2.2 Mixing Matrix Estimation185

The slope of the lines drawn through the H-domain are not easily clusterable in186

their current form as a collection of scattered data points. We transform the scattered187

data points in H-domain into a clusterable form by projecting the magnitude subspace188

onto a unit hypersphere. Figure 2 shows the projected data points of the scattered data189

in Figure 1.190

Figure 2. Six computer-generated signals projected onto a half-unit hypersphere in the H-

Domain.

The H-domain magnitude subspace is projected onto a half-unit hypersphere using the191

following equation.192

B∗(t, k) =
|B(t, k)|
‖B(t, k)‖

(5)

The majority of the frequency space is filled with negligible energy points that will project193

randomly onto the unit hypersphere (Sun et al., 2016). We attempt to cleanse the data194

of these points using a magnitude filter with λ ∈ (0, 1):195
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|B(t, k)| > λ ·max(|B(t, k)|) (6)

The projected data points form tightly clustered groups on the unit hypersphere196

that allow us to discover the relative gain between noise signals at different magnetome-197

ters. However, we need to find the relative phases between noise signals at magnetome-198

ters of different magnetic latitudes. To account for this we join each projected time-frequency199

point to its relative argument. The relative argument is defined by the following trans-200

formation:201

argB(t, k) = { argBj(t, k)− arg (B0(t, k) | j ∈ [0,m] } (7)

Using the result of Equation 7, we define a new data format H(t,k) by concatenat-202

ing the projected magnitude data with the argument of the time-frequency data.203

H(t, k) = (B∗(t, k), arg (B(t, k)) (8)

The magnetometer data, H(t,k), are now in a format that can be clustered to discover204

the gain and phase of each signal described in the mixing matrix, K. Figure 3 shows an205

example of signal clusters in a two magnetometer system.206

Figure 3. Five simulated signals recorded by two magnetometers in the H-Space. The hor-

izontal axes are the magnitudes projected onto a unit hypersphere. The vertical axis is the

relative phase found by Equation 7.

Now that the projected magnitude and relative phases are joined, a variety of clus-207

tering algorithms can be applied to find the mixing matrix, K. In this work, we use the208

Density Based Spatial Clustering for Applications with Noise (DBSCAN) algorithm be-209

cause it does not require user input to discern the number of clusters present, and it will210

ignore noise points (Ester et al. 1996). DBSCAN has two essential parameters, eps and211

minPts, that allow this functionality. The maximum distance for two points to become212

neighbors is the value, eps. If a point has minPts number of neighbors, it is called a core213

point. Core points are used to define each cluster. If a point is more than eps distance214

away from any point in a cluster, it is labeled as noise. We use DBSCAN to cluster H(t,k)215

and use each cluster’s centroid as the noise signal’s mixing vector.216

–7–
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2.3 Signal Reconstruction217

Compressive sensing is a method used to reconstruct sparse signals with a sampling218

rate below two times a signal’s bandwidth (Baraniuk, 2007). Reconstructing a signal of219

length N from a sampled signal of length M , where M < N , is an analogous problem220

to Underdetermined Blind Source Separation. Ordinarily, the system b = Ks, where221

K is a wide matrix, has infinitely many solutions because if b = Ks is a solution, b =222

K(s+s′) is also a solution for any vector s′ in the null space of K. Compressive sens-223

ing can exactly recover sparse signals and approximate near-sparse signals through min-224

imizing the L1 norm of S with respect to b−Ks < ε. The algorithm works with O(N3)225

complexity.226

We use CVXPY, A Python-Embedded Modeling Language for Convex Optimiza-
tion (Diamond & Boyd, n.d.), to reconstruct the signals with the estimated mixing ma-
trix, K. The constraint used to recover the signal, s, from b is:

Minimize ‖s‖1
Subject to Ks = b

(9)

This system is solved using the convex optimization algorithm, Embedded Conic Solver227

(Domahidi et al., 2013).228

3 Experimental Data and Results229

We test the proposed method of signal and noise separation through two exper-230

iments. The first experiment demonstrates the separation of SWARM magnetic field data231

from computer simulated signals using virtual magnetometers. The second experiment232

demonstrates the separation of SWARM magnetic field data from real magnetic noise233

signals generated with copper coils. The coil-generated magnetic fields were measured234

using the PNI RM3100 magnetometer and a mock CubeSat described by Deshmukh et235

al. (2020).236

Figure 5 details the process of identifying noise signals and reconstructing the am-237

bient magnetic field. First (i), the signal offsets are subtracted to center the signals around238

0 nT. Second (ii), the signals are bandpassed so the algorithm can analyze a more lim-239

ited frequency range. Third (iii), the signals are transformed into the time-frequency do-240

main using the Non-Stationary Gabor Transform to increase signal sparsity. Fourth (iv),241

low energy points are filtered out using Equation 6. Fifth (v), the signals are transformed242

into H(t,k) by projecting the magnitude, |B(t, k)| onto the unit hypersphere and con-243

catenating it with the phase, argB(t, k), via Equations 5, 7, and 8. Sixth (vi), the data,244

H(t,k), are clustered using DBSCAN and the cluster centroids are found. This process245

loops back to step ii until the whole frequency spectrum has been swept. Finally, in the246

last step (vi), compressive sensing is used to reconstruct the ambient magnetic field. The247

minimum magnitude, λ in step iv, and the parameters eps and MinPts in step vi may248

need to be adjusted depending on the length and magnitude of the signals being ana-249

lyzed.250
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Figure 4. Flow of processes involved in using cluster analysis to discover noise signals and

compressive sensing to separate the ambient magnetic field from noise signals.

We evaluate the separation of noise signals via three metrics. The first metric is251

the Pearson Correlation Coefficient. This measurement gives the covariance between the252

normalized input and recovered signals.253

ρ =

∑N−1
i=0 (xi − x̄)(yi − ȳ)√∑N−1

i=0 |(xi − x̄)|2
∑N−1

i=0 |(yi − ȳ)|2
(10)

The second metric evaluated is the root mean squared error (RMSE). This met-254

ric is proportional to the magnitude of the squared error. As a result, the RMSE is very255

sensitive to large errors.256

RMSE =

√∑N−1
i=0 (xi − yi)2

N
(11)

The final metric is the normalized RMSE (NRMSE). This metric yields the RMSE257

as a percentage of the magnitude of the signal being measured. It is used to compare258

the relative error between signals on different orders of magnitude.259

NRMSE =
RMSE

|ymax|
(12)

3.1 Experiment 1: Computer Simulation260

In this experiment, we use four simulated noise signals, s(t) ⊃ [s2(t), s3(t), s4(t), s5(t)],261

and three virtual magnetometers b(t) = Ks(t) = [b1(t), b2(t), b3(t)]. The signal, s1(t),262

is residual magnetic field data created by subtracting data generated by the IGRF model263

from SWARM magnetic field data. This process leaves only magnetic perturbations present264

in the magnetosphere. The magnetic perturbation data we use were measured by the SWARM265

A satellite on March 17th, 2015 between 8:53 and 8:55 UTC. This part of the orbit passes266

–9–
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between the 69th and 76th parallel south and was selected to capture perturbations in267

the southern auroral zone. The proposed algorithm detailed in Figure 4 is tested on 100268

seconds of data, although it may be applied to a signal of any length provided that there269

are enough data points to cluster. The signals are combined through the complex mix-270

ing matrix in Equation 13 with phases given in radians.271

K =

1∠0 0.83∠0 0.56∠0 0.68∠0 0.30∠0
1∠0 0.50∠1.57 0.79∠0.523 0.29∠2.35 0.30∠0.314
1∠0 0.24∠1.04 0.24∠1.04 0.68∠3.14 0.90∠0.523

 (13)

The values in the first column represent the ambient magnetic field signal which appears272

identically at every magnetometer. Figure 5 shows the five source signals used in this273

simulation. Two of the noise signals are sine waves with frequencies of 2 Hz and 5 Hz.274

Sine waves are sparse signals that can be represented by a single point in the frequency275

domain. This makes them easily identifiable by cluster analysis. The two remaining noise276

signals used are a sawtooth wave with a frequency of 0.7 Hz, and a square wave with a277

frequency of 3.0 Hz. These signals inhabit a broad frequency spectrum and diminish the278

sparsity of the mixed signals.279

Figure 5. Five computer generated source signals.

The signals are combined in the mixing system b(t) = Ks(t) with the mixing matrix280

K from equation 13. The resulting signals are sampled by the virtual magnetometers at281

a rate of 50 samples per second. A random normal signal with a standard deviation of282

6 nT is added to each virtual magnetometer in order to simulate instrument noise. Fig-283

ure 6 shows the sampled signals.284

Figure 6. Three magnetometer signals created by mixing the five source signals in Figure 5.

–10–
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Following the procedure in Figure 4, the signals were detrended and bandpassed285

with frequency ranges of [0.01 Hz, 2.12 Hz] and [0.15 Hz, 25 Hz]. Overlapping frequency286

ranges are analyzed to discover signals that may appear in multiple frequency bands. The287

signals were then transformed into the Time-Frequency domain using the NSGT. The288

NSGT is a type of constant-Q transform, so it requires the parameter Q which specifies289

window size. In this experiment, we used Q = 20. In step 4, low energy points were290

removed using a λ = 0.01. The resulting data were transformed into H(t,k) and clus-291

tered by DBSCAN with parameters eps = 0.3 and MinPts = 3. These parameters292

were optimized experimentally using trial and error, however it may be possible to au-293

tomate parameter selection based on the signals being analyzed. With this configura-294

tion, DBSCAN discovered the five clusters corresponding to each noise source. The clus-295

ters, shown below in the columns of K̂, closely match the original mixing matrix.296

K̂ =

1∠0 0.83∠0.00 0.57∠0.00 0.62∠0.00 0.308∠0.00
1∠0 0.50∠1.57 0.70∠0.31 0.33∠2.63 0.31∠0.33
1∠0 0.24∠1.02 0.39∠0.56 0.70∠− 3.1 0.90∠0.51

 (14)

Finally, in step 7, the mixed signals were separated by compressive sensing using297

the recovered mixing matrix, K̂, in Equation 15. The data, H(t,k), are discarded and298

the raw Fourier transform of the mixed signals is separated using the ECOS algorithm.299

The reconstructed SWARM perturbation signal is shown in Figure 7 with the original300

signal overlayed.301

Figure 7. True magnetic perturbation signal in orange versus the recovered magnetic pertur-

bation signal in blue. The signal was reconstructed using the mixed signals in Figure 6 sampled

at a rate of 50 Hz.

The reconstructed ambient magnetic field signal resembles the original signal with some302

additional error. In order to evaluate the reconstruction noise, the Pearson Correlation303

Coefficient, RMSE, and NRMSE of each source signal are calculated. The ambient mag-304

netic field was reconstructed with a RMSE of 5.79 nT. The results for each source sig-305

nal are shown in the following table.306

Metrics
SWARM Sine A Square Sine B Sawtooth

ρ 0.9950 0.9954 0.9972 0.9996 0.8868
RMSE 5.79 nT 4.165 nT 17.00 nT 1.297 nT 33.49 nT
NRMSE 1.33% 6.94% 21.1% 2.26% 30.45%

307
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3.2 Experiment 2: Magnetic-Coil Generated Signal Separation308

In this experiment, we demonstrate the utility of the proposed algorithm on real309

magnetic field data. We use three PNI RM3100 magnetometers to record copper coil-310

generated noise signals. Four copper coils are driven by signal generators to create the311

source signals, s(t) ⊃ [s2(t), s3(t), s4(t), s5(t)]. The signals are combined in the unknown312

mixing system, b(t) = Ks(t) = [b1(t), b2(t), b3(t)]. The SWARM residual magnetic field313

data, which is used in experiment one, is added to each magnetometer recording to gen-314

erate the ambient magnetic field signal, s1(t).315

The proposed algorithm detailed in Figure 4 is tested on 100 seconds of recorded316

data. The signals, s2(t) and s3(t), are sine waves with frequencies of 0.4 Hz and 0.8 Hz.317

The signals, s4(t) and s5(t), are square waves with frequencies of 1 Hz and 2 Hz. The318

three PNI RM3100 magnetometers and four copper coils are placed on the CubeSat ap-319

paratus as shown in Figure 8. Due to the location and orientation of the four copper coils320

and three magnetometers, each noise signal will appear at each magnetometer with a dif-321

ferent magnitude and magnetic latitude induced phase. Additionally, this experiment322

was performed in a copper room lined with mu-metal in order to screen out magnetic323

fields from the surrounding environment.324

Figure 8. Mock CubeSat Apparatus with three PNI RM3100 Magnetometers and four copper

coils driven by signal generators. The Apparatus is placed inside a mu-metal lined copper room

that acts as a large magnetic shield can.

The PNI RM3100 is a magneto-inductive magnetometer that measures the mag-325

netic field by counting hysteresis loops with a comparator circuit, called a Schmitt Trig-326

ger, in an ASIC. The ASIC records magnetic field measurements by adding to a regis-327

ter every time the Schmitt trigger is saturated. This measurement renders the magnetic328

field when integrated with respect to time. The ASIC has a cycle count register that con-329

trols how many clock cycles pass between integrations. The error of the magnetometer330

will change with respect to the cycle count. In this experiment, each magnetometer is331

sampled at a rate of 50 Hz with a cycle count of 200 cycles. The PNI RM3100 is rated332

to have an error of 6 nT in this configuration. The mixed signals recorded by the PNI333

RM3100 magnetometers are shown in Figure 9 below.334
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Figure 9. Three mixed signals recorded by PNI RM3100 magnetometers. The five signals

present are two sine waves, two square waves, and the added residual magnetic field data.

The algorithm was run on this data following the same steps as in Figure 4 and sec-
tion 3.1. The signals were detrended and bandpassed with frequency ranges of [0.01 Hz,
0.51 Hz], [0.07 Hz, 3.76 Hz], and [0.51 Hz, 25 Hz]. The signals were then transformed
into the Time-Frequency domain using the NSGT with a quality factor of Q = 10. In
step 4, low energy points were removed using a λ = 0.09. The resulting data were trans-
formed into H(t,k) and clustered by DBSCAN with parameters eps = 0.3 and MinPts =
3. DBSCAN discovered the following five clusters shown below in the columns of K̂.

K̂ =

1∠0 0.023∠0 0.22∠0 0.93∠0 0.02∠0
1∠0 0.55∠1.31 0.97∠3.09 0.35∠3.04 0.04∠6.04
1∠0 0.79∠4.58 0.001∠2.94 0.15∠0.255 0.82∠2.84

 (15)

The PNI RM3100 magnetometer was experimentally found to have a lower noise335

floor when sampled at a higher rate and decimated to a lower rate versus only being sam-336

pled at a lower rate. We evaluated this effect by testing step 7, signal reconstruction, on337

the original 50 Hz data, 10 Hz and 1 Hz data attained through downsampling, and 50338

Hz data averaged with a moving mean (N = 10). These signals were separated via com-339

pressive sensing using the recovered mixing matrix, K̂, in Equation 15. The four recon-340

structed noise signals from the 50 Hz raw data are shown in Figure 10.341
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Figure 10. Reconstructed Sine and Square wave signals from 50 Hz mixed signals in Figure 9.

The reconstructed coil-generated signals closely resemble square and sine waves with342

some additional noise. The recovered residual magnetic field data are shown in Figure343

11. The recovered signal is overlayed with the true residual magnetic field signal. The344

residual data in Figure 11 was reconstructed using the mixed signals decimated to a sam-345

pling rate of 10 Hz.346

Figure 11. True magnetic perturbation data in orange versus the recovered magnetic pertur-

bation signal in blue. The signal was reconstructed using the mixed signals in Figure 9 decimated

to a sampling rate of 10 Hz.
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The reconstructed signal closely follows the true geomagnetic perturbation signal347

with some high frequency noise present. As a result of the geomagnetic field signal be-348

ing artificially inserted into the magnetometer readings, we are able to calculate the RMSE349

and Pearson Correlation Coefficient with respect to the original signal. The results for350

the original, decimated, and moving-mean signals are shown in the following table.351

Metrics
50 Hz 10 Hz 1 Hz Moving Mean (N=10)

ρ 0.979 0.993 0.98 0.995
RMSE 14.7 nT 5.92 nT 3.73 nT 6.91 nT
NRMSE 3.37% 1.36% 0.85% 1.58%

352

4 Discussion353

In this study, we introduced a signal processing algorithm based on UBSS and demon-354

strated the separation of magnetic noise from geomagnetic field data. In the first exper-355

iment, we separated four simulated noise signals from SWARM residual magnetic field356

data. The noise signals contained both sparse sine wave signals and wideband sawtooth357

and square wave signals. The algorithm was able to restore the residual magnetic field358

signal with a correlation coefficient of ρ = 0.9950 and RMSE of 5.79 nT. This experi-359

ment was repeated without artificial instrument noise and yielded a RMSE of 3.88 nT360

for the ULF signal. In the second experiment, we created four magnetic noise signals us-361

ing copper coils to generate real magnetic field data and placed PNI RM3100 magne-362

tometers within the bus of a mock CubeSat apparatus. The same SWARM magnetic resid-363

ual data were artificially inserted into the magnetometer measurements. This experiment364

mimicked the computer simulated experiment, with two sparse noise signals and two wide-365

band noise signals. With a sampling rate of 50 Hz, the SWARM data had a reconstruc-366

tion error of 14.7 nT using real magnetic field data as opposed to 5.79 nT in simulation.367

The signal separation algorithm was executed using several additional preprocessing tech-368

niques such as decimating the sampling rate and applying a moving mean to the mag-369

netometer data. The lowest RMSE of 3.73 nT was achieved by decimating the sample370

rate to 1 Hz. At 1 Hz, the PNI RM3100 magnetometer is rated to have a measurement371

error of 1.2 nT due to instrument noise. This result places the reconstruction error near372

the noise floor of the magnetometer. These results show that the proposed UBSS algo-373

rithm is effective at removing spacecraft noise from magnetic field data.374

In general, it is not feasible to adaptively cancel spacecraft noise when a single mag-375

netometer is used. Adaptive noise cancellation requires the removal of noise signals that376

are time variable. The use of a single magnetometer requires that spacecraft noise be377

carefully characterized before launch. Otherwise, a change in spacecraft behavior may378

require special maneuvers to re-characterize noise signatures in situ (Miles et al., 2019).379

The use of multiple magnetometers allows for the discovery of noise signals through the380

comparison of magnetometer data. Sheinker and Moldwin (2016), Deshmukh et al. (2020),381

and Imajo et al. (2021) each propose algorithms for noise cancellation using multiple mag-382

netometers. The algorithm proposed by Sheinker and Moldwin (2016) is effective at re-383

moving a single noise signal, but is not designed for multiple noise signals. Imajo et al.384

(2021) propose the use of ICA which is also limited by how many noise signals it can re-385

move. ICA requires that the number of noise signals be less than the number of mag-386

netometers. Spacecraft contain many electrical systems that could generate magnetic in-387

terference, so this condition is rarely met. The advantage of the proposed UBSS algo-388

rithm over Imajo et al. (2021) and Sheinker and Moldwin (2016) is that it can cancel noise389

signals in an underdetermined system. This means that there are more noise signals present390

than magnetometers. This property of the algorithm provides the flexibility necessary391

to be applied to many different spacecraft without prior characterization of spacecraft392

noise. The algorithm also does not require knowledge of magnetometer location and ori-393

entation. Finally, Deshmukh et al. (2020) designed a state estimation algorithm to trans-394
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form housekeeping data to magnetic noise signals. Housekeeping currents provide an in-395

complete mapping of the distribution of currents within a spacecraft. The advantage of396

the proposed UBSS algorithm over this approach is that it is a blind signal processing397

algorithm. It requires no housekeeping data to identify and remove noise signals.398

The proposed algorithm functions on the assumption that the noise signals are sparse,399

meaning that only one noise signal is present at a given frequency. Multiple noise sig-400

nals may be active at the same time, however, if a signal is not sparse in the frequency401

domain, then its mixing vector cannot be accurately estimated by cluster analysis. Com-402

pressive sensing also requires sparsity in order to accurately reconstruct the separate sig-403

nals. Compressive sensing can fully reconstruct sparse signals, and approximately recon-404

struct near sparse signals. In this work, we do not exhaustively explore the minimum405

sparsity required for accurate reconstruction of the ambient magnetic field.406

The proposed algorithm requires that several parameters be set by the user. In this407

study, the parameters were manually selected based on the signals being analyzed, but408

this process could also be automated. The first parameter is the quality factor, Q. This409

parameter adjusts the window size used in the Non-Stationary Gabor Transform. We410

experimentally selected it, but it may be chosen based on the length of the signal be-411

ing processed. The parameter, λ, is used to remove low energy noise signals. Data points412

that are below a fraction, λ, of the maximum energy data point are removed before clus-413

tering occurs. We selected this parameter by analyzing the data projected onto the half-414

unit hypersphere in Figure 2, and visually observing if the signals were clusterable. If415

λ is too small, then the hypersphere will be completely filled with data points, and the416

noise signals will not be separable. If λ is too large, then small noise signals may not ap-417

pear at all. Lastly, DBSCAN requires that two parameters, eps, and MinPts, be selected.418

The parameter, eps, represents the maximum distance allowed for two data points to be419

considered neighbors. The parameter, MinPts, represents the number of neighbors re-420

quired for a data point to be considered a core. MinPts may be selected based on the421

length of signal being processed. A disadvantage of using NSGT and DBSCAN together422

is that more data points are created for higher frequency signals because the window size423

is altered based on frequency. Therefore, MinPts should be selected based on the lower424

frequency signals.425

Most heliophysics missions require magnetic field accuracies of better than 1 nT426

(e.g., the NASA MMS mission [Russell et al., 2016]). The lowest error achieved in this427

experiment is 3.73 nT. This error is near the expected measurement noise for the PNI428

RM3100 magnetometer at 1 Hz, indicating that the accuracy of the algorithm is limited429

to the total error budget of the magnetometer. Nevertheless, the experiments performed430

show successful reconstruction of magnetic perturbation signals measured from within431

the bus of a mock CubeSat. These results demonstrate the utility of boomless CubeSats432

for scientific investigation of magnetic field phenomena in the geospace environment. In433

turn, the low cost of CubeSats enables the use of large constellations of small satellites434

to measure the geomagnetic field with high temporal and spatial resolution.435

5 Conclusions and Future Work436

In this study, we propose an algorithm for separating spacecraft generated mag-437

netic noise from geomagnetic field data using multiple magnetometers. The algorithm438

does not require knowledge of the characteristics (location, orientation, amplitude, or439

spectral signature) and allows the number of noise sources to exceed the number of mag-440

netometers (n > m). The algorithm identifies signals by looking at the relative gain and441

phase of the magnetometer data in the Time-Frequency domain. If a noise signal is sparse442

in this domain, the relative gain and phase is found using cluster analysis. Following the443

same assumption of sparsity, the signal can be separated from the noisy data using the444

cluster centroids in compressive sensing.445
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The algorithm is designed for underdetermined systems in which there are more446

noise sources than magnetometers. An advantage of this approach is that the UBSS al-447

gorithm can be integrated onto any satellite since no prior characterization of noise sig-448

nals is required. This design eases the assimilation of magnetometers into spacecraft de-449

signs by reducing the need for strict magnetic cleanliness requirements and long mechan-450

ical booms.451

There are several avenues of future development for this algorithm. The most im-452

mediate step to be taken is for the selection of parameters to be automated. We present453

an algorithm to automate the noise cancellation process, but some rudimentary analy-454

sis is still required to select parameters for clustering and pre-processing. We think the455

selection of parameters could be entirely automated. Another avenue of development is456

to test the limits of the sparsity assumption. Sparsity is a very strict assumption that457

may not always be met. In this work, we tested the algorithm using several wideband458

signals. However, the threshold for minimum sparsity is unknown. This assumption can459

be examined through examining signals with partially overlapping spectra to find a point460

of failure. Finally, an interesting scenario to investigate is where several magnetometers461

are mounted within the bus of a spacecraft, but one magnetometer is mounted on a short462

boom, such as on the spacecraft Dellingr (Kepko et al., n.d.). In this scenario, the mea-463

surements of one magnetometer may be more accurate than the others. It would be coun-464

terproductive if the reconstructed magnetometer signal had more noise than the signal465

measured by the magnetometer on the boom. It may be possible to account for this by466

designing a programmable ”trust” parameter at the compressive sensing stage. This pa-467

rameter would indicate an elevated degree of trust in one magnetometer over the oth-468

ers.469

In this work, we performed two experiments to validate the algorithm. The first470

experiment separated SWARM magnetic perturbation data from four computer simu-471

lated signals. The algorithm was able to reconstruct the ambient magnetic field signal472

with an RMSE near 5 nT and a correlation of ρ ≈ 0.995. The reconstruction errors are473

slightly less than the 6 nT intrinsic instrument noise that was added to each virtual mag-474

netometer. The second experiment used real magnetic noise signals generated by cop-475

per coils, and the same SWARM geomagnetic field data. This experiment was able to476

separate four noise signals and reconstruct the background magnetic perturbation sig-477

nal with a RMSE of 5.92 nT and a correlation of ρ = 0.993 at a 10 Hz cadence.478

These results show the potential of signal processing algorithms to identify and re-479

move magnetic noise from spaceborne magnetometer data. The proposed algorithm di-480

minishes the need to place a magnetometer on a boom. This enables the possibility of481

low cost, boomless spacecraft to capture high fidelity magnetic field measurements.482
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