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Abstract

This study investigates the spontaneous self-aggregation of convection in non-rotating Radiative-Convective Equilibrium (RCE)

simulations performed by the CNRM-CM6-1 General Circulation Model within the framework of the RCE Model Intercompar-

ison Project (RCEMIP). In this model, the level of convection self-aggregation at equilibrium, as quantified by metrics based

on moisture or moist static energy, strongly increases with sea surface temperature (SST). As it gets warmer, the troposphere

gets drier, high cloud cover diminishes in dry regions, the top of high cloud rises and their thickness increases in moist regions,

and low cloud cover increases. At high SSTs, the large-scale circulation exhibits a shallow component, stronger than its deep

counterpart. The transition towards self-aggregation has a similar first 20-day phase for all SSTs within the 295-305-K range.

It primarily involves radiative positive feedback processes. Then, for SSTs above approximately 300 K, a new, slower, transi-

tion towards higher levels of self-aggregation occurs. It is concomitant with a shift from a top-heavy to a more bottom-heavy

large-scale circulation, a strengthening of the shallow circulation and a reduced mobility of convective aggregates. This second

transition is mostly driven by the dry regions, still involves longwave radiative positive feedbacks, but also advective positive

feedbacks in the driest regions. It is argued that boundary-layer radiative cooling difference between moist and dry regions,

which is stronger at high SSTs, is instrumental in this second phase of self-aggregation. The sensitivity of deep convection to

environmental dry air also likely acts as a positive feedback on the system.
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Abstract14

This study investigates the spontaneous self-aggregation of convection in non-rotating15

Radiative-Convective Equilibrium (RCE) simulations performed by the CNRM-CM6-16

1 General Circulation Model within the framework of the RCE Model Intercomparison17

Project (RCEMIP). In this model, the level of convection self-aggregation at equilibrium,18

as quantified by metrics based on moisture or moist static energy, strongly increases with19

sea surface temperature (SST). As it gets warmer, the troposphere gets drier, high cloud20

cover diminishes in dry regions, the top of high cloud rises and their thickness increases21

in moist regions, and low cloud cover increases. At high SSTs, the large-scale circula-22

tion exhibits a shallow component, stronger than its deep counterpart. The transition23

towards self-aggregation has a similar first 20-day phase for all SSTs within the 295–305-24

K range. It primarily involves radiative positive feedback processes. Then, for SSTs above25

approximately 300 K, a new, slower, transition towards higher levels of self-aggregation26

occurs. It is concomitant with a shift from a top-heavy to a more bottom-heavy large-27

scale circulation, a strengthening of the shallow circulation and a reduced mobility of con-28

vective aggregates. This second transition is mostly driven by the dry regions, still in-29

volves longwave radiative positive feedbacks, but also advective positive feedbacks in the30

driest regions. It is argued that boundary-layer radiative cooling difference between moist31

and dry regions, which is stronger at high SSTs, is instrumental in this second phase of32

self-aggregation. The sensitivity of deep convection to environmental dry air also likely33

acts as a positive feedback on the system.34

Plain Language Summary35

In idealized configurations of the Earth, convective clouds can spontaneously or-36

ganize into large clusters: this is convective self-aggregation. We investigate the sensi-37

tivity of this process to surface temperature in the atmospheric component of the state-38

of-the-art global climate model CNRM-CM6-1. For surface temperatures spanning a typ-39

ical range of tropical conditions (295–305 K), the model exhibits an aggregated state when40

equilibrium is reached. As the surface gets warmer, convection is more aggregated, the41

troposphere gets drier, high clouds get less frequent in dry regions and low cloud cover42

increases. When starting from homogeneous conditions, an initial rapid phase of self-aggregation43

occurs in all experimented SST. Radiative processes are instrumental in leading to self-44

aggregation. For warm surface temperature above approximately 300 K, a second, slower,45
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transition occurs and leads to higher levels of self-aggregation. It is associated with an46

adjustment of the large-scale circulation, in which shallow circulations in the lower tro-47

posphere (surface-700 hPa) and between dry and moist regions strengthens. The radia-48

tive loss of energy within the boundary layer, and its unbalanced state between dry and49

moist regions after the initial transition is argued to the main process at play.50

1 Introduction51

Tropical deep convection organizes across a wide range of scales, driven by a va-52

riety of physical processes. It can be forced by equatorial waves (Kiladis et al., 2009),53

topography or surface temperature gradients, either above ocean (Shamekh et al., 2020a),54

land (Becker & Stevens, 2014; Hohenegger & Stevens, 2018) or at the boundaries between55

both types of surface (Coppin & Bellon, 2019a, 2019b). At mesoscale, convection is able56

to generate its own sources of organization as is the case for Mesoscale Convective Sys-57

tems (Houze, 2004) or squall lines (Rotunno et al., 1988). At larger scales, large convec-58

tive envelopes such as the Madden-Julian Oscillation (Madden & Julian, 1994) or var-59

ious forms of organization along the equator are also able to modify the average zonal60

or meridional circulations (Bellenger et al., 2009).61

One type of organization that arises in idealized numerical simulations, such as un-62

der the Radiative-Convective Equilibrium (RCE) hypothesis, is self-aggregation (e.g., Wing,63

2019). This spontaneous organization of deep convection has been studied in a wide range64

of models, from small-domain large-eddy or cloud-permitting simulations (Bretherton65

et al., 2005; Muller & Held, 2012; Tompkins & Semie, 2017) to global, Earth-scale sim-66

ulations with general circulation models (GCM – Popke et al., 2013; Coppin & Bony,67

2015; Becker et al., 2017), and under a wide range of surface boundary conditions: from68

fixed and uniform surface temperature (Khairoutdinov & Emanuel, 2013; Wing & Emanuel,69

2014; Cronin & Wing, 2017) to an interactive surface, based on an ocean mixed-layer70

model (Coppin & Bony, 2017, 2018; Shamekh et al., 2020b). These models share the same71

drying of the free troposphere as convection aggregates and the subsequent increase in72

outgoing longwave radiation to space (Bretherton et al., 2005; Holloway et al., 2017; Wing73

et al., 2017). This atmospheric response to convective aggregation is also consistent with74

observations (Tobin et al., 2012, 2013; Stein et al., 2017). In contrast, models do not agree75

on the sensitivity of aggregation to sea surface temperature (SST) nor on the details of76

the various mechanisms controlling the initiation, maintenance or inhibition of convec-77
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tive aggregation. For example, in contrast to Cloud Permitting Models (CPM), aggre-78

gation almost always increases with SST in GCMs (Becker & Wing, 2020). Such a dif-79

ference critically limits our ability to understand and quantify the impact of convective80

aggregation on the climate system. Therefore efforts to better characterize the robust-81

ness and dependency of self-aggregation to the surface temperature and to better un-82

derstand the underlying mechanisms recently culminated in the RCE Model Intercom-83

parison Project (RCEMIP, Wing et al., 2018): using a coordinated setup of RCE sim-84

ulations, RCEMIP aims at clarify the discrepancies between CPMs and GCMs, as well85

as among the numerous GCMs that took part in the exercise.86

Even though the mechanisms leading to self-aggregation differ among models, most87

of them indicate that feedbacks between longwave (LW) radiation, water vapor and clouds88

(Bretherton et al., 2005; Muller & Held, 2012; Craig & Mack, 2013; Wing & Emanuel,89

2014; Coppin & Bony, 2015) favors the initiation and maintenance of self-aggregation90

while the surface flux feedback alternates from being positive in the early stages to be-91

ing negative later on (Tompkins & Craig, 1998; Wing & Emanuel, 2014; Coppin & Bony,92

2015; Holloway & Woolnough, 2016; Wing & Cronin, 2016). Other identified processes93

appear more model-dependent: the relative importance of clear- versus cloudy-sky ra-94

diative processes, the relative contribution of direct (diabatic) or indirect (i.e. through95

the atmospheric circulation) radiative effects in the evolution of convective aggregation,96

the role of moist static energy (MSE) horizontal advection and the role of the shallow97

circulation that develops in a number of CPM simulations between convectively-active98

and convectively-suppressed regions (Muller & Bony, 2015; Shamekh et al., 2020b).99

The latter point has been the focus of several studies pointing out the crucial role100

of either the free troposphere or the boundary layer (BL) in the establishment of this101

shallow circulation and its potential role in the initiation of convective self-aggregation.102

Bretherton et al. (2005) find that enhanced radiative cooling in the lower troposphere103

of the dry regions leads to the formation of a shallow circulation transporting MSE up-104

gradient, from low-MSE to already high-MSE regions, thereby favoring self-aggregation105

through the increase of MSE gradients and the MSE variance. This has been confirmed106

by several CPM studies, although the nature of the radiative feedbacks driving this shal-107

low circulation depends on the model and its configuration. Muller and Bony (2015) sug-108

gest that the BL differential radiative cooling rate between dry and moist regions is the109

main driver. The BL-centric framework of Yang (2018) confirms the key role of BL di-110
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abatic processes and further suggests that an additional buoyancy effect is necessary to111

establish a horizontal pressure gradient able to drive convective self-aggregation. This112

hypothesis has been verified by conceptual bulk models for both the dry and moist BL113

structures (Naumann et al., 2017, 2019), which show that heterogeneous radiative BL114

cooling is able to produce pressure gradients between areas of strong and weak BL cool-115

ing. The strength of the induced shallow circulation is comparable to that caused by sur-116

face temperature differences of a few kelvins, emphasizing the potential first-order effect117

of spatial differences in BL radiative cooling for self-aggregation.118

The strength of the shallow circulation has also been linked to the speed of self-119

aggregation. Using a CPM coupled with interactive SSTs, Shamekh et al. (2020b) un-120

derline that larger surface pressure anomalies, which result from both BL radiative cool-121

ing and positive SST anomalies in the dry regions, strongly modulate how fast convec-122

tion self-aggregates. But, in these simulations with interactive SSTs as well as in those123

more commonly using fixed SSTs, the larger radiative cooling in the BL and lower tro-124

posphere strongly depends on the free-tropospheric drying induced by the large-scale deep125

circulation that emerges with self-aggregation. The respective role and balance between126

these two circulations in convective self-aggregation remains unclear, as well as how this127

balance can shift with surface warming. The existence and role of such BL differential128

radiative cooling and associated shallow circulation has yet to be shown in GCMs.129

In this paper, we document and investigate the mechanisms responsible for con-130

vection self-aggregation in the CNRM-CM6-1 GCM (Voldoire et al., 2019; Roehrig et131

al., 2020). This analysis thus focuses on the equilibrium states reached by the model un-132

der various SSTs, but also on the paths taken by the model to aggregate convection. For133

some SSTs, the path involves multiple phases of self-aggregation, with different timescales.134

After describing the CNRM-CM6-1 model, the experiments performed with it and the135

diagnostics used to study self-aggregation in Section 2, we investigate the equilibrium136

states of the model in Section 3. In particular we assess whether different metrics char-137

acterizing self-aggregation consistently evolve with increasing SST. Section 4 then inves-138

tigates the transient response and the feedbacks driving the different phases of convec-139

tion self-aggregation. Section 5 summarizes and discusses our main findings.140
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2 Methods141

2.1 The CNRM-CM6-1 atmospheric component142

We use the atmospheric component of the CNRM-CM6-1 climate model (Voldoire143

et al., 2019), namely the global atmospheric model ARPEGE-Climat 6.3 (Roehrig et al.,144

2020). This model version contributed to the RCEMIP initiative (Wing et al., 2018, 2020).145

ARPEGE-Climat is a spectral model derived from cycle 37 of the ARPEGE/IFS146

(Integrated Forecast System) numerical weather prediction model developed jointly by147

Météo-France and the European Center for Medium-range Weather Forecast. It uses a148

linear triangular truncation T127 with a corresponding reduced Gaussian grid (Hortal149

& Simmons, 1991). The model horizontal resolution is about 1.4◦. Along the vertical the150

model encompasses 91 vertical levels, following a progressive hybrid σ-pressure coordi-151

nate. The first and last model levels are near 10 m and 80 km, respectively, and the ver-152

tical resolution ranges from 20 to 200 m in the boundary layer, while being around 400–500153

m in the free troposphere.154

The dynamical core is based on a two-time level semi-Lagrangian numerical inte-155

gration scheme. It resolves the vorticity and divergence form of the primitive equations,156

with temperature and surface pressure logarithm being the thermodynamic state vari-157

ables. It also computes the advection of specific humidity and eight microphysical species158

(four for the large-scale microphysics scheme, four for the convection scheme). Horizon-159

tal diffusion, which intensity depends on the wave length, the altitude and the diffused160

variable, is used to stabilize the model and allows, together with the semi-Lagrangian161

scheme, to keep rather long model time steps (15 minutes).162

Longwave radiation calculations follow the GCM version of the Rapid Radiation163

Transfer Model (Mlawer et al., 1997) while the shortwave radiation calculations are based164

on the six-band scheme of Fouquart and Bonnel (1980) and Morcrette et al. (2008). The165

stratiform microphysics scheme treats cloud liquid water, cloud ice crystals, rain and snow,166

and accounts for autoconversion, sedimentation, icing-melting, precipitation evaporation,167

and collection processes (Lopez, 2002). The turbulence is solved by the 1.5-order tur-168

bulent kinetic energy scheme of (Cuxart et al., 2000) using the mixing length of Bougeault169

and Lacarrere (1989). Finally, dry, shallow and deep convection regimes are represented170

using the unified, bulk, mass-flux framework described in Piriou et al. (2018). It follows171
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the ideas of Gueremy (2011) for the convective profile and closure, and those of Piriou172

et al. (2007) for an explicit separation between the convective vertical transport and the173

convective microphysical processes. The convective microphysical processes are thus treated174

in the same way as the large-scale, resolved microphysical processes (Lopez, 2002), con-175

sidering only that they occur in the convective environment. As a result, convective mi-176

crophysical species mirror those in the convection environment, thereby allowing entrain-177

ment and detrainment of the condensates. Entrainment and detrainment processes de-178

pend on the prognostic updraft vertical velocity and follow the buoyancy sorting approach179

of Bretherton et al. (2004). The scheme closure is based on the relaxation of the dilute180

Convective Available Potential Energy.181

2.2 RCEMIP simulations182

CNRM-CM6-1 is run in the RCE configuration without rotation, following RCEMIP183

guidelines (Wing et al., 2018): fixed and uniform SSTs of 295 K, 300 K and 305 K, con-184

stant and uniform incoming solar radiation at the top of atmosphere and zenith angle185

(551.58 W m−2 and 42.05◦, respectively). The simulations are uniformly initialized from186

the equilibrium profiles obtained from single-column experiments with the same model187

and for the same SSTs. The three CNRM-CM6-1 RCE simulations show different de-188

grees of convection aggregation as emphasized by the patterns of Column Relative Hu-189

midity (CRH – ratio of precipitable water to saturated precipitable water) and the ag-190

gregation indices indicated in Figure 1 (see also Wing et al., 2020).191

Since the timing and strength of convective self-aggregation may depend on the ini-192

tial state, we designed ensembles of five simulations for each of the 295-K, 300-K and 305-193

K SSTs. Each member of the ensemble is initialized with a globally-averaged instanta-194

neous state taken from the equilibrium phase of the first member at the same SST (i.e.195

the RCEMIP simulation described above). Besides, in order to further investigate the196

aggregation sensitivity to SSTs, additional experiments are performed at each SST be-197

tween 295 K and 305 K by increment of 1 K. All the simulations last three years. The198

equilibrium values are averages over the last year.199
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2.3 Moist static energy framework200

The traditional framework to analyse self-aggregation of deep convection is based201

on the frozen moist static energy (FMSE), which is conserved under adiabatic processes202

including the phase change of water. When integrated over the column, its variance in-203

creases as convection organizes: the FMSE increases in moist regions and decreases in204

dry regions. In the CNRM-CM6-1 model, the FMSE h follows the definition of Wing et205

al. (2018):206

h = cpT + gz + Lvqv − Lfqi (1)207

where cp denotes the specific heat of moist air, T the temperature, g the gravity accel-208

eration, z the geopotential height, Lv and Lf the latent heat of vaporization and fusion209

at the water triple point, respectively, and qv and qi the specific humidity and the ice210

specific mass, respectively (including convective and large-scale components of cloud ice211

crystal and precipitating snow).212

The FMSE range strongly depends on the SST, which renders the comparison of213

indices or budget based on FMSE difficult for different SSTs. To account for this depen-214

dency, we follow Pope et al. (2021) and define the normalized vertically-integrated FMSE215

ĥn between theoretical upper and lower limits using the formula:216

ĥn =
ĥ− ĥmin

ĥmax − ĥmin

(2)217

where hats (̂) denote a density-weighted vertical integral, and ĥmin and ĥmax the lower218

and upper limits of ĥ for a given SST, respectively. ĥmin is defined as the vertically-integrated219

FMSE of a dry adiabatic profile with zero moisture in the troposphere, plus the integrated220

FMSE of the initial profile above the tropopause. ĥmax corresponds to the vertically-integrated221

FMSE of a fully saturated moist pseudo-adiabatic profile from the surface to the tropopause,222

plus the integrated FMSE of the initial profile above the tropopause. The tropopause223

is defined as the lowest level in the initial profile at which the lapse rate decreases be-224

low 2 K km−1.225

To investigate the relative importance of different processes impacting the variance226

of the normalized vertically-integrated FMSE ĥn, we use the same budget equation de-227

rived from Wing and Emanuel (2014) but replace the vertically-integrated FMSE ĥ by228

its normalized counterpart (see also Pope et al., 2021):229

1

2

∂ĥ′2n
∂t

= ĥ′nSEF′n + ĥ′nNetSW′n + ĥ′nNetLW′n + ĥ′n
⁄�∇h · (uhn) (3)230
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with SEF the surface enthalpy flux (sum of sensible and latent heat fluxes), NetSW and231

NetLW the net atmospheric column shortwave (SW) and longwave radiative heating sources,232

and ⁄�∇h · (uhn) the vertically-integrated horizontal divergence of the normalized FMSE.233

Primes (′) denote the local anomalies from the instantaneous domain mean. This enables234

us to better compare the strength of the feedbacks driving self-aggregation for different235

SSTs.236

2.4 Characterization of CRH distributions237

The next section compares different aggregation indices used in the literature to238

characterize convective aggregation. Because they are not based on the same variables239

and correspond to different visions of what an aggregated atmosphere looks like, these240

indices often evolve separately with SSTs, or with time for a given SST. In order to bet-241

ter analyze these differences and gain a more detailed view of what exactly is changing242

in the moisture distribution with self-aggregation, we approximate the CRH spatial prob-243

ability distribution function (PDF) by either a unique lognormal distribution or, when244

convection is aggregated, by the superimposition of two such distributions, one for each245

of the dry and moist modes of CRH. As a result, the CRH distribution, and thereby the246

aggregated state, can be characterized with 5 parameters. The analytical form of the ap-247

proximated CRH distribution reads:248

f(x) =
1− α
xσd
√

2π
e
−

(lnx− µd)2

2σ2
d +

α

xσm
√

2π
e
−

(lnx− µm)2

2σ2
m (4)249

with α, the fraction of the total PDF covered by the moist PDF, and µd, µm, σd and σm,250

the expected value (µ) and standard deviation (σ) of the dry and moist lognormal dis-251

tributions, respectively.252

The point where both distributions are equal is called CRHc. It is used to sepa-253

rate dry and moist regions. The best fit for each reconstructed PDF correspond to the254

combination of the five parameters that minimizes the quadratic error with the original255

PDF. Examples of optimized fits for several days of the 305-K simulation are shown in256

Figure S1 (supplemental material).257

This decomposition of the CRH spatial distribution provides a solid framework to258

diagnose how the CRH distribution varies with time or with the SST. Higher expected259

value µ corresponds to a broader distribution while higher standard deviation σ means260
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the distribution is more skewed towards one of its extremes (e.g., Text S2 and Figure S2).261

In addition to these parameters, we also estimate the CRH value at the peak of each log-262

normal distribution (CRHd and CRHm for the dry and moist distributions, respectively).263

3 Convection self-aggregation equilibrium in CNRM-CM6-1264

3.1 Quantifying the level of convection self-aggregation265

While convection is mostly organized along bands of high CRH, the main differ-266

ence between SSTs is the larger dry areas and increasing contrasts at high SSTs (Fig-267

ure 1). To objectively quantify self-aggregation, a wide range of indices are used in the268

literature. Figure 2 illustrates some of those that are easily applicable to coarse-resolution269

GCMs for all the explored SST range as well as for all members of the 295-K, 300-K and270

305-K ensembles.271

All indices using vertical integrals of variables associated with humidity, i.e. the272

variances of vertically-integrated FMSE (var(ĥ)) and normalized FMSE (var(ĥn)), pre-273

cipitable water (var(PRW)) and CRH (var(CRH)), show a gradual increase of self-aggregation274

with warming, with simulations between 298 K and 301 K having a similar equilibrium.275

Since var(ĥn) is well correlated with var(CRH) and var(PRW), and facilitates the com-276

parison of the aggregation mechanisms across SSTs, we now use it as our main index to277

quantify convective aggregation.278

The shallow circulation efficiency η (see appendix A for details) is a dynamical in-279

dex which quantifies the fraction of mass transport between dry and moist regions done280

by the shallow circulation (Shamekh et al., 2020b). It is highly correlated with var(ĥn).281

This suggests a direct link between self-aggregation and the strength of the shallow cir-282

culation. The variances of normalized FMSE and η are also well correlated with the sur-283

face pressure difference between moist and dry regions (∆ps) and the net radiative boundary-284

layer warming difference between moist and dry regions (∆∂tT |rad, positive when radia-285

tive cooling is stronger in the dry regions). The latter difference mainly results from dif-286

ferences in the LW clear-sky temperature tendencies (second to last column in Figure 2).287

This suggests that, as proposed by Naumann et al. (2017) and Naumann et al. (2019),288

this heterogeneous radiative boundary-layer cooling is consistent with positive surface289

pressure anomalies in dry regions, which thereby strengthens the shallow circulation. In290

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

turn, the latter positively feeds back on self-aggregation as it enhances the FMSE im-291

port in moist regions and thus the variance of ĥn.292

In contrast to the previous indices, the subsiding fraction (SF), i.e. the fraction of293

the domain where subsidence occurs at 500 hPa (noted SF500), as well as those fraction294

computed using the 850-hPa vertical velocity (SF850) or the vertically-averaged verti-295

cal velocity (SF), increase from 295 K to 298-299 K and then decrease up to 305 K, with296

a rate depending on the SF index version. This behavior strongly contrasts with the other297

indices and indicates that a maximum subsiding fraction does not always relate to max-298

imum aggregation as quantified with the ĥn variance (see also Wing et al., 2020). The299

rather high sensitivity of the SF indices to the level used in their calculation questions300

the way self-aggregation should be quantified.301

Because of the bi-modal property of the CRH distribution (e.g., Figure S1 – also302

true for ĥn or PRW), the use of a variance metric can also be questioned. We therefore303

explore a more detailed approach to characterize the CRH distribution and its sensitiv-304

ity to SSTs (Section 2.4).305

The weight α of the moist PDF decreases with SST until 298 K and then saturates,306

with a distinct minimum at 298-299 K (Figure 3). A similar pattern is found for µm and307

CRHm, further emphasized by the strong correlations between these three parameters.308

σm is also maximum at 298-299 K but decreases back to low-SST levels at higher SST.309

This underlines that, for SSTs up to 299 K, the moist component of the CRH distribu-310

tion becomes moister and narrower, while its area decreases. For higher SSTs, the dis-311

tribution moves back to lower CRH values while maintaining a similar fraction of the312

full PDF.313

In contrast, µd and CRHd decrease with SST and strongly correlate with the nor-314

malized FMSE variance var(ĥn). Therefore, as SST increases, the dry component of the315

CRH distribution becomes drier and narrower. This also indicates that the evolution of316

the dry regions is the primary driver of the monotonic FMSE variance increase with SST317

(as well as that of the shallow circulation efficiency η), especially above 298-299 K.318

The distinct maximum of σm at 298-299 K and its relationship with var(ĥn) mir-319

rors that between SF indices and var(ĥn) in Figure 2. The high correlation of α with µm320

and CRHm also suggests that the moistest regions partly drive the fraction of the do-321
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main covered by subsidence (or large-scale ascent) at equilibrium. The relationship be-322

tween SF indices and the moist regions is however more complex and SF indices only weakly323

correlate with µm and CRHm (not shown). This hints that SF indices are not fully con-324

trolled by the CRH level in moist regions, which thus does not fully drive the large-scale325

deep circulation.326

To summarize, SF indices and α thus characterize self-aggregation as a balance be-327

tween moist/convective and dry/subsiding regions and are mainly controlled by the moist328

component of the CRH distribution and convection, while var(ĥn) and η are primarily329

driven by the shape of the moisture distribution, especially its dry component.330

3.2 Atmospheric vertical structure at equilibrium331

Convective self-aggregation is generally associated with a drier free troposphere (Bretherton332

et al., 2005; Tobin et al., 2012, 2013; Stein et al., 2017). This is true in CNRM-CM6-333

1, particularly in the lower free troposphere, below 650 hPa, where relative humidity (RH)334

decreases gradually with SST (Figure 4a). This decrease is primarily driven by the dry335

regions (Figure S3).336

The structure of this dry free troposphere varies with SST, from having a single337

minimum around 500 hPa at 295 K to having a mostly uniform RH profile with two lo-338

cal mimima at 800 hPa and 300 hPa at 305 K. The cloud fraction also gradually decreases339

with SST between 850 hPa and 300 hPa (Figures 4b and 5). In contrast, the low-level340

cloud fraction increases with SST, mainly in the dry regions (Figure S3), with a slight341

downward shift from 298 K on.342

In the upper troposphere, as expected from thermodynamical considerations (Hartmann343

& Larson, 2002; Bony et al., 2016), high clouds rise with increasing SST. The high-cloud344

fraction decreases from 295 K to 298 K, and then increases from 298 K to 305 K, albeit345

at a slower rate. In moist regions, it increases from 295 K to 298 K, then decrease un-346

til 305 K (Figure S4), while in dry regions, it mostly decreases (Figure S3, see also 5).347

Thus, for high SSTs, the model behavior at global scale contrasts with the high-cloud348

fraction decrease with SST predicted by the stability-iris effect (Bony et al., 2016). Al-349

though the cloud fraction monotonically reduces in dry regions, convective clouds be-350

come thicker in moist regions, possibly also more frequent, thereby compensating the iris351

effect contraction of the anvil-type high clouds.352
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In terms of large-scale circulation, Figure 5 emphasizes changes from a large area353

of shallow convection at moderate CRH and a strong lower tropospheric subsidence at354

low CRH (Figure 5a) to an extended yet weaker subsidence area in the lower troposphere355

at moderate CRH, near layers with high low-cloud fractions (Figure 5d). In the moistest356

region, the circulation evolves from top-heavy to mid- or bottom-heavy ascents, consis-357

tently with the enhancement of the shallow circulation between dry and moist regions.358

4 Mechanisms leading to convection self-aggregation359

Whatever the SST, a first phase of convection self-aggregation occurs during the360

first 20 days of the simulations (Figure 6a). For SST above approximately 300 K, a sec-361

ond phase of self-aggregation involves longer timescales, from about 100 days at 305 K362

to 400 days at 300 K. We first focus on the first phase of self-aggregation, common to363

all the SSTs explored in the present work.364

4.1 First phase of convection self-aggregation365

The mechanisms driving the first phase of self-aggregation are investigated using366

the budget of the ĥn variance (Equation 3) to highlight the involved feedbacks (Figure367

7, see also Figure S5 for the separation between clear- and cloudy-sky feedbacks).368

At all SSTs, the initial self-aggregation is driven by the LW cloud feedback, with369

an additional contribution, yet weaker from the latent heat flux feedback. The latter de-370

creases with SST and, after a few days, becomes negative. The SW and LW clear-sky371

feedbacks also contribute to enhance self-aggregation, though with a slight delay. The372

amplitude of the surface flux and SW feedbacks is larger at 295 K and 300 K than at373

305 K, which likely explains why convection self-aggregates slightly faster at these SSTs.374

The sensible heat flux feedback is always positive and weak, and slightly larger at low375

SSTs. Finally, the advection feedback is always negative, except around day 10 at 305376

K. Its intensity slightly increases with SSTs. Though the feedback amplitude varies with377

SSTs, their time evolution over the first 20 days and their relative contribution are mostly378

similar across SSTs. Therefore, we investigate hereafter the 295-K simulation in more379

detail to identify the regions where the feedbacks are the most active (Figure 8). Sim-380

ilar diagnostics for 300 K and 305 K are provided in Figures S6 and S7.381
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Following 2-3 days of spin-up, convection rapidly self-aggregates between days 5382

and 10 (black line on Figure 8). The diabatic feedback, dominated by the cloudy-sky long-383

wave feedback, is maximum in the dry regions (Figures 8c and S8). The shortwave (mostly384

its clear-sky component, see Figure S8) and the surface flux feedbacks in the dry regions385

also weakly contributes when self-aggregation starts. In contrast, the advection feedback386

is mostly negative, except in the driest and moistest regions.387

This first phase results in a rapid initial drying visible in CRH and precipitable wa-388

ter (black lines in Figure 9a,e, respectively) and the apparition of a relatively low pro-389

portion of very dry columns.390

At 295 K, the CRH distribution stops evolving after the first 15 days. For SSTs391

above approximately 300 K, a second phase of self aggregation occurs. The CRH dis-392

tribution becomes fully bi-modal as the proportion of dry columns increases and becomes393

similar to or larger than that of their moist counterpart.394

4.2 Second phase of convection self-aggregation395

When it exists, the second phase of self-aggregation, which ends when the simu-396

lation reaches its final equilibrium given in Figure 2, involves much longer timescales than397

the first phase of self-aggregation (Figure 6). It is characterized by the progressive dry-398

ing of the free troposphere (Figure 10a-d), particularly in the dry regions (not shown).399

The second phase of aggregation consists in a first period when aggregation indices400

remain approximately constant (Figure 6). It is shorter at high SSTs. It is followed by401

a second period during which self-aggregation accelerates until its final equilibrium. This402

acceleration is more pronounced at high SSTs. At the same time, the moist region weight403

α in the CRH distribution decreases rapidly, σd increases, σm remains approximately con-404

stant and µm and µd both decrease (Figures 6d,h-k). Thus the dry component of the CRH405

distribution weights more and gets more skewed towards drier regimes, while its moist406

component concentrates more around high CRH, getting only slightly moister (see also407

Figure 9a-d).408

We now focus on the 305-K simulation where the increase in aggregation speeds409

up around days 50-70 (Figure 6) and compare it with the 295 K simulation where this410

transition phase is absent. Results are similar for SSTs above 300 K, except that the tran-411
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sition takes more time (up to 400 days for 300 K). The early time of the transition in412

the 305-K simulation (days 20-50) is characterized by adjustments within the low and413

mid free troposphere, which reduces the geopotential disequilibrium between the moist414

and dry regions achieved after the first phase of self aggregation (Figure 6e-f). These ad-415

justments in the 305-K simulation are not continuous and involves transient events with416

timescales of a few days. It also weakly impacts the CRH distribution (Figure 6d,h-k).417

Then, from day 50, σd sharply increases, µd (and CRHd, not shown) sharply de-418

creases, while µm decreases at a much more slower pace. This emphasizes the driving419

role of the dry regions in initiating the second self-aggregation phase. The delayed in-420

crease of precipitable water in the moist regions is also consistent (Figure 9h). The tran-421

sition is concomitant with the slow strengthening of the shallow circulation, which be-422

comes as intense as the deep circulation near day 70 (η = 0.5, Figure 6b). This change423

in the large-scale overturning circulation is further illustrated in Figure 11 in a CRH rank-424

altitude diagram (following Bretherton et al., 2005, see appendix A for the streamfunc-425

tion computation). Compared to 295 K where the streamfunction is maximum in the426

upper troposphere and does not vary after the initial 20-day self-aggregation, the stream-427

function at 305 K evolves from a top-heavy circulation, similar to that at 295 K, albeit428

weaker, to a more bottom-heavy circulation, especially after 150 days. The shallow cir-429

culation is clearly visible, mostly confined near the margins of moist convective regions.430

At 295 K, a shallow circulation similarly exists but remains weak compared to the deep431

one.432

The shallow circulation continuously strengthens from day 20 onwards in the 305-433

K simulation, consistently with the increase of the boundary-layer geopotential height434

and surface pressure differences between dry and moist regions (Figures 6g,m) and the435

opposite trend, albeit weaker, in the low and mid troposphere (Figures 6e-f). Around436

day 60-70, self-aggregation accelerates, at the same time when the shallow circulation437

efficiency η exceeds 0.5 (Figure 6b), that is when the shallow circulation becomes stronger438

than its deep counterpart. This is also true at 302 K (around day 150) and 300 K (around439

day 400), while it clearly does not append at 295 K. The acceleration also coincides with440

a period of time when moist convective regions become less mobile on average over the441

globe, with convection suddenly staying over the same area for 10 to 20 days (Figure 6c,442

see appendix B for the diagnostic computation). The enhanced shallow circulation ef-443

ficiency is likely able to support a positive net import of FMSE within moist regions thereby444
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favoring their maintenance at the same location for longer time periods (e.g., Raymond445

et al., 2009).446

4.3 Feedback analysis of the second self-aggregation phase447

To further understand the processes at play during the second phase of self-aggregation,448

we now analyze the feedbacks involved in the ĥn variance budget at 305 K (Figures 12449

and 13). Similar results, but with different timings, are found for SSTs above 300 K (e.g.,450

Figure S9 for 302 K).451

After the initial phase of self-aggregation, most feedbacks do not evolve much, es-452

pecially between day 20 and day 50. Then, from day 60, while the feedback magnitudes453

remain similar, except for the advection feedback, the CRH ranks they impact vary. The454

LW radiation positive feedback, which remains the dominant positive feedback, mostly455

occur in moderately-dry CRH columns, thus close to the margins of the moist convectively-456

active regions. It also remain significant, yet weaker, in the driest regions. This LW feed-457

back is mainly driven by its cloudy-sky component (Figure 13b,e). In contrast, the SW458

(mostly its clear-sky component), sensible heat flux and latent heat flux feedbacks do459

not evolve much over the second phase period (Figures 12b,d-e and 13a,d).460

Finally, the advection feedback is strongly modified during the self-aggregation ac-461

celeration. From day 60, it becomes positive in the driest columns, significantly impact-462

ing at day 110 about one third of the domain. There, its positive vertical component dom-463

inates its negative horizontal counterpart (Figures 13c,f). The opposite occurs in the tran-464

sition zone between dry and moist regions (around the grey line on Figures 12 and 13),465

where the negative horizontal advection feedback dominates. On average over the whole466

domain, the advection feedback is weak, which thus allows the positive LW feedback to467

enhance self-aggregation during this second phase. This contrasts with what occurs dur-468

ing the first 60 days, when the vertical and horizontal advection feedbacks are mostly469

collocated: the total advection feedback is significantly negative and can partly coun-470

terbalance the positive LW feedback. The adjustment of the circulation thus drives a spa-471

tial decoupling between the deep and shallow circulations, which is key to weaken glob-472

ally the negative advection feedback and constrain its negative values to remain close473

to the moist regions. This thereby allows the positive LW feedback to further increase474

self-aggregation. In the dry regions, the positive vertical advection feedback further en-475
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hance self-aggregation, most probably through the further drying of the atmospheric columns476

(see also Figure 9).477

4.4 Sensitivity of the second self-aggregation phase processes to SST478

The previous sections suggest an important role of the shallow circulation strength-479

ening during the second self-aggregation phase. Therefore, we now analyze the poten-480

tial temperature budget contrast between dry and moist regions, to better understand481

which process might explain its sensitivity to SST. Figures 14 and 15 show the detail of482

the potential temperature budget in dry and moist regions, respectively, as a function483

of the degree of self-aggregation (variance of ĥn), for the 295-K, 300-K, 302-K and 305-484

K simulations, and for three layers of the atmospheric column, namely the boundary-485

layer (1000-925 hPa), the lower free troposphere (850-700 hPa) and the mid free tropo-486

sphere (600-400 hPa). The layers are chosen according to the tendency vertical profiles,487

but the following results weakly depends on the exact pressure levels chosen to define488

these layers.489

After the first phase of self-aggregation in the 305-K simulation, all tendencies in490

the dry regions remain approximately constant, except within the boundary layer (Fig-491

ure 14). As convection continues to self-aggregate, the boundary-layer heating by tur-492

bulent processes increases and is slightly enhanced by the weakly increasing cloudy-sky493

LW radiative heating, and weakened by the increasing cooling by convective and large-494

scale microphysical processes (i.e. condensation and evaporation). The total effect of di-495

abatic processes is balanced by a weak, slightly increasing, advective cooling. The boundary-496

layer potential temperature budget thus depicts an increased mixing within the bound-497

ary layer, most probably due to both an increased of the buoyancy surface flux and the498

free troposphere air entrainment at the boundary-layer top, together with more low-level499

cloudiness at its top (see also Figure 11) and enhanced evaporation of weakly-precipitating500

cumulus or stratocumulus.501

In contrast, in the boundary layer of the wet regions (Figure 15k-o), the turbulent502

and cloudy-sky LW radiative heating rates weakly evolve after the first self-aggregation503

phase, while the heating by convective and large-scale condensation significantly increases.504

It is slightly reinforced by the reducing clear-sky LW radiative cooling. Above, the po-505

tential temperature budget is mainly controlled by the convection and large-scale mi-506
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crophysical heating, which is consistent with diabatic heating profiles becoming more bottom-507

heavy. This is counterbalanced by the advective cooling. Thus, the boundary-layer tem-508

perature contrast evolution, thereby generating geopotential horizontal gradients which509

can enhance the shallow circulation (Figure 6b,g,m), mostly rely on turbulent processes510

within dry regions and convection or large-scale condensation within moist regions. Above,511

in the lower and mid free troposphere, the increasing condensational heating in moist512

regions also favors the strengthening of the shallow circulation upper branch.513

Nevertheless, after the first self-aggregation phase, most potential temperature ten-514

dencies approximately follow the same trajectory across the four SSTs displayed on Fig-515

ures 14 and 15, with only a few exceptions. The clear-sky LW radiative tendency within516

dry regions exhibits a clear sensitivity to SST at the end of the first self-aggregated state.517

In the free troposphere, the advective tendency mostly mirrors this clear-sky LW radia-518

tive tendency, consistently with a large-scale subsidence mostly driven by radiative pro-519

cesses. In the boundary layer, turbulent mixing processes partially compensate the desta-520

bilization of the lower part of the column by clear-sky LW radiative cooling.521

As a result, the following picture of the second self-aggregation phase is suggested.522

After the first phase of self-aggregation, higher SSTs drives higher LW radiative cool-523

ing in the dry regions, both within the boundary layer and mid free troposphere (around524

600-400 hPa). In the boundary layer, though the destabilization increased by radiative525

processes is partially balanced by an enhanced turbulent mixing, the temperature con-526

trast with moist regions enhances the dry-to-moist region pressure gradient and thus the527

lower branch of the shallow and deep circulations. Above, the enhanced radiative cool-528

ing strengthens the large-scale subsidence, drying further the free troposphere and thereby529

providing a drier environment for convective updrafts. Their dilution is enhanced at up-530

per levels, which thus leads to more bottom-heavy diabatic heating profiles. This fur-531

ther enhances the shallow circulation, driving a positive feedback on deep convection.532

As convective/moist regions become less mobile, radiative feedbacks can reinforce their533

local effect, i.e. enhancing the drying effect of the radiatively-driven large-scale subsi-534

dence and enhancing the boundary-layer pressure gradient between dry and moist re-535

gions. This occurs until a new equilibrium is achieved. Cloud processes further feeds back536

positively during this second phase of self-aggregation.537
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5 Conclusions and discussions538

In this study, we investigate convective self-aggregation in the CNRM-CM6-1 gen-539

eral circulation model and assess its dependence to sea surface temperature (SST) in the540

non-rotating radiative-convective equilibrium (RCE) framework as defined within the541

RCEMIP exercise (Wing et al., 2018). We use the three simulations run for this project542

(homogeneous SST of 295, 300 and 305 K), supplemented by 5-member ensembles at the543

RCEMIP SSTs and additional experiments exploring intermediate SSTs between 295 K544

and 305 K. In all numerical experiments, self-aggregation occurs within the first 20 days,545

at a slightly faster pace at lower SST. As SST increases, the self-aggregated equilibrium546

gets drier, and the large-scale circulation between dry and moist regions exhibits a strength-547

ening shallow component. Low-cloud cover also increases, mostly in the dry regions. As548

expected from thermodynamical arguments, the top of high clouds rises with increas-549

ing SSTs. In contrast to the iris effect found with other models (Bony et al., 2016), high-550

cloud fraction does not exhibit any clear monotonic shrinking tendency with increasing551

SSTs, except below 298 K. High-cloud fraction does diminish in dry region, but high clouds552

become thicker or more frequent in moist convectively-active regions. This behavior may553

be consistent with the high equilibrium sensitivity in the CNRM-CM6-1 and the role of554

cloudy-sky longwave feedbacks in driving it (Saint-Martin et al., 2021), as a weak or ab-555

sent iris effect as found here would remove a negative feedback on the climate system.556

For all experimented SSTs, CNRM-CM6-1 exhibits a rapid initial phase of self-aggregation557

similar to that found in other models (e.g., Wing et al., 2017): it primarily involves pos-558

itive radiative feedbacks, especially in the cloudy-sky longwave and clear-sky shortwave559

components. At the lowest SSTs, the latent heat flux feedback also favors self-aggregation560

initiation, but rapidly becomes a strongly negative feedback. Sensible heat fluxes only561

marginally contribute to self-aggregation at all SSTs, slightly more at colder SSTs. The562

use of the normalized frozen moist static energy framework of Pope et al. (2021) allows563

us to more appropriately compare the weights of the various self-aggregation feedbacks564

at different SSTs. It emphasizes that the clear-sky shortwave and surface enthalpy flux565

feedbacks are notably weaker at 305 K than at lower SSTs. The stronger feedbacks at566

low SSTs is thus consistent with a faster initial self-aggregation.567

Following this first phase of self-aggregation, simulations with surface temperature568

above approximately 300 K exhibits a second transition towards a new state of self-aggregation.569
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This transition is slower, lasting from 150 days at 305 K to more than a year at 300 K.570

At the beginning of this new transition, a first adjustment of the large-scale geopoten-571

tial horizontal gradients between moist and dry regions, and thus of the associated cir-572

culation, occurs, mostly within the mid-troposphere. Its origin remains so far elusive and573

requires further work in the future. Then, a progressive shift from a top-heavy circula-574

tion to a more bottom-heavy circulation occurs. This clearly does not happen at low SSTs.575

Thus, at high SSTs, a shallow circulation settles and become even more efficient than576

its deep counterpart. The degree at which self-aggregation stabilizes seems in particu-577

lar related to the relative importance between the shallow and the deep circulations (the578

η metric). The speed of this second phase of self-aggregation also appears connected to579

that of the shallow circulation efficiency enhancement, similarly to what is found in Shamekh580

et al. (2020b).581

The second phase of self-aggregation occurs simultaneously to several notable changes.582

As mentioned above, a shallow circulation settles and becomes stronger than the deep583

circulation. Convective moist regions become less mobile. Dry regions get significantly584

drier and occupy wider areas, while moist regions only marginally get moister. Positive585

advection feedbacks appears in the driest regions. The occurrence of this second phase586

seems primarily driven by clear-sky radiative processes in dry regions, both within the587

boundary layer and the mid free troposphere. As discussed in Naumann et al. (2017, 2019)588

and Shamekh et al. (2020a) and Yang (2018), the enhanced differential radiative cool-589

ing in the boundary layer at higher SSTs increases the pressure gradient between dry590

and moist regions, which thus strengthens the lower branch of the shallow and deep cir-591

culations. Above, in the dry regions neighboring moist regions, the enhanced radiative592

cooling enhances the large-scale subsidence, drying further the free troposphere, and thereby593

providing a drier environment for convective updrafts. Their dilution is likely enhanced594

at mid and upper levels, thereby leading to more bottom-heavy diabatic heating profiles.595

This further enhances the shallow circulation, which positively feed backs on deep con-596

vection. Besides, the fact that convection is less mobile allows the strengthening of all597

previous mechanisms, as they can act on the same place for a longer period of time. Cloud598

processes also act as another positive feedback during this transition. This schematic re-599

mains an hypothesis, albeit consistent with the diagnostics provided in this manuscript.600

It will be further tested in the future through dedicated experiments.601
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In addition to more classical metrics of self-aggregation, we propose in this work602

a more detailed framework to characterize the CRH spatial distribution and its tempo-603

ral evolution: the CRH distribution, when bi-modal, can be well approximated by two604

log-normal distributions describing the properties of the dry and moist regions. The as-605

sociated diagnostics emphasize that transition to self-aggregation and self-aggregated states606

in CNRM-CM6-1 is mostly driven by adjustments within the dry regions, both in terms607

of level of dryness and of covered area. Applying these diagnostics to the RCEMIP en-608

semble might help better link self-aggregation levels and the CRH distribution and un-609

derstand why self-aggregation usually increases with SST in GCMs but not necessarily610

in CPMs.611

Finally, the long timescale of self-aggregation in CNRM-CM6-1 (150 to 400 days612

depending on SSTs) questions the way GCM and CPM RCE simulations are compared,613

as within the RCEMIP framework. GCMs are run over about 3 years while CPM sim-614

ulations only last 100 days. The latter may not be enough to achieve equilibrium and615

may explain some of the strong differences between GCM and CPM RCE states and their616

sensitivity to SSTs. This calls for further investigation in the future, to assess whether617

CNRM-CM6-1 has a peculiar, unusual behavior or CPMs do further self-aggregate on618

longer timescales.619

Appendix A620

In this paper, the large-scale circulation is characterized through the streamfunc-621

tion within a rank of CRH–pressure plan. To compute the streamfunction Ψ, the 32768622

columns are ordered from the lowest to the highest CRH and averaged by groups of 32623

columns. The 1016 groups of columns are given an index i = 1, 2, . . . , 1024. Then, Ψ624

is calculated as a horizontal integral of the vertical velocity averaged over each of these625

groups, starting from the driest column (i = 1):626

Ψi(z) = Ψi−1(z) + wi(z)ρ(z) (A1)627

with Ψi=0(z) = 0 for all z, w the vertical velocity and ρ the mean density profile. Thus,628

Ψi(z) can be interpreted as the net upward mass flux at height z accumulated over the629

i driest blocks.630

The vertical structure of the streamfunction shows two cells: a shallow circulation631

with a maximum below 750 hPa and a deeper cell with a maximum above 500 hPa. To632
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calculate the contribution of the shallow circulation to the total circulation (shallow +633

deep), Shamekh et al. (2020b) define the circulation efficiency η as:634

η =
Ψmax −Ψmin

Ψmax,deep + Ψmax −Ψmin
(A2)635

with Ψmax, the maximum of the shallow circulation, Ψmax,deep, the maximum of the deep636

circulation and Ψmin, the local streamfunction minimum between them.637

The numerator is the net boundary-layer mass divergence out of dry regions into638

moist regions, which returns to the dry regions below the height of the minimum, around639

600 hPa. The denominator quantifies the overall large-scale circulation strength, mea-640

sured by the total mass transport from dry to moist regions. Thus η (between 0 and 1)641

measures the fraction of mass transport from dry to moist regions performed by the shal-642

low circulation.643

Appendix B644

To quantify how much moist/convectively-active regions are mobile, we calculate645

the correlation between the CRH map of a given day and that of each of the following646

days (noted ρCRH). We then identify the lead time (in days) when the correlation goes647

below 0.5 (noted d(ρCRH=0.5)). This quantifies how long the CRH map remains approx-648

imately similar. Results remains qualitatively similar when using precipitable water or649

correlation thresholds of 0.3 and 0.8.650

Open Research651

Hourly output of the 295-K, 300-K and 305-K RCEMIP CNRM-CM6-1 simulations652

are part of the RCEMIP dataset, publicly available at http://hdl.handle.net/21.14101/653

d4beee8e-6996-453e-bbd1-ff53b6874c0e. Daily output for the 295–305-K RCEMIP-654

style simulations and for each member of the 295-K, 300-K and 305-K ensembles, used655

in the present paper, are publicly available at https://thredds-su.ipsl.fr/thredds/656

catalog/rcemip/catalog.html. A permanent identifier will be created if the present657

paper is accepted. Hourly output for the 302-K RCEMIP-style simulation, the ARPEGE-658

Climat software (Version 6.3) used for running the simulations, and the scripts used in659

the analysis are available upon request to the corresponding author.660
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35–62.723

Gueremy, J. F. (2011). A continuous buoyancy based convection scheme: One-724

and three-dimensional validation. Tellus, Series A: Dynamic Meteorology and725

–24–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Oceanography , 63 (4), 687–706. doi: 10.1111/j.1600-0870.2011.00521.x726

Hartmann, D. L., & Larson, K. (2002). An important constraint on tropical cloud727

- climate feedback. Geophysical Research Letters, 29 (20), 12-1-12-4. doi:728

https://doi.org/10.1029/2002GL015835729

Hohenegger, C., & Stevens, B. (2018). The role of the permanent wilting point in730

controlling the spatial distribution of precipitation. Proceedings of the National731

Academy of Sciences of the United States of America, 115 (22), 5692–5697. doi:732

10.1073/pnas.1718842115733

Holloway, C. E., Wing, A. A., Bony, S., Muller, C., Masunaga, H., L’Ecuyer, T. S.,734

. . . Zuidema, P. (2017). Observing Convective Aggregation. Surveys in735

Geophysics, 38 (6), 1199–1236. doi: 10.1007/s10712-017-9419-1736

Holloway, C. E., & Woolnough, S. J. (2016). The sensitivity of convective ag-737

gregation to diabatic processes in idealized radiative-convective equilibrium738

simulations. Journal of Advances in Modeling Earth Systems, 8 , 166–195. doi:739

10.1002/2016MS000625740

Hortal, M., & Simmons, A. J. (1991). Used of Reduced Gaussian Grids in Spec-741

tral Models. Monthly Weather Review , 119 , 1057–1074. doi: 10.1175/1520742

-0493(1991)119〈1057:UORGGI〉2.0.CO;2743

Houze, R. A. (2004). Mesoscale convective systems. Reviews of GeophysicsGeo-744

physics, 104 , 237–286. doi: 10.1016/B978-0-12-374266-7.00009-3745

Khairoutdinov, M., & Emanuel, K. (2013). Rotating radiative-convective equilibrium746

simulated by a cloud-resolving model. Journal of Advances in Modeling Earth747

Systems, 5 (4), 816–825. doi: 10.1002/2013MS000253748

Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., & Roundy, P. E.749

(2009). Convectively coupled equatorial waves. Reviews of Geophysics, 47 (2),750

1–42. doi: 10.1029/2008RG000266751

Lopez, P. (2002). Implementation and validation of a new prognostic large-scale752

cloud and precipitation scheme for climate and data-assimilation purposes.753

Quarterly Journal of the Royal Meteorological Society , 128 (579), 229–257. doi:754

10.1256/00359000260498879755

Madden, R. A., & Julian, P. R. (1994). Observations of the 40-50-day tropical os-756

cillation - a review. Monthly Weather Review , 122 (5), 814–837. doi: 10.1175/757

1520-0493(1994)122〈0814:OOTDTO〉2.0.CO;2758

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A.759

(1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a vali-760

dated correlated-k model for the longwave. Journal of Geophysical Research761

Atmospheres, 102 (14), 16663–16682. doi: 10.1029/97jd00237762

Morcrette, J.-J., Barker, H. W., Cole, J. N. S., Iacono, M. J., & Pincus, R. (2008).763

Impact of a New Radiation Package, McRad, in the ECMWF Integrated764

Forecasting System. Monthly Weather Review , 136 (12), 4773–4798. doi:765

10.1175/2008MWR2363.1766

Muller, C. J., & Bony, S. (2015). What favors convective aggregation and767

why? Geophysical Research Letters, 42 (13), 5626–5634. doi: 10.1002/768

2015GL064260769

Muller, C. J., & Held, I. M. (2012). Detailed investigation of the self-aggregation770

of convection in cloud-resolving simulations. Journal of the Atmospheric Sci-771

ences, 69 (8), 2551–2565. doi: 10.1175/JAS-D-11-0257.1772

Naumann, A. K., Stevens, B., & Hohenegger, C. (2019). A moist conceptual model773

for the boundary layer structure and radiatively driven shallow circulations774

in the trades. Journal of the Atmospheric Sciences, 76 (5), 1289–1306. doi:775

10.1175/JAS-D-18-0226.1776

Naumann, A. K., Stevens, B., Hohenegger, C., & Mellado, J. P. (2017). A con-777

ceptual model of a shallow circulation induced by prescribed low-level radia-778

tive cooling. Journal of the Atmospheric Sciences, 74 (10), 3129–3144. doi:779

10.1175/JAS-D-17-0030.1780
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Sénési, S. (2020). The CNRM Global Atmosphere Model ARPEGE-Climat 6.3:801

Description and Evaluation. Journal of Advances in Modeling Earth Systems,802

12 (7), 1–53. doi: 10.1029/2020MS002075803

Rotunno, J., Klemp, J. B., & Weisman, M. L. (1988). A theory for Strong, Long-804

Lived Squall Lines. Journal of Atmospheric Sciences, 45 (3), 463–485. doi: 10805

.1175/1520-0469(1988)045〈0463:ATFSLL〉2.0.CO;2806

Saint-Martin, D., Geoffroy, O., Voldoire, A., Cattiaux, J., Brient, F., Chauvin, F.,807

. . . Valcke, S. (2021). Tracking Changes in Climate Sensitivity in CNRM808

Climate Models. Journal of Advances in Modeling Earth Systems, 13 (6), 1–19.809

doi: 10.1029/2020MS002190810

Shamekh, S., Muller, C., Duvel, J. P., & D’Andrea, F. (2020a). How do ocean warm811

anomalies favor the aggregation of deep convective clouds? Journal of the At-812

mospheric Sciences, 77 (11), 3733–3745. doi: 10.1175/JAS-D-18-0369.1813

Shamekh, S., Muller, C., Duvel, J. P., & D’Andrea, F. (2020b). Self-Aggregation of814

Convective Clouds With Interactive Sea Surface Temperature. Journal of Ad-815

vances in Modeling Earth Systems, 12 (11). doi: 10.1029/2020MS002164816

Stein, T. H., Holloway, C. E., Tobin, I., & Bony, S. (2017). Observed relation-817

ships between cloud vertical structure and convective aggregation over tropical818

ocean. Journal of Climate, 30 (6), 2187–2207. doi: 10.1175/JCLI-D-16-0125.1819

Tobin, I., Bony, S., Holloway, C. E., Grandpeix, J.-Y., Sèze, G., Coppin, D., . . .820
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Figure 1. Snapshots of column relative humidity at day 240 of the CNRM-CM6-1 RCE

simulations at (a) 295 K, (b) 300 K and (c) 305 K. Different aggregation indices used to charac-

terize convective aggregation are noted in the bottom left corner of each panel (SF850: subsiding

fraction considering the pressure vertical velocity at 850 hPa; η: shallow circulation efficiency pa-

rameter (see text for detail); var(PRW): spatial variance of precipitable water; var(CRH): spatial

variance of CRH; var(ĥn): spatial variance of normalized MSE).
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ĥ
n
)

[1
0−

3
]

3.4 3.6

µd

0.3

0.4

0.5

0.4 0.5

σd

3.4

3.6

2.5
0

2.7
5

µm

0.40

0.45

0.50

0.5 0.6

σm

2.4

2.6

2.8

35 40

CRHd

0.5

0.6

85 90

CRHm

35

40

295K

296K

297K

298K

299K

300K

301K

302K

303K

304K

305K

Figure 3. Matrix of the relationships across SSTs between the ĥn variance (in 10−3) and

several parameters describing the CRH distribution at equilibrium: α, µd, σd, µm, σm, CRHd

and CRHm (see Section 2.4 for their definition). Each panel shows the relationship between two

indices as indicated along the matrix diagonal for all SSTs (colors) and for all members of each

295-K, 300-K and 305-K ensemble (same color within each ensemble). Each dot corresponds to

the time average over the last year of the corresponding 3-year simulation.
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Figure 4. Global mean profile of (a) relative humidity (RH, in %) and (b) cloud fraction (CF,

in %) for all SSTs (colored lines). The shading indicates the 3-standard-deviation envelope of

the 295-K, 300-K and 305-K ensembles. The time average is performed over the last year of each

3-year simulation.
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right, for the (a) 295-K, (b) 300-K, (c) 302-K and (d) 305-K simulations. For the sake of clarity,

each rank of daily CRH corresponds to the average 32 model columns. Each panel is then an

average over the last year of each 3-year simulation.
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Figure 6. (a) Time evolution of the ĥn variance over the first year of the 295 K (black), 300

K (blue), 302 K (green) and 305 K (red) simulations. (b-m) Same as (a) but for the shallow

circulation efficiency η, the maximum lead time (in days) for which the CRH autocorrelation

remains above 0.5 (d(ρCRH=0.5)), the fraction α of the moist distribution in the CRH full dis-

tribution, the geopotential height difference (in m) between moist and dry regions (∆ symbol)

integrated over the mid free troposphere (600-400 hPa, ∆Φ
FTmid

), the lower free troposphere

(850-700 hPa, ∆Φ
FTlow

) and the boundary layer (1000-900 hPa, ∆Φ
BL

), the CRH distribution

parameters (see section 2.4 for details), the radiative temperature tendency difference between

moist and dry regions integrated over the boundary layer (1000-900 hPa, ∆∂tT |rad
BL

in K day−1)

and the surface pressure difference between moist and dry regions (∆ps in Pa), respectively. Both

dry and moist regions are separated according to CRHc.

–34–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 5 10 15 20 25 302.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

[1
0

9  s
1 ]

a) 295 K

0 5 10 15 20 25 302.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0 b) 300 K

0 5 10 15 20 25 30
Time [days]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

[1
0

9  s
1 ]

c) 302 K

0 5 10 15 20 25 30
Time [days]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0 d) 305 K

DIAB
SW
LW
LHF

SHF
ADV
TOT

Figure 7. Time evolution of the diabatic (DIAB=SW + LW + LHF + SHF, black), short-

wave radiation (SW, red), longwave radiation (LW, orange), latent heat flux (LHF, blue), sensible

heat flux (SHF, green), advection (ADV, grey) and total (TOT, purple) feedbacks on the ĥn

variance (in 10−9 s−1) for the first 30 days of the (a) 295-K, (b) 300-K, (c) 302-K, and (d) 305-K

simulations. The advection feedback is calculated using hourly wind and FMSE model outputs

(results are similar when using the more usual residual approach based on Equation 3).

–35–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 200 400 600 800 10000

5

10

15

20

25

Ti
m

e 
[d

ay
s]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
a) DIAB

0 200 400 600 800 10000

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
b) SW

0 200 400 600 800 10000

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
c) LW

0 200 400 600 800 1000
CRH Rank

0

5

10

15

20

25

Ti
m

e 
[d

ay
s]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
d) LHF

0 200 400 600 800 1000
CRH Rank

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
e) SHF

0 200 400 600 800 1000
CRH Rank

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
f) ADV

1.5

1.1

0.7

0.3

0.1

0.5

0.9

1.3

295 K

Figure 8. Time evolution of the (a) diabatic (DIAB = SW + LW + LHF + SHF) (b) short-

wave radiation (SW), (c) longwave radiation (LW), (d) latent heat flux (LHF), (e) sensible

heat flux (SHF), and (f) advection (ADV) feedbacks on the ĥn variance (in day−1) for the first

30 days of the 295-K simulation and ranked according to the column relative humidity CRH.

Feedbacks are normalized at each time step by the corresponding spatial variance of ĥn. The ad-

vection feedback is calculated using hourly model outputs. The black and grey solid lines indicate

the time evolution of the ĥn variance (in 10−3, see upper x-axis for its scale) and the CRH rank

corresponding to CRHc, respectively.
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Figure 9. Time evolution of the CRH distribution (in %) for the (a) 295-K, (b) 300-K, (c)

302-K and (d) 305-K simulations. The black line shows the global mean. (e-h) Same as (a-d) for

precipitable water.
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Figure 10. Global mean profile of (a-d) relative humidity (RH, in %) and (e-h) cloud fraction

(CF, in %) for the 295-K, 300-K, 302-K and 305-K simulations, respectively. The colors from

dark blue to dark red indicate increasing days at which the profile is plotted (from day 5 to day

295, one profile every 5 days).
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Figure 11. Cloud fraction (colors, in %) and streamfunction (contours, one every 0.5 kg m−2

s−1) averaged over 20 consecutive days between days 0 and 200 for the (a) 295-K, (b) 300-K

and (c) 305-K simulations. Dashed contours indicate counter-clockwise rotation. For the sake

of clarity, each rank of daily CRH corresponds to the average of 32 model columns. Each panel

is then the average of 20 diagrams corresponding to the targeted 20 days. The streamfunction

is computed from similar average diagrams based on the vertical velocity (see appendix A for

details).
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Figure 12. Same as Figure 8 but for the first 360 days of the 305-K simulation.
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Figure 13. Time evolution of the (a) cloudy-sky shortwave radiation (SWcld), (b) cloudy-sky

longwave radiation (LWcld), (c) horizontal advection (ADVhor), (d) clear-sky shortwave radia-

tion (SWcs) (e) clear-sky longwave radiation (LWcs) and (f) vertical advection (ADVvert) feed-

backs on the normalized FMSE variance (in day−1) for the first 360 days of the 305-K simulation

and ranked according to CRH. Feedbacks are normalized at each time step by the correspond-

ing spatial variance of ĥn. The horizontal and vertical advection feedbacks are calculated using

hourly model outputs. The black and grey lines indicate the time evolution of the ĥn variance

(see upper x-axis for its scale) and the CRH rank corresponding to CRHc, respectively.
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Figure 14. Daily ĥn spatial variance (in 10−3) evolution over the first year of the 295-K

(black), 300-K (blue), 302-K (green) and 305-K (red) simulations as a function of the (a) cloudy-

sky longwave radiation, (b) clear-sky longwave radiation, (c) advection, and (d) turbulence

potential temperature tendencies (∂tθ|LWcld, ∂tθ|LWcs, ∂tθ|adv and ∂tθ|turb, respectively) and (e)

the sum of the convection and large-scale condensation-evaporation (∂tθ|micro+cv) temperature

tendencies (in K day−1). All terms are averaged over the 600-400-hPa layer and tendencies are

daily accumulated. Light colors indicate the first 50 days of each simulation. (f-j) and (k-o) same

as (a-e) but for the 850-700-hPa and 1000-925-hPa atmospheric layers, respectively.
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Figure 15. Same as Figure 14 for moist regions.
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Contents of this file

1. Text S1 to S9

2. Figures S1 to S9

Introduction The supplemental material provides additional figures designed to better

understand the CRH distribution decomposition into two lognormal distribution and to

more comprehensively document the aggregation mechanisms at the SSTs not investi-

gated in details in the main manuscript.

Text S1. Figure S1 illustrates to what extent the sum of a dry and a moist lognormal

distribution provides a good approximation of the full CRH distribution for three different

time steps of the 305-K simulation.

Text S2. Figure S2 shows how the dry and moist CRH distribution components change

with time. In this figure, we see that α, the fraction of the full distribution covered by

March 1, 2022, 10:22am



X - 2 :

the moist component, decreases with time as the area below the moist curve becomes

smaller than the one below the dry curve. The dry component becomes more peaked

with time, which corresponds to a decrease in µd. Its skewness also increases towards the

dry minimum meaning that σd increases with time. For the moist component, σm stays

mostly constant while µm slightly decreases (more peaked distribution). Note that CRHd

and CRHm, the CRH value at the dry and moist peaks, also change with time: CRHd

decreases and CRHm increases. The dry and moist components intersect at CRHc, which

is used to distinguish between dry and moist regions.

Texts S3 and S4 Both figures S3 and S4 are similar to Figure 4 and show the relative

humidity and cloud fraction profiles in the dry and moist regions separated at each time

step by CRHc, the CRH value where both dry and moist distribution are equal. The

mean profile is an average over each day of the last year. It complements Figure 4 in the

main manuscript.

Text S5 Figure S5 details the relative contributions of the clear-sky and cloudy-sky radia-

tive feedbacks during the first 30 days of the 295-K, 300-K, 302-K and 305-K simulations.

It complements Figure 7 in the main manuscript.

Texts S6 and S7 Figures S6 and S7 are the same as Figure 8 from the main manuscript

but for the 300-K and 305-K simulations, respectively.
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Text S8 Figure S8 details the clear-sky and cloudy-sky radiative feedbacks at 295 K. It

complements Figure 8 in the main manuscript.

Text S9 Figure S9 shows the feedback decomposition for the 302-K simulation. It empha-

sizes the positive advection feedback that appears in the dry regions as in the simulation

at 305 K but later (around day 150 here) while most other feedbacks remain constant

after day 20. Equilibrium is reached around day 250. This figure complements Figure 12

in the main manuscript.
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Figure S1. Probability density function of CRH at day 40 (black), day 90 (blue) and day 140

(red) for the 305 K simulation. For each day, the CRH distribution is shown with full line, while

its dry and moist lognormal components are shown in dash-dotted and dotted lines, respectively.

The sum of the dry and moist lognormal components is shown with dashed lines. See Equation

4 for details.
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Figure S2. Dry (dash-dotted lines) and moist (dotted lines) components of the CRH proba-

bility distribution function estimated by Equation 4 every 20 days of the 305 K simulation. The

colors from dark blue to dark red indicate increasing days at which the distributions are plotted.

March 1, 2022, 10:22am



X - 6 :

0 20 40 60 80 100
RH [%]

200

400

600

800

1000

Pr
es

su
re

 [h
Pa

]

a) Dry regions
295K
296K
297K
298K
299K
300K
301K
302K
303K
304K
305K

0.0 2.5 5.0 7.5 10.0 12.5 15.0
CF [%]

200

400

600

800

1000

b) Dry regions

Figure S3. Mean profile of (a) relative humidity (RH, in %) and (b) cloud fraction (CF, in %)

in the dry regions of all simulations (colored lines). Dry regions are identified as regions where

CRH is lower than CRHc. The shading indicates the 3-standard-deviation envelope of the 295-K,

300-K and 305-K ensembles. The time average is performed over the last year of each 3-year

simulation.
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Figure S4. Mean profile of (a) relative humidity (RH, in %) and (b) cloud fraction (CF, in

%) in the moist regions of all simulations (colored lines). Moist regions are identified as regions

where CRH is higher than CRHc. The shading indicates the 3-standard-deviation envelope of

the 295-K, 300-K and 305-K ensembles. The time average is performed over the last year of each

3-year simulation.
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Figure S5. Time evolution of the shortwave (blue), longwave (red) and total (RAD = LW+SW,

black) radiation feedbacks on the ĥn variance (in 10−9 s−1) for the first 30 days of the (a) 295-K,

(b) 300-K, (c) 302-K and (d) 305-K simulations. For each feedback, the clear-sky, cloudy-sky

and total components are indicated with dotted, dash-dotted and solid lines, respectively.
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Figure S6. Time evolution of the (a) diabatic (DIAB = SW + LW + LHF + SHF) (b)

shortwave (SW), (c) longwave (LW), (d) latent heat flux (LHF), (e) sensible heat flux (SHF),

and (f) advection (ADV) feedbacks on the ĥn variance (in day−1) for the first 30 days of the

300-K simulation and ranked according to the column relative humidity CRH. Feedbacks are

normalized at each time step by the corresponding spatial variance of ĥn. The advection feedback

is calculated using hourly model outputs. The black and grey solid lines indicate the time

evolution of ĥn variance (in 10−3, see upper x-axis for its scale) and the CRH rank corresponding

to CRHc, respectively.
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Figure S7. Time evolution of the (a) diabatic (DIAB = SW + LW + LHF + SHF) (b)

shortwave radiation (SW), (c) longwave radiation (LW), (d) latent heat flux (LHF), (e) sensible

heat flux (SHF), and (f) advection (ADV) feedbacks on the ĥn variance (in day−1) for the first

30 days of the 305-K simulation and ranked according to the column relative humidity CRH.

Feedbacks are normalized at each time step by the corresponding spatial variance of ĥn. The

advection feedback is calculated using hourly model outputs. The black and grey solid lines

indicate the time evolution of ĥn variance (in 10−3, see upper x-axis for its scale) and the CRH

rank corresponding to CRHc, respectively.
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Figure S8. Time evolution of the (a) diabatic (DIAB = SW + LW + LHF + SHF), (b) cloudy-

sky shortwave radiation (SWcld), (c) cloudy-sky longwave radiation (LWcld), (d) cloudy-sky

radiation (RADcld = LWcld + SWcld), (e) advection (ADV), (f) clear-sky shortwave radiation

(SWcs), (g) clear-sky longwave radiation (LWcs) and (h) clear-sky radiation (RADcs = LWcs

+ SWcs) feedbacks on the ĥn variance (in day−1) for the first 30 days of the 295 K simulation

and ranked according to the column relative humidity CRH. Feedbacks are normalized at each

time step by the corresponding spatial variance of ĥn. The advection feedback is calculated using

hourly model outputs. The black and grey solid lines indicate the time evolution of ĥn variance

(in 10−3, see upper x-axis for its scale) and the CRH rank corresponding to CRHc, respectively.
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Figure S9. Same as Figure 12 (or S6 or S7) but for the first 360 days of the 302-K simulation.
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