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Abstract

Climate change may alter access to safe drinking water, with important implications for health. We assessed the relationship

between temperature and rainfall and utilization of basic drinking water (BDW) in The Gambia, Mozambique, Pakistan, and

Kenya. The outcomes of interest were 1) whether the reported drinking water source used in the past two weeks met the World

Health Organization definition of BDW and 2) use of a BDW source that was always available. Temperature and precipitation

data were compiled from weather stations and satellite data and summarized to account for long- and short-term weather

patterns and lags. We utilized random forests and logistic regression to identify key weather variables that predicted outcomes

by site and the association between important weather variables and BDW use. Higher temperatures were associated with

decreased BDW use at three of four sites and decreased use of BDW that is always available at all four sites. Rainfall, both in

the long- and short-term, was associated with increased BDW use in three sites. We found evidence for interactions between

household wealth and weather variables at two sites, suggesting lower wealth populations may be more sensitive to weather-

driven changes in water access. Changes in temperature and precipitation can alter safe water use in low-resource settings –

investigating drivers for these relationships can inform efforts to build climate resilience.

Table 1. Description of drinking water use and general characteristics of the GEMS study
sites. Countries with sufficient variability (>10% and <90% of observations with Outcome 1
or Outcome 2) in the primary and secondary outcome to be included in analysis, are indicated
in bold.

Gambia Mali Mozambique Kenya India Bangladesh Pakistan

Number of Participants 2,598 4,097 1,976 3,359 3,582 3,859 3,096
Study Site Characteristics
Rural/Urban Rural Urban Rural Rural Urban Rural Urban
Population at risk 29,076 31,768 15,380 21,603 13,416 25,560 25,659
Area (km2) 1,084 16 500 500 10.5 374 10
Outcomes
Main source of water is an improved water source* 85.0 99.9 82.6 62.6 98.6 99.8 95.2
More than 30 minutes wait time for main source of water 8.6 2.6 15.9 19.7 8.4 0.1 19.3
Main source of water is always available 54.2 94.3 59.7 90.3 1.0 99.9 62.4
Main source of water is basic drinking water** (Outcome 1) 77.4 97.2 68.9 55.0 90.5 99.6 76.4
Main source of water is basic drinking water that is always available (Outcome 2) 35.0 92.3 41.5 46.9 1.0 99.6 45.7
Included in analysis Yes No Yes Yes No No Yes
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*Improved water sources include: Piped water, boreholes or tubewells, protected dug wells,
protected springs, rainwater, and packaged or delivered water.

**Basic drinking water is defined as drinking water from an improved source, where collection
time is not more than 30 minutes.

***Sites were included in our analysis if they had sufficient variability in the outcomes of
interest (>10% and<90% of observations with Outcome 1 or Outcome 2).

Table 2. Variables included in Random forests models

Variables Variable name in RF plot Variable format Lag

Rainfall variables
Mean two-week precipitation biweekly p Continuous 0
Mean four-week precipitation fourweekly p Continuous 0
Mean eight-week precipitation eightweekly p Continuous 0
Mean two-week precipitation, lagged one week biweekp lag1 Continuous 1 week
Mean two-week precipitation, lagged two weeks biweekp lag2 Continuous 2 weeks
Mean four-week precipitation, lagged one week fourweekp lag1 Continuous 1 week
Mean four-week precipitation, lagged two weeks fourweekp lag2 Continuous 2 weeks
Days since previous rainfall preraindays Continuous 0
Maximum one-day rainfall in previous two weeks max 2 Continuous 0
Maximum one-day rainfall in previous four weeks max 4 Continuous 0
Number of high precipitation days (over 95th percentile) in previous two weeks sum high p Continuous 0
Temperature Variables
Mean two-week temperature biweekly t Continuous 0
Mean four-week temperature fourweekly t Continuous 0
Mean two-week temperature, lagged one week biweekt lag1 Continuous 1 week
Mean two-week temperature, lagged two weeks biweekt lag2 Continuous 2 weeks
Mean four-week temperature, lagged one week fourweekt lag1 Continuous 1 week
Mean four-week temperature, lagged two weeks fourweekt lag2 Continuous 2 weeks
Number of high temperature days (over 95th percentile) in previous two weeks sum high Continuous 0
Number of low temperature days (below 5th percentile) in previous two weeks sum low Continuous 0
Other Variables
Case/Control status Type Dichotomous N/A
Maternal education level educat Categorical N/A
Socio-economic index wealth Continuous N/A
Month and year of observation monthyear Continuous N/A

Figure 1. Main sources of water use by site. Sources in blue indicate those categorized as an
“improved water source” by the WHO.
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Figure 2. Weekly temperature (red) and precipitation (blue) over the study period, by site

Table 3. Top ten most important predictor variables of basic drinking water use (outcome 1)
and using basic drinking water that is always available (outcome 2) identified using random
forests models and model parameters by site and outcome, dark red = 1stmost important,
light yellow = 10th most important.

Variable The Gambia The Gambia Mozambique Mozambique Kenya Kenya Pakistan Pakistan

Outcome Modeled 1 2 1 2 1 2 1 2
Demographic Variables Demographic Variables Demographic Variables Demographic Variables Demographic Variables Demographic Variables Demographic Variables Demographic Variables Demographic Variables
Wealth 1 1 1 1 1 1 1 1
Maternal education 2 7 2 2 2 2 2
Case/Control 2 4 3 9 8
Temperature Variables Temperature Variables Temperature Variables Temperature Variables Temperature Variables Temperature Variables Temperature Variables Temperature Variables Temperature Variables
Two-week temp 5 2 8 8 6 7 4 3
Two-week temp, lag1 3 3 9 3 8 9 5 4
Two-week temp, lag2 4 4 4 7 10 6 6
Four-week temp 9 8 7
Four-week temp, lag1 6 10 10 9 10 10

3
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Variable The Gambia The Gambia Mozambique Mozambique Kenya Kenya Pakistan Pakistan

Four-week temp, lag2 7 5 7 5 10 6 7 9
Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables
Days since rainfall 8 8 4 3 5
Two-week precip 5
Two-week precip, lag1 9 6 3 6
Two-week precip, lag2 10 5 5 4
Four-week precipitation 10
Four-week precip, lag1 6 7
Four-week precip, lag2 9 8
Eight-week precip 3
Model Parameters Model Parameters Model Parameters Model Parameters Model Parameters Model Parameters Model Parameters Model Parameters Model Parameters
Number of trees 250 250 500 250 500 500 250 250
Number of variables tried 15 15 14 11 14 12 15 17
OOB error (%) 4.55 11.86 8.68 10.21 16.93 19.18 7.29 17.82
Validation error (%) 5.00 13.50 9.00 9.95 18.00 21.10 6.80 18.30

Table 4. Magnitude and direction of associations between most important variables from
random forest analysis and basic drinking water use (Outcome 1), adjusted for wealth, by
site. Associations are odds ratios and 95% confidence intervals comparing the highest quar-
tile/category to the lowest quartile/category of each variable. When, in tests for linearity, no
difference was seen between adjacent categories, quartiles were collapsed and we provide ORs
comparing the highest to lowest category (detailed descriptions of variable specification are
provided in supplemental tables 2 - 5). Colors indicate direction and strength of association:
red = decreased basic drinking water use; blue = increased basic drinking water use. Grey
indicates association untested because the variable was not identified as an important predic-
tor in random forests. White cells indicate the association was tested but was not statistically
significant.

Variable The Gambia Mozambique Kenya Pakistan

Demographic Variables Demographic Variables Demographic Variables Demographic Variables Demographic Variables
Increasing wealth 3.38 (2.43, 4.71) 1.61 (1.28, 2.04) 1.19 (1.01, 1.39) 2.62 (2.03, 3.38)
Maternal education* 1.67 (1.26, 2.21) 2.90 (2.12, 3.97) 1.68 (1.27, 2.23)
Case (vs. control) 0.74 (0.64, 0.85)
Temperature Variables Temperature Variables Temperature Variables Temperature Variables Temperature Variables
Two-week temperature 0.77 (0.62, 0.96) 0.49 (0.40, 0.59) 0.72 (0.59, 0.89)
Two-week temperature with 1-week lag 0.65 (0.53, 0.79) 0.66 (0.53, 0.81)
Two-week temperature with 2-week lag 1.51 (1.05, 2.19) 0.70 (0.58, 0.85) 0.67 (0.54, 0.82)
Four-week temperature 0.68 (0.55, 0.83)
Four-week temperature with 1-week lag 0.66 (0.57, 0.76) 0.61 (0.49, 0.76)
Four-week temperature with 2-week lag 0.71 (0.61, 0.81) 0.64 (0.51, 0.79)
Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables
Previous days since rain 0.71 (0.56, 0.90)
Two-week precipitation
Two-week precipitation with 1-week lag
Two-week precipitation with 2-week lag 1.36 (1.10, 1.68) 2.59 (2.12, 3.15)
Four-week precipitation
Four-week precipitation with 1-week lag 1.28 (1.03, 1.60)
Four-week precipitation with 2-week lag,
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Variable The Gambia Mozambique Kenya Pakistan

Eight-week precipitation 3.95 (3.21, 4.86)

*Maternal education was categorized, based on relevant schooling in each region, in three categories in the
Gambia, Mozambique and Kenya, and four categories in Pakistan. Estimates compare the highest to lowest
maternal education group for each region. Details are provided in Supplemental Tables 2-5.

Table 5. Magnitude and direction of associations between most important variables from ran-
dom forest analysis and using basic drinking water which is always available (Outcome 2),
adjusted for wealth, by site. Associations are odds ratios and 95% confidence intervals com-
paring the highest quartile/category to the lowest quartile/category of each variable. When,
in tests for linearity, no difference was seen between adjacent categories, quartiles were col-
lapsed and we provide ORs comparing the highest to lowest category (detailed descriptions
of variable specification are provided in supplemental tables 6 - 9). Colors indicate direction
and strength of association: red = decreased basic drinking water use; blue = increased basic
drinking water use. Grey indicates association untested because the variable was not identified
as an important predictor in random forests. White cells indicate the association was tested
but was not statistically significant.

Variable Gambia Mozambique Kenya Pakistan

Demographic Variables Demographic Variables Demographic Variables Demographic Variables Demographic Variables
Increasing wealth 0.46 (0.35, 0.62) 2.24 (1.73, 2.89) 1.24 (1.02, 1.50) 1.84 (1.50, 2.26)
Increasing education levels 1.36 (1.05, 1.77) 2.48 (1.85, 3.32) 1.38 (1.13, 1.70)
Case (vs. control) 0.44 (0.36, 0.54) 0.76 (0.66, 0.87) 0.75 (0.65, 0.87)
Temperature Variables Temperature Variables Temperature Variables Temperature Variables Temperature Variables
Two-week temperature 0.51 (0.36, 0.71) 0.77 (0.60, 0.99) 0.51 (0.42, 0.62) 0.87 (0.73, 1.04)
Two-week temperature with 1-week lag 0.73 (0.52, 1.03) 0.78 (0.60, 1.00) 0.67 (0.59, 0.78) 0.73 (0.63, 0.85)
Two-week temperature with 2-week lag 0.66 (0.47, 0.92) 0.81 (0.68, 0.97) 0.73 (0.60, 0.88) 0.67 (0.54, 0.82)
Four-week temperature 0.76 (0.62, 0.93) 0.73 (0.63, 0.85)
Four-week temperature with 1-week lag 0.79 (0.65, 0.96) 0.69 (0.69, 0.80)
Four-week temperature with 2-week lag 0.68 (0.60, 0.79) 0.68 (0.59, 0.79)
Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables Precipitation Variables
Previous weeks since rain 0.72 (0.59, 0.88)
Two-week precipitation 2.77 (2.27, 3.37)
Two-week precipitation with 1-week lag 0.75 (0.64, 0.88)
Two-week precipitation with 2-week lag 2.06 (1.70, 2.51)
Four-week precipitation 0.74 (0.60, 0.91)
Four-week precipitation with 1-week lag
Four-week precipitation with 2-week lag 0.79 (0.64, 0.97) 2.29 (1.88, 2.79)
Eight-week precipitation

* Grey indicates association untested because the variable was not identified as an important predictor.
White cells indicate the association was tested but was not statistically significant.

** Previous weeks since rain recalculated from previous days since rainfall used in RF model.

Figure 3. Potential pathways by which temperature or rainfall could impact availability and
use of water sources
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water-source-a-multi-country-analysis
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Abstract 26 

Climate change may alter access to safe drinking water, with important implications for health. We 27 

assessed the relationship between temperature and rainfall and utilization of basic drinking water 28 

(BDW) in The Gambia, Mozambique, Pakistan, and Kenya. The outcomes of interest were 1) whether the 29 

reported drinking water source used in the past two weeks met the World Health Organization 30 

definition of BDW and 2) use of a BDW source that was always available. Temperature and precipitation 31 

data were compiled from weather stations and satellite data and summarized to account for long- and 32 

short-term weather patterns and lags. We utilized random forests and logistic regression to identify key 33 

weather variables that predicted outcomes by site and the association between important weather 34 

variables and BDW use.  Higher temperatures were associated with decreased BDW use at three of four 35 

sites and decreased use of BDW that is always available at all four sites. Rainfall, both in the long- and 36 

short-term, was associated with increased BDW use in three sites. We found evidence for interactions 37 

between household wealth and weather variables at two sites, suggesting lower wealth populations 38 

may be more sensitive to weather-driven changes in water access.  Changes in temperature and 39 

precipitation can alter safe water use in low-resource settings – investigating drivers for these 40 

relationships can inform efforts to build climate resilience.  41 

 42 
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1 INTRODUCTION 48 

Reducing the climate impacts on diarrheal diseases is important, as the burden of diarrheal 49 

diseases is high: in 2019, 1.5 million people died from diarrheal disease, with the greatest burden of 50 

deaths occurring among children under five years of age (1). Investments in water, sanitation and 51 

hygiene (WASH) have been promoted as a way to build resilience to climate variability and change, 52 

based on the idea that provision of reliable and safe drinking water sources will reduce vulnerability to 53 

enteric diseases in a future with more extremes of rainfall, high temperature and drought (2). This is 54 

grounded in two evidence streams. First, there is strong evidence that high temperature, rainfall, and 55 

drought increase the risk of diarrheal diseases (3-5). Growing evidence suggests that rainfall, in 56 

particular, may impact diarrheal illness via exposures to pathogens in drinking water (6, 7). Second, it is 57 

well established that access to safe drinking water can reduce diarrheal diseases: a recent analysis 58 

identified unsafe drinking water as the leading environmental risk factor for diarrheal diseases, with 59 

approximately 75% of diarrhea-related deaths attributed to use of unsafe drinking water (8). WASH 60 

interventions, including providing improved drinking water systems, are associated with significant 61 

improvements in early childhood health, including decreases in diarrheal diseases (9).  62 

However, the ways in which temperature and rainfall impact the use and availability of safe 63 

drinking water are poorly characterized. We hypothesize that meteorological conditions, such as periods 64 

of low rainfall, can impact the availability and use of different drinking water sources. Understanding 65 

this relationship is important because while there is considerable evidence that rainfall can compromise 66 

water quality through fecal contamination (10, 11), less is known about how different weather 67 

conditions alter the use of different types of drinking water sources. If people are using more or less safe 68 

water sources under different weather conditions, this can alter the impacts of WASH investments on 69 

health and climate vulnerability. 70 

Prior work has found evidence of seasonal patterns in drinking water use, but the results are 71 

inconsistent. Qualitative research into WASH uptake has frequently identified seasonal factors including 72 

temperature, rain, flooding, water scarcity, and seasonal field-work as influencing WASH uptake, 73 

desirability and feasibility (12-20). A number of these studies have found evidence that seasonality 74 

directly influences water-source choice. For example in India, treated water is preferred in the rainy 75 

season due to perception of decreased water quality following rain (11).  76 

There is also evidence that seasonality influences water availability. In some sites in Ghana, 77 

Kenya, and Zambia, less safe water sources were used in the rainy season due to failure of solar-78 

powered pumps (21). Quantitative studies are limited.  Several studies indicate preference for surface 79 

water sources during the rainy season or after heavy rainfalls, even when groundwater sources were 80 

available (23-25). Surface water sources are often more convenient and available free of cost but are 81 

vulnerable to fecal contamination (25). Rainy season was associated with increased rainwater use in the 82 

Pacific (26) and increased surface water usage in East Africa (27, 28). Drought, which is happening with 83 

greater frequency and severity, can lead to limited water availability (30, 32), and increased 84 

contamination (33). Additionally, season is known to impact the ability of communities to maintain 85 

water sources and latrines, with stressors in both rainy and dry seasons (21, 34, 35).  Despite substantial 86 

qualitative evidence supporting seasonal changes in water source selection, there is limited quantitative 87 

research on how changing meteorological conditions affect water source use and access.   88 



In this study, we aim to evaluate how meteorological conditions including high temperature and 89 

drought impact the use and availability of drinking water sources across four diverse locations in Asia 90 

and Africa. Because research on this topic has been limited and the evidence to date is inconsistent, we 91 

adopted an analytical framework that allowed us to consider a large set of candidate predictors, 92 

describing long- and short-term rainfall and precipitation patterns. This approach is designed to be 93 

hypothesis generating, facilitating identification of key predictors for investigation in future studies, 94 

while avoiding the perils of multiple hypothesis testing. We used a standard World Health Organization 95 

definition of basic drinking water and water that is always available to ensure the generalizability of our 96 

findings to global safe water standards. Given the well-recognized role of socio-economic status in 97 

access to safe drinking water we included this as a predictor and tested for evidence that socio-98 

economic status modifies the relationship between climate variables and basic water use.   99 

 100 

2 METHODS 101 

This analysis utilizes data from the Global Enteric Multicenter Study (GEMS) of moderate-to-102 

severe diarrheal disease (MSD) in infants and young children in developing countries (36) as well as in 103 

situ and modeled meteorological data to assess the relationship between weather and the utilization of 104 

and access to improved water sources.  105 

2.1 Study Population:  106 

Household drinking water use behaviors were drawn from GEMS. GEMS was conducted in seven 107 

countries (Kenya, Mali, Mozambique, The Gambia, Bangladesh, India, and Pakistan) with moderate-to-108 

high under-five child mortality to study enteric disease epidemiology and has been described at length 109 

(36).  110 

In brief, GEMS was a 3 year (Dec 2007 to March 2011), prospective, age-stratified, matched 111 

case-control study of MSD among children 0–59 months of age belonging to a geographically-defined 112 

censused population that varied in size from 10 km2 to 1,084 km2 (Table 1).  Cases were systematically 113 

enrolled from those meeting the case definition of MSD and seeking care at hospitals and health 114 

centers. For each case, one to three controls were randomly selected from a demographic surveillance 115 

system to serve as controls. Controls were enrolled within 14 days of the index case and matched to 116 

cases by age, gender, and location. Upon enrollment, parents or primary caretakers of cases and 117 

controls were administered a detailed survey to assess demographics, household wealth indicators, and 118 

water usage. At a follow-up visit 50-90 days after enrollment, water usage questions were asked again 119 

but water collection time was collected only at enrollment. 120 

Because cases and controls were enrolled year-round over a 36-month period and asked about 121 

water sources, availability and fetching times over the past two weeks, this presents a unique 122 

opportunity to assess temporal variation in drinking water source use. This analysis includes data from 123 

all participating households. While GEMS participants may not represent a true random sample of the 124 

population, both cases and controls were evenly sampled throughout the year and selected based on 125 

the date of case-illness and thus any selection bias related to weather variables is assumed to be 126 

uniform between cases and controls.  127 

2.2 Basic water use:  128 



The primary outcome of interest was whether a household’s reported main source of drinking 129 

water used in the past two weeks meets the WHO definition of “Basic Drinking Water” (BDW) (37). BDW 130 

is defined as drinking water from an improved source, provided collection time is not more than 30 131 

minutes, with improved sources including piped water, boreholes, tubewells, protected dug wells, 132 

protected springs, rainwater, and packaged water.  133 

Water source type was assessed with the question “During the last two weeks, what was the 134 

main source of drinking water for the members of your household?” at enrollment. Only one answer 135 

was allowed. Water collection time was collected with the question, “How long does it take to go there 136 

[main source of drinking water], get water, and come back?”.  137 

As a secondary outcome, we examined the availability of BDW. Water availability was 138 

determined from the question, “In the last two weeks, how often has this water been available from this 139 

main source?” For this outcome, a household was classified as using BDW that is always available if their 140 

main water source met the above criteria for BDW and they reported the source was always available. 141 

Notably, this definition does not include any measure of drinking water quality. BDW sources have been 142 

known to be contaminated at the point of collection and/or point of use with fecal bacteria: a recent 143 

meta-analysis indicated that 10% of improved sources may contain over 100 E. coli or TTC per 100 ml, 144 

well above safe drinking water standards (38). Therefore, this data set cannot identify water that is free 145 

of unsafe contamination.  146 

We first examined the distribution of each outcome at each site. We restricted our analysis to 147 

sites with sufficient variability in both of the outcomes of interest (defined as having between 10% and 148 

90% using BDW and between 10% and 90% using BDW that is always available). Only four sites (The 149 

Gambia, Mozambique, Kenya, and Pakistan) met this criterion and were included in this paper (Table 1).  150 

Table 1. Description of drinking water use and general characteristics of the GEMS study sites. 151 

Countries with sufficient variability (>10% and <90% of observations with Outcome 1 or Outcome 2) in 152 

the primary and secondary outcome to be included in analysis, are indicated in bold. 153 

 Gambia 
 

Mali 
 

Mozambique 
 

Kenya 
 

India  Bangladesh  
Pakistan 

 

Number of 
Participants 

2,598 4,097 1,976 3,359 3,582 3,859 3,096 

Study Site 
Characteristics 

       

Rural/Urban Rural Urban Rural Rural Urban Rural Urban 

Population at risk 29,076 31,768 15,380 21,603 13,416 25,560 25,659 

Area (km2) 1,084 16 500 500 10.5 374 10 

Outcomes        

Main source of 
water is an 
improved water 
source* 

85.0 99.9 82.6 62.6 98.6 99.8 95.2 

More than 30 
minutes wait time 

8.6 2.6 15.9 19.7 8.4 0.1 19.3 



for main source of 
water 

Main source of 
water is always 
available 

54.2 94.3 59.7 90.3 1.0 99.9 62.4 

Main source of 
water is basic 
drinking water** 
(Outcome 1) 

77.4 97.2 68.9 55.0 90.5 99.6 76.4 

Main source of 
water is basic 
drinking water 
that is always 
available 
(Outcome 2) 

35.0 92.3 41.5 46.9 1.0 99.6 45.7 

Included in 
analysis 

Yes No Yes Yes No No Yes 

*Improved water sources include: Piped water, boreholes or tubewells, protected dug wells, 154 

protected springs, rainwater, and packaged or delivered water. 155 

**Basic drinking water is defined as drinking water from an improved source, where collection time is 156 

not more than 30 minutes. 157 

***Sites were included in our analysis if they had sufficient variability in the outcomes of interest 158 

(>10% and <90% of observations with Outcome 1 or Outcome 2). 159 

2.3 Meteorological Data:  160 

Precipitation data come from a gridded product that combines satellite measurements and rain 161 

gauges: the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (39). Daily 162 

precipitation (mm) at a resolution of 0.05 degree (~5 km) was acquired for the years 2007 through 2011. 163 

A daily precipitation record for each study site was calculated by taking the mean spatial mean across a 164 

rectangular area encompassing the northmost, southmost, eastmost, and westmost points of the study 165 

site.  166 

Temperature data were compiled from weather stations nearest to each study site. NOAA had 167 

available weather station data for three of the four study sites (40). For the fourth site, Kenya, the 168 

nearest weather station with NOAA data available was ~100 Km from the study, so the Kenya Medical 169 

Research Institute daily temperature records were used. To account for missing data in the weather 170 

station temperature records, data were infilled with temperature data from the 0.25 degree forcing 171 

dataset for version 1 of the Global Land Data Assimilation System (GLDAS) (41). The Mozambique site 172 

was missing 34% of observations for temperature from the weather stations. GLDAS data was highly 173 

correlated with observed temperatures from NOAA (R2 = 0.86) and linearly transformed (temp = 174 

1.03*(GLDASvalue C°)+1.45) to fill in missing observed temperatures. Only 4% of the temperature 175 

observations from Kenya were missing, and GLDAS data was linearly transformed with the following 176 

equation: temp = 0.48*(GLDASvalue mm) + 13.3 to infill the missing data points. Pakistan and Gambia 177 

had excellent observational coverage (<1% of days missing), and so were not infilled.  178 



We posited that BDW use may be impacted both by seasonal rainfall and temperature patterns 179 

as well as by short-term meteorological events. For example, months-long dry periods may reduce 180 

surface water availability and prolonged heat may favor evaporative processes over groundwater 181 

recharge. Recent rainfall may favor use of surface water and replenished shallow ground water sources. 182 

We also posited that there are likely lags between rainfall, temperature and water use, given the time 183 

required for recharge of improved water sources. For this reason, we defined a set of meteorological 184 

variables that capture potential long-term and short-term conditions defining temperature and rainfall 185 

conditions over two, four and eight-week periods, and also considered lags of zero, one and two weeks 186 

(Table 2). 187 

Table 2. Variables included in Random forests models 188 

Variables Variable name in RF 
plot 

Variable format Lag 

Rainfall variables    

Mean two-week precipitation biweekly_p Continuous 0 

Mean four-week precipitation fourweekly_p Continuous 0 

Mean eight-week precipitation eightweekly_p Continuous 0 

Mean two-week precipitation, 
lagged one week 

biweekp_lag1 Continuous 1 week 

Mean two-week precipitation, 
lagged two weeks 

biweekp_lag2 Continuous 2 weeks 

Mean four-week precipitation, 
lagged one week 

fourweekp_lag1 Continuous 1 week 

Mean four-week precipitation, 
lagged two weeks 

fourweekp_lag2 Continuous 2 weeks 

Days since previous rainfall preraindays Continuous 0 

Maximum one-day rainfall in 
previous two weeks 

max_2 Continuous 0 

Maximum one-day rainfall in 
previous four weeks 

max_4 Continuous 0 

Number of high precipitation days 
(over 95th percentile) in previous 
two weeks 

sum_high_p Continuous 0 

Temperature Variables    

Mean two-week temperature biweekly_t Continuous 0 

Mean four-week temperature fourweekly_t Continuous 0 

Mean two-week temperature, 
lagged one week 

biweekt_lag1 Continuous 1 week 

Mean two-week temperature, 
lagged two weeks 

biweekt_lag2 Continuous 2 weeks 

Mean four-week temperature, 
lagged one week 

fourweekt_lag1 Continuous 1 week 

Mean four-week temperature, 
lagged two weeks 

fourweekt_lag2 Continuous 2 weeks 



Number of high temperature days 
(over 95th percentile) in previous 
two weeks 

sum_high Continuous 0 

Number of low temperature days 
(below 5th percentile) in previous 
two weeks 

sum_low Continuous 0 

Other Variables    

Case/Control status Type Dichotomous N/A 

Maternal education level educat Categorical N/A 

Socio-economic index wealth Continuous N/A 

Month and year of observation monthyear Continuous N/A 

 189 

2.4 Demographic data:  190 

Household socioeconomic status (SES) and maternal education were included as potential 191 

predictors of BDW use and access as SES has previously been found to be an important predictor of 192 

water access (42, 43). An asset-based SES index was calculated for each site using PCA incorporating 193 

standard economic indicator variables (44) including household assets, and household population. 194 

Distribution of indicators varied substantially between sites, thus some indicators were excluded for 195 

some sites due to a lack of variability (either no ownership, or complete saturation of the indicator) at 196 

the given site (Supplemental Table 1). For each site we utilized the first principal component which 197 

explained the greatest percentage of variance across the population as the wealth index. Maternal 198 

education level was collected in the survey as a 7-level categorical variable with categories: No formal 199 

schooling, less than primary, completed primary, completed secondary, post-secondary, religious 200 

education only, or unknown. Maternal education level was categorized based on the education 201 

distribution by site, these categories were not the same between sites due to differences in the 202 

distribution of education level between sites.  203 

Date of survey was included in models in order to account for other time-dependent changes in 204 

water use not captured by weather variables (i.e. political or infrastructural changes that may take place 205 

over time). SES, maternal education, and case-status were all examined as potential predictors.  206 

2.5 Analysis: 207 

Given the large number of potential predictor variables, and the limited research to date on this 208 

topic, we opted to employ an analytical approach to identify key predictors and assess the magnitude 209 

and direction of the association between key predictors and the outcome of interest. This has the 210 

advantage of allowing us to consider a wide array of candidate predictors, avoids the perils of multiple 211 

hypothesis testing, and is intended to narrow the list of key meteorological conditions that could be 212 

pursued with more focused causal models in subsequent studies. To this end, we conducted random 213 

forests (RF) machine learning to identify the most important rainfall and temperature variables for 214 

predicting the use of 1) BDW or 2) BDW always available by site. RF requires data to be balanced in 215 

respect to the outcome (i.e. approximately equal proportions using BDW as not), and as only a fraction 216 

of the population at each site reported using BDW, data was weighted and resampled for each site to 217 

achieve balanced datasets for RF. RF models included all rainfall and temperature variables, as well as 218 

SES, maternal education level, date, and case/control status. Data was split 70%/30% into training and 219 



validation sets: models were constructed using the training datasets and tuned by varying the number of 220 

trees created and the number of variables randomly sampled at each stage. Final RF models were 221 

selected based on out of bag error rate using the validation dataset, and models with the lowest error 222 

rate were used to identify most important variables. We then selected the ten variables with highest 223 

mean decrease in accuracy values from the final RF models to examine for direction of association with 224 

BDW use in logistic regression.  225 

We constructed logistic regression models, incorporating the ten most important variables from 226 

RF for each outcome, in order to assess the direction and magnitude of the associations between the 227 

key predictors and our outcome of interest. We first generated unadjusted estimates of associations 228 

between BDW use and each important independent variable using logistic regression, dividing all 229 

continuous independent variables into quartiles, based on the spread of the data. This approach avoids 230 

the assumption of linearity and allows us to identify more complex relationships between variables (e.g., 231 

thresholds). We modeled the independent variable as continuous when linear relationships were 232 

evident. Additionally, when no difference was seen between adjacent categories, we collapsed quartiles 233 

into fewer categories. SES was categorized into high (top 25% of population), middle (middle 50% of 234 

population), low (lower 25% of population) and modeled as linear when justified. Education level was 235 

categorized into three or four groups based on the differences in the types of schooling between sites. 236 

Because SES was the most important predictor of BDW use at all sites, we adjusted all estimates for SES. 237 

Estimates were generated separately for each of the top ten variables at each site.  238 

We constructed multivariate logistic regression models, in order to identify relationships 239 

between exposure variables and BDW use, independent of other important variables. Effect 240 

modification was tested by including interaction terms in models. Variables that were statistically 241 

significant at p <= 0.1 in the SES-adjusted models were tested for inclusion in a final multivariate model. 242 

Variables were excluded from the model in order of least significance/effect on other variables, and 243 

then retested for inclusion in the final model. If two variables were collinear (variance inflation factor 244 

>5), the variable with the greater statistical significance was included, and the other was excluded. As a 245 

sensitivity analysis, we used the final model to test for evidence of effect modification by SES, case 246 

status, and education level. We repeated this process for Outcome 2, BDW that is always available. 247 

  248 



 249 

Figure 1. Main sources of water use by site. Sources in blue indicate those categorized as an 250 

“improved water source” by the WHO. 251 

 252 

3 RESULTS 253 

3.1 BDW use: 254 

Participants reported high use of improved drinking water sources at all sites, ranging from 63% 255 

in Kenya to 95% in Pakistan (Figure 1, Table 1). Main sources of drinking water varied by site (Figure 1); 256 

participants in Pakistan primarily used improved water sources that were piped (water was piped in 257 

from Karachi). In The Gambia, over half of households reported using a public tap for drinking water. 258 

Kenya and Mozambique had a wide range of reported water sources, including various wells and taps. 259 

Kenya was the only site with significant surface water and rainwater use. The percent of households 260 

using BDW (Outcome 1) ranged from 55% in Kenya to 77% in Gambia. Having a main source of water 261 

that was always available (Outcome 2) was lowest in The Gambia, with only 35% of participants 262 

reporting water was always available, and highest in Kenya (47%).  263 

3.2 Distribution of rainfall and temperature variables: 264 

Daily precipitation and temperature over the study period by site are shown in Figure 2. 265 

Temperature variability was lowest in Kenya (Figure 2b), with highest temperature variability seen in 266 

Pakistan (Figure 2a). Pakistan had very little rainfall compared to the other sites.  267 

  268 



 269 

Figure 2. Weekly temperature (red) and precipitation (blue) over the study period, by site 270 

 271 
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 282 

3.3 Outcome 1: BDW use: 283 

The best fitting RF model for rainfall and temperature-predictors of BDW use varied widely 284 

between sites (Table 3). Models were least predictive of water use outcomes in Kenya, with error rates 285 

as high as 19.2% in Kenya. Model fit was best for Outcome 1 in Gambia with 95% of observations in the 286 

validation dataset predicted correctly.    287 

Table 3. Top ten most important predictor variables of basic drinking water use (outcome 1) and using 288 

basic drinking water that is always available (outcome 2) identified using random forests models and 289 

model parameters by site and outcome, dark red = 1st most important, light yellow = 10th most 290 

important.  291 

Variable The 
Gambia 

The 
Gambia 

Mozam
bique 

Mozam
bique 

Kenya Kenya Pakistan Pakistan 

Outcome Modeled 1 2 1 2 1 2 1 2 

Demographic Variables 

Wealth 1 1 1 1 1 1 1 1 

Maternal education 2 7 2   2 2 2 2 

Case/Control       2 4 3 9 8 

Temperature Variables 

Two-week temp 5 2 8 8 6 7 4 3 

Two-week temp, lag1 3 3 9 3 8 9 5 4 

Two-week temp, lag2 4 4   4 7 10 6 6 

Four-week temp   9         8 7 

Four-week temp, lag1 6 10 10   9   10 10 

Precipitation data obtained from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). Temperature data 

obtained from NOAA weather stations and missing temperature data was infilled from Global Land Data Assimilation System 

(GLDAS) for Kenya and Mozambique. 

a

) 
b

) 

d

) 
c

) 



Four-week temp, lag2 7 5 7 5 10 6 7 9 

Precipitation Variables 

Days since rainfall 8 8 4       3 5 

Two-week precip           5     

Two-week precip, lag1 9 6 3 6         

Two-week precip, lag2 10   5   5 4     

Four-week 
precipitation 

      10         

Four-week precip, 
lag1 

    6 7         

Four-week precip, 
lag2 

      9   8     

Eight-week precip         3       

Model Parameters 

Number of trees 250 250 500 250 500 500 250 250 

Number of variables 
tried 

15 15 14 11 14 12 15 17 

OOB error (%) 4.55 11.86 8.68 10.21 16.93 19.18 7.29 17.82 

Validation error (%) 5.00 13.50 9.00 9.95 18.00 21.10 6.80 18.30 

Most important variables from all RF models are summarized in Table 3. Wealth was the top 292 

predictor of BDW use for all four sites, followed by maternal education.  Both temperature and 293 

precipitation variables ranked in the top ten predictors for all four sites. Mean two-week temperature 294 

over the previous two weeks with no, one- or two- week lags was important in all RF models, as was 295 

mean four-week temperature with a one- and two-week lag. The most frequently selected precipitation 296 

measure was the number of days since the last rainfall and mean two-week rainfall lagged by two weeks 297 

(both selected in models for three of the four sites). Variables describing maximum temperature or high 298 

precipitation events including the number of high precipitation days, high temperature days, low 299 

temperature days, and the maximum two-and four-week precipitation were not in the top ten most 300 

important variables for any site. The variable for date was also not in the top ten most important 301 

variables for any site. 302 

Estimates of the strength and direction of the association between important variables and 303 

BDW use, based on logistic regression analysis, are shown in Table 4. Increasing household wealth was 304 

associated with increased use of BDW at all sites. Even after adjusting for household wealth, increasing 305 

maternal education was associated with increased BDW use in Mozambique, Kenya, and Pakistan.  306 

  307 



Table 4. Magnitude and direction of associations between most important variables from random 308 

forest analysis and basic drinking water use (Outcome 1), adjusted for wealth, by site. Associations are 309 
odds ratios and 95% confidence intervals comparing the highest quartile/category to the lowest quartile/category of each 310 
variable. When, in tests for linearity, no difference was seen between adjacent categories, quartiles were collapsed and we 311 
provide ORs comparing the highest to lowest category (detailed descriptions of variable specification are provided in 312 
supplemental tables 2 - 5). Colors indicate direction and strength of association: red = decreased basic drinking water use; 313 
blue = increased basic drinking water use. Grey indicates association untested because the variable was not identified as an 314 
important predictor in random forests. White cells indicate the association was tested but was not statistically significant. 315 

Variable The Gambia Mozambique Kenya Pakistan 

Demographic Variables 

Increasing wealth 3.38 (2.43, 4.71) 1.61 (1.28, 2.04) 1.19 (1.01, 1.39) 2.62 (2.03, 3.38) 

Maternal education*  1.67 (1.26, 2.21) 2.90 (2.12, 3.97) 1.68 (1.27, 2.23) 

Case (vs. control)   0.74 (0.64, 0.85)  

Temperature Variables 

Two-week temperature  0.77 (0.62, 0.96) 0.49 (0.40, 0.59) 0.72 (0.59, 0.89) 

Two-week temperature  
with 1-week lag 

  0.65 (0.53, 0.79) 0.66 (0.53, 0.81) 

Two-week temperature  
with 2-week lag 

1.51 (1.05, 2.19)  0.70 (0.58, 0.85) 0.67 (0.54, 0.82) 

Four-week temperature      0.68 (0.55, 0.83)  

Four-week temperature  
with 1-week lag 

  0.66 (0.57, 0.76) 0.61 (0.49, 0.76)  

Four-week temperature 
with 2-week lag 

  0.71 (0.61, 0.81) 0.64 (0.51, 0.79) 

Precipitation Variables 

Previous days since rain    0.71 (0.56, 0.90)  

Two-week precipitation         

Two-week precipitation 
with 1-week lag 

    

Two-week precipitation 
with 2-week lag 

 1.36 (1.10, 1.68) 2.59 (2.12, 3.15)  

Four-week precipitation        

Four-week precipitation 
with 1-week lag 

  1.28 (1.03, 1.60)   

Four-week precipitation 
with 2-week lag,  

       

Eight-week precipitation      3.95 (3.21, 4.86)   
*Maternal education was categorized, based on relevant schooling in each region, in three categories in the Gambia, 316 
Mozambique and Kenya, and four categories in Pakistan. Estimates compare the highest to lowest maternal education group 317 
for each region. Details are provided in Supplemental Tables 2-5. 318 

Increasing rainfall, both in the long- and short-term, was associated with increased use of BDW 319 

in Mozambique and Kenya and longer dry periods were associated with decreased use of BDW in 320 

Pakistan. Increasing temperatures were associated with decreased use of BDW in Mozambique, Kenya, 321 

and Pakistan. However, in The Gambia, BDW use increased when mean two-week temperature with a 322 

two-week lag was above 26.6 degrees C (the 25th percentile value) and no precipitation measure was 323 

associated with BDW use, adjusting for wealth. Estimates generated using linear exposure variables 324 

(when appropriate) were generally consistent with these findings (Supplemental Tables 2 – 5). 325 



Adjustment for other statistically significant weather and demographic variables had minimal 326 

effect on estimates of association in Mozambique or Pakistan (Supplemental Tables 3 & 5). In Kenya, 327 

after adjustment, education was included in the final model predicting BDW use, and SES was not. In 328 

Kenya, adjustment did lead to a change in the estimate of association for biweekly temperature with a 329 

two-week lag, but this is assumed to be a result of collinearity between that variable and biweekly 330 

temperature with no lag (Supplemental Table 4). In Gambia, biweekly temperature with a two-week lag 331 

was the only variable with a strong association with BDW use, so an adjusted model was not 332 

constructed (Supplemental Table 2). There was no evidence of effect modification by SES, wealth or case 333 

status on the relationship between weather variables and BDW use at any of the four sites. 334 

3.4 Outcome 2: Use of BDW that is always available: 335 

As with Outcome 1, wealth was the top predictor of using BDW that is always available, however 336 

maternal education was no longer the 2nd most important in Gambia and Mozambique. The same 337 

temperature and precipitation variables that were important for Outcome 1 were usually important for 338 

predicting Outcome 2, but Kenya and Mozambique both had long-term precipitation variables that were 339 

important for Outcome 2 which had not been important at any site for Outcome 1 (Table 3).   340 

Estimates of the strength and direction of the association between weather variables and use of 341 

BDW that is always available are shown in Tables 5. Increasing wealth was positively associated with 342 

Outcome 2 in three of the four sites; a negative association was seen in Gambia. Increasing education 343 

level was associated with increased use in Gambia, Kenya, and Pakistan. Households with moderate to 344 

severe diarrhea cases were significantly less likely to use BDW which was always available in three sites: 345 

Mozambique, Kenya, and Pakistan. Increasing temperature, on both a long and short scale, was 346 

consistently associated with decreased use of BDW that was always available at all study sites. The 347 

association between precipitation and Outcome 2 varied by site. Increasing long-term (four- and eight-348 

week) precipitation was associated with increased use of always available BDW in Kenya, and longer dry 349 

periods were associated with decreased use of always available BDW in Pakistan, however, in contrast 350 

to Outcome 1, increasing precipitation was associated with decreased use of BDW that is always 351 

available in Gambia and Mozambique.  352 

 Adjustment for other important variables had minimal effect on the association between 353 

weather variables and use of BDW that was always available in Kenya, Pakistan, and Gambia 354 

(Supplemental Tables 6, 8, 9). In Mozambique, there was evidence for qualitative interaction between 355 

case-status and biweekly temperature with a two-week lag (Supplemental Table 7a), such that the 356 

decreased use of always available BDW at higher temperatures was only seen among controls. In 357 

Pakistan, there was evidence of interaction between SES and case-status and moderate evidence that 358 

the association between the number of previous weeks since rain and use of BDW that is always 359 

available was most pronounced in the lowest SES group. Among those in the lowest SES category, high 360 

severity of drought (>6 weeks since rainfall) is associated with an OR = 0.47 (95% CI: 0.30, 0.74) for use 361 

of BDW that is always available, compared to having rainfall in the past week. Gambia similarly had 362 

evidence of interaction between education and SES, and the association between mean two-week 363 

temperature and Outcome 2 was most pronounced in those without any formal education, OR = 0.40 364 

(95%CI: 0.23, 0.70). Among those with any formal education, the OR = 1.28 (95%CI: 0.41, 3.96).   365 

Table 5. Magnitude and direction of associations between most important variables from random 366 

forest analysis and using basic drinking water which is always available (Outcome 2), adjusted for 367 



wealth, by site. Associations are odds ratios and 95% confidence intervals comparing the highest quartile/category to the 368 
lowest quartile/category of each variable. When, in tests for linearity, no difference was seen between adjacent categories, 369 
quartiles were collapsed and we provide ORs comparing the highest to lowest category (detailed descriptions of variable 370 
specification are provided in supplemental tables 6 - 9). Colors indicate direction and strength of association: red = decreased 371 
basic drinking water use; blue = increased basic drinking water use. Grey indicates association untested because the variable 372 
was not identified as an important predictor in random forests. White cells indicate the association was tested but was not 373 
statistically significant. 374 

Variable Gambia Mozambique Kenya Pakistan 

Demographic Variables 

Increasing wealth 0.46 (0.35, 0.62) 2.24 (1.73, 2.89) 1.24 (1.02, 1.50) 1.84 (1.50, 2.26) 

Increasing education levels 1.36 (1.05, 1.77)  2.48 (1.85, 3.32) 1.38 (1.13, 1.70) 

Case (vs. control)  0.44 (0.36, 0.54) 0.76 (0.66, 0.87) 0.75 (0.65, 0.87) 

Temperature Variables 

Two-week temperature 0.51 (0.36, 0.71) 0.77 (0.60, 0.99) 0.51 (0.42, 0.62) 0.87 (0.73, 1.04) 

Two-week temperature 
with 1-week lag 

0.73 (0.52, 1.03) 0.78 (0.60, 1.00) 0.67 (0.59, 0.78) 0.73 (0.63, 0.85) 

Two-week temperature 
with 2-week lag 

0.66 (0.47, 0.92) 0.81 (0.68, 0.97) 0.73 (0.60, 0.88) 0.67 (0.54, 0.82) 

Four-week temperature 0.76 (0.62, 0.93)   0.73 (0.63, 0.85) 

Four-week temperature 
with 1-week lag 

0.79 (0.65, 0.96)   0.69 (0.69, 0.80) 

Four-week temperature 
with 2-week lag 

  0.68 (0.60, 0.79) 0.68 (0.59, 0.79) 

Precipitation Variables 

Previous weeks since rain    0.72 (0.59, 0.88) 

Two-week precipitation   2.77 (2.27, 3.37)  

Two-week precipitation 
with 1-week lag 

0.75 (0.64, 0.88)    

Two-week precipitation 
with 2-week lag 

  2.06 (1.70, 2.51)  

Four-week precipitation  0.74 (0.60, 0.91)   

Four-week precipitation 
with 1-week lag 

    

Four-week precipitation 
with 2-week lag 

 0.79 (0.64, 0.97) 2.29 (1.88, 2.79)  

Eight-week precipitation         
* Grey indicates association untested because the variable was not identified as an important predictor. White cells indicate the 375 
association was tested but was not statistically significant. 376 
** Previous weeks since rain recalculated from previous days since rainfall used in RF model. 377 

4 DISCUSSION 378 

By combining weather data with a large population-based study of diarrheal disease in four 379 

countries, we found temperature and precipitation were significantly associated with the availability and 380 

use of BDW, however with different directions of association depending on the context. This study 381 

capitalized on a large population-level longitudinal dataset with thousands of observations per country, 382 

capturing a wide temporal and spatial range. Patterns in the availability and use of different water 383 

sources may be influenced by seasonality and short- and long-term rainfall variability.  384 



In this study, we had four key findings. 1) Across all countries, household socioeconomic status 385 

was by far the most important predictor of increased use of BDW, followed closely in importance by 386 

education status. Beyond predicting BDW overall, individuals with low SES were more vulnerable to 387 

prolonged dry periods (in Pakistan) or high temperatures (in The Gambia). In three of four locations 388 

studied, 2) as temperature increases, BDW use, and use of BDW that is always available decreases and 389 

3) increasing rainfall increased BDW use but did not always increase availability of BDW. Lastly, 4) in The 390 

Gambia the association between weather and BDW use did not follow the same patterns in most 391 

analyses – suggesting some water systems may be less impacted by weather than others. Notably, The 392 

Gambia had the highest BDW use (77%) of sites in our study, was the only location where >50% of the 393 

population reported using public tap, and had the lowest spatial resolution. As a result, it is unclear if 394 

the unique patterns seen in The Gambia are due to imprecision of our weather estimates or increased 395 

resilience to extreme weather. 396 

Figure 3. Potential pathways by which temperature or rainfall could impact availability and use of 397 

water sources  398 

 399 

 400 

There are numerous pathways by which climate change may lead to changes in use of and 401 

access to BDW sources (Figure 3). In some contexts, increasing temperatures may correlate with 402 

decreased surface water retention or shallow groundwater and motivate users toward less safe 403 

groundwater sources or less convenient water sources, alternately increasing temperatures may 404 

decrease motivation for seeking out safer sources and prompt fallback to more convenient sources of 405 

water including groundwater or open wells. Likewise, decreasing rainfall may result in surface water 406 

sources drying up, motivating use of other water sources that may or may not be protected. The 407 

evidence to date has shown that seasonal and long-term changes in temperature and rainfall can change 408 

the mix and convenience of available water sources for communities. A study in Ethiopia identified that 409 

water collection times increase during the dry season (27), and a qualitative study of water users and 410 

managers in Ghana, Kenya and Zambia reported less time collecting water in the rainy seasons (21). This 411 

is consistent with our findings that in three of four sites, BDW use decreased during hot periods and 412 



increased during wet period. However, both our study and the work of others suggest the impact of 413 

weather on BDW use and access is context specific. A study in South Africa found some households 414 

switch from more contaminated surface water to safer municipal water sources during the dry season 415 

(45). In several recent studies, researchers have examined patterns in use of groundwater boreholes in 416 

arid regions of Kenya and Ethiopia and compared these patterns to rainfall trends in the region. In these 417 

studies, an inverse relationship between use of electrical borehole pumps as well as handpumps and 418 

recent rainfall was observed, as well as overall seasonal trends in decreased groundwater pump use 419 

during rainy seasons (23, 24). These trends appear to reflect behavioral choices to use surface water 420 

sources when available, and do not, generally, reflect an intrinsic hydrologic relationship between 421 

rainfall and aquifer recharge. Notably, this behavior has been observed as a risk to professional drinking 422 

water services as users may be less willing to pay for improved water sources when unimproved surface 423 

water sources are seasonally available (46). In this study, rainfall was not predictive of BDW at the site 424 

with the greatest baseline access to BDW, underscoring the importance of work to understand how the 425 

mix of available water sources impacts climate vulnerability. 426 

4.1 Limitations: 427 

This study has several important limitations. Although we tried to standardize our definition of 428 

water sources using the World Health Organization categories of improved water source, the categories 429 

are not perfect and do not distinguish between “improved” drinking water sources and water that is 430 

free of unsafe contamination. We were unable to measure contamination directly and the water sources 431 

were not observed by study staff. Unfortunately, given the data set available, verifying the nature of 432 

these water sources was beyond the scope of our analysis. Future studies examining these questions 433 

would benefit from testing and observing the water sources. Further, these improved BDW sources 434 

include protected surface water sources, and shallow and deep groundwater sources, which have 435 

different hydrological and climatic response profiles as well as contamination risk. 436 

There was substantial variation in the size and population density of the study sites we 437 

examined by design, including both rural and urban locations, ranging from 10 Km2 in Pakistan to over 438 

1,000 Km2 in The Gambia. Weather data – rainfall, in particular, frequently varies over small spatial 439 

scales (47). By averaging weather variables over the study sites, we may have introduced 440 

misclassification of the weather variables, particularly in the larger sites. Similarly, acute weather events 441 

may play a large role in access to and decisions about water-source use. By asking about water-use over 442 

the last two weeks, we are unable to capture the day to day shifts that may occur as a result of acute 443 

events. Lastly, we were unable to capture a change in water source use within individual households as 444 

a result of weather, as water collection time was only measured at baseline. Comparing main water 445 

sources, 90% of households that reported using improved water sources at enrollment reported 446 

improved water sources as their main water source at follow-up, and 70% of households reporting using 447 

unimproved water sources at enrollment continued to use unimproved sources at follow-up. Future 448 

analysis of this dataset could be used to examine within-household changes in drinking water source use 449 

among households with multiple observations.  450 

4.2 Conclusions 451 

Despite these limitations, we found strong associations between weather patterns and drinking 452 

water source use.  These associations have plausible drivers given the intrinsic relationships between 453 

the climate variables examined and water availability as well as user preferences for more convenient 454 



and/or free water sources. Given the geographic and cultural disparity between the study sites, it is not 455 

surprising that there is some diversity in the direction of associations—the conclusion that water use 456 

and availability do depend on climate is important and lays the groundwork for further studies of 457 

mechanisms and implications.  458 

Climate change is anticipated to bring about greater variability in both temperature and rainfall, 459 

and low-resource settings are particularly vulnerable to these changes (48, 49). The impact of these 460 

changes on WASH uptake are expected to be diverse and vary by setting. Increasing prevalence and 461 

severity of drought will have obvious consequences in terms of water scarcity and availability and may 462 

lead to selection of less-safe water sources, as we saw in Pakistan, but may also lead to increased 463 

willingness to utilize improved water sources (23, 24). Therefore, any future interventions intended to 464 

increase access to and use of safe drinking water should consider the potential impacts of climate on 465 

WASH use and availability, and develop infrastructure with these potential mechanisms in mind.    466 
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