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Abstract

The impulse response of CO2 concentration due to variation in CO2 emissions was estimated from observed time series using

the ARX method augmented by testing residuals for self-correlation. It was found to be a simple exponential with a half-time

of 43 years with no remnant component. The longer half times and large remnant fraction of the impulse response derived from

ocean circulation models is attributed to the failure of these models to account for turbulent mixing in the deep ocean.
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Key Points:4

• The impulse response of atmospheric CO2 concentration to variations in carbon5

emissions can be estimated from observations statistically.6

• It decays to zero at infinite lag with no remnant fraction.7

• The remnant fraction predicted by models is due to the failure of these models to8

account for eddy diffusion caused by deep ocean turbulence.9
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Abstract10

The impulse response of CO2 concentration due to variation in CO2 emissions was es-11

timated from observed time series using the ARX method augmented by testing resid-12

uals for self-correlation. It was found to be a simple exponential with a half-time of 4313

years with no remnant component. The longer half times and large remnant fraction of14

the impulse response derived from ocean circulation models is attributed to the failure15

of these models to account for turbulent mixing in the deep ocean.16

Plain Language Summary17

When using climate models to make projections of future climate it is important18

to know how the atmospheric concentration of CO2 will change in response to changes19

in carbon emissions. The “impulse response” of concentration due to emissions summarises20

the required information in a single curve from which the response to any arbitrary emis-21

sions scenario can be easily determined. It is a curve showing how the concentration will22

change following a single short impulse in emissions. The impulse responses widely ac-23

cepted by the modelling community all have a “remnant fraction” of between 10 and 2024

percent implying that this fraction of emitted CO2 remains in the atmosphere forever.25

These curves are, themselves, based on circulation models similar to climate models. This26

paper develops a statistical technique for estimating the impulse response directly from27

the data while making no assumptions about the underlying physics. The impulse re-28

sponse estimated in this way shows that CO2 remains in the atmosphere for a shorter29

time than hitherto supposed and has no remnant fraction. All the CO2 presently gen-30

erated by fossil fuel will ultimately leave the atmosphere. Half will be gone in the next31

half century.32

1 Introduction33

It is common practice across a wide range of sciences to treat physical quantities34

as ensemble parameters and to estimate them from sample statistics. A time series is35

a particularly type of sample, one in which a series of measurements are taken at equal36

intervals of time or averaged over equal intervals of time. The Pearson correlation co-37

efficient is often used to describe the relationship between contemporaneous time series,38

but it is a poor statistic because it does not account for temporal ordering. Two other39

statistics, which better summarize the relationship between two concurrent time series,40

are the impulse response and the sensitivity. The impulse response is the response of the41

endogenous or dependant variable to a short pulse in the exogenous or independent vari-42

able. The sensitivity is defined here as the response of the endogenous variable to unit43

step-function in the exogenous variable. It is the sum of terms (or integral) of the im-44

pulse response.45

Both statistics can be estimated using the “autoregressive with exogenous variable”46

or ARX method. Their existence and the number of ARX regression coefficients required47

for their computation, is established by rejecting those configurations whose residuals48

show significant self-correlation. The impulse response is then found as the convolutional49

reciprocal of a sequence derived from the ARX regression coefficients. These ideas orig-50

inated with Box and Jenkins (1976). Here we derive these statistics using convolutional51

methods and apply them to carbon cycle time series.52

The present statistical method makes no assumptions about the underlying physics,53

other than that the system under investigation is random, rather than deterministic, and54

that it is stationary and ergodic. It gives results which conflict with those based on nu-55

merical models.56
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2 The Model-Derived Carbon Cycle Impulse Response Function57

A normalized Impulse Response Function =(t) was first derived using a global cir-
culation model by Maier-Reimer and Hasselmann (1987) (MRH), viz:

=(t) = A0 +

4∑
j=1

Aj exp(−t/τj) (1)

Where the Aj are the proportions corresponding to various decay times, τj . A0 is non-
zero. The time constants, τj range from 1.2 years to 362.9 years. A very similar model,
the HILDA model, was proposed by Siegenthaler and Joos (1992) which ultimately be-
came the Bern model of the IPCC reports. The impulse response function, once known,
is a great convenience for climate modellers because it allows atmospheric CO2 concen-
tration, y(x), to be determined for any arbitrary emission rate, x(t), using the convo-
lution

y(x) =

∫
=(t− t′)x(t′)dt′ (2)

where x(t) has been scaled to have the same units as y(t).58

In order to assess the non-linear response of pCO2 to total carbon in the mixed layer,59

MRH ran their model using test input emission signals comprising increases of 25% , dou-60

bling and quadrupling of the initial atmospheric CO2 concentration1. The three impulse61

response functions are shown in Figure 1. Values of A0 were 0.131, 0.142 and 0.166 re-62

spectively which determine the remnant fractions of atmospheric CO2 under the three63

scenarios.64

There is something very odd about this. Certainly we might expect a remnant frac-65

tion to remain in the atmosphere once the oceanic reservoir is saturated. What is odd66

is that the three remnant fractions are almost the same. In each case, we would expect67

the reservoir to take up roughly the same absolute amount of CO2 before it becomes sat-68

urated, in which case a much larger fraction would remain in the atmosphere in the qua-69

drupling case than in the 25% increase case. This is not shown as happening to the dot-70

ted curves in Figure 1. The similarity of the remnant fractions in the three cases does71

not imply saturation. Rather, it implies a partitioning of the available CO2 between two72

reservoirs with a volume ratio of the order of (1−r)/r, where r is the remnant fraction.73

When we apply this to the MRH model, the oceanic reservoir into which atmospheric74

CO2 is diffused has only about six times the CO2 capacity of the atmosphere. Given that75

the ocean has been estimated to carry fifty times the steady-state, atmospheric load of76

CO2 (Houghton et al., 2001), this is a remarkably small value. It implies that, in the MRH77

model, CO2 is partitioned between the atmosphere and a small “sub-reservoir” from which78

little escapes into the remainder of the ocean, a sub-reservoir roughly comprising the mov-79

ing water mass that constitutes the “conveyor belt” of the thermohaline circulation.80

3 The ARX Method81

For notational convenience, in the following, all sample means have been removed82

and random variables are assumed to have zero mean.83

The autoregressive moving average method with a single exogenous variable, AR-
MAX(p,q), is given at time, i, by:

Yi = α0xi +

p∑
j=1

αj .yi−j +

q∑
k=1

βjΞi−k , i = 1, ..., N (3)

1 Their definition is slightly ambiguous. Their equation (5) defines it correctly but the accompanying

text appears to define a “step response function”.
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where the dependent random variable is Yi, xi is the exogenous variable, the yi are past84

values of Yi and the Ξi are unselfcorrelated random variables with zero mean. The re-85

gression coefficients α0, αj and βj are estimated from the data and p and q are small pos-86

itive integers. The notation is intended to make a clear distinction between random vari-87

ables which are Latin upper case, and constants, such as past values of random variables,88

which are Latin lower case. Equation (3) is a state space representation (Hamilton, 1994)89

describing states of the system at a succession of discrete instants; the random variable,90

Yi, at one instant becomes the constant, yi, in the following instant. The direction of time91

is important in regression, which, unlike correlation, allows causality to be inferred (Granger,92

1969).93

There are software packages for parameter estimation available under the aegis of94

the major programming languages. Unfortunately some of these are flawed, because they95

estimate the exogenous parameter, α0, prior to estimating the other parameters, lead-96

ing to omitted-variable bias (Greene, 2003); all parameters must be estimated simulta-97

neously in a regression model.98

Estimation of the MA coefficients, {βi}, requires an iterative Kalman filter method99

which may not converge. The second, moving average summation in (3), describes a con-100

voluting or “blurring” function, so that q > 1 when the sampling interval, ∆t, is too101

small. Estimation of the MA coefficients can be avoided by decimating the time series102

by q to give a new time series with a larger sampling interval, q∆t, for which the inno-103

vation sequence, {Ξm}, is unselfcorrelated. Then (3) becomes104

Ym = α0xm +

p∑
n=1

αn.ym−n + Ξm , m = 1, ...,M (4)

where m = qi, qM ≤ N , The model summarized by (4) is an ARX(p) model for ‘au-
toregressive with exogenous variable’. The regression coefficients, αi, and their confidence
limits are estimated using Ordinary Least Squares. The sequence of residuals, {ξm}, is
given by

ξm = ym −

(
α̂0xm +

p∑
n=1

α̂n.ym−n

)
, m = 1, ...,M (5)

where ym is the sample value or ‘realization’ of Ym and α̂0 to α̂p are the regression co-105

efficient estimates. The {ξm} are tested using the Ljung-Box, Q statistic with probabil-106

ity P (Ljung & Box, 1978). The minimum number of coefficients, p̂, is found for which107

P is greater than some confidence level, say 0.1, for which it can be assumed the inno-108

vation sequence is not self-correlated.109

Our best estimate of the relationship between the two time series is then

p̂∑
n=0

γ̂nym−n = α̂0xm (6)

where

γ̂0 = 1 (7)

and

γ̂n = −α̂n , n = 1, ..., p̂ (8)

The sequence {γn} specified by (6) is the prediction error filter of the autoregressive pro-110

cess.111

We can define a time series more precisely as a finite or semi-infinite sequence, {x0, x1, x2, ...}
for which the index specifies successive equally spaced intervals of time. The convolu-
tion, c = {ck; k = 0, 1, ..., r} = a ∗ b, of two time series a = {ai; i = 0, 1, ..., p − 1} and
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b = {bj ; j = 0, 1, ..., q}, is defined by

ck =
∑

i+j=k

aibj (9)

Under this definition convolution satisfies the commutative, associative and distribu-
tive laws of arithmetic. Note also that∑

i

ai ·
∑
j

bj =
∑
k

∑
i+j=k

aibj =
∑
k

ck (10)

The sum on the left hand side of (6) is a convolution and (6) can be written

γ̂ ∗ y = α̂0x (11)

A more useful form of (11) is

y = Î ∗ x (12)

where Î is the convolutional reciprocal of γ̂/α̂0 given by

Î ∗ γ̂ = α̂0{1} (13)

and is termed the impulse response. It can be estimated numerically by iteration using
(13) in the form

Îm =

p∑
i=1

α̂iÎm−i + α̂0δm (14)

For display purposes and inter-comparison a normalized impulse response, =, may
be used where

= ∗ γ = {1} (15)

Thus the normalized impulse response is the convolutional inverse of the prediction er-112

ror filter of the autoregressive process.113

Like the regression coefficients, I is a property of the system under investigation114

and Î is its estimate. Equation (12) describes the output of the system, y, in response115

to any input sequence, x.116

The sensitivity of the system, S, is defined here as the response at infinity to a unit
step function, Hj , where Hj = 0 for j < 0 and Hj = 1 for j ≥ 0. From (9)

S = lim
k→∞

Sk = lim
k→∞

∑
i+j=k

IiHj =

∞∑
k=0

Ik (16)

i.e. it is the sum of the terms of the impulse response. It is a random variable on which117

confidence limits can be placed.118

According to (10) the sum of a convolution is equal to the product of the sums of
the convoluting factors. Thus, from (13)

∞∑
m=0

Im

p∑
n=0

γn = S

p∑
n=0

γn = α0 (17)

from which Ŝ can be estimated in terms of the prediction error filter, {γ̂n}.119
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4 Estimating the Impulse Response from Observations120

The ARX method developed above was applied to annual means (Meinshausen et121

al., 2017) of atmospheric CO2 concentration , Ci, vs global fossil fuel emissions, Ei. Global122

fossil fuel emissions for the interval 1850 to 2014, were downloaded from the Carbon Diox-123

ide Information Analysis Center (Boden et al., 2017).124

Applying the Ljung-Box test to the residuals given by (5) for ARX(p) for p = 0, ..., 5
resulted in zero probabilities in all cases. The ARMAX method revealed a significant mov-
ing average component with q = 2. For this reason both time series were decimated by
2 and the ARX / Ljung-Box method reapplied. The results for the decimated data are
shown in Table 1. The probability, P , for the ARX(1) run has a value of 0.4359 indicat-
ing that the null hypothesis that the residuals are unselfcorrelated cannot be rejected.
Thus the simplest regression relationship between Ci and Ei which unambiguously fits
the data is the ARX(1) model, viz.:

Ci = α̂0Ei + α̂1Ci−1 , i = 1, ..., N (18)

where the estimated regression coefficients are α̂0 = 0.21 and α̂1 = 0.969 with 95 per-
cent confidence limits 0.945 and 0.992. The prediction error filter is {1,−α̂1} which has
convolutional inverse {1, α̂1, α̂

2
1, ...}, a geometric sequence with common ratio α̂1. The

nth term of the IRS estimate is given by

În = α̂0α̂
n
1 = α̂0 exp(−nq∆t

τ
) (19)

and the impulse response can be regarded as discretely sampled from a continuous ex-
ponential function with time constant given by

τ = −q∆tln(α̂1) (20)

Substituting α̂1 and its confidence limits into (20) and multiplying by ln(2) gives a half-125

time of 43 years with confidence limits of 24 years and 193 years. The normalized im-126

pulse response is shown in Figure 1.127

The sensitivity estimate, S, was 6.77 p.p.m.GtCO−12 .year with 95 percent, t-test128

confidence limits of 4.03 and 20.15 p.p.m.GtCO−12 .year. The probability that S > 105129

was 0.012.130

5 Discussion131

The impulse response and sensitivity of CO2 concentration estimated here are quite132

different from conventionally accepted values. The impulse response has an exponential133

decay with a single time constant and the sensitivity estimate is finite. These statistics134

were derived from an ARX regression model which was an excellent fit to the observa-135

tions with no self-correlation evident in the residuals136

The impulse response function (1) due to Maier-Reimer and Hasselmann (1987)137

must be integrated from zero to infinity with respect to time in order to give the sen-138

sitivity. Their sensitivity is therefore infinite because of a non-zero constant in (1) ac-139

cording to which 13 percent of CO2 emissions remains in the atmosphere indefinitely.140

In contrast the sensitivity estimated here from observations is finite, implying a serious141

shortcoming of their dynamical global ocean circulation model.142

A possible explanation is the following. The deep ocean is bounded by a turbulent143

mixed layer and by the highly turbulent Antarctic Circumpolar Current. It is therefore144

likely to be internally mixed by a Kolmogorov cascade of turbulent eddies, some with145

spatial scales as large as ocean basins and with time scales of, perhaps, decades. Tur-146

bulence is a stochastic phenomenon which is difficult to observe at large spatial and tem-147
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poral scales and which cannot be readily emulated by deterministic models. The com-148

plexity of the eddy transports noted by Kamenkovich et al. (2021) calls for reconsider-149

ation of how they are estimated in practice, particularly in general circulation models.150

Eddy diffusion generated by such eddy transports would greatly increase the capacity151

of the deep ocean to absorb carbon dioxide and so would account for the shorter half time152

of the observed impulse response of atmospheric CO2 concentration. Whatever the ex-153

planation, there is no observational evidence for the long half times and remnant com-154

ponent of atmospheric CO2 concentration presently assumed by most modellers.155

6 Open Research156

Software and data used in the preparation of this article are available for down-157

load at Zenodo under the heading Flawed Carbon Cycle Models: DOI: 10.5281/zenodo.6302014158
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Figure 1. The observed normalized impulse response, =, of Carbon Dioxide concentration due

to an impulse in CO2 emissions derived from observed time series using the ARX method (solid

line). Also shown are the model-derived, normalized impulse response functions of Maier-Reimer

and Hasselmann (1987) (dotteded lines).

Run Q pvalue

C(t) vs E(t) only 513.5 0.0000
C(t) vs E(t), C(t-1) 28.5 0.4359
C(t) vs E(t),C(t-1),C(t-2) 28.6 0.3830
C(t) vs E(t) to C(t-3) 24.5 0.5483
C(t) vs E(t) to C(t-4)) 24.3 0.5049
C(t) vs E(t) to C(t-5) 22.0 0.5796

Table 1. Ljung-Box parameter, Q, and its probability, P , for five ARX runs of CO2 concentra-

tion, C, vs. global fossil fuel emissions, E. Both time series were decimated by 2.
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