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Abstract

We propose a novel and accurate calibration method for short-time waveform signals passed through a linear time-invariant (LTI)

system that has a non-negligible group delay. Typically, the calibration process of waveform data is expressed by the Fourier

transform and is performed in the frequency domain. If the short-time Fourier transform is applied to the waveform data in

the calibration process, multiplying the data by a window function is highly recommended to reduce side-lobe effects. However,

the multiplied window function is also modified in the calibration process. We analyzed the modification mathematically and

derived a novel method to eliminate the modification of the multiplied window function. In the novel method, calibrated data

in the frequency domain are inverse-transformed into waveform data at each frequency, divided by a modified window function

at each frequency, and accumulated over the frequencies. The principle of this method derived quantitatively indicates that

the calibration accuracy depends on the transfer function of the system, frequency resolution of the Fourier transform, type

of the window function, and typical frequency of the waveform data. Compared with conventional calibration methods, the

proposed method provides more accurate results in various cases. This method is useful for calibration of general radio wave

signals through passed LTI systems as well as for calibration of plasma waves observed in space.
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  13 

Key Points: 14 

• We propose a novel calibration method using short-time Fourier transform for waveform 15 
data, such as plasma waves observed in space. 16 

• The accuracy of the novel method is evaluated using the transfer functions of well-known 17 
filters and frequency-fixed sinusoidal waveforms.  18 

• The novel method provides the most accurately calibrated data compared with 19 
conventional methods using short-time Fourier transform. 20 

  21 
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Abstract 22 

We propose a novel and accurate calibration method for short-time waveform signals 23 
passed through a linear time-invariant (LTI) system that has a non-negligible group delay. 24 
Typically, the calibration process of waveform data is expressed by the Fourier transform and is 25 
performed in the frequency domain. If the short-time Fourier transform is applied to the 26 
waveform data in the calibration process, multiplying the data by a window function is highly 27 
recommended to reduce side-lobe effects. However, the multiplied window function is also 28 
modified in the calibration process. We analyzed the modification mathematically and derived a 29 
novel method to eliminate the modification of the multiplied window function. In the novel 30 
method, calibrated data in the frequency domain are inverse-transformed into waveform data at 31 
each frequency, divided by a modified window function at each frequency, and accumulated 32 
over the frequencies. The principle of this method derived quantitatively indicates that the 33 
calibration accuracy depends on the transfer function of the system, frequency resolution of the 34 
Fourier transform, type of the window function, and typical frequency of the waveform data. 35 
Compared with conventional calibration methods, the proposed method provides more accurate 36 
results in various cases. This method is useful for calibration of general radio wave signals 37 
through passed LTI systems as well as for calibration of plasma waves observed in space. 38 

 39 

1 Introduction 40 

Time-sequential signals are measured and analyzed for multi purposes in various 41 
scientific fields. The following are some typical examples of time-sequential signals:  brain 42 
waves and electrocardiograms in medical science, acoustic signals and alternating current signals 43 
in engineering science, electromagnetic waves in physics, and seismic waves in geoscience. 44 
Particularly, in space exploration, many satellites have observed various types of electric and 45 
magnetic field waveforms to investigate and develop space plasma physics (e.g., Angelopoulos, 46 
2008; Mauk et al., 2013; Burch et al., 2016; Miyoshi et al., 2018). Most of the signals are 47 
essentially continuous analog signals and include unexpected noises, such as rapid fluctuations 48 
and/or tardily varying offsets. To observe the signals quantitatively and convert them into 49 
discrete digital data, the signals should be detected by sensors, amplified using amplifiers, and 50 
passed through filters to eliminate noises. The sensors, amplifiers, filters, and other processor 51 
types, expressed as linear time-invariant (LTI) systems, serve expected functions; however, they 52 
also provide unintentional signal modification, such as gain changes and phase shifts. Removing 53 
the unintentional modification from output signals is called calibration, and the output signals are 54 
divided by the transfer function of the systems in the frequency domain, which is a conventional 55 
calibration method (Matsuda et al., 2021). Because time-sequential signals that should be 56 
calibrated typically comprise finite data points, the conventional calibration method is effective 57 
only when the number of data points is sufficiently large and the sampling frequency is much 58 
shorter than the typical frequencies of the observed signals. In some cases, however, the number 59 
of data points of the observed signals and/or the calculation resource should be limited, and 60 
dividing the signals by the transfer function alone is not sufficient for the calibration. For 61 
example, the Software-type Wave-Particle Interaction Analyzer (S-WPIA) (Katoh et al., 2018) 62 
aboard the Arase satellite (Miyoshi et al., 2018) requires onboard calibration processes for 63 
electromagnetic waveform data, and the calculation resources for each time window are limited 64 
to several hundred points (Hikishima et al., 2014; 2018).   65 
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In this paper, we focus on cases with short data sizes, such as a case where the short-time 66 
Fourier transform (STFT) algorithm is used, and we propose a novel calibration method for 67 
analog filters that have a non-negligible group delay. The methodology and principles are 68 
described in Section 2. The method for quantifying the accuracy of the calibration methods is 69 
presented in Section 3, and the example calibration result is presented in Section 4. Next, we 70 
discuss the relationship between the calculation time and resources, and the characteristics of 71 
each calibration method in Section 5. 72 

2 Principle and Methodology 73 

2.1 Main principle  74 

Based on signal processing textbooks (e.g., Bendat & Piersol, 2010), the calibration 75 
process is expressed using the Fourier transform.  Let 𝑥!" and 𝑥#$% be input and output signals 76 
as functions of time 𝑡. The modification caused by a system is expressed by the convolution of a 77 
response of the system to an impulse 𝑔(𝑡) such as  78 

𝑥#$%(𝑡) = 𝑔(𝑡) ∗ 𝑥!"(𝑡). (1) 79 

Let ℱ and ℱ&' be the operations of the Fourier transform (FT) and the inverse Fourier 80 
transform (IFT) for a function, respectively; let 𝑋(𝜔) and 𝐺(𝜔) be 𝑋(𝜔) = ℱ[𝑥(𝑡)] and 81 
𝐺(𝜔) = ℱ[𝑔(𝑡)], where 𝜔 is the angular frequency of the signals. Here, 𝐺(𝜔) represents the 82 
transfer function of the system. Because the convolution operation in the time domain is 83 
equivalent to multiplying a window in the frequency domain, equation (1) can be rewritten as 84 

𝑋#$%(𝜔) = 𝐺(𝜔) ∙ 𝑋!"(𝜔). (2) 85 

By introducing 𝒞 operator as a sequence of operations that perform the FT of signals, dividing 86 
the signals 𝐺(𝜔) in the frequency domain, and then performing the IFT, such as  87 

𝒞[𝑓(𝑥)] = ℱ&' 4
ℱ{𝑥(𝑡)}
𝐺(𝜔) 7 = ℱ&' 4

𝑋(𝜔)
𝐺(𝜔)7 ,

(3) 88 

the input signal 𝑥!"(𝑡) can be ideally reproduced by the following process: 89 

𝑥!"(𝑡) = ℱ&' 4
ℱ[𝑥#$%(𝑡)]
𝐺(𝜔) 7 = 𝒞[𝑥#$%(𝑡)]. (4) 90 

In actual cases, the discrete Fourier transform (DFT) and the inverse discrete Fourier transform 91 
(IDFT) are commonly used in place of ℱ and ℱ&' in equation (4) owing to the limited number 92 
of data points. Let 𝑡(, 	𝑓), 𝑁, and 𝑇 be the detected time, the sampling frequency of the 93 
detected data, the number of data points, and the time duration of the data (the window size of 94 
the data), and let 𝑘, 𝑚, and 𝑛 be index integers. Thus, DFT and IDFT are defined as 95 

𝑋(𝜔*) = ℱ+[𝑥(𝑡()] =
1
𝑁A 𝑥(𝑡()

,&'

(-.

𝑒&/0!1" =
1
𝑁A 𝑥(𝑡()

,&'

(-.

𝑒&
23/*(
, , (5) 96 
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𝑥(𝑡() = ℱ+&'[𝑋(𝜔*)] = A 𝑋(𝜔*)
,&'

4-.

𝑒/0!1" 	= A 𝑥(𝜔*)
,&'

4-.

𝑒
23/*(
, , (6) 97 

where 𝑡( = 𝑛Δ𝑡, 𝜔* = 𝑚Δ𝜔 = 2𝜋𝑚Δ𝑓, Δ𝑡 = '
5#
= 6

,
, Δ𝑓 = 5#

,
. We define the operation 𝒞7 as 98 

the calibration method in (4) applied to discrete finite data with the DFT/IDFT expressed as 99 

𝒞7[𝑥#$%(𝑡()] = ℱ7&' 4
ℱ7[𝑥#$%(𝑡()]
𝐺(𝜔*)

7 , (7) 100 

where 𝒞7 is the 𝒞 operation using the DFT/IDFT for digital data. Note that, for the case where 101 
the frequency resolution Δ𝜔 (or Δ𝑓) is small, that is, the number of data points 𝑁 is large, the 102 
calibration method described in (4) is reasonable for the estimation of input data with high 103 
accuracy. However,  𝑥!" ≠ 𝒞[𝑥#$%] for finite 𝑁.  104 

In typical DFT/IDFT processes, which include the STFT process, the data to be applied 105 
to the DFT/IDFT are multiplied by a window function to taper off to the edges and avoid side-106 
lobe effects owing to discontinuity at the edges. Here, let	𝑤(𝑡() be a window function in the 107 
time domain. By applying the operation 𝒞7 to the tapered output data, we can estimate the input 108 
data using the following operation 𝒞8: 109 

𝒞8[𝑥#$%(𝑡(), 𝑤(𝑡()] =
𝒞7[𝑤(𝑡() ∙ 𝑥#$%(𝑡()]

𝑤(𝑡()
	=

ℱ&' Jℱ[𝑤(𝑡() ∙ 𝑥#$%(𝑡()]𝐺(𝜔*)
K

𝑤(𝑡()
. (8) 110 

The calibration process expressed by operation 𝒞8 is more accurate than 𝒞7 for a sufficiently 111 
large 𝑁 because the side lobes become small in the frequency domain by edge tapering. 112 
However, the operation 𝒞8 cannot exactly reproduce the input data 𝑥!". Let 𝑊 be the spectrum 113 
of the window function in the frequency domain, expressed as 𝑊(𝜔) = ℱ[𝑤(𝑡)]. The relation 114 
between the transfer function and tapered data in the time domain can be expressed as 115 

𝑤(𝑡) ∙ 𝑥#$%(𝑡) = 𝑤(𝑡) ∙ N𝑔(𝑡) ∗ 𝑥#$%(𝑡)O, (9) 116 

and its relation in the frequency domain is easily derived from equation (9) as 117 

𝑊(𝜔) ∗ 𝑋#$%(𝜔) = 𝑊(𝜔) ∗ N𝐺(𝜔) ∙ 𝑋!"(𝜔)O. (10) 118 

Based on equations (9) and (10), because the windowing and filtering processes are conjugate 119 
operations of each other, the convoluted window function in the frequency domain is also 120 
modified by the calibration process divided by the transfer function 𝐺 in the frequency domain. 121 
This fact is also expressed as 𝑥!" ≠ 𝒞8[𝑥#$%] for finite 𝑁 owing to (𝑊 ∗ (𝐺 ∙ 𝑋!"))/𝐺	 ≠ 𝑊 ∗122 
𝐹!". 123 

 124 

2.2 Modulation of window functions 125 
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In this section, to evaluate the difference between 𝑥!" and 𝒞8[𝑥#$%], we quantify the 126 
unintentional modulation of window functions in the calibration process. First, we assume a 127 
simple case in which the output signals are expressed as a monotonic sinusoidal wave as  128 

𝑥#$%(𝑡() = 𝐴.𝑒/(:$1";<$), (11) 129 

where 𝐴., 𝜙., and 𝜔. are the amplitude, initial phase, and frequency of the waveform, 130 
respectively. The wave period of the signals is assumed as an integer multiple of the time width 131 
of the window (𝜔. = 𝑚.Δ𝜔 with 𝑚. ∈ ℕ). Note that because Δ𝜔 is defined as Δ𝜔 = 2𝜋/𝑇, 132 
Δ𝜔 represents not only the frequency resolution of the DFT/IDFT but also the fundamental 133 
frequency of the window function. In this case, by applying the DFT/IDFT described in (5) and 134 
(6), the frequency spectra of the output signals are succinctly expressed as 135 

𝑋#$%(𝜔*) = 𝐴.𝑒/<$𝛿*,*$ , (12) 136 

where 𝛿/,? is the Kronecker delta. Let |𝐺(𝜔)| and 𝜃(𝜔) be the magnitude and argument of the 137 
complex transfer function 𝐺(𝜔) as written by |𝐺(𝜔)| = absN𝐺(𝜔)O =138 

^Re[𝐺(𝜔)] 	+ Im[𝐺(𝜔)]	 and 𝜃(𝜔) = argN𝐺(𝜔)O = tan&'(Im[𝐺(𝜔)] Re[𝐺(𝜔)]⁄ ), where 139 
Re[𝑧] and Im[𝑧] are the real and imaginary parts of a complex number 𝑧, respectively. The 140 
operation 𝒞7 for the output signal without any window function can be rewritten as 141 

𝒞7[𝑥#$%(𝑡()] = ℱ7&' 4
𝐴.𝑒/@<$&A(0$)B

|𝐺(𝜔.)|
𝛿*,*$7 =

𝐴.
|𝐺(𝜔.)|

𝑒/@:$1";<$&A(0$)B. (13) 142 

For general cases, the output signals 𝑥#$%(𝑡() can be expanded by a series of exponential 143 
functions using DFT: 144 

𝑥#$%(𝑡() = A 𝑋*𝑒/0%1"
,&'

*-.

, (14) 145 

where 𝑋* = 𝑋(𝜔*) = ℱ7[𝑤(𝑡()]. The window function 𝑤(𝑡() can also be expanded as 146 

𝑤(𝑡() = A𝑊4𝑒/4C01" ,
,&'

4-.

(15) 147 

where 𝑊4 = 𝑊(𝜔4) = ℱ7[𝑤(𝑡()].  148 

Assuming the condition of 149 

𝑊,
2
≪ 𝑊., (16) 150 

the following approximation can be derived from equation (15),   151 
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𝑤(𝑡() ≃ 𝑊. +	Al𝑊4𝑒/4C01" +𝑊&4𝑒&/4C01"m

,
2&'

4-'

. (17) 152 

The right- and left-hand sides of approximation (17) should be exactly equivalent because 𝑊&
'
=153 

0 in the case of the window function expressed as a simple summation of the cosine function 154 
(e.g., the Hamming window, etc.). By multiplying both sides of equations (14) by (17), we obtain 155 
the following expression: 156 

𝑤(𝑡() ⋅ 𝑥#$%(𝑡() ≃ A 𝑋*

⎩
⎨

⎧
𝑊.𝑒/0%1" +Al𝑊4𝑒/(0%;4C0)1" +𝑊&4𝑒/(0%&4C0)1"m

,
2&'

4-' ⎭
⎬

⎫,&'

*-.

. (18) 157 

The first term on the right-hand side of equation (18) mainly indicates a peak point of the main 158 
lobe of signals (including side lobes), and the other terms corresponding to the accumulation of 159 
𝑘 mainly indicate the main lobe expansion around the signal frequencies (∼ 𝜔* ± 𝑘Δ𝜔) 160 
(including side-lobe reduction parts). Here, we introduce the new parameters 𝑊4,*

; , 𝑊4,*
& , 𝜃4,*; , 161 

and 𝜃4,*&  with double sign in the same order as 162 

𝑊4,*
± =

|𝐺(𝜔*)|
|𝐺(𝜔* ± 𝑘Δ𝜔)|

𝑊±4 , (19) 163 

𝜃4,*
± =

𝜃(𝜔* + 𝑘Δ𝜔) ± 𝜃(𝜔* − 𝑘Δ𝜔)
2 . (20) 164 

Using these parameters expressed as (19) and (20) and applying the description of 165 
operation 𝒞7 expressed as (13) to equation (18), the following expressions can be derived: 166 

𝒞7[𝑤(𝑡() ⋅ 𝑥#$%(𝑡()]	167 

≃ A 𝑋*

⎣
⎢
⎢
⎡ 𝑊.

|𝐺(𝜔*)|
𝑒/@0%1"&A(0%)B

,&'

*-.

168 

+	A 4
𝑊4𝑒/@(0%;4C0)1"&A(0%;4C0)B

|𝐺(𝜔* + 𝑘Δ𝜔)| +
𝑊&4𝑒/@(0%&4C0)1"&A(0%&4C0)B

|𝐺(𝜔* − 𝑘Δ𝜔)| 7

,
2&'

4-' ⎦
⎥
⎥
⎤
	169 

= A
𝑋*

|𝐺(𝜔*)|
~𝑊.𝑒/@0%1"&A(0%)B

,&'

*-.

	170 

+	A �𝑊4,*
; 𝑒/E(0%;4C0)1"&@A!,%

) ;A!,%
* BF +𝑊4,*

& 𝑒/E(0%&4C0)1"&@A!,%
) &A!,%

* BF�

,
2&'

4-' ⎭
⎬

⎫
. (21) 171 
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If we assume 172 

𝜃(𝜔*) ≃ 𝜃4,*; , (22) 173 

the condition (22) is equivalent to   174 

1
2
(𝑘Δ𝜔)2 ≪

|𝜃(𝜔*)|
|𝜃GG(𝜔*)|

				(for	all	𝑘) (23) 175 

because 𝜃4,*;  can be approximated using Taylor series expansion as  176 

𝜃4,*; =
𝜃(𝜔* + 𝑘Δ𝜔) + 𝜃(𝜔* − 𝑘Δ𝜔)

2 = 	𝜃(𝜔*) +
1
2
(𝑘Δ𝜔)2𝜃GG(𝜔*) + ⋯ . (24) 177 

Under the condition of inequality (23), equation (21) can be rewritten as 178 

𝒞7[𝑤(𝑡() ⋅ 𝑥#$%(𝑡()] ≃ A �𝑤HI(𝑡(, 𝜔*) �
𝑋*

|𝐺(𝜔*)|
𝑒/@0%1"&A(0%)B��

,&'

*-.

, (25) 179 

where 180 

𝑤HI(𝑡(, 𝜔*) = 𝑊. +	A�𝑊4,*
; 𝑒J/@4C01"&A!,%

* BK +𝑊4,*
& 𝑒&/@4C01"&A!,%

* B�

,
2&'

4-'

. (26) 181 

Introducing 𝑊�4,*;  and 𝑊�4,*& , respectively as 182 

𝑊�4,*
± = 𝑊4,*

; ±𝑊4,*
& , (27) 183 

the expression (26) can be rewritten as 184 

𝑤HI(𝑡(, 𝜔*) = 𝑊. +	Al𝑊�4,*; cosN𝑘Δ𝜔𝑡( − 𝜃4,*& O + 𝑖𝑊�4,*& sinN𝑘Δ𝜔𝑡( − 𝜃4,*& Om.

,
2&'

4-'

(28) 185 

Consequently, we can derive 𝑥!"(𝑡() ≠ 𝒞8[𝑥#$%(𝑡()] = 𝒞7[𝑤(𝑡() ⋅ 𝑥#$%(𝑡()]/𝑤(𝑡() because of 186 
𝑤(𝑡() ≠ 𝑤HI(𝑡(, 𝜔*) in (25). This unexpected discordance is mainly caused by the main lobe 187 
expansion shown in (18). The main lobe expansion terms are unintentionally divided by the 188 
transfer function at expanded frequencies (∼ 𝜔* ± 𝑘Δ𝜔), described as the second and third 189 
terms of equation (21), and it yields the unexpected modulation of the window function. 190 
Equation (28) shows that the amplitude of the window function is rotated and/or extended by 191 
𝑊�4,*;  and 𝑊�4,*&  in the complex space, and the phase of the window function is shifted by 𝜃4,*& , 192 
which is the local linearity of the phase transfer function in the time domain. Because the 193 
approximations are established based on the assumptions expressed as inequalities (16) and (23), 194 
the approximations are reasonable when the following three conditions are satisfied: 195 
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• Condition A (for the window function): A sufficiently small 𝐾, which is defined as the 196 
maximum 𝑘 satisfying 𝑊4 ≠ 0, is required. That is, the window function should 197 
comprise low-order cosine functions. This condition also indicates that approximation 198 
(23) is not effective for the case of window functions that include high 𝑘 components 199 
(e.g., the Gaussian window, the triangle window, the sine window (the half-cosine 200 
window), etc.) 201 

• Condition B (for frequency resolution): A sufficiently small Δ𝜔 is required. That is, the 202 
sampling frequency 𝑓) should be sufficiently high, and/or the data length 𝑁 (or 𝑇) 203 
should be sufficiently large. 204 

• Condition C (for the transfer function): A roughly small 𝜃GG is required. That is, the 205 
transfer function of the system should be locally linear in the range of ±𝑘Δ𝜔. Note that 206 
the transfer function does not have a completely linear phase response in the frequency 207 
domain.   208 

In extremely small Δ𝜔 cases (or large 𝑁), the factor 𝑤HI(𝑡(, 𝜔*) in the approximation (25) 209 
expressed as equation (26), which corresponds to the unintentionally modulated window 210 
function, are almost equal to the 𝑤(𝑡() expressed as equation (17) because 𝑊4,*

±  and 𝜃4,*&  are 211 
approximately equal to 𝑊±4 and 0, respectively. Therefore, the discordance between 212 
𝒞8[𝑥#$%(𝑡()] and 𝑥!"(𝑡() is negligible. It should be noted that the accumulation in equation 213 
(25) cannot be replaced with the fast Fourier transform (FFT) algorithm because the modulation 214 
of the window function caused by operation 𝒞7 occurs at each frequency in the frequency 215 
domain. 216 

 217 

2.3 Various window functions 218 

In the previous section, we derived the discordance between 𝒞8[𝑤(𝑡() ⋅ 𝑥(𝑡()] and 219 
𝑥!"(𝑡(), and the discordance also depends on the type of window function. In this section, we 220 
focus on the dependency of the modulation characteristics on the types of window functions. 221 

One of the most common window functions is the cosine-sum window. The cosine-sum 222 
window functions are represented as (e.g., Harris, 1978; Nuttall, 1981) 223 

𝑤L#H(𝑡() = A(−1)4𝑎4 cos(𝑘Δ𝜔𝑡()
M

4-.

, (29) 224 

where 𝐾 is the order of the cosine-sum window. 𝐾 = 0, 𝑎. = 1 corresponds to the rectangular 225 
window with no window function, 𝐾 = 1, 𝑎. = 0.5, 𝑎' = 0.5 corresponds to the Hann window 226 
(Hann, 1903; Blackman & Tukey, 1958),	𝐾 = 1, 𝑎. = 0.54, 𝑎' = 0.46 corresponds to the 227 
Hamming window (Tukey & Hamming, 1949; Blackman & Tukey, 1958), 𝐾 = 2, 𝑎. =228 
0.42, 𝑎' = 0.5, 𝑎2 = 0.08 corresponds to the Blackman window (Blackman & Tukey, 1958), 229 
and 𝐾 = 3, 𝑎. = 0.35875, 𝑎' = 0.48829, 𝑎2 = 0.14128, 𝑎N = 0.01168 corresponds to the 230 
Blackman-Harris window (Harris, 1978). Figures 1a and 1b show these window functions in the 231 
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time domain and magnitude properties in the frequency domain. The black, red, yellow, green, 232 
and blue lines correspond to the rectangular, Hamming, Hann, Blackman, and Blackman-Harris 233 
window, respectively. It is well known that larger-𝐾 cosine-sum window functions have a wider 234 
main lobe and lower-level side lobes.  235 

Tukey (1967) introduced a cosine taper window, also known as the Tukey window, 236 
which is represented as  237 

𝑤OP(𝑡() =

⎩
⎪
⎨

⎪
⎧ 0.5 − 0.5 cos

Δ𝜔𝑡(
𝑇Q

	 (0 < 𝑡( < 𝑇Q)

1 (𝑇Q ≤ 𝑡( ≤ 𝑇Q + 𝑇R)

0.5 − 0.5 cos
Δ𝜔(𝑇8 − 𝑡()

𝑇Q
(𝑇Q + 𝑇R < 𝑡( < 𝑇8)

(30) 238 

where 𝑇Q, 𝑇R, and 𝑇S are the time length of the slope regions, the flat top region length, and the 239 
whole window size (𝑇8 = 2𝑇Q + 𝑇R), respectively. The cases where 𝑇R = 0 and 𝑇R = 𝑇8 240 
correspond to the Hann window and rectangular window, respectively. Because the Tukey 241 
window has a flat top region at the center of the window, the effect caused by the phase shift and 242 
amplitude rotation of a window function is negligible at the flat center region, similar to the 243 
rectangular window. Furthermore, the side-lobe effect is smaller than that of the rectangular 244 
window because of the tapered slope regions at both edges of the window. To reduce the side-245 
lobe effects more than that of the Tukey window, including the merit of the rectangular window, 246 
we define the “Tukey-type” windows by combining the Tukey window and the cosine-sum 247 
windows as 248 

𝑤OL(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧ A(−1)4𝑎4 cos �

𝑘Δ𝜔𝑡(
𝑇)

�
,

4-.

	 (0 < 𝑡( < 𝑇Q)

1 (𝑇Q ≤ 𝑡( ≤ 𝑇Q + 𝑇R)

A(−1)4𝑎4 cos �
𝑘Δ𝜔(𝑇8 − 𝑡()

𝑇)
�

,

4-.

(𝑇Q + 𝑇R < 𝑡( < 𝑇8)

(31) 249 

For example, if we choose the Hamming window as a tapering curve, we can define the Tukey-250 
Hamming window as 251 

𝑤OT(𝑡) =

⎩
⎪
⎨

⎪
⎧ 0.54 − 0.46 cos

Δ𝜔𝑡(
𝑇Q

	 (0 < 𝑡( < 𝑇Q)

1 (𝑇Q ≤ 𝑡( ≤ 𝑇Q + 𝑇R)

0.54 − 0.46 cos
Δ𝜔(𝑇8 − 𝑡()

𝑇Q
(𝑇Q + 𝑇R < 𝑡( < 𝑇8)

(32) 252 

Figures 1c and 1d show the time and frequency properties of four types of Tukey-type window 253 
functions and a rectangular window function with the same length of the flat region (𝑟 =254 
	𝑇R/𝑇U = 0.3). The black, red, yellow, green, and blue lines correspond to the rectangular, 255 
Tukey-Hamming, Tukey-Hann, Tukey-Blackman, and Tukey-Blackman-Harris window, 256 
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respectively. Because the phase shift effect described in the previous section results from the 257 
expanded main lobe, the Tukey-Hamming window should be one of the most useful windows in 258 
the displayed Tukey-type windows in Figures 1c and 1d. Figures 1e and 1f show the time and 259 
frequency properties of the Tukey-Hamming windows for different lengths of the flat region. 260 
The red, yellow, green, cyan, blue, and black lines correspond to 𝑟 = 0, 0.2, 0.4, 0.6, 0.8, and 1, 261 
respectively. Note that 𝑟 = 0 and 1 correspond to the normal Hamming window and the 262 
rectangular window, respectively. The longer flat region makes higher side lobes around the 263 
main lobe like the rectangular window; therefore, the parameter roughly within 0.2 < 𝑟 < 0.6 264 
seems useful for the calibration process.  265 

Based on the above discussion and the description, two types of processes are 266 
conceivable as accurate waveform calibration with a window function: (1) Use a Tukey-type 267 
(particularly, Tukey-Hamming) window function to reduce side lobes, and (2) use a low-order 268 
cosine-sum window function and estimate the modification of a window function at each 269 
frequency. The latter method is presented in the previous section, and here, we describe a method 270 
specific to the first-order cosine-sine sum window functions. 271 

In the case of the first-order cosine-sine sum window function (e.g., Hann window, 272 
Hamming window, etc.), the window function is expressed as 273 

𝑤'(𝑡() = 𝑎. − 𝑎' cos(Δ𝜔𝑡() , (33) 274 

𝑤'(𝑡() = 𝑎. −	
𝑎'
2 𝑒

/C01" −
𝑎'
2 𝑒

&/C01" , (34) 275 

and substituting (34) and (27) in (19) and (20), respectively, we can replace the following 276 
expression: 277 

𝑊� ±(𝜔) = −
𝑎'
2 �

|𝐺(𝜔)|
|𝐺(𝜔 + Δ𝜔)| ±

|𝐺(𝜔)|
|𝐺(𝜔 − Δ𝜔)|� ,

(35) 278 

𝜃±(𝜔) =
𝜃(𝜔 + Δ𝜔) ± 𝜃(𝜔 − Δ𝜔)

2 . (36) 279 

Using (35) and (36), the modulated window function (28) is rewritten as 280 

𝑤HI'(𝑡(, 𝜔*) = 𝑎. +𝑊�*; cos(Δ𝜔𝑡( − 𝜃*&) + 𝑖𝑊�*& sin(Δ𝜔𝑡( − 𝜃*&) . (37) 281 

where 𝑊�*± = 𝑊� ±(𝜔*), and 𝜃*& = 𝜃&(𝜔*). Based on the above, we propose a novel method to 282 
calibrate the waveform accurately with the first-order cosine-sine sum window function, written 283 
as 284 

𝑥!"(𝑡() ≃ A
1

𝑤HI'(𝑡(, 𝜔*)
⋅
ℱ7[𝑤'(𝑡() ⋅ 𝑥#$%(𝑡()]𝑒/@0%1"&A(0%)B

|𝐺(𝜔*)|

,&'

*-.

. (38) 285 

Note that the first-order cosine-sum window functions automatically satisfy condition A 286 
described in the previous section; however, conditions B and C are still required for the 287 
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approximation. Under these conditions, we can use any type of window function such as a high-288 
order cosine-sum window function by substituting 𝑊±4 into (−1)4𝑎4/2 and replacing 289 
𝑤HI'(𝑡(, 𝜔*) by 𝑤HI(𝑡(, 𝜔*) in equation (28).   290 

 291 

2.4 List of calibration methods 292 

Figure 2 summarizes the flowcharts of the conceivable calibration procedures for the 293 
STFT cases. The details of the methods are as follows: 294 

2.4.1 Method 1 295 

 Method 1 processes are shown with yellow arrows in Figure 2. The split data for STFT 296 
are not multiplied by any window function (or multiplied by a rectangular window as a window 297 
function), the data are calibrated in the frequency domain, and the calibrated short-time data are 298 
connected in the time domain. The sequence of these processes, except for splitting and merging, 299 
can be described as the operation 𝒞𝑎𝑙' expressed as 300 

𝒞𝑎𝑙'[𝑥#$%(𝑡()] = 𝒞7[𝑥#$%(𝑡()] = ℱ7&' 4
ℱ7[𝑥#$%(𝑡()]
𝐺(𝜔*)

7 . (39) 301 

In the case where the typical wave period of the signals comprises integer multiples of 302 
the time width of the STFT time window or in the case where the number of data points in the 303 
STFT time window is sufficiently large, the calibrated signals are ideally identical to the input 304 
signals. Conversely, when the typical wave period of the signals is not expressed by integers or 305 
half-integer multiples of the time width of the window, the calibrated signals significantly 306 
disagree with the input signals owing to side-lobe effects in the DFT process. 307 

2.4.2 Method 2 308 

Method 2 processes are shown with green arrows in Figure 2. Split data for STFT are 309 
multiplied by a cosine-sum window in the time domain and calibrated in the frequency domain. 310 
The calibrated short-time data inverse-transformed into waveforms in the time domain are 311 
divided by the window function, and subsequently the data are connected in the time domain. A 312 
sequence of the processes, except for splitting and merging, can be described as the operation 313 
𝒞𝑎𝑙2 expressed as 314 

𝒞𝑎𝑙2[𝑥#$%(𝑡()] = 𝒞8[𝑥#$%(𝑡(), 𝑤(𝑡()] =
ℱ&' Jℱ[𝑤(𝑡() ∙ 𝑥#$%(𝑡()]𝐺(𝜔*)

K

𝑤(𝑡()
. (40) 315 

In this study, the Hamming window was used as 𝑤(𝑡() in the Method 2 process. 316 

The side-lobe effects can be drastically reduced by the window function compared to the 317 
data calibrated by Method 1; however, the main lobe expansion effect is not negligible except for 318 
the case of sufficiently large data points. 319 
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2.4.3 Method 3  320 

Method 3 processes are shown with blue arrows in Figure 2. Split data for STFT are 321 
multiplied by a Tukey-type window function (especially, a Tukey-Hamming window is useful) 322 
in the time domain and calibrated in the frequency domain. The calibrated short-time data 323 
inverse-transformed into waveforms in the time domain are divided by the window function; 324 
subsequently, the calibrated data are connected in the time domain. A sequence of the processes, 325 
except for splitting and merging, can be described as operation 𝒞𝑎𝑙N expressed as 326 

𝒞𝑎𝑙N[𝑥#$%(𝑡()] = 𝒞8[𝑥#$%(𝑡(), 𝑤OT(𝑡()] =
ℱ&' Jℱ[𝑤OT(𝑡() ∙ 𝑥#$%(𝑡()]𝐺(𝜔*)

K

𝑤OT(𝑡()
, (41) 327 

where 𝑤OT is the Tukey-Hamming window, described in (32). The difference between Method 328 
2 and Method 3 is only a window function used in the processes.  329 

The side-lobe effects can be roughly reduced by the tapering sections of the Tukey-type 330 
window function compared to the data calibrated by Method 1, and the main lobe expansion 331 
effect is also reduced by the flat section of the Tukey-type window function compared to the data 332 
calibrated using Method 2.  333 

2.4.4 Method 4 (a novel method) 334 

Method 4 is a novel proposed method, shown with a red line flow in Figure 2. Split data 335 
for STFT are multiplied by a cosine-sum window in the time domain, and the transformed data 336 
are calibrated in the frequency domain, as in Method 2. The calibrated spectral data are inverse-337 
transformed into waveforms in the time domain at each frequency, and in parallel, the modulated 338 
window functions are estimated at each frequency using (28) or (37). The calibrated waveforms 339 
at each frequency are divided by the estimated window functions at each frequency, respectively, 340 
and accumulated over all frequencies. The accumulated waveforms are connected in the time 341 
domain. A sequence of the processes except for splitting and merging can be described as 342 
operation 𝒞𝑎𝑙V expressed as 343 

𝒞𝑎𝑙V[𝑥#$%(𝑡()] = A
1

𝑤)I(𝑡(, 𝜔*)
⋅
ℱ7[𝑤(𝑡() ⋅ 𝑥#$%(𝑡()]𝑒/@0%1"&A(0%)B

|𝐺(𝜔*)|

,&'

*-.

, (42) 344 

where 𝑤 and 𝑤)I are the applied and estimated window functions, respectively, and 𝑤)I is 345 
calculated using (28) and (37). In this study, the Hamming window is used for 𝑤 such as 𝑤' 346 
shown in (33), and 𝑤)I is calculated by 𝑤)I', which is described in (35), (36), and (37). 347 

The side-lobe effects are significantly reduced by the window function, similar to the data 348 
calibrated by Method 2, and the main lobe expansion effect is also drastically eliminated by the 349 
estimation of the modulation of the window function. However, we cannot apply the FFT for the 350 
IDFT process, and we should perform the accumulation in (42) manually. The accumulation can 351 
also be interpreted as a manual deconvolution in the time domain. Therefore, the calculation time 352 
is much longer (it takes about 𝒪(𝑁2)) than that of the other methods (corresponding to 353 
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𝒪('
2
𝑁 log2𝑁)).  354 

 355 

3 Evaluation Method 356 

To evaluate our proposed method (Method 4) and the other three calibration methods 357 
described in Section 2.4.4., we perform the test calibration using low-pass filters and sinusoidal 358 
waveform data as the processing system and signals, respectively. 359 

 360 

3.1 Low-pass filters 361 

We evaluated the calibration methods using three types of analog low-pass filters as the 362 
processing system: a first-order RC filter, a Butterworth filter, and a Bessel filter. The transfer 363 
function of the first-order RC filter (RC1) is the simplest low-pass filter and is expressed as 364 

𝐺WX'(𝑓) =
𝐺.

1 + 𝑓
𝑓L$%#YY

𝑖
. (43) 365 

Here, 𝑓L$%#YY and 𝐺. are the cutoff frequency and offset value corresponding to the DC gain, 366 
respectively. 367 

  A Butterworth filter (Butterworth, 1930) is designed as a filter with a maximally steep cutoff 368 
property. The transfer function of the 𝑙-th order Butterworth filter is expressed as 369 

𝐺ZU[(𝑓) =
𝐺.

𝑃[ZU � 𝑓
𝑓L$%#YY

𝑖�
. (44) 370 

Here, 𝑃[ZU(𝑠) is the 𝑙-th degree Butterworth polynomial for complex variable 𝑠 expressed as 371 

𝑃[ZU(𝑠) =

⎩
⎪⎪
⎨

⎪⎪
⎧

�J𝑠2 − 2𝑠 cos �
2𝑘 + 𝑙 − 1

2𝑙 𝜋� + 1K

[
2

4-'

for	even	𝑛,

(1 + 𝑠)�J𝑠2 − 2𝑠 cos �
2𝑘 + 𝑙 − 1

2𝑙
𝜋� + 1K

[&'
2

4-'

for	odd	𝑛.

(45) 372 

A Bessel filter (Kiyasu, 1943; Thomson, 1949) was designed as a filter with a maximally linear 373 
phase response. The transfer function of the 𝑙-th order Bessel filter is expressed as 374 
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𝐺ZQ[(𝑓) =
𝐺.𝑃[ZQ(0)

𝑃[ZQ �
𝑓

𝑓L$%#YY
𝑖�
. (46) 375 

Here, 𝑃[ZQ(𝑠) is the 𝑙-th degree reverse Bessel polynomial represented as 376 

𝑃[ZQ(𝑠) = A
(2𝑙 − 𝑘)!

2[&4𝑘! (𝑙 − 𝑘)! 𝑠
4

[

4-.

. (47) 377 

Note that both a first-order Butterworth filter and a first-order Bessel filter correspond to the 378 
first-order RC filter. 379 

Figure 3 shows the properties of the filters with 𝑓L$%#YY = 10	kHz and 𝐺. = 1. (a) and (e) 380 
are the amplitude components of the transfer function |𝐺(𝑓)| corresponding to the gain of the 381 
filters; (b) and (f) are the phase components of the transfer function 𝜃(𝑓), and (c) and (g) are the 382 
first-order derivatives of 𝜃(𝑓), and (d) and (h) are the second-order derivatives of 𝜃(𝑓), 383 
respectively. The black, red, and blue lines correspond to the RC1, Butterworth, and Bessel 384 
filters, respectively, and the dashed and solid lines of the red and blue lines correspond to the 385 
third- and seventh-order filters, respectively. Figures 3a to 3d are plotted in the frequency range 386 
of 102 to 106 Hz with a logarithmic scale, and (e) to (h) are plotted in the frequency range of 0 to 387 
10 kHz with a linear scale. The Butterworth filters have a flat magnitude at the passband and a 388 
steep slope at the cutoff frequency (red lines in Figure 3a) in exchange for a large phase delay at 389 
the passband (red lines in Figures 3b and 3f). The higher-order Butterworth filters provide a 390 
steeper gain cutoff and larger phase delays around the cutoff frequency. In contrast, the gain 391 
cutoff slopes of the Bessel filters are softer than those of Butterworth filters (blue lines in Figure 392 
3a); however, the phase response is a gentle slope, such as a linear slope, and the slope does not 393 
depend on the order of the filter (blue lines in Figures 3b and 3c). 𝜃′ shown in Figures 3c and 3g 394 
indicate phase delays and also correspond to the phase shift of a window function described as 395 
𝜃& in equations (28) and (37).  396 

 397 

3.2 Test sinusoidal waves 398 

The test waveform signals 𝑥!"(𝑡() at each (arbitrary) frequency 𝑓!" are expressed as 399 

𝑥!"(𝑡() = 𝐴!" cosN𝜙!"(𝑡(, 𝑓!")O , (48) 400 

where  401 

𝜙!"(𝑡(, 𝑓!") = 2𝜋𝑓!"𝑡( + 𝜙.. (49) 402 

Here, 𝐴!" and 𝜙. are the constant wave amplitude and initial phase, respectively. Note that the 403 
suffix ‘out’ represents the calibration target. The signal output from the processing system 404 
corresponds to the signals inputted into the calibration processes. The suffix ‘in’ represents data, 405 
and the signals inputted into a processing system corresponding to the signal output from the 406 
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calibration process. The ideal output signals are represented as 407 

𝑥#$%(𝑡() = 𝐴#$% cosN𝜙#$%(𝑡(, 𝑓#$%)O = |𝐺(𝑓!")|𝐴!" cosN𝜙!" + 𝜃(𝑓!")O (50) 408 

To evaluate the accuracy of these calibration processes, we set 𝑥#$%(𝑡() as sinusoidal 409 
waves at first, and subsequently, we compared “the correct answer” expressed as 410 
\+,-

|^(5./)|
cosN𝜙#$% − 𝜃(𝑓!")O and calibrated data 𝒞𝑎𝑙_[𝑥#$%(𝑡()] using the following indexes. 411 

 412 

3.3 Evaluation parameters 413 

We define three indexes: the maximum gap 𝛤, the error of amplitude 𝑄, and the phase 414 
difference 𝐷. First, we define 𝛿_ as a simple difference between the ideal signal 𝑥!"(𝑡() and 415 
calibrated signal 𝒞𝑎𝑙_[𝑥#$%(𝑡()] expressed as 416 

𝛿_(𝑡() = 𝒞𝑎𝑙_[𝑥#$%(𝑡()] − 𝑥!"(𝑡(). (51) 417 

Note that the suffix ℎ represents the method number corresponding to Method 1, 2, 3, or 4. 418 
Using 𝛿_, we define the maximum gap 𝛤 as 419 

𝛤_ = max
60&61`1"`60;61

�
|𝛿_(𝑡()) − 𝛿_(𝑡(&')|

𝐴!"
� × 100	[%] (52) 420 

The maximum gap 𝛤 mainly shows how seamless the joint section of the STFT data windows 421 
is. Next, we define the error of the amplitude 𝑄, and the phase difference 𝐷 calculated by the 422 
instantaneous amplitude and phase. The instantaneous amplitude	𝒜!"H% and the instantaneous 423 
phase 𝒫!"H% for general 𝑥(𝑡() can be respectively derived using the Hilbert transform as 424 

𝒜!"H%[𝑥(𝑡()] = ®N𝑥(𝑡()O
2 + (ℋ7[𝑥(𝑡()])2 (53) 425 

𝒫!"H%[𝑥(𝑡()] = arg(𝑥(𝑡() + 𝑖ℋ7[𝑥(𝑡()]) 	mod	2𝜋 (54) 426 

Here, the discrete Hilbert transform ℋ7 is expressed as 427 

ℋ7[𝑥(𝑡()] = Re �ℱ7&'[𝑋°(𝜔*)]� (55) 428 

𝑋(𝜔*) = ℱ7[𝑥(𝑡()]				and				𝑋°(𝜔*) =

⎩
⎪
⎨

⎪
⎧ 𝑋(𝜔*) for	𝑚 = 0	and	

𝑁
2 ,

2𝑋(𝜔*) for	0 < 𝑚 <
𝑁
2 ,

0 for	𝑚 >
𝑁
2
.

(56) 429 

By using 𝒜!"H% and 𝒫!"H%, We define the error of calibrated amplitude 𝑄	at each 𝑡( as 430 
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𝑄_(𝑡() =
²𝒜!"H%³𝒞𝑎𝑙_[𝑥#$%(𝑡()]´ − 𝐴!"²

𝐴!"
× 100	[%] (57) 431 

Because the instantaneous amplitude is not accurate around the edge of the data owing to the 432 
discontinuity effect of the DFT, we define the averaged error of the amplitude around the center 433 
area to avoid edge effects: 434 

𝑄µ_ = avg
60&61`1"`60;61

N𝑄_(𝑡()O	[%], (58) 435 

where 𝑇a is the center of data 𝑥#$%(𝑡() or 𝑥!"(𝑡() expressed as 𝑇a = 𝑇%#%bc 2⁄  and 𝑇d is the 436 
accumulation time width. In this study, we used 𝑇d = 𝑇%#%bc 10⁄ .   437 

We also define the phase difference using the instantaneous phase calculated from the Hilbert 438 
transform represented as 439 

𝐷_(𝑡() = ²𝒫!"H%³𝒞𝑎𝑙_[𝑥#$%(𝑡()]´ − 𝜙!"(𝑡()²		[degree] (59) 440 

We also define the averaged phase difference around the center area to avoid the edge effect 441 
represented as 442 

𝐷¶_ = avg
60&61`1"`60;61

N𝐷_(𝑡()O	[degree]. (60) 443 

𝑄µ  and 𝐷¶ indicate the averaged accuracy of the calibration process. 444 

 We calculated these parameters for the five types of filters, the five combinations of 445 
𝑁S!"e#S and 𝑁Hc!ef for sufficiently large 𝑁%#%bc at each frequency in the frequency range from 0 446 
kHz to 𝑓L$%#YY = 10	kHz. Here, 𝑁S!"e#S, 𝑁Hc!ef, and 𝑁%#%bc are the number of window widths, 447 
sliding length of the window, and total data length corresponding to 𝑇%#%bc shown in Figure 4. To 448 
make the discrete Hilbert transform sufficiently accurate, we chose 𝑁%#%bc = 10,000 points and 449 
𝑓) = 100 kHz. 450 

 451 

4 Result and Discussion 452 

Figure 5 shows a set of sample plots of (a) 𝒞𝑎𝑙_[𝑥#$%(𝑡()], (b) 𝛿_, (c) 𝑄_(𝑡(), and 453 
(d)	𝐷_(𝑡() around the center of the data. The yellow, green, blue, and red points and lines 454 
correspond to Method 1, 2, 3, and 4, respectively. To calculate this plot, we use the third-order 455 
Butterworth filter and 5.17 kHz sinusoidal waveform data with 10,000 points data corresponding 456 
to 0.1 s. The window width of the STFT and the sliding width were 128 and 64 points, 457 
respectively, and the sampling frequency was 100 kHz. The calibrated signals in Figure 5a can 458 
reproduce the input waveform; however, these results do not correspond to “the answer” exactly. 459 
Figure 5b shows the simple difference between the calibrated data and “the answer”. We can 460 
recognize a non-negligible inaccuracy in Methods 1 and 2 and discontinuities at joint sections, 461 
which exist in the center of the displayed time duration, in Methods 1, 2, and 3. Figures 5c and 462 
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5d show the instantaneous accuracies of the amplitude and phase, respectively. Whereas 463 
Methods 1 and 2 include several to 10 percent errors in the calibrated amplitudes and several 464 
degrees in the calibrated phases, the calibration errors of the amplitudes and phases in Methods 3 465 
and 4 are smaller than those of the other methods. However, the calibration result of Method 3 466 
still contains non-negligible errors that reach several to 10 percent and degrees around joint 467 
sections caused by the discontinuities. 468 

To reveal the general tendency, we performed the same test calibration for each 469 
frequency, window function, and window size. Figures 6, 7, 8, and 9 show the frequency 470 
dependences of the maximum gap 𝛤_, the averaged error of amplitude 𝑄µ_, and the phase 471 
difference 𝐷¶_. Overall, Methods 1 and 2 provide less accurate calibration results, and Methods 3 472 
and 4 provide more accurate results.  473 

The plots in Figures 6 and 7 are constructed using the same window functions (the third-474 
order Butterworth filter) and different 𝑁S!"e#S and 𝑁Hc!ef. Overall, the results are accurate in 475 
the order of Methods 4, 3, 2, and 1. For the cases of 𝑁S!"e#S = 128, because the frequency 476 
resolution 𝛥𝑓 corresponds to 512 Hz, Method 1 provides the most accurate data at frequencies 477 
equal to integer multiples of the frequency resolution (𝑓 = 𝑚.Δ𝑓 with 𝑚. ∈ ℕ) in the results 478 
provided by the four methods. However, Method 1 also provides the worst accurate data at the 479 
other frequencies, and its accuracy does not depend on the sliding number 𝑁Hc!ef. Method 2 480 
provides less accurate data, similar to Method 1. The frequency dependency of the gaps and 481 
errors in Method 2 was roughly flat. Methods 3 and 4 provide smaller errors compared to 482 
Methods 1 and 2, and the results from Method 3 still contain gaps. At lower frequencies that are 483 
smaller than approximately 1.5 kHz corresponding to three waves (sequences of up and down) in 484 
a window, the errors are larger than those at middle frequencies because side-lobe effects and a 485 
window function modulation effect cannot be estimated with sufficient accuracy owing to a few 486 
waves in a window. At higher frequencies, larger than approximately 8 to 9 kHz, the errors are 487 
also larger than those at middle frequencies because the signal frequencies are closer to the 488 
cutoff frequency and the second derivatives of the phase transfer function are larger than those at 489 
the middle frequencies. Decreasing the slide points (such as Figures 6a, 6b, and 6c in that order) 490 
and increasing the window width (such as Figures 7a, 7b, and 7c in that order) increases the 491 
accuracy of the results. Increasing the window width also contributes to increasing the accuracy 492 
of middle-frequency regions and reducing inaccurate low- and high-frequency regions. 493 

Figures 8 and 9 show the dependence of the filters on the transfer function. Because the 494 
first-order RC filter and Bessel filters shown in Figure 8 with any order have almost the same 495 
phase properties, so-called maximally linear phase responses (black and blue lines in Figure 3), 496 
the calculation errors caused by all methods represent almost the same properties. Comparing 497 
Figures 9a, 9b, and 9c, the calibration results from the higher-order Butterworth filter tend to 498 
include larger gaps and errors owing to the larger second derivatives of the phase transfer 499 
functions (red lines in Figure 3). However, the results from Method 4 are still the most accurate 500 
among the results of the four methods with several times of 10-1 percent gaps and errors and 501 
several times of 10-1 degrees of phase errors. Summarily, Method 4 is the most accurate 502 
calibration procedure for the four conceivable methods, and the method conspicuously exhibits 503 
its potential for a small data point (i.e., short-time width) case and a more curved phase transfer 504 
function case. 505 
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In the case of the calculation time, let 𝑁Hgc!% be the number of times of splitting data and 506 
executing the FT process, and 𝑁Hgc!% be expressed by 𝑁%#%bc, 𝑁S!"e#S, and 𝑁Hc!ef as 𝑁Hgc!% =507 
(𝑁%#%bc − 𝑁S!"e#S)/𝑁Hc!ef + 1 ≃ 𝑁%#%bc/𝑁Hc!ef for 𝑁%#%bc ≫ 𝑁S!"e#S, 𝑁Hc!ef. The calculation 508 
times of the calibration process with Methods 3 and 4, 𝜏N and 𝜏V can be expressed as  𝜏N ≃509 
(𝑁%#%bc × 𝑁S!"e#S × log2𝑁S!"e#S) (2𝑁Hc!ef)⁄  and  𝜏V ≃ 𝑁%#%bc × 𝑁S!"e#S2 𝑁Hc!ef⁄ , respectively. 510 
For example, if we choose 𝑁S!"e#S = 2048, 𝑁Hc!ef = 2 for Method 3, and  𝑁Hc!ef =511 
𝑁S!"e#S 2⁄  for Method 4, the calculation times for Methods 3 and 4 are roughly the same. 512 
Method 4 yields a more accurate calibration; however, it requires more calculation times than 513 
Method 3. 514 

The proposed method is effective for more curved phase transfer function cases such as 515 
the case of a filter containing a steep slope and should be applied not only to filter calibration but 516 
also to other transfer functions that do not have linear phase characteristics (e.g., amplifier, 517 
sensor, etc.). The qualitative tendencies of the three conventional methods and the proposed 518 
method are summarized in Table 1. Note that each method has benefits and inexpediences, and 519 
which method should be chosen is a matter of degree of data accuracy, depending on the 520 
scientific/engineering purpose and practical use. 521 

 522 

5 Summary 523 

In this paper, we describe the behavior of window functions in the conventional 524 
calibration processes of waveform data passed through LTI systems, and we propose a novel 525 
calibration method described in Section 2.4.4. The essential process of the novel method is to 526 
estimate the unexpected modification of a window function in the calibration process and 527 
correcting it at each frequency in the time domain. The novel method provides sufficiently 528 
accurate calibration results without any change in the transfer function itself, even for short-time 529 
data cases, such as the case in which the STFT algorithm is used. We also clarified 530 
mathematically and quantitatively why using the Tukey-type window (Method 3), which has 531 
been used empirically, provides more accurate calibration results compared to Method 2. The 532 
calculation time of the novel method is much longer than that of the other methods because the 533 
FFT algorithm cannot be used in the inverse-transform process of the novel method. Which 534 
method should be chosen is a matter of degree of data accuracy and the calculation resource 535 
depending on the scientific/engineering purpose and practical use. As the next step of this study, 536 
we will apply this method to electromagnetic waveform data at VLF frequency range observed 537 
by the Plasma Wave Experiment/Waveform Capture (Kasahara et al., 2018; Matsuda et al, 2018) 538 
aboard the Arase satellite and evaluate the accuracy and usability of our proposed method. 539 

 540 
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 609 
Figure 1. Summary plot of (a, c, and e) window functions and (b, d, and f) their frequency 610 
characteristics. (a, b) the cosine-sum windows: black, red, yellow, green, and blue lines 611 
correspond to the rectangular, Hamming, Hann, Blackman, and Blackman-Harris window, 612 
respectively. (c, d) the Tukey-type windows: black, red, yellow, green, and blue lines correspond 613 
to the rectangular, Tukey-Hamming, Tukey-Hann, Tukey-Blackman, and Tukey-Blackman-614 
Harris window, respectively. All windows are plotted with 𝑟 = 0.3. (e, f) the Tukey-Hamming 615 
windows: red, yellow, green, cyan, blue, and black lines correspond to 𝑟 = 0.0, 0.2, 0.4, 0.6, 0.8, 616 
and 1.0. respectively. 𝑟 = 0 and 1 correspond to the normal Hamming window and the 617 
rectangular window, respectively. 618 
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 620 
 621 
Figure 2. Flowchart of the calibration procedures for the STFT case comprising conventional 622 
methods (Method 1 (yellow), 2 (green), and 3(blue)) and the novel proposed method (Method 4 623 
(red)). 624 
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 626 

 627 
Figure 3. The properties of the filters with 𝑓L$%#YY = 10	kHz and 𝐺. = 1. (a) and (e) are the 628 
amplitude components of the transfer function |𝐺(𝑓)| corresponding to the gain of filters, (b) 629 
and (f) are phase components of the transfer function 𝜃(𝑓), (c) and (g) are the first-order 630 
derivatives of 𝜃(𝑓), (d) and (h) are the second-order derivatives of 𝜃(𝑓), respectively. Black 631 
lines, red lines, and blue lines correspond to the RC1, the Butterworth, and the Bessel filters, 632 
respectively, and dashed and solid red and blue lines correspond to the third- and seventh-order 633 
filter, respectively. 634 
 635 
 636 
  637 

102 103 104 105 106
0.0

0.2

0.4

0.6

0.8

1.0

102 103 104 105 106
-800

-600

-400

-200

0

102 103 104 105 106
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

102 103 104 105 106
-10

-5

0

5

10

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
-800

-600

-400

-200

0

0 2 4 6 8 10
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0 2 4 6 8 10
-10

-5

0

5

10

Frequency (log) [Hz] Frequency (linear) [kHz]

|G
(f)

| (
lin

ea
r) 

θ(
f) 

[d
eg

re
e]

θ’
(f)

 [d
eg

re
e/

H
z]

θ”
(f)

 [×
10

-6
 d

eg
re

e/
H

z2 ]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)



manuscript submitted to Radio Science 

 

 638 
Figure 4. Schematic illustration of an STFT process and the definition of 𝑁S!"e#S, 𝑁Hc!ef, and 639 
𝑁%#%bc. 640 
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 642 
Figure 5. Sample plot of (a) 𝒞𝑎𝑙_[𝑥#$%(𝑡()], (b) 𝛿_, (c) 𝑄_(𝑡(), and (d)	𝐷_(𝑡() for the third-643 
order Butterworth filter with 𝑓) = 100	kHz, 𝑁%#%bc = 10, 000, 𝑇%#%bc = 0.1	s, 𝑁S!"e#S =644 
128, 𝑁Hc!ef = 64, 𝑓!" = 5.17	kHz. The data around center are plotted. The yellow, green, blue, 645 
and red points and lines correspond to Method 1, 2, 3, and 4, respectively. Note that the input 646 
amplitude is 0.7. 647 
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 649 

 650 
Figure 6. The frequency dependences of 𝛤_, 𝑄µ_, and 𝐷¶_ for the third-order Butterworth filter. 651 
(a1-a3) (𝑁S!"e#S, 𝑁Hc!ef) = (128, 64(= 𝑁S!"e#S 2⁄ )	), (b1-b3) (𝑁S!"e#S, 𝑁Hc!ef) =652 
(128, 16(= 𝑁S!"e#S/8)	), (c1-c3) (𝑁S!"e#S, 𝑁Hc!ef) = (128, 4(= 𝑁S!"e#S 32⁄ )) . The color 653 
format is the same as that of Figure 5. 654 
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 656 
Figure 7. The frequency dependences of 𝛤_, 𝑄µ_, and 𝐷¶_ for the first-order RC filter. (a1-a3) 657 
𝑁S!"e#S = 	128, (b1-b3) 𝑁S!"e#S = 512, and (c1-c3) 𝑁S!"e#S = 2048 with 658 
𝑁Hc!ef 𝑁S!"e#S⁄ = 0.5. The color format is the same as that of Figures 5 and 6. 659 
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 662 
Figure 8. The frequency dependences of 𝛤_, 𝑄µ_, and 𝐷¶_ with (𝑁S!"e#S, 𝑁Hc!ef) = (128, 64) 663 
for (a1-a3) the first-order RC filter, (b1-b3) the third-order Bessel filter, (c1-c3) the seventh-664 
order Bessel filter. The color format is the same as that of Figures 5, 6, and 7. 665 
 666 
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 669 
Figure 9. The frequency dependences of 𝛤_, 𝑄µ_, and 𝐷¶_ with (𝑁S!"e#S, 𝑁Hc!ef) = (128, 64) 670 
for (a1-a3) the first-order RC filter, (b1-b3) the third-order Butterworth filter, and (c1-c3) the 671 
seventh-order Butterworth filter. The color format is the same as that of Figures 5, 6, 7, and 8. 672 
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 675 
Table 1. Summary of characteristics of each calibration method.	 𝑁%, 𝑁S, 𝑁H, and ld(𝑥) 676 
represent 𝑁%#%bc, 𝑁S!"e#S, 𝑁Hc!ef, and the binary logarithm function, respectively.	677 
 678 

 Method 1 Method 2 Method 3 
Method 4 

(Our 
proposed 
method) 

For removing 
side-lobe effect Poor Excellent Good Excellent 

For removing 
main lobe effect Excellent Poor Good Excellent 

Accuracy 
Poor 

(Sometimes 
Excellent) 

Poor Good Excellent 

Seamlessness Poor Poor Good 
(Sometimes Poor) Excellent 

Calculation 
time 𝒪 �

𝑁%𝑁Sld(𝑁S)
𝑁H

� 𝒪 �
𝑁%𝑁Sld(𝑁S)

𝑁H
� 𝒪 �

𝑁%𝑁Sld(𝑁S)
𝑁H

� 𝒪 �
𝑁%𝑁S2

𝑁H
� 

 679 


