Advanced classification of ionospheric troughs in midnight conditions

Alexander Karpachev¹

 $^{1}\mathrm{Pushkov}$ Institute of Terrestrial Magnetism, Iono
sphere and Radiowave Propagation, Moscow

November 26, 2022

Abstract

This study utilizes a novel technique to separate and classify different ionospheric troughs from CHAMP satellite data in the winter midnight ionosphere of the southern hemisphere at high solar activity (2000–2002). The main ionospheric trough (MIT) was separated from the high latitude trough (HLT). The separation was performed through an analysis of troughs in the frame of the model of the diffuse auroral particle precipitation. Two types of HLT were distinguished. In the mid-latitude ionosphere, the MIT was separated from the ring ionospheric trough (RIT), which is formed by the decay processes of the magnetospheric ring current. The separation was performed on the basis of an analysis of the prehistory of all geomagnetic disturbances for the period under study. In addition to the RIT, an equatorward decrease in the electron density, which is superimposed on the MIT and masks it, forms quite often at American and Atlantic longitudes.

Supporting Information for

Advanced classification of ionospheric troughs in midnight conditions

Karpachev A.T.

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation (IZMIRAN), Kaluzhskoe Hwy 4, Troitsk, Moscow, 108840, Russia

The model of the auroral oval of precipitation

The model of the auroral oval of precipitation The model of auroral particle precipitation is based on data from a large set of DMSP satellites in the Northern and Southern hemispheres [Vorobjev and Yagodkina, 2005, 2010]. The model is uploaded on the website of the Polar Geophysical Institute: http://apm.pgia.ru. Figure S1 shows this model for quiet conditions AL = -10 nT, Dst = -5 nT (Kp-2). As can be seen from Fig.S1, the model describes three main zones of auroral particle precipitation.

Figure S1. Model of auroral particle precipitation: diffuse auroral zone I equatorward of aurora (blue), structured auroral oval precipitation (auroral lights region or aurora, green), and soft diffuse precipitation zone II (orange) poleward of aurora.

Figure S2. Longitudinal variations in the averaged auroral precipitation energy flux at 21-03 MLT under Kp = 2 for the June solstice (Jun.) in southern hemisphere [Luan et al., 2011]. Note, that plot is presented in geomagnetic longitude MLON.

1

1	Advanced classification of ionospheric troughs in midnight conditions
2	
3	A.T. Karpachev
4	
5	Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation
6	(IZMIRAN), 4, Kaluzhskoe Hwy, Troitsk, Moscow, 108840, Russia,
7	
8	
9	
10	
11	
12	
13	Corresponding author:
14	Alexander Karpachev, e-mail: karp@izmiran.ru
15	
16	
17	
18	
19	
20	
21	
22	
23	
2 4 25	Key points.
25 26	• The high latitude trough (HLT) subauroral (main) trough (MIT) and mid-latitude ring
20	trough (RIT) were classified from the CHAMP data
28	• The HI T and MIT separation is based on diffuse auroral precipitation model with two zones
20 29	equatorward and poleward
30	• The MIT and RIT were separated taking into account the prehistory of all geomagnetic
31	disturbances for the period under study
32	distarbances for the period under study.
33	
34	
35	
-	

36 Abstract

37 This study utilizes a novel technique to separate and classify different ionospheric troughs from CHAMP satellite data in the winter midnight ionosphere of the southern hemisphere at high 38 39 solar activity (2000-2002). The main ionospheric trough (MIT) was separated from the high 40 latitude trough (HLT). The separation was performed through an analysis of troughs in the frame 41 of the model of the diffuse auroral particle precipitation. Two types of HLT were distinguished. 42 In the mid-latitude ionosphere, the MIT was separated from the ring ionospheric trough (RIT), 43 which is formed by the decay processes of the magnetospheric ring current. The separation was 44 performed on the basis of an analysis of the prehistory of all geomagnetic disturbances for the 45 period under study. In addition to the RIT, an equatorward decrease in the electron density, 46 which is superimposed on the MIT and masks it, forms quite often at American and Atlantic 47 longitudes.

48

49 Plain Language Summary

50 There are several ionization troughs in the high and mid-latitude ionosphere. The regions of 51 their existence overlap, thus presenting a problem in trough identification. The main issues are 52 the separation of the high latitude trough (HLT) and the main ionospheric trough (MIT), as well 53 as that of the MIT and the ring ionospheric trough (RIT). The problem of the HLT and MIT separation was solved by carefully analyzing the positions of the troughs relative to the 54 55 equatorward boundary of the diffuse auroral precipitation model and the correspondence of the 56 MIT polar wall to the equatorward diffuse precipitation zone and that of the HLT polar wall to 57 the poleward precipitation zone. The subauroral MIT was also separated from the mid-latitude 58 RIT, which is formed by the decay processes of the magnetospheric ring current and exists long 59 in the recovery phase of even a weak geomagnetic disturbance. The separation of the MIT and 60 RIT was performed on the basis of the analysis of the prehistory of all the geomagnetic 61 disturbances for the period under study. In addition to the MIT, a decrease in the electron 62 density, which is superimposed on the MIT minimum and masks it, occurs at America-Atlantic 63 longitudes.

- 64
- 65
- 66
- 67
- 68
- 69
- 70

71 **1 Introduction**

72 The ionization trough was discovered from the Alouette I satellite data and was described by 73 Muldrew (1965) as the main ionospheric trough (MIT). Since then, many studies have explored 74 its characteristics, which have been described in reviews (Ahmed et al., 1979; Moffett and 75 Quegan, 1983; Rodger et al., 1992; Karpachev, 2003). The greatest attention has been paid to 76 the position of the MIT minimum (see, for example, (Kohnlein and Raitt, 1977; Ahmed et al., 77 1979; Oksman, 1982; Karpachev et al., 1996; Werner and Prolss, 1997; Yang et al., 2015; 78 Deminov and Shubin, 1918; Aa et al., 2010; Karpachev et al., 2022). These studies reported a 79 large data scatter, which is due to the fact that the MIT can be confused with other troughs, 80 including high latitude troughs (HLT) and low latitude troughs (LLT) (Werner and Prolls, 1988; 81 Karpachev and Afonin, 1989, Karpachev, 2019). Thus, the problem of the separation and 82 classification of ionospheric troughs arises. Significant progress in the separation of the MIT and 83 HLT has been made in a previous study based on CHAMP data (Karpachev, 2019). The MIT is a 84 subauroral structure because it is located equatorward of the auroral oval (Rodger et al., 1992). 85 The HLT is observed inside the auroral oval (*Grebowsky et al.*, 1983). With the simultaneous data on the precipitation of auroral particles, the separation of the MIT and HLT would be a 86 87 routine task. However, particle precipitation on board the CHAMP has not been measured 88 simultaneously; therefore, we were forced to use a statistical model of diffuse auroral precipitation. Thus, the current positions of troughs have been compared with some average 89 90 positions of the equatorial boundary of the auroral oval (Karpachev, 2019). However, the current 91 positions of the auroral oval and the troughs are often quite different from the average position. 92 For example, the standard deviation for the MIT position is typically $2^{\circ}-3^{\circ}$, and the data scatter 93 is as high as ±10° (Kohnlein and Raitt, 1977; Werner and Prolss, 1997; Aa et al., 2020). As a 94 result, the highest latitude MIT case can be located inside the statistical auroral oval while the 95 lowest latitude HLT case can be outside it.

96 In the present study, an advanced method is used. The key point is anthe application of a 97 model of auroral precipitation obtained from the DMSP satellites data (Vorobjev and Yagodkina, 98 2005, 2010). This model describes the position of zone I diffuse precipitation at the equatorial 99 edge of the auroral oval and zone II at its polar edge. As is known, the precipitation of zone I 100 forms the polar wall of the MIT; meanwhile, the effects of zone II have never been considered. 101 Moreover, the positions of both zones change with longitude (Vorobjev and Yagodkina, 2010; 102 Luan et al., 2011). Therefore, for superior efficiency, the analysis of the structures of the high 103 latitude ionosphere was conducted herein on the basis of the framework of the longitudinal 104 effect.

105 The problem of separating LLT from the subauroral MIT in the previous study was solved by 106 removing from the CHAMP data set only the obvious cases of the so-called ring ionospheric 107 trough (RIT) (Karpachev, 2019). The RIT is formed during the storm (substorm) recovery phase 108 as a result of the decay of the magnetospheric ring current (Karpachev, 2021a, 2021b). However, 109 equatorward of the MIT, in addition to the mid-latitude RIT, other electron density minima do 110 not necessarily stand out as ionization troughs, but they significantly complicate the 111 identification of the MIT. Therefore, this study also considered in detail the issue of the 112 separation of the MIT and LLT.

Finally, to complete the pattern, this study highlighted the cases of a clearly expressed polar hole. In this way, the title of the paper can be interpreted broadly as the classification of electron density structures in the high and mid-latitude ionosphere. Within the framework of the advanced method, all the ionospheric troughs from the CHAMP data in the midnight winter ionosphere were thoroughly analyzed. As the main goal was to derive an accurate statement of the problem for trough separation, the analysis in the present study was limited to the southern hemisphere and high solar activity.

120

121 **2 Observation data**

The CHAMP satellite carried out *in situ* measurements of electron concentration *Ne* (Rother and Michaelis, 2019). Variations in *Ne* are presented below in terms of plasma frequency *fp* $(Ne[cm^{-3}] = 1.24 \cdot 10^4 fp^2[MHz])$. The CHAMP altitude has changed from ~450 km to ~300 km, which is close to the height of the F2 layer maximum. It revolved on nearly polar orbit with the inclination of 87°. The CHAMP data time resolution of 15 s is less than 1° of latitude, which allows determining the minimum trough position accurately. The CHAMP data are available on the website http://op.gfz-potsdam.de/champ.

The CHAMP data for June, July, and August (i.e., for local winter conditions) in the southern hemisphere were used. The data only for high solar activity with F10.7 \sim 180 sfu for the period of 2000–2002 and the near-midnight conditions (23–01 LT) were considered. About 700 CHAMP passes in the winter high- and mid-latitude ionosphere for relatively quiet geomagnetic conditions with Kp < 4 were examined.

The MIT is usually defined by a fairly deep decrease in electron density of at least ~30%. We have not determined the level of electron density decrease in the MIT minimum. If the trough was poorly expressed on some satellite path or masked by ionospheric plasma irregularities, then the position of its minimum was determined through coordination with neighboring paths. Stricter criteria were imposed on the selection of the HLT. The HLT is observed in the auroral oval, where the electron density is highly irregular and a number of density minima can be 140 observed. Therefore, the HLT was recorded only in the obvious cases wherein it was clearly 141 structured and when its polar wall did not extend beyond the poleward diffuse precipitation zone. 142 Similarly, the polar hole was defined only as a broad minimum of the electron density at 143 latitudes above the poleward precipitation zone. Finally, only pronounced troughs were recorded 144 equatorward of the MIT.

145

146 **3 Structure of nighttime ionosphere**

147 An analysis of the structures of the high latitude ionosphere was conducted using a model of 148 auroral particle precipitation constructed from the DMSP satellites data in both hemispheres 149 (Vorobjev and Yagodkina, 2005, 2010). The model is uploaded on the website of the Polar 150 Geophysical Institute (http://apm.pgia.ru). In Figure S1 (in Supporting information), this model 151 is presented for quiet conditions. The model describes three main auroral precipitation zones: 152 diffuse auroral zone I equatorward of the auroral oval, structured auroral precipitation of the 153 auroral oval (region of auroral lights, aurora), and zone II of the soft diffuse precipitation 154 poleward of the aurora.

155 The boundaries of the precipitation zones in the near-midnight ionosphere change with 156 longitude (Vorobjev and Yagodkina, 2010; Luan et al., 2011), as well as the position of the MIT 157 (Karpachev et al., 2018). For the southern hemisphere, these boundaries are presented in Figure 158 S2 (in Supporting information) according to (Luan et al., 2011). The equatorward and poleward 159 boundaries of the oval experience synchronous longitudinal variations with an amplitude of 160 $\sim 2.5^{\circ}$. Therefore, it is most effective to analyze the structures of the high latitude ionosphere in 161 terms of geomagnetic latitude-geographic longitude. Figure 1 shows the positions of the 162 different structures in the winter midnight (23-01 LT) ionosphere of the southern hemisphere. 163 To eliminate the dependence on geomagnetic activity, the positions of the MIT, RIT, and HLT 164 were reduced to Kp = 2 according to $\Lambda corr = \Lambda c - a(Kp(\tau) - 2)$, where Λc is the current position 165 of the structure and the *a* factor is 2.0 for the MIT according to (*Karpachev et al.*, 1996), 1.5 for the RIT according to (Karpachev, 2021b), and ~1.5 for the HLT according to (Grebowsky et al., 166 167 1983). The Kp(τ) index was used as it considers the prehistory of geomagnetic activity development (Deminov and Shubin, 2018). In Figure 1, zones I and II of the diffuse precipitation 168 169 taken from Figure S1 are shaded. The average (for all longitudes) position of the equatorial boundary of the auroral precipitation oval corresponds to 64° at Kp = 2 (Karpachev, 2019). The 170 171 upper curve in Figure 1 corresponds to the CHAMP satellite inclination. The satellite inclination 172 of 87° does not limit the observations of the discussed structures, except for the polar hole. But 173 polar hole cases are shown in Figure 1 solely for the completeness of the pattern; only 174 unambiguous cases were selected.

177

Figure 1. On the top: Longitudinal variations in the magnitude of MIT polar wall (dots and approximation) and averaged auroral precipitation energy flux at 21–03 MLT under Kp = 2 (dashed line) [*Luan et al.*, 2011]. On the bottom: Longitudinal variations in the positions of main structures in the near-midnight winter ionosphere of the southern hemisphere: polar hole (triangles), HLT1 (empty squares), HLT2 (filled squares), MIT (dots), RIT, and electron density minima (red circles). The shaded latitude belts show the diffuse auroral precipitation of zones I and II. The upper curve represents the CHAMP inclination equal to 87° .

185

The black dots in Figure 1 depict the cases of MIT observations (n = 703). The approximating curve demonstrates the longitudinal effect in the MIT position with an amplitude of $\sim 3^{\circ}$ and a correlation coefficient of 0.52. The scatter of the data (standard deviation) is 1.85°, which is less than the 2°-3° range that is usually observed in the statistical processing of trough data. In the first approximation, the variations in the MIT position are consistent with the 191 variations in the position of the precipitation of zone I. The MIT was separated from the HLT 192 (blue squares) at the high latitude boundary of the MIT occurrence region. Figure 2a shows the 193 simplest case when both troughs are observed simultaneously. This case allows us to draw a fundamentally important conclusion: the MIT polar wall is, as usual, determined by the 194 195 precipitation of zone I, and the HLT polar wall is undoubtedly formed by the precipitation of 196 zone II. The latter fact is the key to the identification of the HLT type I. The HLT was previously 197 studied in detail from Ni variations recorded on board OGO-6 at heights of 400-1,100 km 198 (Grebowsky et al., 1983) and from EISCAT radar data (Williams et al., 1986). In particular, the 199 statistical position of HLT relative to the auroral oval was determined (Grebowsky et al., 1983). 200 The authors observed the HLT exclusively within the auroral oval and attributed its formation 201 ultimately to the action of electric fields in the zone of the high latitude ionospheric plasma 202 convection. These fields cause the frictional heating of the plasma and its outflow upward; both 203 cases lead to an increase in recombination and, consequently, to the formation of the trough. 204 Since this effect is observed in a limited region, the HLT of this type is usually narrow $(3^{\circ}-5^{\circ})$ in 205 latitude). Such a trough is observed in Figure 2b together with the polar hole. We define such a 206 trough as HLT2; it is depicted with crosses in Figure 1. Figure 2c shows a rather rare example of 207 the simultaneous observation of the three troughs: MIT, HLT2, and HLT1. Figure 1 shows that 208 HLT2 is observed less frequently than HLT1. In Figure 2, an approximation curve for all HLTs 209 is drawn.

In the eastern hemisphere, at longitudes of 30° – 90° E, the MIT is located at the highest latitudes so that the region of its existence overlaps with the precipitation of zone I and the region of HLT existence. In the region of the intersection of the two sets of troughs, the problem of separation becomes particularly acute. Therefore, all cases of trough observations in this region were analyzed thoroughly. The main result of this analysis was rather unexpected.

215

- 216
- 217

Figure 2. The most characteristic examples of troughs in the nighttime winter ionosphere of thesouthern hemisphere. Local time changes from 23.8 to 0.9 h. Details are in the text.

220

221 The top panel in Figure 1 shows the variations in the magnitude of the polar wall derived 222 from the CHAMP data for the quiet period of August 15–24, 2000 (dots and approximation line). 223 The dashed line depicts the longitudinal variations in the average electron flux calculated at 224 latitude of -65° GMLat from the colored Figure 2S from (Luan et al., 2011). As expected, the 225 magnitude of the polar wall is completely determined by the precipitation. Electron precipitation 226 is much stronger in the western hemisphere than in the eastern hemisphere. Therefore, in the 227 western hemisphere, the precipitation forms a pronounced polar wall of the MIT, and it is always 228 clearly determined. This illustrates the latitudinal fp cross-section 1 in Figure 2d, which 229 represents the MIT recorded on August 9, 2000, at longitude of $286^{\circ}E$ at 0.6 LT and Kp = 2-. 230 Different scenarios can be realized in the eastern hemisphere. If the precipitation of zones I and 231 II is still quite intense, they form (weak) peaks of electron density, and both troughs are 232 observed. If the precipitation in one of the zones is very weak, then either the MIT or the HLT 233 can be formed. For example, curve 2 in Figure 2d represents the latitudinal fp cross-section 234 obtained on August 7, 2000, at longitude of $100^{\circ}E$ at 0.5 LT and Kp = 1+. There is no peak of 235 electron density; only the relative minimum of Ne at the MIT latitudes. Therefore, the MIT is not 236 identified. The minimum of the electron density is observed much poleward at latitude of -68° . 237 and it certainly belongs to HLT1 because its polar wall is formed by the precipitation of zone II. 238 Note that this trough can be easily confused with the MIT in a cursory analysis. Finally, if both 239 zones have no precipitation, then a monotonous decrease is recorded in the electron density to 240 the pole without peaks and troughs. Such cases correspond to the value *fp* close to 0 in Figure 3.

241 The red circles in Figure 1 depict the troughs and quasi-troughs that were observed 242 equatorward of the MIT. The main one among them is the RIT. It is formed during the recovery 243 phase of a geomagnetic storm and even a weak substorm as a result of the decay of the 244 magnetospheric ring current. The dynamics of this mid-latitude trough is described in detail in 245 (Karpachev, 2021a, 2021b). When the MIT and RIT are simultaneously observed, their 246 identification is not difficult; the equatorward trough is the RIT (Figure 2e). However, during a 247 storm, any situation can be observed: both troughs, one MIT or one RIT. Moreover, the MIT can 248 be identified on one path, and the RIT on the next path. Therefore, the main method of MIT and 249 RIT separation is an analysis of the prehistory of the development of geomagnetic disturbance 250 (Karpachev, 2021a, 2021b). Herein, even weak geomagnetic disturbances for the period under 251 consideration were analyzed to separate the RIT from the MIT. An example of such an analysis 252 is applied below in the discussion of Figure 3.

253 Figures 2f,g,h show examples of structures that can be defined as quasi-troughs. Figure 2f 254 shows the latitudinal fp cross-section typical for the longitudes of America and the Atlantic. A 255 steep polar wall of the trough, a shallow minimum of the electron density slightly equatorward 256 (at -65.5°), and a deep and wide minimum at -55° are observed in Figure 2f. How is the position 257 of the MIT determined in this case? The latitude of -65.5° for Kp = 1- corresponds rather to the polar wall of the MIT, and the latitude of -55° completely goes beyond the existence region of a 258 "normal" MIT. Similarly, the position of the Ne minimum at latitude of -60.5° for Kp = 1- in 259 Figure 2g is definitely lower than the "normal" position of the MIT at longitude of 29°E (Figure 260 1). The well-defined polar wall of the trough helps to solve this problem. In the near-midnight 261 262 hours, the base of the polar wall usually coincides with the equatorial boundary of diffuse 263 precipitation (Rodger et al., 1986). The MIT minimum is located within 5° equatorward of this 264 boundary (Rodger et al., 1992), and the minimum distance is about 2° (Slater et al., 1980); therefore, the MIT minimum is usually 3°-4° equatorward of the polar wall. If the minimum of 265

the MIT $3^{\circ}-4^{\circ}$ equatorward of the polar wall is determined in Figures 3f and 3g, then in both cases, the trough minimum will correspond to an average MIT position. As for the reason for the formation of an additional minimum of electron density, we should note that the geomagnetic latitude of -56° at longitude of 285° approximately corresponds to the geographical latitude of -66° , that is, the Arctic Circle. The Arctic Circle limits the area of the polar night in winter conditions, wherein there is no solar ionization and the electron density decays. The influence of the polar night affects a fairly wide range of longitudes from 120° W to 30° E.

Finally, Figure 2h shows an example of a clearly defined minimum of electron density recorded on August 29, 2001, at latitude of -50.2° and longitude 194°E. Several more wellexpressed LLTs were observed at latitudes 50° and equatorward (not shown in Figure 1). They apparently belong to the class of LLTs discovered in (*Karpachev*, 2021c).

- 277
- 278

4 Events on August 19 and 21, 2000

279 Trough identification is obviously a challenge. In some cases, data analysis turns into a 280 complicated investigation. Figure 3 shows two examples that required such an investigation. 281 Figure 3 on the left shows the longitudinal variations of ionospheric structures for August 19 282 (top) and August 21 (bottom), 2000. The data were obtained in the near-midnight sector for the 283 average value of Kp = 1 on August 19 and Kp = 2+ on August 21. However, at the beginning of 284 August 21, the Kp index increased from a value of 1 to 3+, and this change was enough to form a 285 deep RIT (red circles in Figure 3), which was then observed all day in a pronounced form. The 286 examples are observed on paths 7, 15, and 25 in Figure 3 on the right. The MIT identification 287 was a challenge. Its position was clearly defined only on paths 3 and 15. Conversely, the HLT 288 was clearly revealed all day, as shown by the paths 3, 7, 15, and 25 on the right of Figure 3. In 289 very quiet conditions on August 19, RIT did not manifest itself. On paths 2, 4, and 6, the MIT 290 was clearly expressed, and its position could be determined either by the base of the polar wall 291 (PW) or by the *fp* minimum (red circles), which formed clearly below the model position, as 292 discussed previously. The rest of the time, the MIT manifested itself at best in the form of a 293 small minimum of electron density, as observed on paths 14 and 24. HLT was also clearly 294 manifested, particularly on paths 4, 14, and 24. On path 8, only HLT was observed. Therefore, in 295 both cases, there was a well-expressed HLT, and on August 21, RIT was also well-expressed. 296 Much effort was needed to distinguish the MIT in both cases. Moreover, on path 8 on August 19 297 under manual and automatic data processing, the HLT would have been identified as the MIT. 298 Hence, we are skeptical about the automatic processing of data on the trough.

- 299
- 300

Figure 3. On the left: Longitudinal variations in the position of HLT (blue squares) and MIT (black circles) on August 19 (top) and August 21 (bottom), 2000. Red circles show the positions of the fp minima (top) and RIT (bottom). The shaded latitude belts show the diffuse auroral precipitation of zones I and II. On the right are the latitudinal profiles of fp for the paths marked in the Figure on the left.

309

310 **5 Conclusion**

311 Undoubtedly, considerable progress has been made in the separation and classification of the 312 various structures of the nighttime high latitude and mid-latitude ionosphere. The success is 313 based on several factors. First, the CHAMP large data set allows the consideration of a 314 phenomenon from different angles. Second, all complex cases were analyzed carefully, and 315 automatic data processing was found to be questionable. Third, the problem could only be solved 316 after many years of experience. Note that the solution to the problem could be traced back to 317 1998 (Karpachev, 1998), and it was continued in 2019 (Karpachev, 2019). Fourth, the idea of 318 separating MIT, HLT1, and HLT2 arose from a simple and illustrative model of diffuse auroral 319 precipitation (Vorobiev and Yagodkina, 2005). It describes precipitation zone I on the equatorial 320 edge of the auroral oval and zone II on its polar edge. It turned out that precipitation of zone 2 321 forms the PW of HLT1, similar to the way the precipitation of zone I forms the PW of the MIT. 322 This point is key in the separation of MIT and HLT1.

As the boundaries of both zones change with longitude by 2.5° (*Luan et al.*, 2011), similar to the longitudinal variations in the MIT position, the analysis is most effective when performed in the framework of the longitudinal effect. The problem of the separation of MIT and HLT1 was 326 found to be radically different in the western and eastern hemispheres. In the western 327 hemisphere, the MIT is located at lower latitudes than in the eastern hemisphere and is 328 equatorward of the auroral oval. In the western hemisphere, the intensive precipitation forms a 329 very steep and high PW of the MIT. These conditions facilitate the separation of MIT and HLT. 330 In the eastern hemisphere, MIT shifts to high latitudes so that the region of its existence at 331 longitudes 30°–90°E overlaps with zone I of the precipitation and the region of HLT existence. 332 In addition, the weak precipitation at longitudes of 0°–90°E produces much less expressed and 333 irregular electron density structures. Therefore, at these longitudes, each case was considered 334 especially carefully, and the separation of MIT and HLT1 was carried out according to the 335 correspondence of the PW to the precipitation of zone I or II. The pattern is complicated by the 336 presence of a second high latitude trough (HLT2) described in (Grebowsky et al., 1983; Williams 337 et al., 1986). Fortunately, HLT2 differs in that it is relatively narrow in latitude $(3^{\circ}-4^{\circ})$.

338 The mid-latitude troughs (and sub-troughs) located equatorward of the MIT were also 339 clearly separated from the MIT for the first time. The main one among them is the RIT. It is 340 formed even after a weak enhancement of geomagnetic activity, and it can be observed for a long 341 time (sometimes for two days) at latitudes near L ~ 3 (*Karpachev*, 2021a, 2021b). It is no less 342 difficult to separate the MIT from the RIT than the MIT from the HLT, but the methodology for 343 such a separation has been carefully developed earlier (Karpachev, 2021a, 2021b). It is based 344 mainly on the prehistory of the disturbance development. Therefore, even the weak geomagnetic 345 disturbances during the period under consideration were carefully analyzed. Note that RITs are 346 more often formed at longitudes with a weak geomagnetic field, i.e., in the western hemisphere.

The quasi-trough is understood as an additional minimum of the electron density equatorward of the MIT, and it is often observed at the longitudes of America and Atlantic. It is assumed to be related to the decay of the electron density beyond the polar circle during the polar night. This minimum deepens the MIT and therefore prevents the determination of the exact position of the MIT. Finally, several troughs too far from the mean MIT position (<50°) were recorded, and they, apparently, belong to LLTs (*Karpachev*, 2021c).

The result of this analysis is a more accurate determination of the MIT position: the standard deviation of 1.85° is less than that in other statistical studies, and the scatter has decreased to $\pm 4^{\circ}$. This allows to significantly refine the model of the MIT position.

The study considers the structure of the ionosphere for limited conditions: high solar activity, winter, southern hemisphere, and near-midnight conditions. Preliminary analysis shows that the structure of evening and morning ionosphere is quite different from the considered structure. The same is particularly true for the daytime ionosphere. Consequently, this work should be

12

360 considered as a statement of the problem, which implies the need for further research. The 361 analysis of the structure of the evening and morning ionosphere is prepared for publication.

362

363

Acknowledgements. The author would like to thank sponsors and operators of the CHAMP
 mission; Deutsches GeoForschungsZentrum (GFZ) Potsdam and German Aerospace Center
 (DLR).

Open research. The CHAMP satellite carried out *in situ* measurements of electron
 concentration *Ne* (Rother and Michaelis, 2019). The CHAMP data are available on the website:
 https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:4522906.

370 371

372 **References**

- Aa, E., Zou, S., Erickson, P., Zhang, S-R., and Liu, S. (2020), Statistical analysis of the main
- ionospheric trough using Swarm in situ measurements, J. Geophys. Res., 125,

375 e2019JA027583. doi.org/10.1029/2019JA027583.

Ahmed, M., Sagalyn, R.C., Wildman, P.J.L., and Burke, W.J. (1979), Topside ionospheric
trough morphology: occurrence frequency and diurnal, seasonal and altitude variations. *J.*

378 *Geophys. Res.*, 84(2), 489–498. doi.org/10.1029/JA084iA02p00489.

379 Deminov, M.G., and Shubin, V.N. (2018), Empirical model of the location of the main

ionospheric trough, *Geomagnetism and Aeronomy*, 36(4), 45–52.

381 doi.org/10.1134/S0016793218030064.

382 Grebowsky, J.M., Tailor, H.A., and Lindsay, J.M. (1983), Location and source of ionospheric

383 high latitude troughs, *Planet. Space Sci.*, *31*(1), 99–105. doi.org/10.1016/0032-

384 0633(83)90034-X.

- Karpachev, A.T., Deminov, M.G., and Afonin, V.V. (1996), Model of the mid-latitude
 ionospheric trough on the base of Cosmos-900 and Intercosmos-19 satellites data. *Adv. Space Res.*, 18(6). 221–230. doi.org/10.1016/0273-1177(95)00928-0.
- Karpachev, A.T. (2003), Dependence of the MIT shape on longitude, altitude, season, local time,
 solar and magnetic activity, *Geomagnetism and Aeronomy*, 43(2), 256–269.
- Karpachev, A.T., Klimenko, M.V., and Klimenko, V.V. (2018), Longitudinal variations of the
 ionospheric trough position, *Adv. Space Res.*, doi.org/ 10.1016/j.asr.2018.09.038.

392 Karpachev, A.T. (2019), Variations in the winter troughs' position with local time, longitude,

- and solar activity in the Northern and Southern hemispheres. J. Geophys. Res., 124(10).
- 394 8039–8055. doi.org/10.1029/2019JA026631.

- 395 Karpachev, A.T. (2021a), Dynamics of main and ring ionospheric troughs at the recovery phase
- 396 of storms/substorms. J. Geophys. Res., 126, e2020JA028079.
- 397 doi.org/10.1029/2020JA028079.
- Karpachev, A.T. (2021b), Statistical analysis of ring ionospheric trough characteristics. J. *Geophys. Res.*, 126(10), e2021JA029613. doi:10.1029/2021JA029613.
- 400 Karpachev, A.T. (2021c). Sub-auroral, mid-latitude, and low-latitude troughs during severe
 401 geomagnetic storms. *Remote Sensing.*, *13*(3), 534; doi.org/10.3390/rs13030534.
- Karpachev, A.T., Klimenko, M.V., Klimenko, V.V., Chirik, N.V., Zhbankov, G.A., and
 Pustovalova, L.V. (2022), Satellite model of foF2 in winter high-latitude ionosphere
 describing the trough structure. *Adv. Space Res.*, 69(1), 2-15. doi:10.1016/j.asr.2021.07.014.
- Kohnlein, W., and Raitt, W.J. (1977), Position of the mid-latitude trough in the topside
 ionosphere as deduced from ESRO-4 observations. *Planet. Space Sci.*, 25(5/6), 600–602.
 doi.org/10.1016/0032-0633(77)90069-1.
- 408 Luan, X., Wang, W., Burns, A., Solomon, S., Zhang, Y. Paxton, L. J. and Xu, J. (2011),
- 409 Longitudinal variations of nighttime electron auroral precipitation in both the Northern and
- 410 Southern hemispheres from the TIMED global ultraviolet imager. J. Geophys. Res., 116,
- 411 A03302, doi:10.1029/2010JA016051.
- 412 Moffett, R.J., and Quegan S. (1983), The mid-latitude trough in the electron concentration of the
- 413 ionospheric F-layer: A review of observations and modeling. J. Atmos. Terr. Phys., 45(5),
- 414 315–343. doi.org/10.1016/S0021-9169(83)80038-5.
- 415 Muldrew, D.B. (1965), F layer ionization troughs deduced from Alouette data. J. Geophys. Res.,
 416 70(11), 2635–2650. doi.org/10.1029/JZ070i011p02635.
- 417 Oksman, J. (1982). Apparent diurnal movements of the trough in total electron content (TEC) of
 418 the ionosphere. *Geophysica*, 19(1), 13–22.
- 419 Rodger, A.S., Brace, L.H., Hoegy, W.R., and Winningham, J.D. (1986), The poleward edge of
- 420 the mid-latitude trough its formation, orientation and dynamics. J. Atmos. Terr.
- 421 Phys., 48(8), 715–728. doi.org/10.1016/0021-9169(86)90021-8.
- 422 Rodger, A.S., Moffett, R.J. and Quegan, S. (1992), The role of ion drift in the formation of
- 423 ionisation troughs in the mid-and high-latitude ionosphere a review. J. Atmos. Terr. Phys.,
- 424 54(1), 1–30. doi.org/10.1016/0021-9169(92)90082-V.
- Rother, M., Michaelis, I. (2019). CH-ME-2-PLPT CHAMP Electron Density and Temperature
 Time Series in Low Time Resolution (Level 2). GFZ Data Services.
- 427 Slater, D.W., Smith, L.L., and Kleckner, E.E. (1980), Correlated observations of the equatorward
- 428 diffuse auroral boundary. J. Geophys. Res., 85(2), 531–542.
- 429 doi.org/10.1029/ja085ia02p00531.

- 430 Vorobjev, V.G. and Yagodkina, O.I. (2005), Effect of magnetic activity on the global
- distribution of auroral precipitation zones. *Geomagnetism and Aeronomy*, 45(4), 467–473.
- 432 Vorobjev, V.G., and Yagodkina, O.I. (2010), Seasonal and diurnal (UT) variation in the 433 boundaries of the auroral precipitation and polar cup. *Geomagnetism and Aeronomy*, 50(5),
- 434 625–633. doi.org/10.1134/S0016793210050063.
- 435 Werner, S., and Prolss, G.W. (1997), The position of the ionospheric trough as a function of
- 436 local time and magnetic activity. *Adv. Space Res.*, 20(9), 1717–1722. doi.org/10.1016/S0273437 1177(97)00578-4.
- Williams, P.J.S., and Jain, A.R. (1986), Observations of the high latitude trough using EISCAT. *J. Atmos. Terr. Phys.*, 48(5), 423–434. doi.org/10.1016/0021-9169(86)90119-4.
- 440 Yang, N., Le, H. and Liu, L. (2015), Statistical analysis of ionospheric mid-latitude trough over
- the Northern hemisphere derived from GPS total electron content data. *Earth, Planets and*
- 442 *Space*, *67*, 196. doi.org/10.1186/s40623-015-0365-1.
- 443