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and higher trophic level consumers, the skillful representation of zooplankton is not often a focus of ocean biogeochemical

models. Systematic evaluations of zooplankton in models could improve their representation, but so far, ocean biogeochemical

skill assessment of Earth system model (ESM) ensembles have not included zooplankton. Here we use a recently developed

global, observationally-based map of mesozooplankton biomass to assess the skill of mesozooplankton in six CMIP6 ESMs.

We also employ a biome-based assessment of the ability of these models to reproduce the observed relationship between

mesozooplankton biomass and surface chlorophyll. The combined analysis found that most models were able to reasonably

simulate the large regional variations in mesozooplankton biomass at the global scale. Additionally, three of the ESMs simulated

a mesozooplankton-chlorophyll relationship within the observational bounds, which we used as an emergent constraint on

future mesozooplankton projections. We highlight where differences in model structure and parameters may give rise to

varied mesozooplankton distributions under historic and future conditions, and the resultant wide ensemble spread in projected

changes in mesozooplankton biomass. Despite differences, the strength of the mesozooplankton-chlorophyll relationships across

all models was related to the projected changes in mesozooplankton biomass globally and in regional biomes. These results

suggest that improved observations of mesozooplankton and their relationship to chlorophyll will better constrain projections

of climate change impacts on these important animals.

Hosted file

essoar.10510705.1.docx available at https://authorea.com/users/551196/articles/604276-

assessment-and-constraint-of-mesozooplankton-in-cmip6-earth-system-models

1

https://authorea.com/users/551196/articles/604276-assessment-and-constraint-of-mesozooplankton-in-cmip6-earth-system-models
https://authorea.com/users/551196/articles/604276-assessment-and-constraint-of-mesozooplankton-in-cmip6-earth-system-models


Assessment and constraint of mesozooplankton in CMIP6 Earth sys-
tem models

C.M. Petrik1,2, J.Y. Luo3, R.F. Heneghan4, J.D. Everett5,6,7, C.S.
Harrison8, A.J. Richardson5,6

1Department of Oceanography, Texas A&M University, College Station, TX,
USA
2Scripps Institution of Oceanography, University of California San Diego, La
Jolla, CA, USA
3NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
4School of Mathematical Sciences, Queensland University of Technology, Bris-
bane, QLD, Australia
5School of Mathematics and Physics, The University of Queensland, St. Lucia,
QLD, Australia
6Commonwealth Scientific and Industrial Research Organisation (CSIRO)
Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, QLD,
Australia
7Centre for Marine Science and Innovation, The University of New South Wales,
Sydney, NSW, Australia
8Department of Ocean and Coastal Science, Center for Computation and Tech-
nology, Louisiana State University, Baton Rouge, LA, USA

corresponding author: Colleen M. Petrik (cpetrik@ucsd.edu)

ORCID

C.M. Petrik – 0000-0003-3253-0455

R.F. Heneghan – 0000-0001-7626-1248

J.Y. Luo – 0000-0002-0032-9370

J.D. Everett – 0000-0002-6681-8054

C.S. Harrison –0000-0003-4544-947X

A.J. Richardson – 0000-0002-9289-7366

KEY POINTS

• On the global scale, five of six models that include mesozooplankton per-
form moderately well with respect to the observations

• We identify an emergent constraint using the mesozooplankton vs. chloro-
phyll relationship that can help constrain zooplankton projections

• More attention needs to be paid to prey preferences, food web structure
and temperature sensitivity in addition to existing key parameters
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ABSTRACT

Although zooplankton play a substantial role in the biological carbon pump and
serve as a crucial link between primary producers and higher trophic level con-
sumers, the skillful representation of zooplankton is not often a focus of ocean
biogeochemical models. Systematic evaluations of zooplankton in models could
improve their representation, but so far, ocean biogeochemical skill assessment
of Earth system model (ESM) ensembles have not included zooplankton. Here
we use a recently developed global, observationally-based map of mesozooplank-
ton biomass to assess the skill of mesozooplankton in six CMIP6 ESMs. We also
employ a biome-based assessment of the ability of these models to reproduce
the observed relationship between mesozooplankton biomass and surface chloro-
phyll. The combined analysis found that most models were able to reasonably
simulate the large regional variations in mesozooplankton biomass at the global
scale. Additionally, three of the ESMs simulated a mesozooplankton-chlorophyll
relationship within the observational bounds, which we used as an emergent con-
straint on future mesozooplankton projections. We highlight where differences
in model structure and parameters may give rise to varied mesozooplankton dis-
tributions under historic and future conditions, and the resultant wide ensemble
spread in projected changes in mesozooplankton biomass. Despite differences,
the strength of the mesozooplankton-chlorophyll relationships across all models
was related to the projected changes in mesozooplankton biomass globally and in
regional biomes. These results suggest that improved observations of mesozoo-
plankton and their relationship to chlorophyll will better constrain projections
of climate change impacts on these important animals.

PLAIN LANGUAGE SUMMARY

Zooplankton are microscopic marine animals that have a key role in transfer-
ring carbon from the atmosphere deeper into the ocean. They also serve as a
crucial link in food chains between microscopic marine plants (phytoplankton)
and predators like fish and whales. Researchers have created mathematical rep-
resentations (models) of the linked processes of the oceans, atmosphere, and
land, most of which include zooplankton. Yet how well these models represent
zooplankton has not been adequately tested. We compared observations of zoo-
plankton biomass to model estimates. We explored if these models reproduce
the observed relationship between zooplankton biomass and chlorophyll concen-
tration, which is useful for assessing how well the models represent predator-prey
relationships. Five of six models had similar patterns and comparable average
biomasses across the global ocean as the observations. The historic relationship
in three models fell within the observed relationship. The strength of the rela-
tionships across all models was related to how much zooplankton biomass will
decrease with climate change. To improve the representation of zooplankton
in models, we need better observations of the relationships between organisms.
This would advance estimates of carbon transfer to the deep sea and carbon
available to fish, and how they will change with climate change.

1. INTRODUCTION
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Zooplankton vary over 16 orders of magnitude in size and constitute 40% of
total marine biomass (Hatton et al., 2021). They lie in the middle of food webs,
an essential position linking primary production to higher trophic levels (Ry-
ther, 1969). Additionally, zooplankton influence the biological carbon pump
both indirectly by modulating the proportion of production that is recycled vs.
exported, and directly by contributing fast-sinking fecal pellets and by vertical
migration to depth (Steinberg & Landry, 2017). Ocean biogeochemistry models
were historically built to simulate the carbon cycle (Maier-Reimer & Hassel-
mann, 1987; Sarmiento et al., 1992) and have varying degrees of representation
of plankton food web dynamics (Séférian et al., 2020; Kearney et al., 2021). Zoo-
plankton, if present, function more often as a closure term on the phytoplankton,
ensuring that phytoplankton biomass does not grow uncontrollably. Zooplank-
ton are less often considered as an ecologically or biogeochemically meaningful
variable, yet, the response of phytoplankton is extremely sensitive to the for-
mulation and parameter values of zooplankton (Gentleman & Neuheimer, 2008;
Rohr et al., submitted).

Coupled Earth system models (ESMs) used to study global climate change in-
clude biogeochemistry within their ocean models because of the outsized role
of the ocean in the global carbon cycle (e.g., Friedlingstein et al., 2020) and
thus the climate system. Also, plankton food web dynamics from these ESMs
are increasingly used in marine ecosystem models as forcings that represent the
base of marine food webs (e.g. Tittensor et al., 2018; Lotze et al., 2019; Harri-
son et al., 2021; Heneghan et al., 2021; Tittensor et al., 2021). Many of these
marine ecosystem models use phytoplankton outputs from ESMs, which have
undergone formal skill assessment in terms of chlorophyll a or net primary pro-
duction in comparison to satellite-based products (Bopp et al., 2013; Fu et al.,
2015; Laufkötter et al., 2015; Séférian et al., 2020; Kwiatkowski et al., 2020;
Fu et al., in revision). However, formal skill assessment of biogeochemistry in
ESMs has not yet extended to the zooplankton, although individual models have
performed some comparison of simulated zooplankton with observations (Stock
et al., 2014b; Yool et al., 2021).

Skill assessment of zooplankton is needed for several reasons. First, improving
zooplankton representation based on ecological mechanisms and not the tuning
of parameters would provide more realistic estimates of phytoplankton biomass
and production, export, and the whole carbon cycle (Laufkötter et al., 2015,
2016). As the role of zooplankton in the export of carbon to the deep ocean is
one of the largest uncertainties in ESM simulations of the marine carbon cycle,
constraining their biomass is important for understanding future climate (Hen-
son et al., 2021). Second, ESM projections demonstrate an amplified response
of mesozooplankton biomass and production relative to phytoplankton (Stock
et al., 2014a; Kwiatkowski et al., 2019). Third, some marine ecosystem mod-
els directly use zooplankton output from ESMs to force higher trophic levels
(Maury, 2010; Petrik et al., 2019). Last, if zooplankton skill exceeds or has less
uncertainty than that of phytoplankton, then it may be a more robust forcing
term for models of upper trophic levels.
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Zooplankton can be divided into multiple classes that have varying ecosystem
functions and observational methods. We focus here on the mesozooplankton
(0.2-20 mm; Sieburth et al., 1978) that are prey of higher trophic level animals
such as forage fish, seabirds, and whales. Mesozooplankton also are more repre-
sentative of export production, whereas microzooplankton (<0.2 mm) are an im-
portant component of the microbial loop, generating recycled production rather
than transferring carbon up the food chain (Buitenhuis et al., 2006). Further-
more, most observations target the mesozooplankton size range, massively un-
derestimating both microzooplankton and macrozooplankton (>20mm; Wiebe
& Benfield, 2003), making it a better analog for comparing against observations
than total zooplankton biomass.

An examination of mesozooplankton across ESMs will aid understanding and
reduce uncertainty in climate projections, especially as biological variables have
larger structural uncertainty than physical variables and are more influenced by
future climate scenario uncertainty (Frolicher et al., 2016; Kwiatkowski et al.,
2020; Tittensor et al., 2021; Fu et al., in revision). Multimodel ensembles are
often used to capture a wider range of the different types of uncertainty. How-
ever, multimodel ensembles could be biased by unskillful models, which has led
to the use of emergent constraints to reduce projection uncertainty by weight-
ing models based on performance (Kwiatkowski et al., 2017; Eyring et al., 2019;
Hall et al., 2019). We use this approach here, estimating performance by eval-
uating the mesozooplankton output from individual ESMs against observations
through skill assessment and in comparison with other ESMs through emergent
constraints analysis.

In this study we assess mesozooplankton in ESMs to answer four key questions.
(1) How well do ESMs represent mesozooplankton under historic conditions?
(2) Are there regions or seasons where ESM representation of mesozooplankton
is better or worse? (3) Are ESMs able to reproduce the relationships between
mesozooplankton biomass and surface chlorophyll a seen in observations? (4)
Do the relationships between mesozooplankton biomass and surface chlorophyll
a under historic conditions characterize the sensitivity of mesozooplankton to
climate change across ESMs? Our hope is that through greater assessment of
mesozooplankton in ESMs, and biogeochemistry models more generally, we can
improve their representation, thus enabling more robust model projections of
fisheries and carbon cycling.

2. METHODS

2.1 Earth System Models

We examined mesozooplankton biomass simulated by all ESMs in the 6th phase
of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016)
with a dedicated mesozooplankton group. The CMIP6 zooplankton fields that
modeling groups could submit were biomass of microzooplankton, mesozoo-
plankton, and total zooplankton. When model description papers used the
terms small zooplankton and large zooplankton, we assumed these were the
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microzooplankton and mesozooplankton outputs, respectively, unless model de-
scriptions indicated otherwise (e.g. Stock et al., 2014b, 2020). The models
with mesozooplankton are CanESM5-CanOE, CMCC-ESM2, CNRM-ESM2-1,
GFDL-ESM4, IPSL-CM6A-LR, and UKESM1-0-LL (Table S1). Other mod-
els that participated in CMIP6 either have no explicit zooplankton group or
only one zooplankton group. We used the Historic and “very high emissions”
(SSP5-8.5) scenario simulations of these models (Allen et al., 2021). Model out-
puts were downloaded from the ESGF-CoG (CanESM5-CanOE, CMCC-ESM2,
CNRM-ESM2-1) and ISIMIP (GFDL-ESM4, IPSL-CM6A-LR, and UKESM1-
0-LL) servers. This analysis focused on model outputs of mesozooplankton
biomass (zmeso), surface chlorophyll concentration (chlos), sea surface temper-
ature (tos), depth level thickness (thkcello), and mixed layer depth (mlotst).

The ocean biogeochemistry (BGC) sub-models of each ESM are described to
varying degrees in model description publications (Table S1), with a compre-
hensive summary and comparison of their structure performed by Kearney et
al. (2021) and a comparison of model skill (excluding zooplankton) by Séférian
et al. (2020). There are considerable differences in the formulation of the
BGC sub-models of the ESMs, particularly with respect to zooplankton (Ta-
ble 1). Here we briefly give details of each sub-model relevant to the present
study. All BGC sub-models included here simulate interactions among nutri-
ents, phytoplankton, zooplankton, and detritus. Phytoplankton require the
uptake of nutrients to fix CO2 into organic carbon and are then grazed by
zooplankton. Metabolic, feeding, and mortality processes of the phytoplank-
ton and zooplankton lead to the production of detritus and remineralization
of dissolved nutrients. As these processes are linked, structural and parameter
differences in their formulations could directly or indirectly affect zooplankton.
For instance, functions for phytoplankton uptake of N, P, Fe, Si, and their light
limitation vary widely across BGC sub-models (Kearney et al., 2021), which
could result in different phytoplankton dynamics that then impact zooplankton
grazers. There are many other differences across BGC sub-models, including
the number and type of plankton groups, predator-prey relationships, feeding
functional responses, the temperature dependence of biological rates, and loss
terms for zooplankton (Table 1). Each BGC sub-model is different in its formu-
lation and parameterization. However, two ESMs use the same BGC sub-model:
CNRM-ESM2-1 and IPSL-CM6A-LR use PISCES2.0 (Aumont et al., 2015), ex-
cept that CNRM uses PISCES2.0-gas, which resolves dimethylsulfide and ni-
trous oxide. The CanESM5-CanOE (Christian et al., 2021), PISCES2.0, and
UKESM1-0-LL-MEDUSA2.1 (Yool et al., 2013, 2021) models all include two
phytoplankton (small/nano and large/diatoms), two zooplankton (small/micro,
large/meso), and two particulate detritus (small/slow-sinking and large/fast-
sinking) groups. The CMCC-ESM2-BFMv5.2 (Lovato et al., 2022) model has
one heterotrophic bacteria group, two phytoplankton, two zooplankton, and one
particulate detritus term. The GFDL-ESM4-COBALTv2 (Stock et al., 2014b,
2020) model represents bacteria, diazotrophs, small phytoplankton, large phy-
toplankton, small zooplankton, medium zooplankton, large zooplankton, and
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particulate detritus. The mesozooplankton biomass provided by COBALTv2
in CMIP6 is the combination of the medium and large zooplankton groups.
All models represent losses to mesozooplankton biomass with both linear (con-
stant) and non-linear (density-dependent) mortality terms. Linear terms often
represent metabolic losses while density-dependent terms represent predation
by higher trophic levels. The density-dependent mortality function is quadratic
in CanOE, PISCES2.0, and COBALTv2, while it is a different power function in
BFMv5.2 and MEDUSA2.1 (Yool et al., 2011). In PISCES2.0, the linear mortal-
ity is increased at low dissolved oxygen concentrations to mimic hypoxic stress.
Since the linear mortality term in BFMv5.2 represents senescence, there are
additional losses to excretion/egestion, respiration, cannibalism, and an oxygen-
dependent linear mortality term. The medium zooplankton of COBALTv2 also
experience mortality when eaten by the large zooplankton.

Each BGC sub-model has a different set of prey available to mesozooplank-
ton (Table 1). CanOE has the most restricted diet, with mesozooplankton
feeding only on the large phytoplankton and small zooplankton groups. Meso-
zooplankton in BFMv5.2 prey similarly on the large phytoplankton and small
zooplankton, but also perform cannibalism. MEDUSA2.1 has more prey items
that include small phytoplankton, large phytoplankton, small zooplankton, and
small detritus. PISCES2.0 mesozooplankton have the broadest diet: small phy-
toplankton, large phytoplankton, small zooplankton, and both sizes of detritus.
In COBALTv2, both medium and large zooplankton prey on diazotrophs and
large phytoplankton. Medium zooplankton additionally prey on small zooplank-
ton, while large zooplankton also consume the medium zooplankton.

Table 1. Differences in the ESMs relevant for mesozooplankton including the
phytoplankton (P), zooplankton (Z), and detritus (D) groups, mesozooplankton
prey types, grazing functional response, key grazing parameters, temperature
dependence of rate processes, and key reference.

Model P Groups Z Groups D Groups MesoZ Prey Grazing Functional Response Grazing Parameters Temperature Dependent Processes Reference

BFMv5.2 (CMCC) 2 2 1 MesoZ: Diatoms, MicroZ, MesoZ Type II (Disk) MesoZ: Potential specific growth rate=2.0 d-1, k = 80 mgC m−3 (a) Q10=2 on all rate processes Lovato et al. (2022)
NanoP, Diatoms MicroZ, MesoZ

CanOE (CAN) 2 2 2 LargeZ: LargeP, SmallZ Type II (Ivlev) LargeZ: gmax=0.85 d−1, k = 33 mgC m−3 (b) Ea=37.4 kJ mol-1 for P growth and Z respiration. No T dependence on Z grazing nor P and Z mortality Christian et al. (2021)
SmallP, LargeP SmallZ, LargeZ Small/slow-sinkingD, Large/fast-sinkingD

COBALTv2 (GFDL) 3 3 1 MediumZ: LargeP, Diazotrophs, SmallZ; LargeZ: LargeP, Diazotrophs, MediumZ Type II (Michaelis-Menton), with mild density-dependent prey switching MediumZ: Imax=0.57 d−1, k=99 mgC m−3; LargeZ: Imax=0.23 d−1, k=99 mgC m−3 (c); Imax decreases with Z size and k kept constant Q10=1.878 for P growth, P mortality, Z grazing, and Z mortality Stock et al. (2014b, 2020)
Diazotrophs, SmallP, LargeP SmallZ (<200 �m), MediumZ* (200-2000 �m), LargeZ* (>2000 �m)

MEDUSA2.1 (UK) 2 2 2 MesoZ: Non-Diatoms, Diatoms, MicroZ, SmallD Type III (Michaelis-Menton) MesoZ: gmax=0.5 d−1, k=24 mgC m−3 (d) Q10=1.895 for P growth and mortality. No T dependence for Z grazing or Z mortality Yool et al. (2013, 2021)
Non-Diatoms, Diatoms MicroZ, MesoZ Small/slow-sinkingD, Large/fast-sinkingD
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PISCES2.0 (CNRM, IPSL) 2 2 2 MesoZ: NanoP, Diatoms, SmallD, LargeD Type II (Michaelis-Menton), with no prey switching MesoZ: gmax=0.75 d−1, k=242 mgC m−3 (e) Q10=1.895 for P growth; 2.14 for Z grazing and Z mortality. No T dependence for P mortality Aumont et al. (2015)
NanoP, Diatoms MicroZ, MesoZ Small/slow-sinkingD, Large/fast-sinkingD

Note. gmax: maximum grazing rate; Imax: maximum ingestion rate; k: half sat-
uration constant for grazing or ingestion rate. *Mesozooplankton in COBALT
combines medium and large zooplankton. (a) k = Potential specific growth
rate / Specific search volume, where Specific search volume=0.025 m3 mgC−1

d−1, (b) k = -ln(0.5)/a, where a=0.021 m3 mgC-1 converted from 0.25 (mmol
C m-3)-1, (c) Converted from 1.25 �mol N kg−1 assuming Redfield Ratio of
106:16:1 (C:N:P), (d) Converted from 0.3 mmol N m−3 assuming Redfield Ra-
tio of 106:16:1 (C:N:P), (e) Converted from 20 µmol C L−1. All conversions to
mgC used mg = µmol * 12.0107 * 1e-3 or mg = nmol * 12.0107 * 1e-6.

In addition to varied diets, ingestion by zooplankton is modelled with differ-
ent functional responses. BFMv5.2, CanOE, and COBALTv2 use a Type II
functional response, PISCES2.0 uses a Type II response with a threshold, and
MEDUSA2.1 uses a Type III sigmoid response. All consider total prey availabil-
ity when calculating grazing rates. Grazing rates in CanOE are proportional
to abundance across all prey types, while BFMv5.2, PISCES2.0, COBALTv2,
and MEDUSA2.1 use some form of prey preference. The prey preference in
COBALT is dependent on abundance to allow for prey switching, which im-
parts sigmoidal characteristics on the functional response. In addition to the
functional response, grazing rate parameters also differ (Table 1). Ingestion is
influenced by zooplankton and phytoplankton nutrient ratios because the zoo-
plankton have fixed stoichiometry in these models, but the phytoplankton either
have variable stoichiometry (BFMv5.2, CanOE, PISCES2.0) or fixed stoichiom-
etry that differs from the zooplankton (COBALTv2, MEDUSA2.1). Though
models differ in which ratios they consider (C:N:Fe – CanOE; C:N:P – BFMv5.2,
COBALTv2; C:N – MEDUSA2.1), nutrients in excess of the zooplankton stoi-
chiometry return to dissolved or particulate pools through egestion, excretion,
and respiration. PISCES2.0 additionally uses N:C and Fe:C ratios as an indica-
tor of prey quality, where decreasing ratios reduce growth efficiency.

Probably the greatest diversity in the BGC sub-models is in the temperature
dependence of biological rates (Table 1). To impose these relationships, CanOE
uses the Arrhenius-Van’t Hoff equation, BFMv5.2 employs a non-dimensional
Q10 function, and COBALTv2 and PISCES2.0 use an Eppley curve (Eppley,
1972). Sub-models differ both with respect to the biological rates with tem-
perature dependence and the strength of this temperature dependence. Tem-
perature dependence is applied to phytoplankton growth rates in all BGC sub-
models. PISCES2.0 and COBALTv2 apply temperature dependence to zoo-
plankton grazing rates, with a sensitivity greater than phytoplankton growth
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in PISCES2.0 and equal sensitivity in COBALTv2. COBALTv2 also applies
temperature dependence to phytoplankton and zooplankton loss terms (but not
phytoplankton aggregation), while PISCES2.0 only applies it to zooplankton
losses. Conversely, CanOE applies temperature dependence to zooplankton
respiration rates only. Finally, detritus remineralization is a function of tem-
perature in CanOE, PISCES2.0, and COBALTv2. The strength of this rela-
tionship is equal to the phytoplankton growth relationship in COBALTv2 and
PISCES2.0, and temperature has a stronger influence on remineralization com-
pared to phytoplankton growth in CanOE. BFMv5.2 uses a constant Q10 value
for all phytoplankton and zooplankton physiological processes. MEDUSA2.1
does not apply temperature dependence on the zooplankton rates.

2.2 Observation-based statistical model

We compared the historical mesozooplankton biomass from ESMs with an
observation-based statistical model. We used the Generalized Linear Mixed
Model (GLMM) of Heneghan et al. (2020), which produces global maps of
zooplankton biomass for particular months or seasons, and is based on point
observations of zooplankton biomass from the COPEPOD database (Moriarty
& O’Brien, 2012). COPEPOD is a compilation of >196,000 individual obser-
vations of biomass from over 70 years. Rather than use the raw zooplankton
biomass observations for model assessment, Heneghan et al. (2020) developed
a statistical modelling approach based on the observations for several reasons.
First, using raw observations is challenged by the fact that zooplankton
observations are collected with >50 different sampling methods, including
optical instruments and nets with different mesh sizes, mouth sizes, tow speeds,
and tow directions (Wiebe & Benfield, 2003). Second, samples are collected
at different times of day, seasons, and ocean depths, all of which should be
considered as they influence zooplankton biomass. Last, zooplankton biomass
has been measured in various ways, such as settled volume, displacement
volume, wet weight, dry weight, ash free dry weight, carbon, and biovolume
(Postel et al., 2000). Conversions between these methods of measuring biomass
are based on small sample sizes from particular regions (Wiebe, 1988; Postel,
1990; Bode et al., 1998) and often provide negative biomass estimates when
applied outside their region. There are simply no conversions to standardize for
all these sampling differences and the diverse zooplankton communities present
in distinct regions.

GLMMs provide a robust approach that adjusts for observation biases (Bolker
et al., 2009). We describe here the GLMM of Heneghan et al. (2020) (hereafter
called obsGLMM). The obsGLMM estimates observed zooplankton biomass
measurements (the response) from the COPEPOD database as a function of en-
vironmental variables whilst adjusting for sampling biases. Here we assume that
the obsGLMM estimates mesozooplankton biomass because most observations
in COPEPOD are for mesozooplankton, with few microzooplankton captured
because the meshes are too coarse. However, some macrozooplankton will be
sampled (Wiebe & Benfield, 2003), while on the other hand mesozooplankton
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could be underestimated because of net avoidance (Sameoto et al., 2000). The
obsGLMM adjusts for temporal, spatial, and sampling biases within the dataset
by including a suite of fixed and random predictors. Fixed effects account for
biases associated with measurement method (with levels for settled volume, dis-
placement volume, wet weight, dry weight, ash free dry weight, carbon and
biovolume), mesh size of the different nets used (continuous), the mean depth
of sampling (continuous), sampling day of year (continuous), and time of day
(continuous) to adjust for diel vertical migration. To account for the circular
nature of time of day (24-hr cycle), it was transformed using a truncated Fourier
series. The obsGLMM included two random effects, one that accounted for gear
type that represented the effect on zooplankton biomass of the different capture
efficiencies and avoidance of each net, and another that accounted for institu-
tion that represented the effect of different ships, how nets might be towed, and
any differences in how the samples are processed.

Environmental predictors in the obsGLMM included sea surface tempera-
ture, surface chlorophyll a, and bathymetry. The obsGLMM was fit using
monthly climatologies of sea surface temperature and satellite chlorophyll a
measurements obtained from MODIS-Aqua (Moderate Resolution Imaging
Spectroradiometer aboard the Aqua spacecraft, 4 km resolution) averaged over
2002-2016, aggregated to a 1° spatial resolution and accessed via the NASA
Giovanni portal (https://giovanni.gsfc.nasa.gov/giovanni/). Bathymetry data
for the model were sourced from GEBCO (General Bathymetric Chart of the
Oceans; https://www.gebco.net). The obsGLMM was used to produce global
estimates of observed mesozooplankton biomass that have the same spatial
resolution as the mesozooplankton output from the ESMs. The obsGLMM
estimates the mean mesozooplankton across years as there were insufficient
data over time to produce robust multi-annual time series, but the day of year
term is a seasonal climatology.

ObsGLMM captures most of the variability in the COPEPOD data, with an
R2 of 91% (82% from fixed effects). Yet, there are caveats associated with the
obsGLMM. For one, the obsGLMM from Heneghan et al. (2020) is an estimate
of mean biomass (based on 196,907 observations), not an interpolation, and
thus smooths over considerable spatial and temporal variation. The reason that
this biomass field does not simply interpolate between observations is because
of the patchy distribution of zooplankton observations in time and space, the
multiple methods of measuring biomass, and the different biases such as net
mesh size associated with different observations (Everett et al., 2017). However,
we believe this caveat is outweighed by the strengths of the obsGLMM, which
adjusts for sampling biases and different biomass measurement methods and
allows global gridded fields based on all available data.

2.3 Processing for model-observation comparisons

ObsGLMM estimates and ESM output of mesozooplankton biomass were made
as compatible as possible before quantitative comparison. We constrained esti-
mates of mesozooplankton biomass to the top 200 m of the water column (the

9

https://giovanni.gsfc.nasa.gov/giovanni/
https://www.gebco.net


epipelagic zone), where densities of phytoplankton and zooplankton are high-
est. ESM mesozooplankton output was depth-integrated over the top 200 m
using the native model grid, converted from molC m-2 to mgC m-2 using 12.01
gC per mol, and regridded to a common 1º x 1º grid. Similarly, total meso-
zooplankton biomass in the top 200 m from the GLMM was calculated on the
same 1º x 1º grid. Few COPEPOD data were collected before 1950 and the
last addition of new observations was in 2015. For comparison with the obs-
GLMM estimates, the 50-year period from 1965-2014 was analyzed from the
Historical ESM simulations. We computed seasonal and annual climatologies
from all 600 months of ESM output, standardizing southern hemisphere seasons
to align with the northern hemisphere (e.g., winter corresponds to northern
hemisphere December-February and southern hemisphere June-August). Abso-
lute biomasses were transformed with a fourth-root before comparison to create
a more normal frequency distribution to apply Pearson correlation and other
statistics that assume normality. As absolute values between ESMs and observa-
tions might be different, but general patterns of relatively high and low biomass
might be similar, we also scaled the ESM and obsGLMM outputs between -1
and 1.

2.4 Spatial scale and biome definition

The coarse spatial resolution of global ESMs (~25-100 km) in CMIP6 is best
suited to simulating large-scale regional differences in the global ocean and is
less skillful at accurately simulating quantities at specified times and locations,
thereby making point comparisons difficult. Therefore, in addition to making
geographic comparisons by grid cell, we analyzed oceanic biomes independently
with the expectation that ecosystem processes function similarly in each of these
regions. Ocean biomes are usually defined by the biophysical characteristics that
drive different ecosystem types: temperature stratification, which affects nutri-
ent delivery, light limitation, and plankton community structure (Behrenfeld
& Boss, 2018), and chlorophyll a, an indication of phytoplankton productivity.
We used the biomes defined by Stock et al. (2014b), following Banse (1992):
(1) LC – low chlorophyll; (2) HCPS – high chlorophyll, permanently stratified;
and (3) HCSS – high chlorophyll, seasonally stratified. In Stock et al. (2014b),
the distinction between the low and high chlorophyll biomes from observations
was based on a chlorophyll a threshold of 0.125 mg chl m-3, and the seasonally
and permanently stratified biomes were differentiated by the maximum annual
mixed layer depth from the monthly climatology being seasonally above or per-
manently below 75 m depth. The choice of the three biomes defined by Stock
et al. (2014b) represents a conservative choice, as other options range from 7 to
56 biomes or provinces (Longhurst, 1994; Sarmiento et al., 2004).

Historical runs of ESMs often perform relatively poorly against satellite esti-
mates of ocean chlorophyll a, with both significant global and regional biases
(Séférian et al. 2020, Fu et al. in review), which presents a challenge to setting
the threshold between low and high chlorophyll biomes that accounts for mean
biases between the CMIP6 ESMs and chlorophyll a observations. Following
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Stock et al. (2014b), a single chlorophyll a threshold was used for each model
to define the LC region. We calculated the total ocean surface area delineated
by a LC threshold of 0.125 mg chl m-3 in satellite-based chlorophyll a estimates,
roughly 35% of the ocean surface. Then a chlorophyll a value from each ESM
that would give the same subtropical gyre area as the observational data was
determined from the Historical 50-yr mean. Thus, the LC threshold is defined
as the lowest 35th percentile of chlorophyll a weighted by area, limited to the
area between 45ºN and 45ºS. Polar areas were excluded due to poor satellite
coverage. Though the chlorophyll a threshold value varies by ESM (Figure S1),
each threshold delineates a biome with plankton dynamics consistent with olig-
otrophic gyres. This historical LC threshold was used to establish the biomes
for each ESM under the SSP5-8.5 scenario as well.

For the delineation between permanently vs. seasonally stratified high chloro-
phyll biomes, we followed Stock et al. (2014b) by using the mixed layer depth
from an annual climatology of the Historical 50-yr time period. This yielded
biomes consistent with upwelling zones (permanently stratified) and high lati-
tude seasonal seas (seasonally stratified).

The size and location of biomes varied across models, both historically and in
future projections (Figure S1). However, there were still some discrepancies,
particularly in the polar regions, as the use of the mixed layer depth threshold
resulted in some portions of the Arctic to be labelled as High Chlorophyll, Per-
manently Stratified (HCPS) in some models. Still, the choice of using mixed
layer depth to define permanently vs. seasonally stratified reflects the availabil-
ity of CMIP6 model outputs; mean irradiance in the mixed layer would be a
better variable, but it is not available from all models. Additionally, by def-
inition, the LC biomes represented 35% of the area between 45ºN and 45ºS,
though many models had chlorophyll concentrations below the LC threshold in
the Arctic. The HCSS biome appears the most consistent across ESMs, while
the HCPS the most variable, likely due to the Arctic influence in some models.
Upwelling regions tend to be classified as HCPS, thus the majority of differences
in HCPS biomes reflects the ability of the physical ocean model in each ESM
to simulate upwelling at the coarse spatial scale. Notably, the HCPS biome in
all ESMs shrinks in future simulations, while the LC biome expands.

2.5 Analyses

2.5.1 Comparisons of observed versus modeled mesozooplankton

Initial comparisons of the ESMs were made against the obsGLMM estimate
of mesozooplankton carbon biomass based on satellite chlorophyll a, SST,
bathymetry, and month, with mesh size set to 100 �m and all random effects set
to zero (Table S2). Comparisons were used to assess the skill of the Historical
50-yr time period from the ESM against the obsGLMM, both annually and
seasonally. These skill statistics included Pearson’s correlation coefficient,
unbiased root mean square error, normalized standard deviation (summarized
in Taylor diagrams), and model bias.
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2.5.2 Relationships between mesozooplankton and chlorophyll

Finally, we assessed if an emergent constraint exists in the relationship between
mesozooplankton biomass and surface chlorophyll a. Such emergent constraints
are named for their ability to provide additional constraints on projections,
thereby reducing their uncertainty (Kwiatkowski et al., 2017; Eyring et al.,
2019; Hall et al., 2019). Constraints emerge from: (1) patterns in historical
simulations that are similar to those observed, and (2) a link between this his-
toric pattern to a projected change under future conditions that is consistent
across multiple models, even when individual patterns differ. We contrasted the
Historical 50-yr mean (1965-2014) against the mean of the last 50 years of the
SSP5-8.5 projections (2051-2100). The historic relationship was estimated with
a linear regression of log10-transformed mesozooplankton biomass as a function
of log10-transformed chlorophyll a for the observational products and the his-
toric ESM output, fit to the 50-yr mean in each grid cell. The future change
was calculated as the change in mesozooplankton biomass under SSP5-8.5 from
Historical using the 50-yr means and log10-transforming before taking the dif-
ference. The climate sensitivity of the mesozooplankton biomass was calculated
with a linear regression of the future change in mesozooplankton biomass in each
ESM against the historic regression slope coefficients of the mesozooplankton-
chlorophyll relationship of each ESM. Analyses were performed globally and by
biome.

Key to the application of the emergent constraints methodology for observa-
tionally uncertain quantities such as biological variables is to define uncertainty
bounds around the observational constraints. This can be done using a combina-
tion of the internal uncertainty of the observations or observational products, or
by using multiple sets of observational products, each with uncertainty bounds
on them (e.g. Kwiatkowski et al., 2017). Unfortunately, the mixed model
structure of the obsGLMM makes it difficult to add robust uncertainty bounds
on the mesozooplankton-chlorophyll relationship, as the covariance structures
for the random variables cannot be easily determined. Therefore, we added
a second empirical model of mesozooplankton biomass (obsSM), which is an
observationally-based (n=4,843) trophic transfer model forced with SeaWiFS
satellite ocean color data (Strömberg et al., 2009), to assess the range of his-
toric estimates of the relationship between mesozooplankton and chlorophyll a.
Similarly, this historic relationship was estimated with a linear regression of the
global climatology of mesozooplankton biomass from the Strömberg et al. (2009)
product as a function of surface chlorophyll using the SeaWiFS 1997-2010 mis-
sion climatology. The SeaWiFS climatology was also used to define the biomes
for partitioning the Strömberg et al. (2009) mesozooplankton regionally. We
additionally include a third historic relationship from the COPEPOD carbon
biomass (mgC m-3, n=10,117) dataset of mesozooplankton abundance (Mori-
arty & O’Brien, 2012) integrated over the top 200 m. This is technically two
relationships, one with the MODIS chlorophyll that forced the obsGLMM (and
associated biomes) and another with the SeaWiFS chlorophyll that forced the
obsSM (and associated biomes).
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We use chlorophyll a concentrations as an indicator of resource availability to
mesozooplankton because: (1) it is more easily observed than phytoplankton
biomass that depends on physical sampling, or primary production that relies
on physical experiments or algorithms based on satellite chlorophyll that give
disparate products (Saba et al., 2011); and (2) it was used to estimate mesozoo-
plankton biomass in the obsGLMM of Heneghan et al. (2020) and the empirical
model of Strömberg et al. (2009), allowing for consistency within our study. We
recognize that there are caveats associated with using surface chlorophyll a as
an index of food for mesozooplankton. For one, the carbon to chlorophyll ratio
of phytoplankton varies as a function of organism size and the availability of
light and nutrients (Sathyendranath et al., 2009). Additionally, there can be a
variable number of trophic levels between phytoplankton and mesozooplankton.
However, recent efforts have shown that chlorophyll may be a good predictor for
fisheries production (Friedland et al., 2012; Park et al., 2019), suggesting that it
may capture aspects of the system related to whether energy is directed up to
higher trophic levels or is recycled around the microbial loop. Nonetheless, sur-
face chlorophyll a concentrations are the best currently available observations
spanning time and space.

3. RESULTS

3.1 Historic distributions of mesozooplankton

The historical annual climatologies of simulated mesozooplankton biomass (291-
654 mgC m-2) are within an order of magnitude of absolute biomass estimated
from the obsGLMM (534 mgC m-2; Figure 1, Table 2), with the exception of
CAN (41 mgC m-2). ESM zooplankton reveal similar spatial patterns to each
other and the obsGLMM of high biomass in temperate, upwelling, and shelf
regions, and low biomass in the subtropical gyres (Figure 1). However, the
range of mesozooplankton biomass from subtropical gyres to upwelling areas is
greater in ESMs (1.06-2.69 orders of magnitude, mean 1.62, excluding CAN)
compared to the obsGLMM (1.12 orders of magnitude).

3.2 Comparisons of observed versus model mesozooplankton

With the exception of CAN, all models perform reasonably well against the
estimate of observed mesozooplankton biomass (Figure 2a,c,e, Figure 3A). CAN
stands out in terms of its biases and error (Figs 2c,e). GFDL has the smallest
annual bias, followed by UK, CNRM, IPSL, and CMCC (Figure 2e). These
biases and their rankings vary by season, with the exception of the GFDL model
that always has the smallest bias (Figure 2e). The difference in the range of
mesozooplankton biomass in the obsGLMM is noticeable in bias maps that
show overestimates in temperate and upwelling regions of GFDL and UK and
underestimates in the subtropics of all models (Figure S3). These differences in
spatial variability are quantified with the normalized standard deviation, which
are greater than 1 for many ESMs and their seasonal climatologies (Figure 3a).
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Figure 1. Distribution of mean mesozooplankton biomass (log10 mgC m-2)
over the Historical period (1965-2014) and the obsGLMM.

Table 2. Historic area-weighted mean mesozooplankton biomass (mg C m-2)
globally and by biome.

Model/Obs Global LC HCSS HCPS
CAN 41 14 104 165
CMCC 291 285 641 509
CNRM 390 340 746 703
GFDL 654 507 1340 1083
IPSL 331 285 637 574
UK 646 414 1217 1325
obsGLMM 534 518 956 813
obsSM 595 483 758 1463
obsCM 884 287 1042 1118
obsCS 884 281 1039 1107

Note. CAN: CanESM5-CanOE; CMCC: CMCC-ESM2; CNRM: CNRM-
ESM2-1; GFDL: GFDL-ESM4; IPSL: IPSL-CM6A-LR; UK: UKESM1-0-LL;
obsGLMM: observation-based statistical model of Heneghan et al. (2020);
obsSM: observation-based empirical model of Strömberg et al. (2009); obsCS:
COPEPOD data with SeaWiFS chlorophyll and related biomes; obsCM:
COPEPOD data with MODIS chlorophyll and related biomes.

In terms of seasonal variability, some models perform better than others during
certain seasons relative to the observation-based model (Figure 2a,c,e, Figure
3a). In general, ESMs have greater correlations with the obsGLMM during
the meteorological fall (N hemisphere SON and S hemisphere MAM), followed
by spring (Figure 2a, Figure 3a). Though correlations tend to be low during
winter, errors and biases are reduced (Figure 2c,e). When comparing absolute
biomasses, the CMCC model generally has the lowest root mean square errors
(Figure 2c) and
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Figure 2. Pearson correlation coefficient, unbiased root mean square error
(RMSE), and bias of mesozooplankton in the Historical simulations compared
to the obsGLMM (left) without scaling and (right) scaled from -1 to 1. All
biomasses were 4th-root transformation before further scaling. Southern hemi-
sphere seasonal climatologies were shifted 6 months (e.g. Win = N Hem DJF
and S Hem JJA). Grey shading denotes values outside the range of the colorbar.

16



the two best seasonal estimates that appear closest to the reference on the Taylor
diagram that summarizes correlation, error, and standard deviation together
(Taylor, 2001), though the GFDL, CNRM, and IPSL models also clump together
near the reference (Figure 3a). CAN and UK are often outliers on the Taylor
diagram due to their large errors (Figure 2c) and standard deviations (Figure
3a). The large standard deviations stem from simulating a greater range in
biomass than the obsGLMM, which is best illustrated with the higher highs
and lower lows of UK (Figure 1).

Using a scaling from -1 to 1 reveals consistent patterns by season and weaker
patterns across the models (Figure 2b,d,f). The fall tends to have the lowest
errors, though errors are similar across seasons and models (Figure 2d). The
winter has the highest biases, which is in contrast to the non-scaled bias where
winter climatologies produced the lowest (Figure 2f). In the Taylor diagram with
scaling it is clear that the fall climatologies perform better relative to other
seasons (Figure 2b,d, Figure 3b). Though the scaling resulted in normalized
standard deviations near 1, CAN still appears as an outlier and UK also has
lower skill than the other models due to their higher root mean square errors
(Figure 3b).

Examining the seasonal cycle of the different models by biome illustrates dif-
ferences in temperature, chlorophyll a, and mesozooplankton biomass that may
relate to the mesozooplankton skill. It is clear that CAN is an outlier in terms be-
yond mesozooplankton biomass (Figure 4a). CAN chlorophyll a is oddly higher
than the other ESMs and the obsGLMM in the LC biome (Figure 4b). CAN
SST is cooler than the others in the LC biome, but higher in both HC biomes
(Figure 4c). The other five models and the obsGLMM are most similar in terms
of SST. Similarities in SST across the models help unveil the relative influence
of temperature vs. resources on the mesozooplankton biomass since chlorophyll
a varies more across the ESMs (Figure 4b). Seasonal cycles of chlorophyll a
vary both in peak magnitude and timing (Figure 4b). The obsGLMM input
chlorophyll a only shows a seasonal peak in the HCSS biome. The CNRM and
IPSL models have less seasonal variability in chlorophyll a in all biomes and
globally, while CMCC, GFDL, and UK demonstrate strong seasonal peaks in
most biomes. Despite these differences, there are common seasonal progressions
in the LC and HCSS biomes, with chlorophyll a peaking in the late winter/early
spring in the LC biome, while in the HCSS biome it peaks in the late spring/early
summer with a smaller bloom in the fall for some ESMs. This seasonal progres-
sion is mimicked in the mesozooplankton biomasses, with greater peaks in the
HCSS biome (Figure 4a). In individual biomes, the range of mesozooplankton
biomass varies
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Figure 3. Taylor diagram skill of mesozooplankton in the Historical simulations
compared to the obsGLMM (A) without scaling and (B) scaled from -1 to 1.
All biomasses were initially 4th-root transformed. The angle gives correlation
coefficients, the radial distance from the origin denotes normalized standard
deviation (solid lines), and the radial distance from the observations is the RMSE
(dashed lines). Southern hemisphere seasonal climatologies were shifted 6 months
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(e.g. Win = N Hem DJF and S Hem JJA).

Figure 4. Annual climatologies of Historic (a) mesozooplankton biomass (mg
C m-2) in ESMs and obsGLMM. (b) surface chlorophyll a concentration (mg
m-3), and (c) sea surface temperature (SST) in ESMs and satellites (input to
obsGLMM). Southern hemisphere seasonal climatologies were shifted 6 months
(e.g. Win = N Hem DJF and S Hem JJA). LC regions above 45ºN/below 45ºS
were excluded from the analysis. Shading around obsGLMM is ±2 standard
deviations.

less in CNRM, IPSL and the obsGLMM, like chlorophyll a, with the exception
of the obsGLMM in HCSS. The CMCC mesozooplankton biomass also has less
seasonal variability, but is in contrast to strong peaks in chlorophyll a in the HC
biomes. GFDL and UK exhibit strong mesozooplankton seasonality and though
they do not peak at the same time in each biome, the maxima are usually 1-2
months after the chlorophyll a bloom. In contrast, the peaks in chlorophyll a
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in the HCPS biome occur at different times of the year across the ESMs, yet
the mesozooplankton biomass is smoother, more like SST. In most cases the
obsGLMM inputs of SST and chlorophyll a and estimates of mesozooplankton
biomass are within the range of the ESMs and correspond to similar seasonal
patterns. The earlier maxima in obsGLMM SST could be explained by poor
satellite coverage in higher latitudes during winter months, which could lead to
the earlier blooms of mesozooplankton globally and in the HCSS biome.

3.3 Projected trends of mesozooplankton and its drivers

The six ESMs with mesozooplankton respond differently under SSP5-8.5 future
climate change simulations (Figure 5). With the exception of CAN, all mod-
els exhibit a decline in mesozooplankton biomass, but some models (CNRM,
IPSL) decline much less than others (CMCC, GFDL, UK) (Figure 5a). The
percent change in mesozooplankton biomass over time roughly mimics that of
surface chlorophyll a (Figure 5b) for the CAN and IPSL models, but the rela-
tionship between mesozooplankton with chlorophyll a or temperature (Figure
5c) in the other ESMs are not straightforward. CNRM exhibits a decline in
mesozooplankton biomass despite an increase in chlorophyll a and a smaller
temperature change compared to the other ESMs. In contrast, the GFDL and
UK models show large declines in mesozooplankton biomass, but are on oppo-
site ends of the range for temperature change. Mesozooplankton simulated by
GFDL decreases as much as or more than UK in spite of a smaller decline in
chlorophyll a and a much weaker temperature response. And the greatest de-
crease in mesozooplankton occurs in the CMCC model, which has neither the
greatest drop in chlorophyll a nor increase in temperature. The ESMs vary in
their estimates of absolute amounts of mesozooplankton and chlorophyll a, both
historically and in the future, but less so for temperature (Figure 5d-f).

3.4 Relationships between mesozooplankton and chlorophyll a

To better elucidate relationships between mesozooplankton and chlorophyll a
for the ESMs, we excluded the CAN model from further analyses because of its
poor model skill regarding the key variables in this study, although CAN-specific
results can be found in Appendix A.

Using linear regression to quantify the historic relationships between mesozoo-
plankton biomass and chlorophyll a concentration, we found that there are three
models with slopes that fall between the obsGLMM and the obsSM relationships
globally: CNRM, GFDL, and IPSL (Figure 6a-b). All ESMs had steeper rela-
tionships than the obsGLMM globally, as well as by biome (Table S3). The use
of the obsSM allowed for an observational endmember with a slope greater than
the obsGLMM that helped to constrain the models. The two COPEPOD-based
constraints, the obsCS and obsCM, fell in the center between the obsGLMM
and obsSM, with the three well constrained models clustering tightly around
them.
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Figure 5. Globally averaged time series of ESM simulated (a,d) mesozooplank-
ton biomass, (b,e) surface chlorophyll concentration, and (c,f) SST from 1965
to 2100. Shown are (a-c) percent change (mesozoo, chl) and change (SST) from
1951 and (d-f) absolute values.

From the biome perspective, the tightest relationship between ESM mesozoo-
plankton biomass and chlorophyll a is found in the LC biome (Figure S4). In
this biome, the obsGLMM and obsSM have slopes of 0.41 and 0.84, respectively,
with the GFDL model having the only slope (0.56; Table S3, Figure 6a-b) that
fell within the bounds of the observational products. The other models exhibited
slopes between 0.95 and 2.02 (Table S3). The scaling of the mesozooplankton-
chlorophyll a relationship is weaker in the HCSS and HCPS biomes, becoming
negative for CMCC and UK in the HCPS biome. In these biomes, the scaling
relationships in the CNRM, GFDL, and IPSL models all fell within the obser-
vational bounds set by obsGLMM and obSM (Table S3). However, the scatter
around these linear relationships (Figure S4) denotes the greater variability at
the regional level beyond biomes, which differs by ESM (Figure 7a).
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Figure 6. (a) Linear regressions of mesozooplankton biomass (log10 mg C
m-2) and surface chlorophyll a concentration (log10 mg m-3) globally during the
Historic period (1965-2014 mean). (b) Change in projected mesozooplankton
biomass under SSP5.8-5 (2051-2100 mean) as a function of the relationship
between mesozooplankton and chlorophyll under Historic conditions (linear re-
gression slope). CAN was excluded as an outlier in (a) and (b). In (b), dashed
black line: linear regression fit. obsGLMM: observation-based GLMM; obsSM:
Strömberg et al. (2009) model; obsCS: COPEPOD data with SeaWiFS chloro-
phyll and related biomes; obsCM: COPEPOD data with MODIS chlorophyll and
related biomes. Ensemble mean percent change in mesozooplankton biomass (c)
from 1965 over time and (d) in the SSP5-8.5 (2051-2100) period compared to
the Historical (1965-2014) period. In (c), the dashed line and light shading is the
full, unconstrained mean + 1 std of all 6 models, while the solid line and dark
shading is the constrained mean + 1 std of the CNRM, GFDL, and IPSL mod-
els. The means and standard deviations of (C) are represented as a probability
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density function in (d).

Finally, we compare the strength of the mesozooplankton-chlorophyll a relation-
ship among the different models under historical conditions to the change in
mesozooplankton biomass under future conditions. Though absolute values vary
across models, there is a consistent pattern. The sensitivity of future projected
mesozooplankton biomass on a global scale is strongly related to the historical
relationship between mesozooplankton and surface chlorophyll a, where models
that have a steeper mesozooplankton-chlorophyll a scaling slope exhibit greater
declines in mesozooplankton biomass under climate change (Figure 6b). The
global climate sensitivity of mesozooplankton biomass is primarily driven by the
LC biome, which has greater changes in mesozooplankton biomass and stronger
mesozooplankton-chlorophyll a relationships than the HC biomes (Table S3, Fig-
ure 7c). This mesozooplankton-chlorophyll a scaling thus provides an emergent
constraint by which future projections of mesozooplankton biomass change can
be slightly narrowed (Figure 6c-d).

4. DISCUSSION

Zooplankton have not been considered previously in major comparisons of the
skill of ESMs (Bopp et al., 2013; Kwiatkowski et al., 2020; Séférian et al., 2020;
Fu et al., in revision). Here we assessed how well six ESMs from CMIP6 rep-
resent mesozooplankton under historical conditions, and found patterns across
models, biomes, and seasons. Using an observational model (Heneghan et al.,
2020), we show five out of six ESMs reproduced the observed large-scale global
pattern of mesozooplankton biomass with moderate skill (Figure 1). Further,
all ESMs broadly reflected the positive scaling relationship between mesozoo-
plankton biomass and surface chlorophyll a seen in observations under histori-
cal conditions (Figure 6a), though only three out of six ESMs exhibited scaling
relationships within observational bounds set by the Heneghan et al. (2020)
GLMM and the Strömberg et al. (2009) model (Figure 6b). This observational
relationship, driven primarily by the low chlorophyll (LC) biome, allows for the
application of an emergent constraint to reduce uncertainty in future projections
of mesozooplankton biomass changes (Figure 6c-d).

4.1 Global biomass distributions in ESMs

Most ESMs produced reasonable estimates of mesozooplankton biomass. Meso-
zooplankton biomasses from all ESMs, except for the CAN model, were posi-
tively correlated with the observation-based statistical model (obsGLMM), al-
though correlations were
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Figure 7. (a) Correlations between the 50-yr mean of mesozooplankton biomass
and surface chlorophyll a concentration during the Historic period for each ESM.
Percent change in mean (b) surface chlorophyll a concentration, and (c) mesozoo-
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plankton biomass in the ESMs in the SSP5-8.5 (2051-2100) simulation compared
to the Historical (1965-2014) simulation.

relatively weak (<0.5) with a few exceptions during particular seasons. Model
error (root mean square error and bias) was greatest in summer and lowest
in winter, whereas the highest correlations (greatest skill) were in the fall sea-
son. These skill estimates indicate that while the ESMs represented the an-
nual mean state well, they exhibited biases in representing seasonal variations
(spring bloom and winter die-off) relative to the GLMM observational product.
However, the obsGLMM smooths over a large degree of spatial and temporal
variability in observed zooplankton biomass, and thus may underestimate sea-
sonal extremes. Nevertheless, our findings on how model skill differs seasonally
provide insight into key elements of Earth system studies, namely Earth system
predictability and prediction experiments. Because of the high model skill in the
fall, experiments targeting mesozooplankton (among other quantities) should be
initialized during the fall (e.g., Yeager et al., 2018; Park et al., 2019), as that
season is one in which the models most closely match the observed ocean. This
may have implications for evaluating fisheries predictions (Stock et al., 2017;
Park et al. 2019).

A key element in our model evaluation is the application of the biome method-
ology for assessing patterns in distinct parts of the ocean that are governed
by fundamentally different dynamics. Spatially, all ESMs except CAN pro-
duced similar patterns of low biomass in subtropical gyres (e.g. LC biome) and
high biomass in temperate areas (e.g. HCSS biome) and upwelling regions (e.g.
HCPS biome). The biggest difference across models was the spatial range of
mesozooplankton biomass, with for example, 2.68 orders of magnitude in UK
but 1.06 orders of magnitude in GFDL between the 1st and 99th percentiles. In
comparison, the obsGLMM exhibited 1.12 orders of magnitude in spatial vari-
ability, though the statistical model is likely dampening variability by smoothing
over the extremes. The individual observations from the COPEPOD database
(Moriarty & O’Brien, 2012) span 2.38 orders of magnitude.

Reproduction of the contrast in oligotrophic vs. eutrophic regions is important
for modeling upper trophic levels, particularly in productive ecosystems such as
continental shelves. However, just because a model exhibits a larger dynamical
range in the concentration of a quantity that better mimics the dynamical range
of observations (and other skill metrics) does not necessarily mean that it is
doing so by accurately representing the involved processes.

4.2 Relationships between mesozooplankton and chlorophyll

The relationship between mesozooplankton and chlorophyll a illustrates how
mesozooplankton will respond given a certain change in chlorophyll a. We
expected a positive relationship between mesozooplankton and surface chloro-
phyll a (Richardson & Schoeman, 2004) as chlorophyll a can serve as a proxy
for both phytoplankton biomass and primary production (Friedland et al., 2012;
Marãnón et al., 2014, Brewin et al., 2015). This was generally true, particularly
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on the large scale, though there were regional exceptions. Both CMCC and UK
had negative relationships with chlorophyll a in the HCPS biome under historic
conditions (Figure 6). There were also negative relationships in polar regions
(Figure 7). CNRM and IPSL had strong negative correlations with chlorophyll a
in the Southern Ocean, while IPSL and GFDL had weaker negative correlations
in the Arctic.

There are several potential explanations for the variable and sometimes nega-
tive relationships between mesozooplankton biomass and chlorophyll a. First,
negative relationships could signify top-down control of phytoplankton biomass
(chlorophyll a concentration) by mesozooplankton (Behrenfeld & Boss, 2014;
Friedland et al., 2016). Second, it could reflect the disconnect between the
longer turnover timescales of mesozooplankton (especially at cold temperatures)
and the seasonal productivity window of phytoplankton. Since mesozooplankton
biomass is lowest in winter, mesozooplankton in most regions are not sufficiently
abundant to graze down the spring/summer phytoplankton bloom (e.g. Fennel
& Neumann, 2015). This is exacerbated in ESMs that do not simulate diapause
and other overwintering behaviors of zooplankton that cause stronger grazing
pressure during phytoplankton blooms in the real world (Evans & Parslow,
1985). Third, ice dynamics of each ESM will also affect polar regions, since
ice affects the light-harvesting ability of phytoplankton and may select for phy-
toplankton types with higher chlorophyll:carbon ratios (Sathyendranath et al.,
2009). Thus, phytoplankton composition and thus the types of prey available to
mesozooplankton will impact the mesozooplankton-chlorophyll relationship in
all regions for each ESM. Fourth, relationships between mesozooplankton and
chlorophyll a will be affected by different parameterizations of the influence of
temperature on physiological rates in each model. Last, the negative relation-
ships between mesozooplankton and chlorophyll a could be influenced by the
inclusion of arctic regions in the HCPS biome. The difference in light seasonal-
ity in HCPS regions over wide latitudes could confuse the signal by combining
multiple mesozooplankton-chlorophyll a relationships into one (Figure S4).

4.2.1 Role of prey composition

The strength of the relationships between mesozooplankton biomass and sur-
face chlorophyll a and the potential influence of prey composition is exempli-
fied by the sensitivity of mesozooplankton biomass to climate change (Figure
6b). The two models with reduced sensitivity, CNRM and IPSL, both use the
PISCES2.0 BGC sub-model, and have small projected changes in chlorophyll
a and even increased chlorophyll a in many oligotrophic regions (Figure 8a) or
globally (CNRM, Figure 5b). These are regions where the size structure of
phytoplankton should shift towards smaller phytoplankton that perform better
under low nutrient, highly stratified conditions (Finkel et al., 2010). The ability
of mesozooplankton to consume small phytoplankton separates the PISCES2.0
model from the BGC models of CAN, CMCC, and GFDL. This feature provides
resilience against declines in large phytoplankton in CNRM and IPSL. Mesozoo-
plankton in the UK model can also prey on small phytoplankton, but there is a
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stronger relationship with chlorophyll a compared to CNRM and IPSL (Figure
6a, Table S3), and chlorophyll a declines much more in projections (Figures 5b,
7b). Thus it is likely that both small and large phytoplankton have declined,
therefore lessening the importance of small phytoplankton as a food source.

It is important to note that projected changes in chlorophyll a concentration may
not necessarily denote a global increase or decrease in phytoplankton biomass,
but a shift in phytoplankton composition. Diatoms/large phytoplankton have
greater chlorophyll:carbon ratios than small phytoplankton (Geider et al., 1997;
Sathyendranath et al., 2009). As a result, a decrease in chlorophyll a could
signify a shift from a diatom-dominated phytoplankton to a community domi-
nated by small phytoplankton without any change in total phytoplankton car-
bon biomass. In such a situation, the same amount of carbon energy would
need to pass through an additional trophic level (small phytoplankton to mi-
crozooplankton) to reach the mesozooplankton in models that do not allow for
mesozooplankton grazing on small phytoplankton (CAN, CMCC, and GFDL),
whereas in the converse case, small phytoplankton energy could pass directly
to mesozooplankton (CNRM, IPSL, and UK). The more restrictive diets may
account for the greater global declines of mesozooplankton biomass in future
projections of CMCC and GFDL (Figures 5a, 6b), which is further illustrated
by the greater percent changes in projected mesozooplankton biomass compared
to chlorophyll (Figure 7b-c). The effects of changes in phytoplankton compo-
sition on the mesozooplankton biomass via increases in trophic level would be
further amplified by climate warming.

The strength of the mesozooplankton-chlorophyll relationships and the potential
influence of prey composition are also evident in the seasonal climatologies (Fig-
ure 4) and long-term projections (Figure 5). On one end of the model spectrum,
strong seasonal peaks of chlorophyll followed by large peaks in mesozooplankton
simulated by GFDL and UK in the HC biomes suggest a bottom-up relationship
of chlorophyll directly from large phytoplankton prey that have higher chloro-
phyll:carbon ratios and other photosynthesis parameters conducive to bloom
formation (Geider et al., 1997). Conversely, the CNRM and IPSL models ex-
hibit little seasonality in chlorophyll or mesozooplankton, which could be due
to the parameters for small and large phytoplankton being too similar, leading
to insufficient niche separation or overactive grazing, particularly by microzoo-
plankton. The long-term decline in CNRM mesozooplankton biomass despite
an increase in chlorophyll and a smaller warming compared to other ESMs also
supports the hypothesis that their small phytoplankton are much more compet-
itive relative to the large phytoplankton under future climate change, creating
a system with more recycling and proportionally greater primary production
being grazed by microzooplankton than mesozooplankton. Changes to the size
structure of the plankton in these ESMs will be examined in a follow-up to study
to better elucidate the mechanisms affecting mesozooplankton biomass.

4.2.2 Role of temperature dependence

The temperature dependence of metabolic rates influences seasonal variation in

27



primary and secondary production rates, how they respond to climate change,
and the overall trophic transfer efficiency of the fixed carbon to higher trophic
levels. The ESMs in this study all have slightly different temperature depen-
dencies of phytoplankton growth, zooplankton grazing, and mortality (Table 1).
While all models were fairly consistent in their representation of phytoplank-
ton temperature dependence with some exceptions for mortality (Q10 between
1.88-2.0, but a greater range in the CAN Arrhenius equation), they differed
substantially in their zooplankton temperature dependence. The GFDL and
CMCC models used the same temperature dependence for phytoplankton and
zooplankton, but CAN, CNRM/IPSL, and UK did not. In particular, UK does
not include temperature dependence of zooplankton rate processes, while CAN
only has temperature dependence on zooplankton respiration. Though the tem-
perature dependence of zooplankton physiological rates can be highly variable
depending on taxa (Ikeda, 1985; López-Urrutia et al., 2006), chemical processes
are temperature dependent (Arrhenius, 1889), and there is strong empirical
evidence for temperature dependent grazing rates (e.g. Hansen et al., 1997)

The role of temperature dependence can be illustrated by the UK model in terms
of projected changes in SST, chlorophyll, and mesozooplankton biomass. The
UK model had one of the greatest temperature increases under SSP5-8.5 com-
pared to the other ESMs, and also the greatest percent declines in chlorophyll,
with the fastest decline around the year 2050 (Figure 5b). However, percent
declines in mesozooplankton biomass by 2100 in the UK model fell within the
middle of the pack of the ESM responses, between the GFDL and IPSL models
(Figure 5a). One of the major structural differences between the UK model
and others is its lack of temperature dependence for zooplankton. No temper-
ature dependence of zooplankton grazing means that as ocean temperatures
warm, phytoplankton growth rates increase, but zooplankton grazing rates stay
constant. Proportionally, zooplankton grazing pressure decreases, and that rel-
ative pressure decreases non-linearly with warming. Decreased grazing pressure
can result in fast declines in phytoplankton populations, particularly in the
nutrient-limited lower latitudes, as much of the microzooplankton grazing con-
trols phytoplankton population growth by returning nutrients to the planktonic
food web (Calbet, 2001; Calbet & Landry, 2004). This would be exemplified by
an initial boom in phytoplankton biomass from the release of grazing, followed
by a bust after using all the available nutrients. Accordingly, this can also result
in faster expansions of the low chlorophyll biome (e.g., Figure S1). While it is
not possible to completely isolate the impact of the lack of temperature depen-
dence of zooplankton rates in a multimodel comparison, this mechanism may
be a key driver for the large differences between the UK ESM and other models,
particularly with respect to the mesozooplankton-chlorophyll sensitivity.

4.3 Emergent constraints and reducing model ensemble uncertainty

Emergent constraints are a relatively new tool for reducing the uncertainty of cli-
mate model ensemble projections (Kwiatkowski et al., 2017; Eyring et al., 2019;
Hall et al., 2019). Such analyses isolate a relationship within individual ESMs
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that demonstrates the same response to climate change across ESMs. Ensemble
members could be removed from an ensemble (or downweighted) if their historic
relationship is not within the range of observations and/or their climate sensitiv-
ity is outside the uncertainty bounds of the emergent constraint. We were able to
identify a positive relationship between historic mesozooplankton biomass and
surface chlorophyll a concentration that spanned trophic gradients in observa-
tions and two observation-based products. All six ESMs exhibited this positive
scaling, though only three models (CNRM, GFDL, and IPSL) exhibited scaling
relationships, as determined by the slope of the mesozooplankton-chlorophyll
regression, that fell within the observational bounds. Thus, ensembles of meso-
zooplankton biomass could be reduced to CNRM, GFDL, and IPSL model out-
put (Figure 6c-d). Reducing the ensemble to these three ESMs did not result in
much difference between the unconstrained and constrained projected changes
in mesozooplankton biomass under SSP5-8.5 (Figure 6c-d), as these three mod-
els still encompassed a large range of the climate response of mesozooplankton
(Figure 5a). Since there were only a few ESMs with an explicit mesozooplankton
group, this precluded the use of significance bounds of the emergent constraint
to reduce model ensemble uncertainty beyond the observational constraints.

Across models, the strength of the scaling relationship was related to the change
in mesozooplankton biomass under SSP5-8.5, with stronger relationships lead-
ing to larger declines. This global emergent constraint is strongly influenced
by the oligotrophic, LC regions where chlorophyll a generally decreases under
climate change (Figure 7b), resulting in larger reductions of mesozooplankton
in the models where mesozooplankton are more closely tied to chlorophyll a
(Figure 7c). This pattern is accordant with the processes of warming and
stratification causing the greatest declines in large phytoplankton biomass and
thus mesozooplankton biomass in the oligotrophic gyres. The link between the
mesozooplankton-chlorophyll relationship and the change in mesozooplankton
biomass under climate change could serve as a significant emergent constraint
on climate change projections of plankton dynamics.

It is important to note that ESMs with closer agreement to any subset of global
or regional observations will not necessarily have more skillful responses to cli-
mate projections (Stock et al., 2011). It is possible (though unlikely) that a
model could misrepresent global phytoplankton and mesozooplankton distribu-
tions but still skillfully represent the mesozooplankton-chlorophyll scaling. It
is therefore important that the emergent constraint be applied in conjunction
with traditional phytoplankton skill assessments and the new mesozooplankton
skill assessments described here. Furthermore, emergent constraints can be de-
rived from pseudo-correlations, thus it is important to test the constraint in
an independent model ensemble and to understand the mechanism behind the
historic relationship (Terhaar et al., 2021). As CMIP6 was the first round of
the intercomparison project to include a mesozooplankton output, there is no
other ensemble of global models for testing this constraint.

4.4 Perspectives
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4.4.1 Benchmarking mesozooplankton in ESMs

The path to improving zooplankton in ESMs requires treating zooplankton as
more than a closure term on phytoplankton by making more comparisons with
data. Historically, the assessment of zooplankton in ESMs has been lacking (Ev-
erett et al., 2017). An examination of 153 biogeochemical models by Arhonditsis
and Brett (2004) found that 95% made comparisons of model output with phy-
toplankton data, but <20% made comparisons to zooplankton data. Further,
when zooplankton were assessed, they were more poorly simulated than almost
any other state variable (Arhonditsis & Brett, 2004). A key reason behind this
disparity is the lack of model-ready datasets for zooplankton, as satellite ocean
color and derived estimates of NPP allow for much broader spatiotemporal as-
sessment of phytoplankton biomass and productivity (Behrenfeld & Falkowski,
1997; Carr et al. 2006). However, as more zooplankton observations and stan-
dardized products become available (Strömberg et al., 2009; Buitenhuis et al.,
2010; Moriarty & O’Brien, 2012; Heneghan et al., 2020), more assessment of
zooplankton becomes possible. In addition to zooplankton biomass, model de-
velopers could also consider assessment of other terms, such as physiological
rates (Hirst et al., 2003; Kiørboe & Hirst, 2013; Heneghan et al., 2020), their
associated model parameters (Butenhuis et al., 2006; Stock et al., 2014b; Rohr
et al., submitted), and productivity ratios (Stock & Dunne, 2010).

Continued advancement of model development, assessment, and applications
will require more observations and their synthesis, as well as coordinated in-
vestigation of common and disparate processes currently incorporated in ESMs
representing mesozooplankton. Assessment of mesozooplankton biomass would
benefit from greater long-term sampling at locations across different biomes.
Further, observations need to be converted into model-ready products that stan-
dardize diverse sets of measurements and can be compared across models. Prior
to model assessment, process studies are essential for estimating rates that are
needed to constrain parameters during model development. As evidenced by
the varied mechanisms that can influence the relationship between mesozoo-
plankton biomass and chlorophyll concentration, increased measurement and
estimation of growth rates, production rates, and respiration rates as well as
their temperature-dependence are necessary to constrain models and isolate
the processes involved. We therefore recommend continued collaboration be-
tween zooplankton modelers and observationalists for mutual improvement of
both models and observations (e.g. Hjøllo et al., 2021) to better understand
the processes structuring planktonic ecosystems (Everett et al., 2017). At the
same time, we need to illuminate the mechanistic drivers of mesozooplankton re-
sponses to chlorophyll a and temperature across models. This could be through
future multi-model intercomparison projects that provide zooplankton growth
rates and loss terms, or by comprehensive experimental assessments like those
conducted for global models of phytoplankton (Laufkötter et al., 2015) and
higher trophic levels (Heneghan et al., 2021).

4.4.2 Recommendations for users of ESM mesozooplankton output
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Our work suggests that the use of simulated mesozooplankton biomass in ESMs
is probably more suited to global applications rather than regional ones. ESMs
are parameterized at the global scale to prioritize large-scale patterns in car-
bon and nutrient cycling, which can result in strong regional biases (Stock et
al., 2011). Though spatial resolution is improving and many of the CMIP6
ESMs were run on native grids with <1º resolution, many are still too coarse
to adequately simulate coastal upwelling, coastal shelf circulation, eddies, and
basin-shelf exchanges that are relevant for upper trophic levels (Stock et al.,
2011; Drenkard et al., 2021). Additionally, ESMs do not accurately capture
physical and biogeochemical exchanges at coastal boundaries that have large
impacts on coastal fisheries production, such as riverine and sediment nutrient
sources, neither in the historical nor future projections (e.g. Liu et al., 2021).
Furthermore, studies using ESMs should rely on longer time series of simula-
tions rather than short time periods of �10 years because out-of-phase climate
oscillations could result in either over- or underestimation of climate change
(Drenkard et al., 2021).

More specifically in terms of mesozooplankton, studies should use ESM ensem-
bles that span the range of potential outcomes if possible (Stock et al., 2011,
Drenkard et al. 2021) or select one ESM based on the research problem, but
with ESM-specific caveats detailed (Kearney et al., 2021). The six CMIP6 ESMs
examined in this study not only project various responses in the mesozooplank-
ton, but also have unique combinations of high or low SST, chlorophyll, and
mesozooplankton that could provide interesting contrasts or a robust ensemble
mean. It is also important to consider the ecosystem processes under investiga-
tion and whether or not they are reflected in the BGC model structure (Kearney
et al., 2021). For example, if an application of the mesozooplankton output is as
fish prey under the assumption that it is representative of crustacean zooplank-
ton such as copepods, then it may be better to only consider models that do
not allow the mesozooplankton to consume small phytoplankton, as copepods
cannot ingest picophytoplankton and inefficiently ingest much of the nanophyto-
plankton (Fuchs & Franks, 2010). On the other hand, use of an ESM where the
mesozooplankton prey on small phytoplankton should acknowledge that these
mesozooplankton are also representing gelatinous zooplankton such as appen-
dicularians and tunicates that can feed on such small organisms (Conley et al.,
2018). Even though most ESMs parameterize the mesozooplankton as crus-
taceans, they structurally represent all other consumers of phytoplankton and
microzooplankton such as larval fish, chaetognaths, jellyfish, appendicularians,
and tunicates. These various consumers differ in carbon content by >2 orders of
magnitude (Heneghan et al., 2020), which could lead to under- or overestimates
of the amount of energy available to higher trophic levels both now and in the
future under climate change (Heneghan et al., 2021; Heneghan et al., submitted).

CONCLUSION

On the global scale, five of the six ESMs in CMIP6 that include mesozooplankton
performed relatively well with respect to the observation-derived estimates of
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mesozooplankton biomass. The historic relationship between simulated meso-
zooplankton biomass and surface chlorophyll a concentration in three of the
ESMs fell within the observed relationship globally and in high chlorophyll
biomes. Furthermore, this relationship related to the change in mesozooplank-
ton biomass under climate change, thereby potentially serving as an emergent
constraint on climate change projections. This is a promising emergent con-
straint because the relationship between mesozooplankton biomass and surface
chlorophyll a is observable with current sampling methods. The mechanistic
underpinning of the mesozooplankton-chlorophyll relationship could not be de-
termined in this analysis due to the variety of differences in structure and pa-
rameterizations between models. Note that there is even greater structural
uncertainty in the biogeochemistry component of the entire CMIP6 ensemble as
only the few ESMs with mesozooplankton were considered here. Model develop-
ment and assessment will benefit from increased attention paid to prey prefer-
ences, food web structure, and zooplankton temperature sensitivity in addition
to existing key parameters such as maximum ingestion rates and half-saturation
constants. Expanded assessment of zooplankton in ESMs will improve the rep-
resentation of phytoplankton to which they are intrinsically linked, thereby
constraining and hopefully advancing estimates of carbon cycling.
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Table S1. Details of the CMIP6 models used in this analysis.  

Center Earth system 

model (ESM) 

ESM 

Reference 

Ocean 

physics 

model 

Ecosystem 

model 

Ecosystem 

Reference 

CMIP6 

Variant 

CMIP6 

DOI 

Canadian Centre for 

Climate Modelling 

and Analysis 

CanESM5 Swart et al. 

2019a 

NEMO 

3.4.1- LIM2 

CanOE Christian et 

al. 2021 

r1i1p2f1 Swart et al. 

2019b,c 

Euro-Mediterranean 

Center on Climate 

Change 

CMCC-ESM2 not 

published 

(Cherchi et 

al. 2019 - 

climate 

model) 

NEMO3.6 BFMv5.2 Lovato et 

al. 

submitted 

r1i1p1f1 Lovato et al. 

2021a,b 

National 

Meteorological 

Research Centre 

CNRM-ESM2-1 Séférian et 

al. 2019a 

NEMOv3.6- 

GELATOv6 

PISCES 

2.0gas 

Aumont et 

al. 2015 

r1i1p1f2 Séférian et 

al. 2019b,c 

NOAA Geophysical 

Fluid Dynamics 

Laboratory 

GFDL-ESM4 Held et al. 

2019 

MOM6 COBALTv2 Stock et al. 

2014, 2020 

r1i1p1f1 Krasting et 

al. 2018; 

John et al. 

2018 

Institute Pierre-Simon 

Laplace 

IPSL-CM6A-LR Boucher et 

al. 2020 

NEMOv3.6- 

LIM3 

PISCES 2.0 Aumont et 

al. 2015 

r1i1p1f1 Boucher et 

al. 2018, 

2019 

Met Office and 

National Environment 

Research Council 

UKESM1-0-LL Sellar et al. 

2019 

NEMO v3.6 MEDUSA2.1 Yool et al. 

2013 

r1i1p1f2 Tang et al. 

2019; Good 

et al. 2019 
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Table S2. The final linear mixed effects model for zooplankton biomass (response, based on data 

from the COPEPOD database) and its suite of environmental predictors (as reported in Heneghan 

et al. 2020). 

lmer(log10(Biomass) ~ BiomassMethod + Mesh + log10(Chl) + exp(-Depth/1000) * 

fHarmonic(TOD, k = 1) + ns(Bathy, df = 3) + fHarmonic(DOY, k = 1) * ns(SST, 3) +  (1|Gear) 

+ (1|Institution), data = dat). 

Intercept -0.475           

Method -0.528 

(C) 

-0.614 

(CHN) 

-2.176 

(Disp) 

-0.113 

(DW) 

-1.302 

(Set) 

0.878 

(WW) 

Mesh -0.001      

log10(Chl) 0.381      

exp(-Depth) 1.979      

TOD -0.062 

(c1) 

-0.006 

(s1) 

    

ns(Bathy) 0.047 

(k=1) 

0.172 

(k=2) 

0.054 

(k=3) 

   

DOY -0.525 

(c1) 

-0.256 

(s1) 

    

ns(SST, k=3) -0.129 

(k=1) 

0.149 

(k=2) 

0.055 

(k=3) 

   

exp(-Depth):TOD 0.102 0.019     

DOY:ns(SST, k=3) 0.373 

(c1, 

k=1) 

0.148 

(s1, 

k=1) 

0.708 

(c1, 

k=2) 

0.462 

(s1, 

k=2) 

0.451 

(c1, 

k=3) 

0.164 

(s1, 

k=3) 
* C = carbon biomass,  CHN = Carbon biomass via CHN analyzer, Disp = Displacement Volume, DW = Dry 

Weight, Set = Settled Volume, WW = Wet Weight. 
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Table S3. Slope coefficients in the linear regression of mesozooplankton biomass on surface 

chlorophyll concentration globally and by biome for the Historical simulation shown in Figure 6 

and Figure S4.  

Model/Obs Global LC HCSS HCPS 

CAN 1.70 1.08 3.01 2.32 

CMCC 0.80 1.06 0.12 -0.15 

CNRM 0.59 0.95 0.61 0.54 

GFDL 0.51 0.56 0.78 0.19 

IPSL 0.55 1.32 0.54 0.48 

UKESM 0.98 2.02 1.75 -0.35 

obsGLMM 0.38 0.41 0.36 0.10 

obsSM 0.71 0.84 0.80 0.69 

obsCS 0.55 0.64 0.56 0.29 

obsCM 0.54 0.79 0.58 0.23 

Note. obsGLMM: GLMM of Heneghan et al. (2020); obsSM: Strömberg et al. (2009) model; 

obsCS: COPEPOD data with SeaWiFS chlorophyll and related biomes; obsCM: COPEPOD data 

with MODIS chlorophyll and related biomes. 
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Figure S1. Distribution of biomes in the (left) Historical and (right) SSP5-8.5 simulations. LC – 

low chlorophyll, HCPS – high chlorophyll, permanently stratified, HCSS – high chlorophyll, 

seasonally stratified. Note that LC regions above 45ºN/below 45ºS were excluded from the 

analyses. The low chlorophyll (mg m-3) thresholds used to define each LC biome in each ESM 

were: CAN 0.255; CMCC 0.100; CNRM 0.165; GFDL 0.272; IPSL 0.122; UK 0.140; 

obsGLMM 0.125; obsSM 0.125. 
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Figure S2. Distribution of mean surface chlorophyll (log10 mgC m-3) over the Historical period 

(1965-2014) in the ESMs and satellite observations used to force the obsGLMM. 
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Figure S3. Maps of mean bias of annual climatologies of mesozooplankton biomass (mgC m-2) 

after 4th-root transformation in the Historical simulations compared to the obsGLMM. 
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Figure S4a-e. Correlations between mesozooplankton biomass (mgC m-2) and chlorophyll 

concentration (mg m-3) by biome in each ESM during the Historic period. LC regions above 

45ºN/below 45ºS were excluded from the analysis. For the values of the scaling scopes of these 

models, see Table S3. 
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Figure S4f-i. Correlations between mesozooplankton biomass (mgC m-2) and chlorophyll 

concentration (mg m-3) by biome in the obsGLMM, obsSM, and COPEPOD dataset. LC regions 

above 45ºN/below 45ºS were excluded from the analysis. For the values of the scaling scopes of 

these models, see Table S3. Mchl: MODIS chlorophyll; Schl: SeaWiFS chlorophyll. 
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Figure S6. Change in sea surface temperature in the ESMs from the Historical (1965-2014) to 

the SSP5-8.5 (2051-2100) simulations. 
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APPENDIX: CAN-specific Results 

 
Figure A1. CAN biomes. Distribution of biomes in the (left) Historical and (right) SSP5-8.5 

simulations. LC – low chlorophyll, HCPS – high chlorophyll, permanently stratified, HCSS – 

high chlorophyll, seasonally stratified. Note that LC regions above 45ºN/below 45ºS were 

excluded from the analyses. 

 

 
Figure A2. Correlations between mean mesozooplankton biomass (mgC m-2) and mean 

chlorophyll concentration (mg m-3) in each grid cell by biome and globally in the CAN ESM 

during the Historic period (1965-2014). LC regions above 45ºN/below 45ºS were excluded from 

the analysis. 

 

 
Figure A3. (a) Correlations between the CAN annual climatologies of mesozooplankton biomass 

and chlorophyll concentration during the Historic 50-yr period. Percent change in (b) surface 

chlorophyll concentration and (c) mesozooplankton biomass in the CAN ESM in the SSP5-8.5 

(2051-2100) simulation compared to the Historical (1965-2014) simulation. 
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Figure A4. (A) Historic relationship (linear regression) between mesozooplankton biomass and 

surface chlorophyll concentration globally. (B) Comparison of the change in mesozooplankton 

biomass under the RCP5-8.5 Projection and the Historic relationship between mesozooplankton 

and chlorophyll (linear regression slopes). In (B), dotted black line: linear regression fit. 

obsGLMM: observation-based GLMM; obsSM: Stromberg et al. model; obsCS: COPEPOD data 

with SeaWiFS chlorophyll and related biomes; obsCM: COPEPOD data with MODIS 

chlorophyll and related biomes. 
 


