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Abstract

Flow events with low frequency often cause severe damages, especially if their magnitudes are higher than suggested by historical

observations. Heavier right tail of streamflow distribution indicates the increasing probability of high flows. In this paper, we

investigate the role played by spatially variable rainfall for enhancing the tail heaviness of streamflow distributions. We

synthetically generated a wide range of spatially variable rainfall inputs and fed them to a continuous probabilistic model of

the catchment water transport to simulate streamflow in five catchments with distinct areas and geomorphological properties.

Meanwhile, we used a comparable approach to analyze rainfall and runoff records from 175 German catchments. We identified

the effects of spatially variable rainfall on tails of streamflow distributions from both simulation scenarios and data analyses.

Our results show that the tail of streamflow distribution becomes heavier with increasing spatial rainfall variability only beyond

a certain threshold. This finding indicates a capability of catchments to buffer growing heterogeneities of rainfall, which we

term catchment resilience to increasing spatial rainfall variability. The analyses suggest that the runoff routing process controls

this property. In fact, both small and elongated catchments are less resilient to increasing spatial rainfall variability due to

their intrinsic runoff routing characteristics. We show the links between spatial rainfall characteristics and catchment geometry

and the possible occurrence of high flows. The data analyses we performed on a large set of case studies confirm the simulation

results and provide confidence for the transferability of these findings.
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Key Points:

• Increasing spatial variability of rainfall determines heavier streamflow tails
only beyond a certain increase threshold.

• Small and elongated catchments are less resilient to increasing spatial
variability of rainfall.

• Daily records of rainfall and streamflow for a large set of catchments in
Germany confirm simulations.

Abstract

Flow events with low frequency often cause severe damages, especially if their
magnitudes are higher than suggested by historical observations. Heavier right
tail of streamflow distribution indicates the increasing probability of high flows.
In this paper, we investigate the role played by spatially variable rainfall for
enhancing the tail heaviness of streamflow distributions. We synthetically gen-
erated a wide range of spatially variable rainfall inputs and fed them to a
continuous probabilistic model of the catchment water transport to simulate
streamflow in five catchments with distinct areas and geomorphological proper-
ties. Meanwhile, we used a comparable approach to analyze rainfall and runoff
records from 175 German catchments. We identified the effects of spatially vari-
able rainfall on tails of streamflow distributions from both simulation scenarios
and data analyses. Our results show that the tail of streamflow distribution be-
comes heavier with increasing spatial rainfall variability only beyond a certain
threshold. This finding indicates a capability of catchments to buffer growing
heterogeneities of rainfall, which we term catchment resilience to increasing spa-
tial rainfall variability. The analyses suggest that the runoff routing process
controls this property. In fact, both small and elongated catchments are less
resilient to increasing spatial rainfall variability due to their intrinsic runoff rout-
ing characteristics. We show the links between spatial rainfall characteristics
and catchment geometry and the possible occurrence of high flows. The data
analyses we performed on a large set of case studies confirm the simulation
results and provide confidence for the transferability of these findings.

Plain Language Summary

High flow events often cause severe damages when they occur unexpectedly,
i.e., more often and with larger magnitudes than suggested by historical obser-
vations and common experience. This is usually the case in catchments with
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frequency distributions of streamflow which are heavy-tailed. In these cases,
the possibility that any large flow magnitude will occur cannot be neglected.
However, a proper assessment of the right tail of streamflow distributions solely
based on limited data records is indeed difficult and might lead to an erroneous
estimation of the underlying hazard. In this study we investigate if spatially het-
erogeneous rainfall enhances heavy-tailed streamflow distributions, i.e., whether
it increases the probability of very high flow events. This is especially important
because a considerable increase in the spatial variability of rainfall may appear
due to global warming. We found that catchments are able to buffer increasing
spatial rainfall variability up to a certain point. We call this property catch-
ment resilience to spatial rainfall variability. We also found that the catchment
resilience is related to the size and shape of river basins. The results have im-
plications for the evaluation of the impacts of spatial heterogeneous rainfall on
the hazard of high flows in different catchments.

1 Introduction

Extreme streamflow events often occurred unexpectedly and caused severe hu-
man safety issues and economic devastation. The extremeness of streamflow is
referred to its low frequency and high magnitude among the historical observa-
tions for certain regions, which is commonly shown in the heavy tail of a stream-
flow distribution. Heavy-tailed distributions are used to be defined as: extreme
values are more likely to occur than would be predicted by distributions that
have exponential asymptotic behavior (El Adlouni, 2008). This sizable probabil-
ity of the occurrence of extreme streamflow is therefore a marking of enhanced
flood hazard in respect of flow frequency and magnitude. Heavy-tailed stream-
flow occurs in many catchments around the world (Bowers et al., 2012; Katz et
al., 2002). It causes severe problems as humans tend to underestimate flood risk
in heavy-tailed catchments (Taleb, 2007). Hence it is of the utmost importance
to understand hydrological causes of heavy tails in streamflow distributions,
which is also important for catchments with observed streamflow records not
long enough to derive heavy tail behavior from historical data (Wietzke et al,
2020) and in ungauged catchments (Yokoo & Sivapalan, 2011). Moreover, inves-
tigating the role of emerging heavy tails in streamflow distributions is a useful
tool to link modifications of extreme streamflow to changes in climate conditions
(Basso et al., 2015).

Some potential variables of heavy-tailed streamflow distributions have been sug-
gested in previous studies: e.g., drier catchments (Sivapalan et al., 2005), smaller
catchments (Villarini & Smith, 2010), non-linear runoff response to precipita-
tion (Basso et al., 2015; Gioia et al., 2008). Yet the generation processes and
exact causing factors to heavy-tailed streamflow distributions are still poorly
understood. Regarding causing factors of extreme streamflows, rainfall is often
considered to be an important issue (e.g., Arnell & Gosling, 2014; Bracken et
al., 2008; Wasko & Sharma, 2017). Spatial rainfall variability has been proved
as non-negligible to accurate streamflow prediction (e.g., Singh, 1997; Zhao et
al., 2013; Zoccatelli et al., 2011) and is likely to become more critical to eval-
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uate impacts of climate changes on extreme streamflow events. The increasing
trend in the occurrence of localized and extreme rainfall events has been found
under global warming conditions (Donat et al., 2016; Li et al., 2019; Myhre
et al., 2019; Pendergrass, 2018), hence a considerable rise in spatial rainfall
variability may be an expected consequence. However, traditionally, the focus
of the effects of spatially variable rainfall on streamflow has always been the
variability of a single rainfall storm or the magnitude of the resulting peak dis-
charge (Borga et al., 2007; Lu et al., 2017; Paschalis et al., 2014; Viglione et
al., 2010). Few researchers have addressed the issue of the effects of continu-
ous spatially variable rainfall on streamflow distributions (which also indicate
the flood hazards based on the variation between low and high flows instead
of only peak flows). Furthermore, long-term streamflow response (e.g., cumu-
lative streamflow distributions) to rainfall is linked with multiple hydrological
processes and complex interactions in between catchment units. There is still
some controversy surrounding concerning the impacts of heterogeneous rainfall
on streamflow due to variable climate conditions (Viglione et al., 2010; Zhao
et al., 2013), catchment sizes (Merz & Blöschl, 2009; Zhu et al., 2018), or the
heterogeneities from other catchment attributes (Harman et al., 2009; Rogger et
al., 2012; Struthers & Sivapalan, 2007). Hence, it remains a great challenge for
hydrologists to understand the linkages between the changing characteristics of
rainfall and high flows. Sharma et al. (2018) suggested more attention to the
complexity of the relations between entire variables in river basins is deserving.
They also pointed out one of the foremost issues, which is still missing, is the re-
lations between catchment size, catchment geometry, and storm characteristics
(e.g., extent, duration, intensity). In the meanwhile, providing a corresponding
data validation to modeling results is challenging. A general investigation of
the effects of spatial rainfall variability from both simulation scenarios and data
analyses is needed.

In this study, we start from two research questions: (1) what is the role of
the spatial rainfall variability on heavier-tailed streamflow distributions, and
(2) does this role be modified due to different catchment sizes and shapes. We
aim to investigate the research questions using both simulation scenarios and
data analyses. This paper is organized as follows: Section 2 describes the study
catchments and the hydrological data, Section 3 describes the generation of
spatially variable rainfall, the continuous probabilistic model of the hydrologic
response, the indices of tail heaviness and catchment characteristics, and the
approaches for data analyses. In Section 4, results and discussion of the effects of
spatial rainfall variability on streamflow-distribution tail heaviness are described
under different catchment sizes and shapes both from simulation scenarios and
data analyses. The main conclusions of the paper are summarized in Section 5.

2 Data

The study is based on daily precipitation and streamflow observations for a set
of 175 German catchments taken from Tarasova et al. (2018). Catchments influ-
enced by large reservoirs or control gates (Lehner et al., 2011) and affected by
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visible anthropogenic streamflow disturbances are disregarded. The catchment
areas vary from 36 to 23,700 km2, with a median value of 688 km2.

The length of daily streamflow and rainfall time series range between 37 and 63
years (between 1951 and 2013) with a median value of 61 years. We computed
the specific (i.e., per unit catchment area) streamflow for all catchments and
used the term ‘streamflow’ to denote it throughout this paper. Rainfall time
series for each catchment was derived from the Regionalisierung der Nieder-
schlaghöhen (REGNIE) dataset, which is a 1 km2 resolution rainfall field inter-
polated from point observations through multiple regression, provided by the
German Weather Service (Rauthe et al., 2013). The analysis was restricted to
the summer periods to avoid bias from snow melting, which is not taken into
account in the adopted modeling framework. Summer season was identified
as June to August, as suggested by Beurton and Thieken (2009) for German
catchments. Daily temperature time series in the considered catchments were
generated from the German Weather Service observations by means of external
drift kriging, using elevation as an explanatory variable (Zink et al., 2017), and
here applied for the estimation of potential evapotranspiration by means of the
Thornthwaite (1948) equation.

All 175 catchments were used in the data analysis and five catchments out of
them were selected for scenario simulations (Figure 1). The Delme river basin at
Holzkamp (small size), the Ilm river basin at Niedertrebra (medium size), and
the Amper river basin at Inkofen (large size) form the first group of basins used
in the simulations for they have various catchment sizes while their drainage
densities and elongation ratios are similar. The Ilm river basin at Niedertrebra
(more elongated), the Innerste river basin at Heinde (less elongated), and the
Unstrut river basin at Erfurt-Moebisburg (circular) form the second group of
basins used in simulations for they have various catchment shapes while their
drainage densities and sizes are similar (see supporting information Table S1 for
details).

A 100-m resolution digital elevation model (DEM) retrieved from the Shuttle
Radar Topography Mission (SRTM) was used to generate the river networks of
the five select catchments. River networks were determined by means of the Arc
Hydro tools with the recommended threshold (i.e., 1%) for stream determination
(ESRI, 2009). Catchment units were defined as the drainage area comprised
between neighboring nodes of the river network, or by the area draining to the
uppermost nodes.
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Figure 1. Study catchments. (A) Study catchments on the map of Germany.
Black contours show the boundaries of 175 catchments used for data analyses.
The yellow shaded areas labeled with numbers corresponding to panels b and
c indicate the five catchments used for scenario simulation. (B) Catchments
selected for analyzing the effects of catchment size. The river networks and
drainage areas of the Delme river basin at Holzkamp (), the Ilm river basin at
Niedertrebra (), and the Amper river basin at Inkofen. (C) Catchments selected
for analyzing the effects of catchment shape. The river networks and drainage
areas of the Ilm river basin at Niedertrebra (), the Innerste river basin at Heinde
(), and the Unstrut river basin at Erfurt-Moebisburg ().

3 Methods

3.1 Generation of Spatially Variable Rainfall

We generated synthetic spatially variable rainfall on each catchment for each
day by randomly extracting values from a preassigned probability distribution
(alike Ayalew et al., 2014), which were then allocated to each catchment unit.
The Gamma distribution was identified (from the REGNIE rainfall fields) as
the most suitable distribution to represent the observed spatial variability of
rainfall within five select catchments (see supporting information Text S1 and
Figure S1) and hence adopted here. We considered two scenarios (stationary
and nonstationary; Figure 2) to distinguish between effects on the tail of the
streamflow probability distribution caused by either constant (i.e., stationary)
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spatial rainfall variability for all events (postulated to have duration of one day)
or variable (i.e., nonstationary) spatial rainfall variability between all events of
the time series.

Figure 2 exemplary illustrates differences among spatially uniform and variable
rainfall in the stationary and nonstationary scenarios. In the uniform case (Fig-
ure 2a) the synthetic rainfall field is uniform in space with a rainfall depth
equal to the catchment average rainfall depth of that day derived from REG-
NIE. In the stationary scenario (Figure 2b) every day exhibits different spatial
rainfall patterns, while the spatial variability (measured as coefficient of vari-
ation of rainfall) is constant for all days. Again, for each day, the catchment
average synthetic rainfall depth equals the observed value. In contrast, the
spatial variability changes day by day in the nonstationary scenario, with catch-
ment average synthetic rainfall depth each time equals to the catchment average
calculated from REGNIE (Figure 2c).

To obtain these scenarios the shape parameter of the Gamma distribution was ei-
ther fixed for all days (stationary scenarios) or allowed to vary randomly within
a specified range (nonstationary scenarios). The scale parameter was then de-
termined by setting the mean of the Gamma distribution equal to the average
observed daily rainfall.

To obtain stationary rainfall fields we fixed the shape parameter of the Gamma
distribution, k, for all days in the time series. To generate different degrees of
rainfall spatial variability we imposed fifty-two different values of 𝑘 between 103

and 10-4 (see supporting information Table S2), which resulted in a wide range
of variabilities from extremely low (near to homogeneous, with the largest k) to
extremely high (when the smallest k are utilized).

For the nonstationary rainfall fields, the shape parameter k of the Gamma dis-
tribution was changed day by day. In particular, we allowed for it to randomly
fluctuate around a central value k0 within a specified range (-b,b). We generated
rainfall fields characterized by low to high degrees of nonstationarity by varying
the width of this range and assigning to b twenty different values between 0.05k0
and k0. We set k0=10-1, i.e., an intermediate value among those analyzed for
k in the stationary scenario (see supporting information Table S3). With this
approach we generated variations of the spatial variability across events while
controlling the average spatial variability within events to highlight effects due
to nonstationarity of spatial rainfall variability only.

For each of the described scenarios (stationary vs nonstationary), each degree
of spatial variability (i.e., each k value) in the stationary case and each degree
of nonstationarity (i.e., each k0±b), a hundred stochastic realizations were gen-
erated to assess the uncertainty of the results.

We adopted three distinct indices (Equation 1 to 3) to evaluate the degree of
variability of the synthetically generated spatial rainfall fields. The first index
is the coefficient of variation in space (CVspace) of the rainfall depth assigned to
all catchment units in each day, which we termed CVspace,t for day t:
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CVspace, t =
√ 1

𝑈 ∑𝑈
𝑢=1 (𝑑𝑢,𝑡−𝑑𝑡)2

𝑑𝑡

( 1 )

where du,t [mm] is rainfall depth at catchment unit u on day t, 𝑑𝑡 is the spatial
mean of rainfall on day t, U is the total number of catchment units.

The second index is the temporal mean of the first index, which characterizes
the average spatial variability of rainfall across all wet days (i.e., days with
rainfall > 0) of the time series. It is computed as:

CVin = 1
𝑇

𝑇
∑
𝑡=1

CV𝑠𝑝𝑎𝑐𝑒, 𝑡

( 2 )

where T is the total number of wet days in the rainfall time series of a catchment.

The third index is the temporal coefficient of variation of the first index, which
represents the fluctuation of the spatial rainfall variability from one day to the
other. It is calculated as the coefficient of variation of CVspace across all wet
days (i.e., days with rainfall > 0) in the time series:

CVcross =
√ 1

𝑇 ∑𝑇
𝑡=1 [CVspace − CVin]2

CVin

( 3 )

Note that for the case of uniform rainfall, both CVin and CVcross are equal to
zero. In the stationary scenario CVcross is always equal to zero and different
values of CVin are investigated, whereas CVcross is different from zero in the
non-stationary scenario.

The approach here applied to generate spatially variable rainfall fields is inspired
by Ayalew et al. (2014). We recognize that such an approach does not take into
account the spatial organization of rainfall due to orographic or atmospheric
factors, and that more sophisticated methods to generate spatial rainfall fields
exist (e.g., Papalexiou & Serinaldi, 2020). However, the method was chosen be-
cause it provides some advantages in the context of the present study, namely,
it avoids potential impacts from the actual spatial organization of rainfall and
its interaction with different catchment response times (which are here fully
explored by means of random realizations of the defined processes) to instead
highlight the effect of the spatial variability of rainfall only, which is the scope
of this study. Moreover, using synthetic rainfall instead of the observed spatial
patterns enables investigating a wider range of variability than the one that has
been observed. Finally, such an approach allows for isolating and analyzing sep-
arately the role played by spatial rainfall variability occurring within the same
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rainfall event or by changes of spatial variability across events, thus enabling an
understanding of the effect of each of these components.

Figure 2. Schematic diagram of spatial rainfall scenarios. All three panels
have the same series of mean daily rainfall depth but various spatial variability
of rainfall, which is measured through its coefficient of variation in space. (A)
Rainfall uniformly distributed in space (i.e., the spatial variability is zero). (B)
Stationary spatial variability of rainfall, i.e., constant spatial coefficient of varia-
tion across days. (C) Non-stationary spatial variability of rainfall, i.e., variable
spatial coefficient of variation day by day.

3.2 Continuous Probabilistic Model of the Hydrologic Response

We used a well-established probabilistic model of the water transport at the
catchment scale (D’Odorico & Rigon, 2003; Nic�tina et al., 2008; Park & Seo,
2014; Rigon et al., 2016; Rinaldo & Rodriguez-Iturbe, 1996; Rinaldo et al.,
2006; Rodriguez-Iturbe & Valdes, 1979) to simulate streamflow at the outlet
of catchments forced by spatially variable rainfall fields. The model accounts
for three key components (see supporting information Figure S2): (1) the soil
water balance in hillslopes, (2) the probability distributions of transit times in
the hillslopes of catchment units, here assumed to be stationary in time, and
(3) the response time distribution in channels derived from a geomorphological
analysis of the river network.

The first component represents the water balance among rainfall inputs, evapo-
transpiration, and leaching to subsurface flow in each catchment unit:

𝑑𝑉 (𝑡)
dt = [𝐼(𝑡) − 𝐸𝑇 (𝑡) − 𝐿(𝑡)] ⋅ 𝐴
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( 4 )

where V is the water storage in the root zone [mm3], I is the infiltrated rainfall
depth [mm], ET is the evapotranspiration [mm], L is the leaching from the
storage to subsurface flow [mm], A is the area of the catchment unit [mm2], and
t is the daily time interval [day]. The water storage V is then used to calculate
soil moisture (SM) as:

SM(𝑡) = 𝑉 (𝑡)
𝑚 ⋅ 𝑍 ⋅ 𝐴

( 5 )

where m is the soil porosity [-] and Z is the depth of the root zone [mm].

In each catchment unit at time t, hydrological processes were further distin-
guished as the responses in unsaturated (Aus(t)) and saturated areas (As(t)).
We estimated the fraction of saturated area to total area as a power-law func-
tion of soil moisture (Kirkby, 1975). In unsaturated areas all the rainfall infil-
trates (i.e., 𝐼(𝑡) = 𝑃(𝑡) ⋅ 𝐴us(𝑡)

𝐴 , where P is the rainfall depth [mm]) whereas in
saturated areas no infiltration occurs and rainfall becomes surface runoff, and
evapotranspiration equals its potential value estimated according to Thornth-
waite (1948). Evapotranspiration in unsaturated areas is instead considered as
a linear function of the soil moisture between the wilting point (set equal to
0.05; Ács et al., 2010) and a critical point when the water available for this
process is non-limiting. Leaching of water to subsurface flow paths takes place
in both unsaturated and saturated areas, and is computed as a power-law func-
tion of soil moisture multiplied by a coefficient which is equal to the hydraulic
conductivity (Clapp & Hornberger, 1978).

Transit times in the hillslopes of catchment units (i.e., the second key component
of the model) were assumed to be exponentially distributed. Distinct distribu-
tions were considered for the surface (fsup,h) and subsurface (fsub,h) flow paths.
Their respective parameters were determined through a power law relationship
with the size of the catchment unit (Boyd, 1978; D’Odorico & Rigon, 2003;
Nic�tina et al., 2008). All water particles in the source hillslopes were assumed
to flow towards the lower node of each catchment unit.

The third component, namely the response time distributions in river networks
(fn), was instead derived from the width function of the catchment unit which
explicitly considered the length of the pathway from the lower node of the
catchment unit to the catchment outlet and the integration of the simplified
parabolic model of de Saint Venant equation with suitable boundary conditions
(Rinaldo et al., 1991; Rinaldo & Rodriguez-Iturbe, 1996).

The response time distribution of a catchment unit was finally obtained by con-
voluting 𝑓𝑛 with either fsup,h or fsub,h for respectively surface and subsurface
flow. Streamflow generated from a catchment unit was finally simulated as the
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convolution of the runoff (i.e., the outcome of the first component) and the re-
sponse time distribution (i.e., the outcome of the second and third components).
Both superficial flow and subsurface flow were simulated at the outlet from each
sub catchment and the integral of surface and subsurface contributions from all
catchment units formed the total streamflow at the catchment outlet.

The model was calibrated on the observed streamflow series at the catchment
outlet by using spatially uniform rainfall inputs. We used the shuffled complex
evolution algorithm by applying a statistical parameter optimization tool of
Python, SPOTPY (Houska et al., 2015) for the optimization of parameters.

3.3 Indices of Tail Heaviness

We applied two distinct approaches to evaluate the relative and absolute heav-
iness of the tails of streamflow probability distributions. First, we quantified
the relative heaviness of the upper tail of streamflow distributions resulting from
spatially variable rainfall inputs with respect to the heaviness of the distribution
obtained with uniform rainfall (see section 3.3.1). Second, we further inspected
if the tails of the former distributions are heavy in absolute terms, by evaluating
the plausibility of a power law distribution to represent them (see section 3.3.2).

3.3.1 Relative Tail Heaviness of Upper-Tailed Slope

We used the slope S of the upper tail of the exceedance probability distribution
of normalized daily streamflow (normalized by the mean value of the streamflow
time series) represented in a double logarithmic plot (see supporting information
Figure S3) as an index of tail behavior, similarly to Nerantzaki and Papalex-
iou (2019) and Mushtaq et al. (2022). This is defined as:

𝑆 = ∣ log(0.01) − log(0.1)
log (𝑥0.01) − log(𝑥0.1) ∣

( 6 )

where x0.01 and x0.1 are the values of the normalized streamflow corresponding
to the exceedance probabilities of 0.01 and 0.1.

We normalized S with the slope of the reference case, S0, here represented by
the streamflow distribution obtained from the uniform rainfall case. Since the
tail heaviness is proportional to the inverse of the tail slope, the index of relative
tail heaviness 𝐻 is therefore:

𝐻 = 𝑆0
𝑆

( 7 )

Accordingly, H > 1 indicates a streamflow distribution with a tail which is
heavier than the one of the distribution obtained with uniform rainfall, whereas
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H < 1 labels a distribution with a lighter tail than the distribution obtained
with uniform rainfall (see supporting information Figure S3).

3.3.2 Suitability of Best-Fit Power Law Distribution

Power law distributions are a type of heavy-tailed distributions (i.e., distribu-
tions with tails heavier than exponential ones) with special relevance as they
occur in a wide range of natural and man-made phenomena (Newman, 2005).
In particular, power law distributed variables can assume values very far from
their mean. For the case of streamflow, this translates into an unneglectable
chance of occurrence of very large flows and therefore in the possible occurrence
of extreme floods.

For this reason, we investigated the possible emergence of power law distribu-
tion (i.e., distributions which are heavy-tailed in an absolute sense) as a result
of spatially variable rainfall inputs. To this purpose, we applied a robust sta-
tistical framework (Clauset et al., 2009) to identify power law distributions in
empirical data. The range of the tail was determined as the streamflow above
a lower boundary value which made the probability distribution of the stream-
flow above the boundary and the best-fit power-law model as similar as possi-
ble. Kolmogorov-Smirnov statistic was applied to quantify the distance between
two probability distributions (i.e., the cumulative distribution function of data
and the fitted power-law model). The associated p-value was used to evaluate
whether the power law is a plausible fit to the data.

3.4 Topological Characteristics of Catchments

We applied classical indices to quantify some topological characteristics of our
study catchments that may be relevant for their hydrological responses, and
used them to compare the behaviors of catchments.

3.4.1 Drainage Density

Drainage density (Dd) is defined as the total length of the channel in a catchment
divided by the catchment area (Horton, 1932):

𝐷𝑑 = ∑ 𝑙
𝐴

( 8 )

where l is the length of a channel segment in a river network and A is the total
area of the catchment. It represents the average length of channel per unit
catchment area, a feature which is often related to possibilities for infiltration
and permeability of a catchment (Adhikari, 2020; Nag & Chakraborty, 2003).

3.4.2 Elongation Ratio

Several dimensionless indices have been proposed to quantify the shape of catch-
ments. One of the most well known indices is the elongation ratio, Re (Shumm,
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1956). It takes into account the total area of the catchment (A) and the longest
distance from the catchment boundary to the outlet (L) to evaluate the catch-
ment shape. This is defined as:

𝑅𝑒 = 2
√

𝐴
𝐿√𝜋

( 9 )

where � is Archimedes’ constant. The elongation ratio has been found to vary
from 0.6 to 1.0 in a wide set of catchments with various climatic and geologic
characteristics (Strahler, 1964). Catchment shapes are generally distinguished
according to the following classification: circular (0.9−1.0), oval (0.8−0.9), less
elongated (0.7−0.8), elongated (0.5−0.7), and more elongated (< 0.5) (With-
anage et al., 2014).

3.5 Approaches for Data Analyses

The relationship between spatial rainfall variability and tail heaviness of the
streamflow distribution was also investigated based on observed rainfall-runoff
events from 175 catchments across Germany. In this case we applied the same
index of average spatial rainfall variability (i.e., CVin), index of relative tail
heaviness (i.e., H), and suitability of power law distributions for the data. An
interpolated gridded rainfall dataset (see section 2) was used to identify the
rainfall fields.

Rainfall-runoff events were separated from the continuous recorded series using
the approach proposed by Tarasova et al. (2018). The spatial variability of
rainfall for each runoff event (i.e., CVspace) was computed based on the spatial
rainfall pattern of the total event rainfall (Tarasova et al., 2018).

To highlight the streamflow responses from different spatial rainfall variabil-
ity, we sorted the rainfall-runoff events based on their CVspace value. Events
were then binned into groups of 100 members from low to high spatial rainfall
variability, which formed a bin with a certain value of spatial rainfall variability
equal to the mean CVspace of the 100 events (i.e., CVin). Events with the largest
spatial rainfall variability were considered as a separate category if their number
was equal or above 50, otherwise they were included in the prior category.

The streamflow distribution and its tail heaviness were calculated by using the
peak values of the 100 runoff events included in each bin. Due to different
numbers of events for catchments in our data set, 5 to 17 bins (median: 12
bins) were determined in one catchment for analyzing the relationship of spatial
rainfall variability and tail heaviness of streamflow. The number of events per
bin was decided as a tradeoff between the needs of obtaining reliable estimates of
tail heaviness (which improve with the number of events per bin) and a suitable
representation of the relationship between spatial rainfall variability and tail
heaviness (which instead requires a certain number of bins).
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Linear regression between the tail heaviness of streamflow distributions and the
corresponding average spatial rainfall variability was performed and the Pearson
correlation coefficient and the Wald Test with t-distribution were computed by
means of the scipy.stats.linregress tool of SciPy v1.7.1.

4 Results and Discussions

4.1 Effects of spatial rainfall variability on tail heaviness of streamflow distribu-
tions

An exemplary illustration of the effects of increasing spatial rainfall variability
(CVin, i.e., in a stationary scenario) from modeling results is shown in Figure 3
for the Ilm river at the gauging station of Niedertrebra. The red shaded area
identifies cases with heavier tails than in the case of uniform rainfall. The black
dots and tendency line express the mean tail heaviness among hundred realiza-
tions performed for each degree of spatial rainfall variability. They indicate that
the tail heaviness of the streamflow distribution increases only beyond a certain
threshold of spatial rainfall variability, which is equal to CVin = 4.7 for the
gauging station of Niedertrebra. To quantify this threshold, we developed and
applied an approach which considers the statistical significance, the correlation
coefficient, and the relation of data. It is detailed in the supporting information
Text S2.

On the left-hand side of this threshold the spatial rainfall variability produces
both heavier and lighter tails than in the case of uniform rainfall. This is an
outcome of heavier rainfall occurring either in downstream or upstream parts of
the catchment for a single considered stochastic realization. The range spanned
by values of the tail heaviness increases along with the increase of spatial rainfall
variability, which indicates that the specific rainfall patterns have an increasing
influence on the observed tail heaviness with increasing heterogeneity of rainfall.
The effect of heterogeneous rainfall is also modulated by soil moisture dynamics
in each catchment unit. Viglione et al. (2010) suggested that the spatial hetero-
geneity of rainfall was more impactful in regions affected by saturation-excess
than infiltration-excess phenomena. In line with the latter study, also Zhao
et al. (2013) found that the spatial variability of soil moisture was produced
when the spatial rainfall variability increased in both wet and dry conditions,
while the soil moisture showed stronger sensitivity to rainfall in wet conditions
(i.e., saturation-excess dominance) than in dry conditions (i.e., infiltration-excess
dominance). In general, spatially variable rainfall produces heterogeneity in the
soil moisture and thus generates more opportunities of partial saturation ex-
cess (i.e., when rainfall fall on saturated catchment units) than in the uniform
rainfall case. This leads to streamflow distributions with heavier tails. How-
ever other attenuating effects, such as runoff routing through the river network,
may average out the effects of these heterogeneities on the hydrograph (Merz
& Blöschl, 2009). On average, the tail heaviness of streamflow distributions for
relatively smaller values of spatial rainfall variability does not significantly differ
from the case with uniform rainfall due to these interactions. Conversely, for
higher spatial rainfall variability a strong positive correlation between spatial
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rainfall variability and increased tail heaviness exists. This is likely due to the
increasing dominant effect of surface flow generated from partially saturated
area in condition of high spatial heterogeneity.

Red dots indicate realizations for which the streamflow distributions are plau-
sibly represented by means of power laws. Large amounts of red dots (i.e.,
realizations for which the streamflow distributions are plausibly represented by
means of power laws) are visible for high spatial rainfall variability. This in-
dicates that, besides increasing the tail heaviness of streamflow distributions,
highly heterogeneous rainfall also gives rise to distributions that are heavy in
an absolute sense, which have an unneglectable probability of the occurrence of
extreme flow events.

By identifying the distinct responses of tail heaviness to the increase of spatial
rainfall variability below and beyond a certain threshold, our findings suggest
the existence of resilience of catchments to increasingly variable spatial rainfall.
We used here the term ‘catchment resilience’ to indicate the capability of a
catchment to buffer increasingly variable spatial rainfall patterns with reducing
changes in the tail heaviness of its streamflow distribution, which is an indicator
of the probability of occurrence of extreme flow events. This property may have
important implications for the assessment of the peril of floods under climate
change, which is predicted to increase the spatial heterogeneity of rainfall both
locally and globally (Donat et al., 2016; Donat et al., 2019; Li et al., 2019;
Myhre et al., 2019; Pendergrass, 2018).

Figure 3. Effects of increasing spatial rainfall variability (CVin) on the tail
heaviness of the streamflow distribution of the Ilm river at the gauging station
of Niedertrebra. The red shaded area indicates heavier-tailed streamflow dis-
tributions with respect to the uniform rainfall case, whereas the green shaded
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area indicates lighter-tailed streamflow distributions. For each value of CVin
hundred different realizations of spatial rainfall patterns on the catchment char-
acterized by the same spatial rainfall variability are displayed with gray dots.
The mean values of the tail heaviness among hundred results for each CVin are
marked in black and linked with a tendency line. The black-dash line indicates
the identified threshold of spatial rainfall variability beyond which the tail heav-
iness of the streamflow-distribution increases (see supporting information Text
S2). Red dots indicate realizations for which the streamflow distributions are
not simply relatively heavier than in the uniform rainfall case, but heavy in an
absolute sense as they are plausibly fit by power law distributions.

4.2 Effects of Catchment Size and Shape

We analyzed the effects of a wide range of spatial rainfall variability in 5 select
catchments with various sizes and shapes to investigate whether these catch-
ment characteristics affect their resilience to increasing spatial rainfall variabil-
ity. Figure 4a shows the effects of increasing spatial rainfall variability on the
tail heaviness of streamflow distributions in the Delme river basin at Holzkamp
(82 km2), Ilm river basin at Niedertrebra (887 km2), and Amper river basin at
Inkofen (2814 km2). Results are plotted together to compare the responses in
catchments with different sizes. To highlight the effects of catchment size, we
selected catchments which are comparable to what concerns other potentially
influencing factors, such as their shapes. All of them are therefore elongated
catchments with elongation ratio Re < 0.5 and have small drainage density (i.e.,
Dd < 1).

All three catchments show increasing tail heaviness of streamflow distributions
as a result of increasing spatial rainfall variability. However, the minimum
value of spatial rainfall variability for which an effect arises varies, indicating
different degrees of resilience in small and large catchments. The effect becomes
visible at a lower rainfall variability in the smallest catchment (82 km2). The
tail heaviness is higher in this case than for the other two catchments for all
values of rainfall variability. This suggests the least resilience to spatial rainfall
variability in the small catchment. The effect instead arises for similar values
of spatial rainfall variability for medium and large catchments. However, the
tail heaviness increases quicker in the former, thus suggesting higher resilience
of large catchments to increasing spatial variability of rainfall.

As we discussed in the previous section, the runoff routing may balance the
impacts of partial saturation excess from catchment units caused by the spatially
heterogeneous rainfall. Although partial saturation excess may increase fast
flow, the increase would be contrasted by a delayed response if it occurs at
upstream catchment units (i.e., more remote region from the outlet). This
contrasting capability of a catchment is linked to the runoff routing distance
distribution of its river network. In general, the longer the distance the larger
the capacity would be. Figure 4b shows the cumulative distribution functions
(CDF) of the runoff routing distance of the three catchments. It is clear that the
small catchment has the narrowest spread of the distribution (i.e., all catchment

15



units are near the outlet compared to the other two larger catchments) and
therefore has the least resilience. Figure 4c shows the CDFs of the runoff routing
distance normalized with respect to the longest distance in each river network,
which allows for better evaluating the relative distributions of the distance in
the catchments. The black dashed line is the 45-degree line. Both small and
medium catchments’ CDFs are closed to uniform distributions (i.e., the S-Curves
are closed to straight lines) whereas the large catchment’s CDF is likely an
asymmetrical distribution (i.e., the area below the 45-degree line is different
with the above). When the runoff routing distance distribution is a uniform
distribution, the routing effects from the fast and delayed response are equal
and balance each other; when the distribution is asymmetrical, instead, the
routing effects are inequivalent from the fast and delayed response. For the case
in Figure 4c, the large catchment displays a right skew distribution (i.e., there
is greater area above the 45-degree line than below for the blue S-curve) which
indicates a stronger overall routing effect to partial saturation excess. This may
be an additional reason for the large catchment responses being slower than the
medium catchment in Figure 4a.

Some studies suggested that small catchments are subject to higher flood risk
than large catchments due to higher possibilities of a large extension of saturated
areas (e.g., Darras et al., 2015; Rogger et al., 2012; Zhu et al., 2018). Unfortu-
nately, the spatial rainfall variability was essentially not unified (e.g., rainfall
is generally more spatially uniform in small catchments than large catchments)
in those cases, hence the difference of the hydrological responses in a small and
a large catchments to a given spatial rainfall variability can hardly be assessed.
Gupta & Waymir (1998) proposed a power-law scaling of peak discharge result-
ing from a single rainfall event (which is one of the main contributors to the
heavy tail of a streamflow distribution) with drainage area and showed that the
dominant factors of the scaling was the rainfall variability at smaller catchments
and were the river network structure and flow dynamics at larger catchments.
Others suggested the attenuating effects of the river networks decreased the im-
portance of spatial and temporal rainfall variability at larger catchment scales
(Marchi et al., 2010; Menabde et al., 2001; Woltemade & Potter, 1994). In agree-
ment with these studies we show stronger attenuation of spatially heterogeneous
rainfall from river networks of larger than smaller catchments.
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Figure 4. Effects of catchment size. Results for the Delme river basin at
Holzkamp are displayed in orange color; results for the Ilm river basin at
Niedertrebra are displayed in green color; results for the Amper river basin
at Inkofen are displayed in blue color. (A) Effects of increasing spatial rainfall
variability (CVin) on the tail heaviness of streamflow distributions of catchments
with increasing area. The red shaded area indicates heavier-tailed streamflow
distributions with respect to the uniform rainfall case, whereas the green shaded
area indicates lighter-tailed streamflow distributions. For each value of CVin
hundred different realizations of spatial rainfall patterns on the catchment char-
acterized by the same spatial rainfall variability are displayed with small dots.
The mean values of the tail heaviness among hundred results for each CVin are
displayed with large dots and linked with a tendency line. (B) Cumulative distri-
bution function of runoff routing distance based on the DEM of each catchment.
(C) Cumulative distribution function of runoff routing distance normalized with
respect to the longest distance in each river network. The dash-black line is the
45-degree line which provides insights into the asymmetry (e.g., the skewness)
of the distribution (indicated by the difference of area above and below the
45-degree line of the S-curve).

Catchment shape has been found to be related to the mainstream length
(Sassolas-Serrayet et al., 2018) (i.e., the longest runoff routing distance).
Therefore, in Figure 5 we investigate the effects of increasing spatial rainfall
variability on the tail heaviness of streamflow distributions in catchments with
different shapes. The Ilm river basin at Niedertrebra is more elongated (Re =
0.45), the Innerste river basin at Heinde is less elongated (Re = 0.78) and the
Unstrut river basin at Erfurt-Moebisburg is circular (Re = 0.90). Figure 5c
displays their shapes. These catchments were selected because they have similar
sizes (i.e., Niedertrebra: 887 km2, Heinde: 898 km2 and Erfurt-Moebisburg:
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847 km2) and drainage densities (i.e., Dd < 1 in all three catchments) to
highlight the effect of catchment shape.

Figure 5a displays the comparison of responses of streamflow-distribution tail
heaviness to spatial rainfall variability in these three catchments. For the more
elongated catchment, tail heaviness of streamflow distributions increased when
increasing of spatial rainfall variability above a certain threshold. However, for
the less elongated and circular catchments, tail heaviness of streamflow distribu-
tions surprisingly is nearly independent to increasing spatial rainfall variability.
To investigate the distinction of these catchments we plotted the cumulative dis-
tribution functions of normalized runoff routing distances in Figure 5b. Both the
less elongated and circular catchments have clearly asymmetric runoff routing
distance distributions, with more contributions from upstream than downstream
catchment units. This finding confirms the previous discussion and suggests
more catchment resilience to spatial rainfall variability may exist in circular
catchments than elongated ones due to markedly asymmetric runoff routing dis-
tance distributions in circular catchments. However, this relationship may be
further investigated by clarifying the role of catchment shape on the shape of
runoff routing distance distribution.

Figure 5. Effects of catchment shape. Results for the Ilm river basin at
Niedertrebra (i.e., the more elongated catchment with Re = 0.45) are displayed
in green color; results for the Innerste river basin at Heinde (i.e., the less elon-
gated catchment with Re = 0.78) are displayed in red color; results for the
Unstrut river basin at Erfurt-Moebisburg (i.e., the circular catchment with Re
= 0.90) are displayed in black color. (A) Effects of increasing spatial rainfall
variability (CVin) on the tail heaviness of streamflow distributions of catchments
with different shapes. The red shaded area indicates heavier-tailed streamflow
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distributions with respect to the uniform rainfall case, whereas the green shaded
area indicates lighter-tailed streamflow distributions. For each value of CVin
hundred different realizations of spatial rainfall patterns on the catchment char-
acterized by the same spatial rainfall variability are displayed with small dots.
The mean values of the tail heaviness among hundred results for each CVin
are displayed with large dots and linked with a tendency line. (B) Cumulative
distribution functions of runoff routing distance normalized with respect to the
longest distance in each river network. The dash-black line is the 45-degree line
(starting from the minimum and ending at the maximum of the S-Curve) which
provides insights into the asymmetry (e.g., the skewness) of the distribution
(indicated by the difference of area above and below the 45-degree line of the
S-curve). (C) Visualization of the river networks and catchment shapes of the
three catchments with the related color coding. Blue dots indicate the outlets
of catchments.

4.3 Effects of Nonstationary Rainfall Variability

Figure 6 shows the response of the tail heaviness of streamflow distributions
to increasing coefficient of variation of the spatial variability of rainfall across
events (CVcross). The red shaded area identifies cases with heavier tails than
in the case of uniform rainfall. Results for catchments with different sizes and
shapes are respectively displayed in Figure 6a, b. In Figure 6a, all three tendency
lines show positive slopes � which are significantly different from zero (Wald test
with t-distribution, p<0.05). This indicates that the nonstationarity of spatial
rainfall promotes an increase of the tail heaviness of streamflow distributions.
The slope � is significant (p<0.05) higher for the small (� = 0.71) than the
medium (� = 0.20) and large (� = 0.09) catchments. In Figure 6b, however, the
slopes of the tendency lines of the less elongated (i.e., the red one) and circular
(i.e., the black one) catchments are not significantly different from zero (p≮0.05).
This means that nonstationarity has no effect on the streamflow distributions
in these two catchments, which are comparatively more circular than the most
elongated one. We recall that these results are consistent with the previous
one, which suggested that smaller/elongated catchments are less resilient to
increasing spatially heterogeneous rainfall. It is also worth to highlight that the
impact from changing spatial variability of rainfall across events seems to be
much less than the impact due to increasing spatial rainfall variability within
the events.
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Figure 6. Effect of Nonstationarity of Spatial Rainfall (CVcross). The red
shaded area indicates heavier-tailed streamflow distributions with respect to
the uniform rainfall case, whereas the green shaded area indicates lighter-tailed
streamflow distributions. For each value of CVcross hundred different realiza-
tions of spatial rainfall patterns on the catchment characterized by the same
spatial rainfall variability are displayed with small dots. The mean values of
the tail heaviness among hundred results for each CVcross are displayed with
large dots and linked with a tendency line. The slopes � of the tendency lines
are compared in the bar chart at the lower right corner of each panel. (A) Com-
parison of catchments with different sizes. (B) Comparison of catchments with
different shapes.

4.4 Data Analyses

We analyzed relations in real data (although including the interlinked effect of
rainfall, soil moisture, and river networks) to confirm the simulation results of
the 5 select catchments and to prove the transferability of the synthetic results.
The results in this section are based on the analysis of data for 175 catchments
across Germany. Each dot in Figure 7 shows the slope and the correlation coef-
ficient of a linear regression between the streamflow-distribution tail heaviness
(H) and the average spatial rainfall variability (CVin) for a single catchment.
The slope value indicates the direction and magnitude of the relation between
tail heaviness and spatial rainfall variability, whereas the correlation coefficient
evaluates the reliability of this empirical relation. The area size of each catch-
ment is displayed by the size of the dot. The slope of each regression was tested
to be significantly (p<0.05) different from zero and catchments with significant
slopes are shown in red, while slopes which are not significantly different from
zero are shown in gray. In both Figure 7a and 7b we applied a single linear
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regression for all values of spatial rainfall variability and estimated its signifi-
cance. However, in Figure 7b, we also identified the threshold of CVin beyond
which an effect of increasing spatial rainfall variability begins to be visible (by
means of the approach outlined in supporting information Text S2). All the
catchments for which we identified such a threshold and thus display a certain
resilience to increasing spatial rainfall variability are marked in purple color.

In general, more catchments (i.e., 102 out of 175) displayed positive than nega-
tive (73 out of 175) relations between spatial rainfall variability and tail heavi-
ness. All the negative cases displayed weak relations (i.e., closed-to-zero slopes).
In Figure 7a, 37 of 102 catchments (i.e., 36%) displayed significant positive
slopes whereas only 9 of 73 catchments (i.e., 12%) showed significant nega-
tive slopes. These results confirmed what we found in simulations, i.e., that
increasing spatial variability of rainfall mostly determines heavier streamflow-
distribution tails. It is worth noting that among all significant catchments
in Figure 7a, large catchments displayed weaker relations (i.e., lower slopes)
whereas small catchments displayed stronger relations (i.e., higher slopes). This
confirms the existence of more resilience to spatial rainfall in large catchments
than in small ones identified by means of simulation analyses.

In Figure 7b, 48 catchments for which we identified either significant-positive
slopes (shown in red) or an effective threshold of average spatial rainfall vari-
ability (shown in purple) are displayed. All of the large catchments (> 1000
km2) among them are the latter case (i.e., shown in purple), in agreement with
the findings of our simulations according to which large catchments are more
resilient to spatial rainfall variability and therefore only display increasing tail
heaviness of streamflow distribution beyond a threshold of spatial rainfall vari-
ability.

However, it should be noticed that these results came from mixed effects of both
intra- and cross-event variability of spatial rainfall because there are still vari-
ations of spatial rainfall variability from event to event in each rainfall-runoff
group. Both the linear regressions and the streamflow distributions were com-
puted from limited data, which likely influenced the reliability of these corre-
lations in some cases. Nevertheless, the results of the data analysis align and
confirm the simulation results.
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Figure 7. Data-based linear regressions between streamflow-distribution tail
heaviness and average spatial rainfall variability. Results for 175 catchments in
Germany are displayed with their areas represented by the sizes of dots. Each
dot shows the slope and the correlation coefficient of a linear regression be-
tween the streamflow-distribution tail heaviness and the average spatial rainfall
variability for a single catchment. The slope value indicates the direction and
magnitude of the relation between tail heaviness and spatial rainfall variability,
whereas the correlation coefficient evaluates the reliability of this empirical rela-
tion. (A) Evaluation of the linear correlation between streamflow-distribution
tail heaviness and average spatial rainfall variability. Red dots indicated the
catchments whose slopes were significant greater/less than zero at a 0.05 sig-
nificance level; gray dots indicated the catchments whose slopes were not sig-
nificantly different from zero. (B) Identification of a threshold beyond which
an effect of increasing spatial rainfall variability begins to be visible. Purple
dots indicate catchments for which a minimum threshold of spatial rainfall vari-
ability for seeing an effect on tail heaviness was identified; red dots indicate
catchments for which a linear regression between spatial rainfall variability and
tail heaviness (i.e., disregarding the threshold) had slope significantly different
from zero; gray dots shown all the other catchments where such relations were
not significant.

1. Summary and Conclusions

In this study, we addressed the impacts of spatial rainfall variability on the
increasing hazard of high flows. We synthetically generated spatially variable
rainfall in two scenarios: stationary (i.e., constant spatial rainfall variability
across events) and nonstationary (i.e., variable spatial rainfall variability across
events). A continuous probabilistic model of water transport at the catchment
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scale was used to simulate the hydrological response. The effects of spatial
rainfall variability on the tail heaviness of streamflow distributions were inves-
tigated in five select catchments under different spatial rainfall scenarios (i.e.,
stationary and nonstationary), catchment sizes (i.e., small, medium, large), and
catchment shapes (i.e., more elongated, less elongated, circular). Furthermore,
we analyzed the relation between spatial rainfall variability and tail heaviness
of streamflow distributions by using recorded data from 175 river catchments to
validate the simulation results and test their transferability. The key conclusions
of the study are:

1. Increasing spatial variability of rainfall determines enhanced hazard of
high flows (i.e., heavier tails of flow distributions) only beyond a certain
increase threshold. Both the value of this threshold and the growth rate of
tail heaviness beyond the threshold indicate the resilience of catchments
to spatially variable rainfall.

2. Small or elongated catchments show less resilience to increasing spatial
variability of rainfall compared to large or circular catchments. High asym-
metry of the distribution of runoff routing distances along river networks
identified for large and circular catchments (with more contributions from
upstream than downstream catchment units) is likely to provide more
resilience to increasing spatial variability of rainfall.

3. In line with the previous results, smaller or more elongated catchments are
more influenced by the nonstationarity of the spatial variability of rainfall
across events. However, this nonstationarity seems to influence less the tail
of streamflow distributions than the spatial variability of rainfall during
the event.

4. Analyses of daily rainfall-runoff records for a large set of catchments in
Germany agree with the simulation results, showing positive correlations
between spatial rainfall variability and streamflow-distribution tail heavi-
ness in the majority of the case studies. Data analyses also confirm that
large catchments are more resilient to increasing spatial rainfall variability,
as previously found by means of synthetic simulations.

This work pinpoints the role played by the spatial heterogeneity of rainfall for
controlling the emergence of heavy-tailed distributions of streamflow. It thus
establishes a link between expected alterations of rainfall caused by the ongoing
climate change, such as more localized rain, and the resulting modifications in
the frequency of large event magnitudes, with implications for the hazard of
high flows in different river basins.
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Introduction  

This supporting information contains two supplementary methods, three figure, and three 

tables. Text S1 is the method we used for the identification of suitable probability distribution 

for REGNIE rainfall fields; Text S2 is the method we applied to identify an effective threshold of 

the increasing spatial rainfall variability from our results; Figure S1 is together with text S1, 

which is the results of goodness-of-fit for probability distributions; Figure S2 is the schematic 

diagram of the adopted hydrological model; Figure S3 represents the definition of the index of 

relative tail heaviness; Table S1 lists the information of five select catchments for simulation 

scenarios; Table S2 is the imposed parameters for synthetic rainfall generation in stationary 

scenarios; Table S3 is the imposed parameters for synthetic rainfall generation in non-

stationary scenarios. 
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Text S1. Identification of suitable probability distribution for REGNIE rainfall fields 

We computed the chi-square statistic (χ 2) for the goodness-of-fit test to identify the 

suitable probability distribution for REGNIE rainfall fields in 5-tested catchments (see section 2). 

REGNIE is a daily data set which is an 1-km2 interpolated rainfall field estimated from point 

observations through multiple regression provided by the German Weather Service (Rauthe et 

al., 2013). Ten probability distributions (see figure S1) which were often applied in climatology 

or environmental researches were tested (e.g., Allard & Soubeyrand, 2012; Ayalew et al., 2014; 

Ben-Gai et al., 1998; Clauset et al., 2009; Gaitan et al., 2007; Hu et al., 2019; Li et al., 2014; Li & 

Shi, 2019; Ng et al., 2019; Tabari, 2020; Ye et al., 2018). To evaluate the goodness-of-fit between 

distributions in the same scale we normalized the χ2 of each distribution by the total χ2 of all 

tested distributions for each rainfall day (i.e., re-scale each χ2 into [0, 1]). To identify the general 

expression of rainfall-field distributions from all days in the time series we computed the 

summation of all the normalized χ2 (i.e., all rainfall days) as the total normalized χ2 which 

showed the overall size of the discrepancies between the rainfall fields and the tested 

probability distribution. Finally, the most suitable probability distribution was determined by 

the lowest summation of the normalized χ2 (i.e., the distribution has least discrepancies to the 

rainfall fields). The computing procedure for each catchment is listed as follows: 

1. Compute χ2 for 10-tested distributions day by day (rainfall days). 

2. Normalized each χ2 by the total χ2 for 10-tested distributions of each day. 

3. Sum up the normalized χ2 of all days for each distribution. 

4. Select the distribution which has the least summation in the step 3. 

We estimated the suitable probability distribution for the rainfall fields of the summer data 

of the daily time series from 1980 to 2002 in 5-tested catchments. Figure S1 shows the total 

normalized χ 2 of 5-tested catchments for 10 distributions. Gamma, Exponential-Normal, 

Generalized Extreme Value (GEV), Skew-Normal distributions appear well goodness-of-fit to the 

rainfall fields. We finally selected the Gamma distribution as the most suitable one for our 

simulation because it is a 2-parameter distribution while the others are 3-parameter 

distribution, which has less uncertainty. 

 

Text S2. Identification of an effective threshold of the increasing spatial rainfall 

variability 

We proposed a statistical-cascade criteria to test if an effective threshold exists in the 

results of the scatter plot of spatial rainfall variability (i.e., CVin) and the streamflow-distribution 

tail heaviness (i.e., H). In this criteria, we separately analyzed the trend between CVin and H 

below and beyond a certain CVin value by computing their linear regressions. All the value of CVin 

from the results are tested as potential thresholds (CVthre). We call the sequence below a 

potential threshold as sequence α whereas the sequence beyond it as sequence β. The cascade 

criteria is structured as follows: 
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Criteria 1−Significance Test: the slope of the tendency line of α is not significant (p≥0.05) 

different to zero while the slope of β is tested to be significantly (p<0.05) larger than zero. 

Criteria 2−Optimization of Correlation: we select the best value of CVthre among all the 

qualified CVthre from criteria 1, which is determined by maximizing the optimization matrix: 

(1 − 𝑟𝛼) + 𝑟𝛽 , where r α  is the correlation coefficient of α  and rβ is the correlation 

coefficient of β. We ensure that CVin and H correlated to each other as strong as possible in 

sequence β (i.e., beyond the threshold) while they correlated to each other as weak as 

possible in sequence α (i.e., below the threshold). 

Criteria 3−Increasing Trend: the maximum value of H in sequence α have to be smaller than 

the maximum value of H in sequence β, by which we ensure the general increasing trend 

of H toward CVin. 

The unique effective threshold is identified as the CVthre if and only if it is qualified by 

criteria 1 ⟶ criteria 2 ⟶ criteria 3. The Pearson correlation coefficient and the Wald Test with 

t-distribution were computed by means of the scipy.stats.linregress tool of SciPy v1.7.1. for the 

linear regression. 

 

 

Figure S1. Overall goodness-of-fit of probability distributions for the rainfall fields in REGNIE 

data set. The total normalized chi-square statistic (χ2) is the summation of normalized χ2 (which 
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is normalized by the total χ2 of 10-tested distributions for each rainfall day) of all rainfall days 

from the summer data of the daily time series from 1980 to 2002 in five-tested catchments. 

 

 

Figure S2. Schematic diagram of the adopted hydrological model. Three key components were 

accounted for in the model: (1) the soil water balance in hillslopes, with main fluxes depicted 

through blue solid arrows, (2) the transit time distributions of surface and subsurface flows in 

hillslopes, graphically represented through blue dashed arrows, and (3) the response time 

distribution of each catchment unit in the river network, displayed by means of black dashed 

arrows. Symbols used in the Figure are reported in section 3.2. 
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Figure S3. Definition of the index of relative tail heaviness. The exceedance probability 

distribution of the normalized streamflow (i.e., divided by the long-term mean daily flow) is 

displayed in a double logarithmic plot. Black dots represent the case with uniform rainfall. 

Exceedance probability distributions resulting from spatially variable rainfall are marked with 

either red or green dots depending on their values of the index of relative tail heaviness H. All 

the cases marked in red have H > 1, which signifies heavier tails than in the case of uniform 

rainfall; all the cases marked in green have H < 1, which indicates lighter tails than in the case of 

uniform rainfall. 

 

 

 

Table S1. Study Catchments Used for Scenario Simulation 

 

Groupa 

 

 

Catchment 

 

 

River 

 

 

Area 

[km2] 

Elongation 

Ratio, Re 

[−]b 

Drainage 

Density, Dd 

[km/km2] 

Mean 

Elevation 

[m] 

1 Holzkamp Delme 98 0.45 0.74 41 

1, 2 Niedertrebra Ilm 887 0.45 0.64 394 

1 Inkofen Amper 2841 0.47 0.88 619 

2 Heinde Innerste 898 0.78 0.69 243 

2 
Erfurt-

Moebisburg 
Unstrut 847 0.90 0.71 441 

aGroup 1 basins are used for the investigation of the effects of catchment size and group 2 basins are used 

to study the effects of catchment shape. bThe elongation ratio closed to 1 indicates more circularity. 
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Table S2. Parameter for Stationary Scenarios: Shape Parameter (k) 

# k [−] # k [−] # k [−] # k [−] 

1 1000 14 1.3 27 0.09 40 0.005 

2 500 15 1.2 28 0.08 41 0.004 

3 100 16 1.1 29 0.07 42 0.003 

4 50 17 1 30 0.06 43 0.002 

5 10 18 0.9 31 0.05 44 0.001 

6 5 19 0.8 32 0.04 45 0.0009 

7 2 20 0.7 33 0.03 46 0.0008 

8 1.9 21 0.6 34 0.02 47 0.0007 

9 1.8 22 0.5 35 0.01 48 0.0006 

10 1.7 23 0.4 36 0.009 49 0.0005 

11 1.6 24 0.3 37 0.008 50 0.0004 

12 1.5 25 0.2 38 0.007 51 0.0003 

13 1.4 26 0.1 39 0.006 52 0.0001 

 

 

 

Table S3. Parameters for Non-stationary Scenarios: Shape Parameter (k), Central Shape 

Parameter (k0), and Random Fluctuation Range (±b): 

# k0 [−] ±b [−] k [−] # k0 [−] ±b [−] k [−] 

1 10-1 0.05×10-1 (0.095, 0.105) 11 10-1 0.55×10-1 (0.045, 0.155) 

2 10-1 0.10×10-1 (0.090, 0.110) 12 10-1 0.60×10-1 (0.040, 0.160) 

3 10-1 0.15×10-1 (0.085, 0.115) 13 10-1 0.65×10-1 (0.035, 0.165) 

4 10-1 0.20×10-1 (0.080, 0.120) 14 10-1 0.70×10-1 (0.030, 0.170) 

5 10-1 0.25×10-1 (0.075, 0.125) 15 10-1 0.75×10-1 (0.025, 0.175) 

6 10-1 0.30×10-1 (0.070, 0.130) 16 10-1 0.80×10-1 (0.020, 0.180) 

7 10-1 0.35×10-1 (0.065, 0.135) 17 10-1 0.85×10-1 (0.015, 0.185) 

8 10-1 0.40×10-1 (0.060, 0.140) 18 10-1 0.90×10-1 (0.010, 0.190) 

9 10-1 0.45×10-1 (0.055, 0.145) 19 10-1 0.95×10-1 (0.005, 0.195) 

10 10-1 0.50×10-1 (0.050, 0.150) 20 10-1 0.10×10-1 (0.000, 0.200) 

 


