Reconciling volcanic deformation, degassing and petrological data using thermodynamic models

Stanley Tze Hou Yip¹, Juliet Biggs², Marie Edmonds³, Philippa Liggins³, and Oliver Shorttle³

¹University of Bristol ²University of Bristol, UK ³University of Cambridge

November 26, 2022

Abstract

Two of the most widely observed co-eruptive volcanic phenomena - ground deformation and volcanic outgassing - are fundamentally linked via the mechanism of magma degassing and the development of compressibility, which controls how the volume of magma changes in response to a change in pressure. Here we use thermodynamic models (constrained by petrological data) to reconstruct volatile exsolution and the consequent changes in magma properties. Co-eruptive SO₂ degassing fluxes may be predicted from the mole fraction of exsolved SO₂ that develops in magma whilst stored prior to eruption and during decompression. Co-eruptive surface deformation may be predicted given estimates of erupted volume and the ratio between chamber compressibility and magma compressibility. We conduct sensitivity tests to assess how varying magma volatile content, crustal properties, and chamber geometry may affect co-eruptive deformation and degassing. We find that magmatic H_2O content has the most impact on both SO₂ flux and volume change (normalised for erupted volumes). Our findings have general implications for typical arc and ocean island volcanic systems. The higher magmatic water content of arc basalts leads to a high pre-eruptive exsolved volatile content, making the magma more compressible than ocean island eruptions. Syn-eruptive gas fluxes are overall higher for arc eruptions, although SO₂ fluxes are similar for both settings (SO₂ flux for ocean island basalt eruptions is dominated by decompressional degassing). Our models are consistent with observation: deformation has been detected at 48% of ocean island eruptions (16/33) during the satellite era (2005-2020), but only 11% of arc basalt eruptions (7/61).

1	Reconciling volcanic deformation, degassing and
2	petrological data using thermodynamic models
3	Stanley Tze Hou Yip ^{1,2} , Juliet Biggs ^{1,2} , Marie Edmonds ^{1,3} , Philippa Liggins ³ , Oliver Shorttle ³
5	¹ Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET)
6	2 School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ, United
7	Kingdom
8	$^{3}\mathrm{Department}$ of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, United Kingdom
9	Key Points:
10	• We use petrological data and a thermodynamic framework to model volcanic de-
11	formation and SO_2 degassing.
12	• High magmatic volatile content of arc basalts contributes to the lack of deforma-
13	tion observed at arc basalt eruptions.

13

Corresponding author: Stanley Tze Hou Yip, stanley.th.yip@bristol.ac.uk

14 Abstract

Two of the most widely observed co-eruptive volcanic phenomena - ground deformation 15 and volcanic outgassing - are fundamentally linked via the mechanism of magma degassing 16 and the development of compressibility, which controls how the volume of magma changes 17 in response to a change in pressure. Here we use thermodynamic models (constrained 18 by petrological data) to reconstruct volatile exsolution and the consequent changes in 19 magma properties. Co-eruptive SO_2 degassing fluxes may be predicted from the mole 20 fraction of exsolved SO₂ that develops in magma whilst stored prior to eruption and dur-21 ing decompression. Co-eruptive surface deformation may be predicted given estimates 22 of erupted volume and the ratio between chamber compressibility and magma compress-23 ibility. We conduct sensitivity tests to assess how varying magma volatile content, crustal 24 properties, and chamber geometry affect co-eruptive deformation and degassing. We find 25 that magmatic H_2O content has the most impact on both SO_2 flux and volume change 26 (normalised for erupted volumes). Our findings have general implications for typical arc 27 and ocean island volcanic systems. The higher magmatic water content of arc basalts 28 leads to a high pre-eruptive exsolved volatile content, making the magma more compress-29 ible than ocean island eruptions. Syn-eruptive gas fluxes are overall higher for arc erup-30 tions, although SO_2 fluxes are similar for both settings (SO_2 flux for ocean island basalt 31 eruptions is dominated by decompressional degassing). Our models are consistent with 32 observation: deformation has been detected at 48% of ocean island eruptions (16/33) dur-33 ing the satellite era (2005-2020), but only 11% of arc basalt eruptions (7/61). 34

35

Plain Language Summary

Volcano monitoring provides a wealth of data upon which to base activity forecasts, 36 yet we lack quantitative models to integrate two of the most widely observed eruptive 37 parameters: ground deformation and volcanic gas fluxes. When magma exsolves volatiles 38 (water, carbon dioxide, sulfur) during storage in the crust prior to eruptions, the fluid 39 bubbles cause the magma to become compressible, and behave like a sponge. The effect 40 of this degassing is that when pressure changes in the magma chamber (due to eruption, 41 or due to recharge), the gas bubbles expand or contract in response, effectively main-42 taining a near-constant volume for the magma. Understanding the effect of magmatic 43 gas on volume changes is key to developing integrated, satellite-based volcano monitor-44 ing approaches. 45

46 1 Introduction

The increasing number of satellite missions launched in the past decade has driven 47 an explosion in data for studying the Earth's dynamic processes (Chaussard et al., 2013; 48 Morales Rivera et al., 2016; Carn et al., 2017; Furtney et al., 2018; Biggs & Wright, 2020). 49 The array of sensors onboard satellites routinely provides near real-time observations of 50 volcanic eruptions such as SO_2 plumes and clouds (e.g., Carn et al., 2016; Carboni et 51 al., 2016; Ge et al., 2016) and ground deformation (e.g., Biggs & Pritchard, 2017; Ebmeier 52 et al., 2018; Pritchard et al., 2018), both of which are key indicators of eruption progress 53 and may be used to track eruptive activity and understand pre-eruptive magma stor-54 age conditions. However, observations show that not all volcanoes exhibit pre- or co-eruptive 55 deformation (Rivalta & Segall, 2008; Biggs et al., 2014; Reath et al., 2020); the causes 56 of the wide variation in deformation systematics between volcanoes and between tectonic 57 settings are not well understood (Piochi et al., 2005; Ebmeier et al., 2013b; Chaussard 58 & Amelung, 2014). Reconciling observations of volcanic deformation and degassing can 59 help identify the conditions that lead to the lack of observations of ground deformation 60 (Kilbride et al., 2016; Reath et al., 2020). The magmatic processes that drive volcanic 61 deformation and degassing are fundamentally linked: exsolution of volatiles from silicate 62 melt in crustal magma reservoirs (during second boiling or due to decompression) causes 63 magma to become compressible, fundamentally changing the volume-change response 64 to pressure perturbations experienced by the magma during eruption and recharge (Woods 65 & Huppert, 2003; Kilbride et al., 2016; Wong et al., 2017; Wong & Segall, 2020). How-66 ever, while it is becoming increasingly common to compile multisensor data (e.g., Furt-67 ney et al., 2018; Reath et al., 2019, 2020), until recently there has not been a quantita-68 tive framework to jointly interpret observations of volcanic deformation and degassing, 69 including CO₂ and SO₂ gas fluxes (Girona et al., 2014; Kilbride et al., 2016; Wong & Segall, 70 2020).71

Thermodynamic models, constrained by petrological data, may be used to calculate the varying proportions of melt, crystals and exsolved volatiles in shallow magmatic reservoirs under a range of pressure, temperature and magma composition conditions (e.g., Papale et al., 2006; Gualda et al., 2012; Burgisser et al., 2015; Liggins et al., 2020, 2021). The exsolved volatile phase generated both during crystallisation and second boiling in the reservoir, and during decompressional degassing, contributes to the mass of gases released prior to and during an eruption (Wallace & Carmichael, 1992; Wallace,

-3-

2005). Since the physicochemical properties of magmas are interdependent, magma prop-79 erties such as density and compressibility can be calculated using the law of conserva-80 tion of mass (Spera, 2000; Huppert & Woods, 2002). The compressibility of magma and 81 its surrounding host rock controls the co-eruptive volume change of magma chambers, 82 which consequently affects co-eruptive ground deformation at the surface (e.g., Huppert 83 & Woods, 2002; Edmonds et al., 2019; Head et al., 2019; Sigmundsson et al., 2020). 84 Previous work by Kilbride et al. (2016) introduced a thermodynamic framework 85 for reconciling satellite observations of atmospheric sulfur yield and volcanic deforma-86 tion during discrete explosive eruptions (where there is assumed to be little volatile ex-87 solution during magma ascent). The framework uses thermodynamic models to illustrate 88 the effect of initial magmatic volatile content (H_2O, CO_2) and oxygen fugacity on SO_2 89 degassing and volcanic deformation (Kilbride et al., 2016). Kilbride et al. (2016) then 90 compared their model predictions to observations from 11 discrete explosive eruptions 91 to illustrate the factors controlling volcanic deformation and degassing (Kilbride et al., 92 2016). 93

This study extends the thermodynamic framework developed by Kilbride et al. (2016) 94 to enable large-scale analyses, such as sensitivity tests and Monte-Carlo simulations, across 95 a wider range of magma compositions and eruption styles. The sensitivity tests for magma 96 of basaltic composition explore how varying initial magmatic volatile contents (H_2O , CO_2 , 97 S) and oxygen fugacity affect magma properties and consequently volcanic deformation 98 and degassing. We also consider the effects of variable crustal shear modulus μ and cham-99 ber geometry on co-eruptive volcanic deformation. Finally, we compare the properties 100 of arc and ocean island magmas arising from their different volatile contents and discuss 101 the implications for satellite observations of deformation and degassing during eruptions 102 in different tectonic settings. 103

104

2 Background: Observations Of Volcanic Deformation and Degassing

Satellites with short repeat time and high spatial resolution provide consistent spatiotemporal coverage for monitoring volcanoes on regional to global scales (e.g., TerraSARX, Sentinel-1), which is particularly valuable for monitoring volcanoes with few or no
ground-based stations (e.g., Telling et al., 2015; Carboni et al., 2016; Ebmeier et al., 2016;
Delgado et al., 2017; Pritchard et al., 2018; Coppola et al., 2020). Interferometric Synthetic Aperture Radar (InSAR) is a satellite technique that measures the phase change

-4-

between pairs of satellite radar images to generate maps of surface displacement, which 111 may be used to monitor volcanoes exhibiting deformation in response to changes in magma 112 activity. However, while many volcanoes exhibit pre-eruptive inflation associated with 113 magma intrusion and/or co-eruptive deflation during magma withdrawal, some do not 114 (Moran et al., 2006; Rivalta & Segall, 2008; Biggs & Pritchard, 2017; Ebmeier et al., 2018). 115 One of the possible reasons is due to the presence of an exsolved gas phase that is more 116 compressible than the surrounding crust and silicate melt (Huppert & Woods, 2002; Woods 117 & Huppert, 2003; Kilbride et al., 2016). 118

The most volumetrically significant volcanic volatile species produced during an eruption are H_2O and CO_2 , yet it is difficult to distinguish these volatiles from atmospheric background in satellite measurements. In contrast, volcanic SO_2 has a strong absorption signal in the near-ultraviolet and infrared spectrum, and thus can be measured using satellite-based spectrometers (e.g., Carn et al., 2016; Carboni et al., 2016).

Conceptual models of magmatic systems may be used to understand different degassing configurations and their impact on monitoring signals (Figure 1). Volatiles are more soluble at higher pressures and hence they are largely dissolved in silicate melt in deep magmatic systems (Figure 1a). Volatiles exsolve during magma decompression, but if magma stalls in a chamber and cools, volatiles also exsolve during isobaric cooling and crystallisation, a process termed 'second boiling' (Edmonds et al., 2019).

For an explosive eruption, the high magma ascent rate limits volatile exsolution 130 between the chamber and the surface (Figure 1b) and we make the simplifying assump-131 tion here that the gas emitted during the eruption is sourced entirely from the pre-eruptive 132 exsolved volatile phase (Wallace & Gerlach, 1994; Wallace, 2005). In this case the amount 133 of gases released (per unit of magma erupted) may be used to constrain the compress-134 ibility of the magma in the chamber prior to eruption, which will be related to the amount 135 of deformation observed. In contrast, effusive eruptions involve a low magma ascent rate, 136 such that volatiles exsolve extensively in the conduit (Figure 1c). In this case, the gases 137 released during eruptions are mostly produced during magma ascent and cannot sim-138 ply be related to the compressibility of the magma in the chamber prior to eruption with-139 out careful reconstruction of the degassing process using a thermodynamic model. 140

-5-

Figure 1. Conceptual model of magma degassing during eruptions of different styles. (a) Volcano with chambers at different depths, prior to an eruption. Magmatic volatiles are more soluble in deep magmatic chambers and thus a higher proportion of the total volatile load will be dissolved in the silicate melt. In the shallow chamber (at a lower pressure) there is a higher proportion of exsolved volatiles, with degassing being driven both by decompression as magma moves up from the lower chamber, and by crystallisation. (b) During explosive eruptions, magma is removed from the chamber and decompressed rapidly, with little volatile exsolution during magma ascent. Much of the volatiles emitted as gases during the eruption represents a preeruptive exsolved volatile phase that was present in the chamber prior to decompression (and which made the magma compressible). In this 'explosive' case we expect the volume change inferred from ground deformation at the surface to to be related to the amount of volatiles emitted during eruption (both normalised by erupted volume). (c) Effusive eruptions, on the other hand, are characterised by a low magma ascent rate between the chamber and the surface, allowing extensive volatile exsolution in the conduit, i.e., co-eruptive degassing. The volcanic gases observed at the surface are mostly derived from decompressional degassing and do not constrain the compressibility of the chamber. In this 'effusive' case, we do not expect a relationship between the amount of gases released during the eruption and the volume change inferred for the 'source' chamber during eruption.

¹⁴¹ 3 Methodology

142

171

3.1 Thermodynamic modelling

Volatile solubility can be defined as the concentration of a volatile species that may 143 be dissolved in magma at a particular set of pressure, temperature, melt composition and 144 oxygen fugacity conditions (e.g., Scaillet & Pichavant, 2005; Duan, 2014; Burgisser et 145 al., 2015). At equilibrium, the fugacity of each volatile species in the melt is equal to its 146 fugacity in the fluid (Scaillet & Pichavant, 2005), such that a fraction of volatiles are dis-147 solved in magma and the remainder are exsolved in the exsolved phase. Since magmatic 148 volatiles are less soluble at low pressure, magma decompression is a principal driver for 149 volatile exsolution (e.g., Papale, 1999; Duan, 2014; Burgisser et al., 2015). 150

Thermodynamic models based on mass balance and equilibrium constants may be 151 used to calculate the mass and composition of the exsolved volatile phase and this may 152 be then used to estimate bulk magma properties such as density and compressibility (Ohmoto 153 & Kerrick, 1977; Gaillard & Scaillet, 2014). The concentration of each volatile species 154 exsolved at any given pressure and temperature can be calculated using its correspond-155 ing solubility laws (e.g., Burgisser et al., 2015). Here, we use the Python implementa-156 tion of EVo (Liggins et al., 2020, 2021) to predict the physicochemical properties of basaltic 157 magma, such as the composition of the gas phase and magma density, as a function of 158 melt composition, magmatic volatile content, oxygen fugacity of magma, temperature 159 and pressure. 160

We use EVo to calculate magma and fluid compositions in the C-O-H-S-Fe system 161 during magma decompression (Liggins et al., 2020, 2021). We initialise the model us-162 ing the weight fraction of the volatile species H_2O , CO_2 and S as input parameters. The 163 oxygen fugacity (f_{O_2}) is adjusted relative to the Ni-NiO buffer (NNO). EVo can be ini-164 tialised by either 1) specifying starting pressure (p), and gas weight fraction (w_g) , or 2) 165 calculating the saturation pressure for the given composition (i.e., $w_q \approx 0 \text{ wt\%}$). Here 166 we use the saturation point based on melt composition to find an appropriate starting 167 pressure/depth (Liggins et al., 2021). 168

At a specified depth, the gas volume fraction (V_g) is controlled by the total gas weight fraction (w_g) and gas density (ρ_g) :

$$V_g = (1 + \frac{MP(1 - w_g)}{RT\rho_M w_g})^{-1},$$
(1)

where M is the average molar mass of the gas phase, R is the universal gas constant (8.3144 J/mol K) and ρ_M is the volatile-free magma density (Burgisser et al., 2015). Magma density (ρ_m) is a function of the density and volume fraction of both melt and gas (Spera, 2000):

180

$$\rho_m = \rho_g V_g + \rho_M (1 - V_g). \tag{2}$$

 V_g increases during magma decompression and hence decreases ρ_m . Since ρ_m changes with p, magma compressibility (β_m) can be linked to the density and density gradient of magma with respect to pressure (Huppert & Woods, 2002):

$$\beta_m = \frac{1}{\rho_m} \frac{\delta \rho_m}{\delta p}.$$
(3)

Given how ρ_m changes with V_g , magma compressibility is dominated by the weight fraction of exsolved gas phase and hence magmatic volatile content (Kilbride et al., 2016; Edmonds et al., 2018).

Permeability develops when gas bubbles coalesce to form porous networks, thereby 184 allowing exsolved volatiles to percolate through magma efficiently (Lowenstern, 1994; Can-185 dela, 1997; Bachmann & Bergantz, 2006; Collins et al., 2009; Lindoo et al., 2017). Magma 186 becomes permeable when it reaches critical porosity, which is also defined as the perco-187 lation threshold (ϕ_c) . In this study, we use gas volume fraction (V_q) to represent magma 188 porosity and assume that magma becomes permeable and degasses as it reaches the per-189 colation threshold. The value of ϕ_c is widely variable, ranging from ~ 17-78 vol%, due 190 to the complex interplay between magma properties and physical processes such as melt 191 viscosity and decompression rate (Rust & Cashman, 2011; Burgisser et al., 2017; Colom-192 bier et al., 2020). For melts with low viscosity and overpressure, such as the basaltic melts 193 considered here, bubbles can grow and rise buoyantly, which reduces the likelihood of 194 the bubbles coalescing to form a porous network. Colombier et al. (2020) suggest that 195 low viscosity melts would become permeable at $\phi_c > 37$ vol% and we use that thresh-196 old here. 197

198

3.2 Linking magma properties to observable parameters

199 3.2.1 Deformation

Satellite-based observations of subsurface volume change (derived from inverting measurements of surface deformation) may be compared to the model of magma properties during degassing. We define the normalised volume change, \bar{V} , as the ratio between the subsurface volume change (ΔV_c) and the volume erupted (V_e ; assuming dense-rock equivalent, DRE):

$$\bar{V} = \frac{\Delta V_c}{V_e} = (1 + \frac{\beta_m}{\beta_c})^{-1},\tag{4}$$

where β_m is magma compressibility and β_c is chamber compressibility (Rivalta & Segall, 2008; Kilbride et al., 2016). Note that the definition of \bar{V} is the inverse of that from Kilbride 2018 et al. (2016), i.e., $\mathbf{r} = \bar{V}^{-1}$. In an elastic half-space, chamber compressibility is affected 2029 by host rock properties and chamber geometry, which can be defined as

205

Spherical point source:
$$\beta_c = \frac{3}{4\mu}$$
 (5)

(6)

Prolate chamber:
$$\beta_c = \frac{1}{\mu}$$

Horizontal oblate ellipsoid (sill):
$$\beta_c = \frac{1}{\mu} \left(\frac{a}{c} \frac{3}{2\pi} - \frac{3}{5}\right)$$
 (7)

where μ is the shear modulus of the crust and $\frac{a}{c}$ is the ratio of major to minor semi-axes of an oblate ellipsoid (Amoruso & Crescentini, 2009; Anderson & Segall, 2011).

For compressible magmas, ΔV_c would be less than V_e (i.e., $\bar{V} < 1$), such that compressible magmas with low β_c/β_m have low volume change per unit erupted (Voight et al., 2010), while ΔV_c would be approximately equal to V_e (i.e., $\bar{V} \approx 1$) for incompressible magmas and high β_c/β_m . Since chamber geometry and host rock properties also affect β_c and hence the magnitude of \bar{V} , volcanoes with compressible magmas and rigid surrounding crust (i.e., high μ and low β_c) cause small volume changes during an eruption (Rivalta & Segall, 2008; Kilbride et al., 2016).

A directly observable parameter is surface deformation. Here we define normalised displacement \bar{z} as the maximum vertical displacement per unit volume erupted. For simplicity, we only calculate the normalised displacement for a spherical point source in a uniform and elastic half-space (Mogi, 1958), $\bar{z} = \bar{V} \frac{1-v}{\pi} \frac{1}{d^2}$, where v is Poisson's ratio and d is the depth of magma chamber, although other models are also available (Okada, ²²⁷ 1985; Yang et al., 1988; Fialko et al., 2001; Masterlark, 2003; Albino et al., 2019; Zhan ²²⁸ et al., 2019). \bar{z} is vertically above the source of deformation.

229 3.2.2 Degassing

234

Observations of SO₂ degassing are made by satellite-based sensors (e.g., Prata & Kerkmann, 2007; Carn et al., 2016; Theys et al., 2019). We define normalised SO₂ (\bar{S}) as the observed SO₂ emitted (E^{SO_2}), normalised by the volume of magma erupted (V_e). \bar{S} estimates the mass of SO₂ per unit volume of magma:

$$\bar{S} = \frac{E^{SO_2}}{V_e} = \frac{m^{SO_2} M^{SO_2} \rho_e w_g}{M_g},$$
(8)

where m^{SO_2} is the mole fraction of SO₂ in gaseous phase, M^{SO_2} is the molecular mass 235 of SO₂, $\rho_e = 2800 \text{ kg m}^{-3}$ is the erupted rock density, and M_g is the mean molecular mass 236 of the gas phase. For explosive eruptions, we assume that the mass of SO_2 emissions at 237 the surface (E^{SO_2}) is the same as the mass of SO₂ in equilibrium with magma at cham-238 ber depth, meaning that there is no additional degassing as magma rises from the cham-230 ber to the surface (Figure 1b). For effusive eruptions, volatiles exsolve in the conduit as 240 magma ascends slowly such that SO_2 degassing is dominated by co-eruptive degassing 241 (Figure 1c). For simplicity, we assume all exsolved SO_2 is emitted as SO_2 in the plume 242 (i.e., there are no other sulfur-bearing species present) and that all SO_2 can be detected 243 by satellites. We ignore sulfur loss due to leaching, sulfur scrubbing by hydrothermal sys-244 tems, and the formation of sulfide globules during sulfide saturation. 245

²⁴⁶ 4 One-at-a-time Sensitivity Tests

In this section, we explore the sensitivity of the calculated magma properties to ini-247 tial magmatic H₂O content (w^{H_2O}), magmatic CO₂ content (w^{CO_2}), oxygen fugacity (f_{O_2}), 248 magmatic S content (w^{S}), crustal shear modulus (μ) and chamber geometry. We con-249 duct one-at-a-time sensitivity tests by holding other parameters constant and varying 250 the chosen parameter. For each example, we first consider the general sensitivity of the 251 model to changing magma properties by looking at the maximum percentage changes 252 over a range of depths, and then provide an illustrative example for a chamber at a depth 253 of 3 km (i.e., pressure of 82 MPa). While this provides a clear understanding of the role 254

 Table 1.
 Volatile composition of the parameters explored. The sensitivity tests vary the chosen parameter (bracketed) while holding all other parameters constant (unbracketed).

Parameters	$H_2O~(wt\%)$	$\rm CO_2~(ppm)$	f_{O_2}	S (ppm)
Sensitivity test	2.0*	1000	NNO (NNO 1 NNO 1 1)	2000
	(1.0-3.0)	(500 - 1500)	(NNO - 1 - NNO + 1)	(1000-3000)

*All sensitivity tests use constant $w^{H_2O} = 2.0$ wt%, except for S, which uses $w^{H_2O} = 3.0$ wt%.

of each parameter, it does not consider the co-dependence of input variables, which may result in parameter combinations that are not physically realistic.

Bulk magma volatile contents are informed by observations of dissolved volatile con-257 tent from melt inclusions of basalts. For simplicity, we assume an isothermal magma at 258 1200 °C. We explore $w^{\text{H}_2\text{O}}$, w^{CO_2} and w^{S} in the ranges of 1.0 to 3.0 wt% H₂O, 500 to 259 1500 ppm CO₂, and 1000 to 3000 ppm S, respectively (Table 1). We use f_{O_2} from NNO-1 260 to NNO+1 to explore the effects of oxygen fugacity on the solubility of volatile species. 261 To test how chamber compressibility (β_c) affects volcanic deformation, we use μ from 262 0.1 to 30 GPa (Heap et al., 2020), and consider three chamber geometries: a spherical 263 point source, a vertical prolate ellipsoid (pipe-like chamber) and a horizontal oblate el-264 lipsoid (sill) (Gudmundsson, 2008; Amoruso & Crescentini, 2009; Anderson & Segall, 2011). 265 Although we do not expect the gas to remain in contact with the magma when V_g ex-266 ceeds the percolation threshold at which magma becomes permeable, i.e., $\phi_c > 37$ vol% 267 (Colombier et al., 2020), we run our sensitivity tests all the way to the surface. Table 268 2 summarises the maximum percentage change over the depth range of each parameter 269 on the estimated values of \bar{S} , \bar{V} and \bar{z} . 270

271

4.1 Effects of H₂O content on magma properties

First, we vary the initial dissolved H₂O content $w^{\text{H}_2\text{O}}$ in the melt and investigate how it affects magma properties ρ_m and β_m , and observables \bar{S} , \bar{V} and \bar{z} (Figure 2) during ascent and degassing. In this sensitivity test, $w^{\text{H}_2\text{O}}$ ranges from 1.0-3.0 wt% and the constant parameters are $w^{\text{CO}_2} = 1000$ ppm, $f_{\text{O}_2} = \text{NNO}$, $w^{\text{S}} = 2000$ ppm. We assume a fixed chamber compressibility for a spherical cavity $\beta_c = \frac{3}{4\mu}$ where $\mu = 2.1$ GPa (i.e., $\beta_c = 3.6 \times 10^{-10} \text{ Pa}^{-1}$).

Solubility decreases with decreasing pressure for each volatile component, so as pressure decreases, the mass fraction dissolved in the melt (w_M^x) decreases and the mole frac-

Figure 2. Physicochemical properties of basalts when varying the initial magmatic H₂O from 1.0-3.0 wt%. (a) Weight fraction of dissolved H₂O, CO₂ and S in melt (w_M^x) . (b) Mole fraction of exsolved H₂O, CO₂ and SO₂ in gas (m_g^x) . (c) Mass of SO₂ gas per unit volume of magma, also defined as normalised SO₂ (\bar{S}). (d) Volume fraction of exsolved gases in magma (V_g) . (e) Magma density (ρ_m) . (f) Magma compressibility (β_m) . (g) Model predicted volume change normalised by unit volume of magma (\bar{V}). (h) Maximum vertical displacement normalised by unit volume of magma (\bar{z}). The grey lines represent magma properties after exceeding percolation threshold $\phi_c = 37$ vol%. Fixed parameters: $w^{CO_2} = 1000$ ppm, $f_{O_2} = NNO$, $w^S = 2000$ ppm and $\mu = 2.1$ GPa.

Parameters	Normalised SO ₂ , $\bar{S} \; (\mathrm{kg} \mathrm{m}^{-3})$	Normalised volume change, \bar{V}	Normalised displacement, $\bar{z} \ (m \ km^{-3})$
$\frac{1}{\text{Magmatic H}_2\text{O}, w^{\text{H}_2\text{O}}}$	+370%	-83%	-92%
Magmatic CO_2, w^{CO_2}	+74%	-37%	-44%
(500-1500 ppm) Oxygen fugacity, f_{O_2}	+110%	+15%	+17%
(NNO-1-NNO+1)	12007	F 207	0.2507
(1000-3000 ppm) $(1000-3000 \text{ ppm})$	+130%	-3.3%	-0.35%
Crustal shear modulus, μ (0.1-30 GPa)	n/a	-94%	-98%

Table 2. Summary table showing the maximum percentage change of each observation when increasing the values of each parameter (shown in brackets) while holding other parameters constant.

tion that has exsolved to the gaseous phase (m_a^x) increases (Figure 2a-b). Higher w^{H_2O} 280 reduces the solubility of CO₂ and S (Figure 2a), thus increasing the mole fraction of $m_q^{\rm H_2O}$, 281 $m_q^{\rm CO_2}$ and $m_q^{\rm S}$ (Figure 2b). Normalised SO₂ (\bar{S}) represents the mass of exsolved SO₂ per 282 unit volume of magma, assuming that melt and gas do not segregate. By increasing w^{H_2O} 283 by a factor of 3, \overline{S} increases up to a maximum of ~ 370% at 0.51 km depth (Figure 2c). 284 Gas volume fraction (V_g) increases as volatiles exsolve and gas bubbles expand at lower 285 pressures. Since V_g is dominated by w^{H_2O} , V_g increases up to a maximum of ~ 440% at 286 0.58 km depth when increasing $w^{\text{H}_2\text{O}}$ from 1.0 to 3.0 wt% (Figure 2d). 287

The increase in $w^{\rm H_2O}$ increases V_g , which decreases magma density (ρ_m ; Equation 288 2; Figure 2e) and increases magma compressibility (β_m ; Equation 3; Figure 2f). There-289 fore, with the increase of $w^{\rm H_2O}$ from 1-3 wt%, β_m increases up to a maximum of ~ 1900% 290 at 2.1 km depth (Figure 2f), and normalised volume change (\bar{V}) decreases up to a max-291 imum of $\sim 83\%$ at 2.9 km depth (Figure 2g). Based on the simple Mogi model, there 292 is a trade-off between volume change and depth, such that the same volume change will 293 cause a larger displacement at a shallow depth. However, when V_q and β_m are consid-294 ered, the maximum vertical displacement per unit volume (\bar{z}) does not vary in a sim-295 ple way; the increase in V_g towards the surface causes a local minimum in \bar{z} at 0.5 km 296 depth. Given that \bar{z} is controlled by chamber depth and \bar{V} , increasing w^{H_2O} thus causes 297 a relative decrease in the normalised displacement (\bar{z}) up to a maximum of $\sim 92\%$ at 298 1.4 km depth (Figure 2h). 299

To illustrate these results, we give specific values for a chamber depth of 3 km. Varying w^{H_2O} from 1.0 to 3.0 wt% increases \bar{S} from 0.025 kg m⁻³ to 0.32 kg m⁻³ (Figure 2c). V_g increases from 0.47 vol% to 5.8 vol%, which corresponds to the increase in β_m from 1.9×10^{-10} Pa⁻¹ to 27×10^{-10} Pa⁻¹ (Figure 2f). As a result, \bar{V} decreases from 0.65 to 0.11 (Figure 2g) and \bar{z} is reduced from 17 m km^{-3} to 3.1 m km^{-3} (Figure 2h). The model thus predicts that basalts with higher initial H₂O content have greater \bar{S} and β_m , and as a result, lower \bar{V} and \bar{z} (Figure 2).

307

4.2 Effects of CO₂ content on magma properties

Here, we vary initial dissolved CO₂ content to understand how it affects magma properties and observables \overline{S} , \overline{V} and \overline{z} (Figure 3). We use w^{CO_2} in the range of 500 ppm to 1500 ppm and fixed $w^{\text{H}_2\text{O}} = 2.0 \text{ wt\%}$, $f_{\text{O}_2} = \text{NNO}$, $w^{\text{S}} = 2000 \text{ ppm}$ and $\mu = 2.1 \text{ GPa}$ for this model.

Figure 3a shows that increasing w^{CO_2} from 500 ppm to 1500 ppm increases the amount 312 of dissolved $w_M^{\text{CO}_2}$ up to a maximum of 55% at 1.5 km depth, but decreases $w_M^{\text{H}_2\text{O}}$ and 313 $w_M^{\rm S}$ by <5.3% and <4.1%, respectively. This results in a relative increase in the amount 314 of exsolved SO₂ $(m_q^{\text{SO}_2})$ and \bar{S} up to a maximum of ~80% and ~74%, respectively, at 315 1.5 km depth (Figure 3b-c). Similarly, varying initial CO_2 content increases V_q up to a 316 maximum of $\sim 72\%$ at 1.5 km depth (Figure 3d). Increasing $w^{\rm CO_2}$ corresponds to an in-317 crease in β_m up to a maximum of <54% and a decrease in \bar{V} up to a maximum of 37%318 at 2.9 km depth (Figure 3f-g), which correlates to the decrease in \bar{z} up to a maximum 319 of 44% at 2.5 km depth (Figure 3h). 320

Here, we quantify these results for a depth of 3 km to illustrate the sensitivity to 321 $w^{\rm CO_2}$. Increasing initial CO₂ from 500 ppm to 1500 ppm increases \bar{S} from 0.014 kg m⁻³ 322 to 0.10 kg m⁻³ and V_q from 0.26 vol% to 1.9 vol% (Figure 3c-d). This corresponds to 323 an increase in β_m from 2.3×10⁻¹⁰ Pa⁻¹ to 5.6×10⁻¹⁰ Pa⁻¹ (Figure 3f). As a result, \bar{V} 324 decreases from 0.61 to 0.39 (Figure 3g). and \bar{z} is reduced from $16 \,\mathrm{m \, km^{-3}}$ to $10 \,\mathrm{m \, km^{-3}}$ 325 (Figure 3h). The model shows that increasing initial CO_2 content from 500 ppm to 1500 326 ppm causes significant changes to both \overline{V} and \overline{z} , but they are approximately half that 327 of varying $w^{\rm H_2O}$ from 1.0 wt% to 3.0 wt%. As such, variations in H₂O content have a 328 greater effect on co-eruptive deformation than variations in CO₂ content. 329

Figure 3. Physicochemical properties of basalts when varying the initial weight fraction of dissolved CO₂ (w^{CO_2}) from 500 to 1500 ppm. (a) Weight fraction of dissolved H₂O, CO₂ and S in melt (w_M^x). (b) Mole fraction of exsolved H₂O, CO₂ and SO₂ in gas (m_g^x). (c) Mass of SO₂ gas per unit volume of magma, also defined as normalised SO₂ (\bar{S}). (d) Volume fraction of exsolved gases in magma (V_g). (e) Magma density (ρ_m). (f) Magma compressibility (β_m). (g) Model predicted volume change normalised by unit volume of magma (\bar{V}). (h) Maximum vertical displacement normalised by unit volume of magma (\bar{z}). The grey lines represent magma properties after exceeding percolation threshold $\phi_c = 37$ vol%. Fixed parameters: $w^{\text{H}_2\text{O}} = 2.0$ wt%, $f_{\text{O}_2} =$ NNO, $w^{\text{S}} = 2000$ ppm and $\mu = 2.1$ GPa.

Figure 4. Physicochemical properties of basalts when varying the initial weight fraction of dissolved S (w^{S}) from 1000 to 3000 ppm. (a) Weight fraction of dissolved H₂O, CO₂ and S in melt (w_{M}^{x}). (b) Mole fraction of exsolved H₂O, CO₂ and SO₂ in gas (m_{g}^{x}). (c) Mass of SO₂ gas per unit volume of magma, also defined as normalised SO₂ (\bar{S}). (d) Volume fraction of exsolved gases in magma (V_{g}). (e) Magma density (ρ_{m}). (f) Magma compressibility (β_{m}). (g) Model predicted volume change normalised by unit volume of magma (\bar{Z}). The grey lines represent magma properties after exceeding percolation threshold $\phi_{c} = 37$ vol%. Fixed parameters: $w^{H_{2}O} = 3.0$ wt%, $w^{CO_{2}} = 1000$ ppm, $f_{O_{2}} =$ NNO and $\mu = 2.1$ GPa.

4.3 Effects of sulfur content

330

Here, we vary initial dissolved sulfur (S) content to understand how it affects magma properties and observables \bar{S} , \bar{V} and \bar{z} (Figure 4). We use $w^{\rm S}$ in the range of 1000 ppm to 3000 ppm and fixed $w^{\rm H_2O} = 3.0$ wt%, $w^{\rm CO_2} = 1000$ ppm, $f_{\rm O_2} = \rm NNO$ and $\mu = 2.1$ GPa for this model.

Figure 4a shows that w_M^S increases by <200% at 6.9 km depth with increasing w^S from 1000 ppm to 3000 ppm, which corresponds to the increase in $m_g^{SO_2}$ and \bar{S} up to a maximum of ~138% and ~130% at the surface, respectively (Figure 4b-c). The total gas volume fraction, however, increases by only <3% at 1.4 km depth (Figure 4d). Since varying initial S content has minimal impact on V_g , β_m only increases by <9.3% at 3.6 km depth (Figure 4f), which correlates to the decrease in \bar{V} by less than 5.3% at 3.9 km depth and \bar{z} less than 0.35% at the surface (Figure 4g-h).

We quantify these results for a depth of 3 km to illustrate the effect of varying $w^{\rm S}$ 342 from 1000 ppm to 3000 ppm. This range of sulfur is less than the sulfur content at sul-343 fide saturation. Increasing magmatic $w^{\rm S}$ increases \bar{S} from 0.15 kg m⁻³ to 0.50 kg m⁻³ 344 (Figure 4c), which can be linked to the increase in V_g from 5.6 vol% to 6.0 vol% (Fig-345 ure 4d). This corresponds to a very small increase in β_m from 2.6×10^{-9} Pa⁻¹ to 2.8×10^{-9} 346 Pa^{-1} (Figure 4f). The increase in β_m thus reduces both \bar{V} and \bar{z} marginally from 0.12 347 to 0.11 and $3.2 \,\mathrm{m \, km^{-3}}$ to $3.0 \,\mathrm{m \, km^{-3}}$, respectively (Figure 4g-h). The model shows that 348 basalts with high initial $w^{\rm S}$ release high \bar{S} but β_m and hence co-eruptive deformation 349 is only minimally affected. 350

351

4.4 Effects of oxygen fugacity on magma properties

Figure 5 shows how varying oxygen fugacity (f_{O_2}) affects magma properties, and 352 consequently observables \bar{S} , \bar{V} and \bar{z} . We vary f_{O_2} from NNO-1 to NNO+1 and fix w^{H_2O} 353 = 2.0 wt%, $w^{CO_2} = 1000$ ppm, $w^S = 2000$ ppm and $\mu = 2.1$ GPa for this model. 354 The model predicts that varying f_{O_2} from NNO-1 to NNO+1 increases $w_M^{CO_2}$, $w_M^{H_2O}$ 355 and w_M^S up to a maximum of 2.3%, 9.0% and 32% at depths of 2.9, 7.1 and 2.1 km, re-356 spectively, due to the effect of oxygen fugacity on the solubility of each volatile species 357 (Figure 5a). The significant increase in w_M^S causes a relative increase $m_q^{SO_2}$ and \bar{S} up 358 to a maximum of 119% and 112%, respectively, at 0.4 km depth (Figure 5b-c). 359

Figure 5. Physicochemical properties of basalts when varying f_{O_2} of magma storage from NNO-1 to NNO+1. (a) Weight fraction of dissolved H₂O, CO₂ and S in melt (w_M^x) . (b) Mole fraction of exsolved H₂O, CO₂ and SO₂ in gas (m_g^x) . (c) Mass of SO₂ gas per unit volume of magma, also defined as normalised SO₂ (\bar{S}). (d) Volume fraction of exsolved gases in magma (V_g) . (e) Magma density (ρ_m) . (f) Magma compressibility (β_m) . (g) Model predicted volume change normalised by unit volume of magma (\bar{V}). (h) Maximum vertical displacement normalised by unit volume of magma (\bar{z}). The grey lines represent magma properties after exceeding percolation threshold $\phi_c = 37$ vol%. Fixed parameters: $w^{H_2O} = 2.0$ wt%, $w^{CO_2} = 1000$ ppm, $w^S = 2000$ ppm and $\mu = 2.1$ GPa.

However, V_g is reduced by only <11% at 2.8 km depth so varying f_{O_2} has minimal impact on ρ_m and β_m (Figure 5e). In fact, increasing f_{O_2} from NNO-1 to NNO+1 decreases β_m by 20% at 4.2 km depth (Figure 5f) and hence \bar{V} of oxidised basalts is <15% greater than its reduced counterpart at 4.2 km depth (Figure 5g). While \bar{z} is controlled by chamber depth and \bar{V} , the maximum increase in \bar{z} of less than 17% also occur at 4.2 km depth due to insignificant difference in \bar{V} when varying f_{O_2} (Figure 5h).

Next, we quantify the predictions for a depth of 3 km. Varying f_{O_2} from NNO-1 to NNO+1 increases \bar{S} from 0.11 kg m⁻³ to 0.31 kg m⁻³ (Figure 5c). However, V_g decreases from 6.6 vol% to 5.5 vol%, which corresponds to a decrease in β_m from 2.9×10⁻¹⁰ Pa⁻¹ to 2.6×10⁻¹⁰ Pa⁻¹ (Figure 5f). As a result, \bar{V} and \bar{z} increases from 0.11 to 0.12 and 2.9 m km⁻³ to 3.2 m km⁻³, respectively (Figure 5g-h). The model thus predicts that while oxidised basalts have greater \bar{S} than reduced basalts, variations in oxygen fugacity of basalts has minimal impact on co-eruptive deformation.

373

4.5 Effects of chamber compressibility

Crustal properties and chamber geometry are known to have a major role in de-374 termining surface deformation (e.g., Gudmundsson, 2008; Amoruso & Crescentini, 2009; 375 Anderson & Segall, 2011; Heap et al., 2020). Here we investigate the two parameters that 376 directly affect our simplified model using the same sensitivity analysis as for the other 377 parameters. \bar{V} is a function of β_m and β_c , and the two parameters we explore in this sec-378 tion are crustal shear modulus and chamber geometry that control β_c and thus affect \bar{V} 379 (Equation 4). We use a range of crustal shear modulus (μ) from 0.1 GPa (compliant crust) 380 to 30 GPa (non-compliant crust), which is typical in volcanic areas (Gudmundsson, 2005; 381 Rivalta & Segall, 2008). It is noted that μ changes with depth but for simplicity, we as-382 sume a constant μ at all depths considering the variations in and between volcanic re-383 gions are likely to be larger than those with depth. We considered three representative 384 chamber geometries, which are a spherical point source, a vertical prolate ellipsoid (pipe-385 like chamber) and a horizontal oblate ellipsoid (sill), and use $\frac{a}{c} = 100$ for the horizon-386 tal sill (Equation 5) (Amoruso & Crescentini, 2009; Anderson & Segall, 2011). We use 387 a Poisson's ratio v of 0.30 based on the average value for volcanic rock with average poros-388 ity and fracture density (Heap et al., 2020). The sensitivity test uses fixed parameters 389 of $w^{\text{H}_2\text{O}} = 2.0 \text{ wt\%}, w^{\text{CO}_2} = 700 \text{ ppm}, f_{\text{O}_2} = \text{NNO}, \text{ and } w_g = 0.01 \text{ wt\%}.$ 390

Figure 6. Physical properties of basalts when varying the crustal shear modulus (μ) from 0.1 to 30 GPa and chamber geometry. (a) The ratio of β_c/β_m to illustrate the effects of crustal shear modulus and chamber geometry. The μ used are 0.1 GPa, 2.1 GPa and 30 GPa (Heap et al., 2020), and the chamber geometries considered are a spherical point source, a vertical pipe-like chamber and a horizontal sill (Amoruso & Crescentini, 2009). Different μ and chamber geometries are represented by different line styles and colour, respectively. (b) Model predicted normalised volume change (\bar{V}) for a spherical point source, a vertical pipe-like chamber and a horizontal sill with $\mu = 2.1$ GPa. The major to minor semiaxis of the horizontal sill, $\frac{a}{c}$, is 100. (c) \bar{V} for a spherical point source with varying μ . (d) \bar{V} for a spherical point source, a vertical pipe-like chamber and a horizontal sill with $\mu = 2.1$ GPa. Fixed parameters: $w^{H_2O} = 2.0$ wt%, $w^{CO_2} = 1000$ ppm, $f_{O_2} = NNO$, and $w^S = 2000$ ppm. The grey lines represent magma properties when percolation threshold exceeds $\phi_c = 37$ vol%.

To understand how crustal properties affect volcanic deformation, we first discuss 391 the effects of μ and chamber geometry on the ratio of β_c/β_m . Since β_c is inversely pro-392 portional to μ , a crust with $\mu = 0.1$ GPa results in $\beta_c/\beta_m = 19$ for a chamber at 3 km 393 depth, while $\beta_c/\beta_m = 0.062$ for a crust with $\mu = 30$ GPa (Figure 6a). From Equation 5, 394 we find that the crustal compressibility β_c for chambers with a vertical pipe-like shape 395 is 33% higher than a spherical point source (Figure 6b). An ellipsoid with $\frac{a}{c} = 100$ has 396 the highest β_c among the three chamber geometries (i.e., 60 times greater than a spher-397 ical point source), consistent with analytical results from Anderson and Segall (2011). 398

Here we quantify the effects of varying μ and the chamber geometry on \overline{V} (Figure 399 6c-d). The \bar{V} for crustal rocks with $\mu = 0.1$ GPa is up to a maximum of ~ 360% greater 400 than that with $\mu = 2.1$ GPa at 2.1 km depth. In contrast, \overline{V} is reduced up to a max-401 imum of ~ 74% at 5.7 km depth for a crust with $\mu = 30$ GPa when compared to $\mu =$ 402 2.1 GPa. At 3 km depth, the \bar{V} for $\mu = 0.1$ GPa, 2.1 GPa and 30 GPa are 0.95, 0.47 and 403 0.058, respectively (Figure 6c). The effects of different chamber geometries on \overline{V} are shown 404 in Figure 6d, with $\mu = 2.1$ GPa and Poisson's ratio v of 0.30 (Heap et al., 2020). The 405 normalised volume change \overline{V} is greatest for horizontal sills and smallest for spherical point 406 source, such that $\overline{V} = 0.98$ and 0.47, respectively, for a chamber at 3 km depth. Based 407 on the effects of μ and chamber geometry on β_c/β_m , we find that a volcano with low β_c/β_m 408 (i.e., spherical, high shear modulus) has low \overline{V} which indicates muted volcanic deforma-409 tion. In contrast, a volcano with high β_c/β_m (i.e., horizontal sill, low shear modulus) has 410 high \bar{V} . For example, at 3 km depth, $\bar{V} = 0.058$ for a spherical point source with $\mu =$ 411 30 GPa, but $\overline{V} = 1.0$ for a sill with $\mu = 0.1$ GPa. 412

The main takeaways from the sensitivity analysis of chamber compressibility is that 1) spherical point sources and vertical pipe-like chambers have similar β_c/β_m and \bar{V} , whereas sills have higher β_c/β_m and thus high \bar{V} (Figure 6b,d) and 2) crustal properties, specifically shear modulus, have a significant influence on \bar{V} , with lower crustal shear modulus causing larger volume changes (Figure 6a,c) (Heap et al., 2020; Hautmann et al., 2010).

419

4.6 Summary of sensitivity analyses

Here we summarise the results from each sensitivity test. A summary of the maximum percentage change of \overline{S} , \overline{V} and \overline{z} over the depth range of each parameter are shown in Table 2. We find that eruptions of water-rich magmas have higher SO₂ emissions and

less deformation for a particular volume of magma erupted. While initial magmatic CO_2 423 causes insignificant changes to the total amount of SO₂ degassing during eruptions, it 424 has a moderate influence on the observed co-eruptive deformation, i.e., CO₂-rich mag-425 mas are more compressible. Initial magmatic S and oxygen fugacity have a strong in-426 fluence on the magnitude of SO_2 degassing but have a minimal impact on the magni-427 tude of the co-eruptive deformation. Magmas with a high oxygen fugacity yield high SO_2 428 emissions during an eruption, but this does not impact co-eruptive deformation signif-429 icantly. Magmatic reservoirs with strong surrounding crustal rocks (i.e., high μ) and spher-430 ical geometry may display muted co-eruptive deformation. 431

432

5 Comparison Between Arc Basalts and Ocean Island Basalts

433

5.1 Thermodynamic modelling of magma properties

We now examine how tectonic setting influences the physicochemical properties of 434 basaltic magma and consequently its impact on observed volcanic deformation and SO_2 435 degassing. Here we compare arc basalts and ocean island basalts by considering realis-436 tic parameter combinations and the co-dependence of parameters. Basaltic magma in 437 arc settings tends to have higher water contents than basaltic magma from ocean island 438 settings (e.g., Wallace, 2005; Zimmer et al., 2010; Plank et al., 2013). Melt inclusions 439 data suggest that, on average, arc basalts contain $3.3 \text{ wt}\% \text{ H}_2\text{O}$, 1000 ppm CO₂ and 1200 440 ppm S, and ocean island basalts contain 1.0 wt\% H_2O , 500 ppm CO_2 and 1100 ppm S441 (Wallace, 2005; Plank et al., 2013). These values represent the dissolved volatile abun-442 dances at shallow crustal levels, in which the volatiles recorded in the melt inclusions are 443 primarily controlled by solubility. We note that arc basalts have been inferred to con-444 tain a minimum of $3000 \text{ ppm } \text{CO}_2$ from modelling of magma flux and melt inclusions 445 (Wallace, 2005), but because primitive volatile contents are less well constrained, we se-446 lected the values from melt inclusions for simplicity. We take typical values of f_{O_2} of arc 447 basalts and ocean island basalts from NNO-1 to NNO+1 and NNO-1.4 to NNO-0.4, 448 respectively, based on examples from the Mexican Volcanic Belt and Kilauea volcano (e.g., 449 Carmichael & Ghiorso, 1986; Wallace & Carmichael, 1999). Crustal compressibility also 450 influences the magnitude of volcanic deformation (Section 4.5), and thus we use $\mu = 2.1$ 451 GPa, which is typical in volcanic areas, and assume a Mogi deformation source for sim-452 plicity (Mogi, 1958; Gudmundsson, 2005; Heap et al., 2020). The range of parameter val-453 ues used for the analyses described below are listed in Table 3. 454

Figure 7. Comparison of magma properties between arc basalts (full line) and ocean island basalts (dashed line). The input parameters for the thermodynamic model (w^{H_2O} , $w^{CO_2} w^S$ and f_{O_2}) and crustal shear modulus μ are initialised using a Monte-Carlo approach (Table 3). 1000 simulations are performed and the magma properties are calculated using the thermodynamic framework. (a) Weight fraction of dissolved volatile contents and (b) mol fraction of exsolved volatile contents. (c) Normalised SO₂ \bar{S} . (d) Volume fraction of exsolved gases in magma (V_g). (e) Magma density (ρ_m) and (f) Magma compressibility (β_m). (g) Normalised volume change (\bar{V}). (h) Normalised vertical displacement (\bar{z}). The grey lines represent magma properties after exceeding percolation threshold $\phi_c = 37$ vol% and the shaded region represent 1 σ uncertainty. Range of parameter values for arc basalts and ocean island basalts are listed in Table 3.

Magma	$H_2O (wt\%)$	$\rm CO_2~(ppm)$	S (ppm)	f_{O_2}
Arc basalts	3.3 ± 1.0	1000 ± 400	1200 ± 400	$\rm NNO\pm0.5$
Ocean island basalts	1.0 ± 0.2	500 ± 200	1100 ± 200	$\rm NNO-1.1\pm0.3$

 Table 3.
 Range of parameters used for Monte-Carlo simulation.

Monte-Carlo simulation allows repeated random sampling to estimate possible ranges 455 of magma properties and observations of volcanic eruptions, and as such we use the magma 456 composition of arc basalts and ocean island basalts to estimate the realistic range of magma 457 properties. We performed 1000 simulations for each type using the distribution of each 458 variable $(w^{H_2O}, w^{CO_2}, w^S, f_{O_2})$ provided in Table 3 as input parameters for the ther-459 modynamic model. Parameters that are distributed below the detection limit are read-460 justed accordingly (i.e., $w^{H_2O} < 0 \text{ wt\%}$, $w^{CO_2} < 25 \text{ ppm}$ and $w^S < 50 \text{ ppm}$ are changed 461 to $w^{\rm H_2O} = 1.0$ wt%, $w^{\rm CO_2} = 25$ ppm and $w^{\rm S} = 50$ ppm, respectively. The thermody-462 namic model has a starting temperature of 1200 °C, a Poisson's ratio v of 0.30, and we 463 find the starting pressure/depth using the saturation point of each melt composition. Af-464 ter 1000 Monte-Carlo simulations, we calculate the mean and the standard deviation for 465 each model output, such as normalised SO_2 , magma compressibility and normalised vol-466 ume change. Since we started each simulation at the saturation point for that compo-467 sition (see Section 3.1), we apply a filter to discard the values for any pressure/depth with 468 less than 100 simulations. 469

In Figure 7 we present the model predictions for arc basalts and ocean island basalts 470 to illustrate the effects of tectonic settings on magma properties and co-eruptive obser-471 vations. Arc basalts have a saturation point of ≈ 10 km, which is higher than that of ocean 472 island basalts at ≈ 4 km depth due to the fact that arc basalts have a higher magmatic 473 volatile content than ocean island basalts. The high f_{O_2} environment of arc basalts will 474 tend to produce more exsolved SO_2 at the expense of H_2S and S_2 , whereas ocean island 475 basalts, which have a lower f_{O_2} , have less exsolved SO₂ in the gas phase (Figure 7b). With 476 a higher mole fraction of exsolved SO₂, the predicted \bar{S} of arc basalts is higher than that 477 of ocean island basalts (Figure 7c). The higher magmatic volatile content of arc basalts 478 translates to a higher V_g (Figure 7d), suggesting that in general, arc basalts are more 479 compressible than ocean island basalts (Figure 7f). The increased magma compressibil-480 ity indicates that arc basalts have a lower \overline{V} and \overline{z} than ocean island basalts (Figure 7g-481 h). 482

Here we give specific values for arc basalts and ocean island basalts assuming a magma 483 chamber at 3 km depth (Figure 7). If an explosive eruption (no co-eruptive degassing) 484 should occur from a chamber at 3 km depth, the predicted \bar{S} of arc basalts is 0.37 kg m⁻³, 485 greater than that of ocean island basalts at 0.0011 kg m^{-3} (Figure 7c). For a chamber 486 at 3 km depth, arc basalts are more compressible than ocean island basalts at $\beta_m = 2.2 \times 10^{-9}$ 487 Pa^{-1} and $1.2 \times 10^{-10} Pa^{-1}$, respectively (Figure 7f), and thus arc basalts have $\bar{V} = 0.17$ 488 and $\bar{z} = 4.6 \,\mathrm{m \, km^{-3}}$ as compared to ocean island basalts that have $\bar{V} = 0.71$ and $\bar{z} =$ 180 $19 \,\mathrm{m \, km^{-3}}$. It is noted that ocean island basalts eruptions are usually effusive in nature 490 (i.e., co-eruptive degassing; see Section 2), and thus we expect \overline{S} to be dominated by de-491 compressional degassing and hence much higher than predicted for chamber degassing 492 alone. 493

494

5.2 Comparison to Satellite Observations

In this section, we compare the magma properties predicted by the thermodynamic framework with observations of eruptions to understand published catalogues of volcanic deformation and degassing.

498

5.2.1 Data Compilation

Observations of volcanic deformation and SO₂ degassing during an eruption de-499 pend on both the properties of the magma and crust. Here we compiled deformation and 500 SO_2 degassing data for 94 volcanic eruptions during the satellite era (2005-2020) to un-501 derstand how theoretical estimates from thermodynamic modelling compare with observed 502 eruptions (Supplementary Table 1). The primary magma composition and the dates for 503 past eruptions are drawn from the Global Volcanism Program (2013). The compilation 504 only considers volcanoes of basaltic composition. For eruptions with poorly constrained 505 starting or ending dates, particularly for long-lived eruptions, we select the dates at which 506 significant eruptions occur such as the the 2018 eruptions of Kilauea, Ambrym and Fuego 507 (e.g., Neal et al., 2019; Hamling et al., 2019; Naismith et al., 2019). 508

We compile 23 episodes of pre- and co-eruptive deformation detected with InSAR from the published catalogues of Biggs and Pritchard (2017) and Ebmeier et al. (2018) and 58 satellite observations of SO₂ degassing from individual studies (Supplementary Table 1), published catalogues (Carn et al., 2016, 2017) and Global Volcanism Program (2013). For eruptions that are less well studied (e.g., Chikurachki, Pagan, Semisopochnoi),

Figure 8. (a) Number of arc basalt and ocean island basalt eruptions with volcanic deformation (either uplift or subsidence) and SO₂ degassing measured by satellites during the satellite era (2005-2020). (b) Erupted volume for arc basalt and ocean island basalt eruptions. Columns are colour-coded for deformation and SO₂ degassing detectable by satellites. Uncertainties in the erupted volume, where available, are shown as horizontal error bars.

evidence for SO₂ degassing are crosschecked with the Global Sulphur Dioxide Monitoring homepage (https://so2.gsfc.nasa.gov/). Persistently degassing volcanoes (e.g., Shishaldin,
Saunders, Korovin), including those whose emissions can be detected by satellites (e.g.,
Masaya, Miyakejima, Telica) (Carn et al., 2017), and submarine eruptions (e.g., Mayotte, Axial Seamount, Bristol Island) are not considered in this compilation. We also do
not consider volcanoes that have approximately equal passive and eruptive SO₂ degassing
regime such as Manam and Ulawun (Carn et al., 2016). We do, however, include erup-

tions that are significantly explosive (e.g., 2018 eruptions of Ambrym and Kīlauea).

We find that observations of deformation and SO_2 degassing are not available for 522 every eruption despite similar erupted volume or volcano (Figure 8b). In fact, there is 523 no clear correlation between satellite observations and erupted volume, consistent with 524 previous studies (Kilbride et al., 2016), largely due to the challenges in volcano moni-525 toring such as atmospheric noise, ice cover, or limitations in satellite sensors (e.g., OMI 526 row anomaly for the 2012 eruption of Tolbachik). For example, satellite sensors could 527 not measure the deformation associated with the 2011 eruption of Grimsvötn due to ice 528 cover. Similarly, satellite measurement of SO_2 degassing is not available for the 2012-529 2013 eruption of Tolbachik, despite being one of the most voluminous arc basalt erup-530 tions (Belousov et al., 2015), due to the OMI row anomaly (see https://so2.gsfc.nasa.gov/ 531 pix/daily/1112/kamchat_1112z.html). 532

Overall, deformation was detected at 25% of eruptions (23/94) and SO₂ degassing 533 at 62% of eruptions (58/94) (Supplementary Table 1). A similar analysis conducted by 534 Furtney et al. (2018) uses multiple satellite data spanning 1978-2016 to synthesise ob-535 servations of volcanic deformation and degassing. Their study yielded similar results to 536 ours: of the 250 volcanic eruptions between 1978-2016, 28% of eruptions have satellite 537 observations of volcanic deformation, and SO_2 degassing is observed at 67% of eruptions 538 (Furthey et al., 2018). The slightly higher proportion of volcanoes with satellite-detected 539 deformation and degassing analysed by Furtney et al. (2018) is likely caused by the in-540 clusion of pre- and post-eruptive observations. The overall proportion of satellite obser-541 vations of volcanic deformation and SO₂ degassing appears to be fairly consistent be-542 tween studies. 543

544

5.2.2 Comparison between tectonic settings

Our compilation shows that co-eruptive deformation has been observed at 48% of 545 eruptions involving ocean island basalts (16/33), while only 11% of arc basalt eruptions 546 had observed deformation (7/61) (Supplementary Table 1; Figure 8a). The lower frequency 547 of detectable deformation at arc basalt eruptions can be attributed to the higher volatile 548 contents of arc magmas, which our thermodynamic model predicts will increase magma 549 compressibility and reduce surface deformation (Figure 7f-h). Systematic satellite ob-550 servations of deformation spanning 1992-2010 analysed by Biggs et al. (2014) shows that 551 the proportion of deforming volcanoes that erupted is higher for volcanoes in hotspot 552 setting (66%; ocean island) as compared to those in subduction setting (53%; arc). For 553 example, there are few InSAR observations from the Central American Volcanic Arc, where 554 parental melts are water-rich (Ebmeier et al., 2013b; Wallace, 2005). Although this is 555 an indirect comparison, the study agrees well with our results that observations of vol-556 canic deformation are dominated by ocean island basalt eruptions. However, we note that 557 other potential factors may also contribute to the lack of detectable deformation at vol-558 canoes, independently or collectively (e.g. the rate of magma recharge, chamber geom-559 etry, depth of magma storage, viscoelastic crustal rheology, an open conduit, pre-eruptive 560 degassing, atmospheric noise (Ebmeier et al., 2013b, 2013a; Chaussard et al., 2013; Head 561 et al., 2019; Yip et al., 2019)) meaning that the models are very uncertain. 562

Volcanic SO₂ degassing was observed at all 33 ocean island basalt eruptions in our 563 compilation but at only 41% of the arc basalt eruptions (25/61) (Supplementary Table 1; Figure 8a). While the higher magmatic volatile content of arc basalts might be ex-565 pected to produce a higher detection rate (Figure 7c), the high rate of detection at ocean 566 island basalt can be attributed to co-eruptive degassing. Conversely, the explosive na-567 ture of the arc basalt eruptions may mean there is there is no co-eruptive degassing and 568 the only volatiles released are those in equilibrium at chamber depth. Additionally, tech-569 nical difficulties in spectrometers, such as the 'row anomaly' in OMI that obscures the 570 spectrometer's field of view (e.g., 2019 eruption of Klyuchevskoy, 2012 eruption of Tol-571 bachik, 2010 eruption of Manam) prevents routine volcano monitoring. 572

We find that eruptions that have both satellite observations of volcanic deformation and degassing to be higher for ocean island basalt (16/33) as compared to arc basalt (4/61) (Figure 8a). Similarly, all ocean island basalts eruptions have been observed by at least one satellite sensor, while 3 of the 61 arc basalt eruptions were not detected by

-28-

either sensors. The lack of satellite observations for arc basalt eruptions highlights the difficulties in monitoring explosive eruptions with high magmatic volatile contents and thus compressible magmas (Huppert & Woods, 2002; Rivalta & Segall, 2008; Kilbride et al., 2016), and volcanoes with deep magma storage depth (Moran et al., 2006; Ebmeier et al., 2013b).

Finally, we further analyse 25 eruptions with erupted volume $\geq 1 \times 10^5 \text{ m}^3$ (Fig-582 ure 8b) to ensure comparable detection thresholds. All 19 ocean island basalt eruptions 583 with erupted volume $\geq 1 \times 10^5$ m³ have satellite observations of SO₂ degassing of which 584 13 have deformation measured by satellites (Figure 8b). For the case of arc basalt erup-585 tions, we find no clear correlation between erupted volume $\geq 1 \times 10^5 \text{ m}^3$ and satellite ob-586 servations of SO₂ degassing and deformation (Figure 8b), in agreement with the wider 587 catalogue and previous studies (Kilbride et al., 2016). This highlights the challenges for 588 satellites to detect surface deformation, particularly for more evolved arc basaltic erup-589 tions that are more compressible. 590

In summary, the thermodynamic framework and satellite observations of deforma-591 tion agree well with each other such that volcanic deformation of volatile-poor ocean is-592 land basalt are more likely to be detected by satellites as compared to volatile-rich arc 593 basalt (Figure 7g-h; Figure 8a). This is because volatile-rich arc basalts are highly com-594 pressibile, which results in muted surface deformation. Predictions of SO_2 degassing from 595 our thermodynamic framework shows that volatile-rich arc basalts have greater SO_2 de-596 gassing, yet satellite observations show otherwise (Figure 7c; Figure 8a). We note that 597 while the water content in arc basalts is two times greater than that of ocean island basalts, 598 the sulfur content in basalts from both tectonic settings are similar (Table 3). The re-599 lationship between volatile content in basalts and satellite detections of SO_2 degassing 600 suggests that eruption style plays a greater role than the volatile content of basalts in 601 determining volcanic SO_2 . 602

603

6 Discussion and Conclusion

The thermodynamic framework presented in this study provides a quantitative link between observations of volcanic deformation and degassing. The framework is used to explore the sensitivity of magma properties to several controlling parameters (magmatic H₂O, magmatic CO₂, magmatic S, oxygen fugacity f_{O_2} , crustal shear modulus μ , and chamber geometry), which vary systematically between tectonic setting. We demonstrated

-29-

that the results from thermodynamic models can be used to to calculate three key observables, SO₂ emissions, co-eruptive volume change and maximum vertical displacement, all of which are normalised by the erupted volume, and the dependence of these observables on pre-eruptive magmatic and chamber conditions. The conclusions of this study are as follow:

- Magmas with high magmatic H₂O content have high SO₂ gas emissions and a high magma compressibility, which results in muted surface deformation during eruptions. While high magmatic CO₂ has little effect on SO₂ gas emissions, it increases magma compressibility and thus reduces surface deformation. Varying oxygen fugacity from NNO-1 to NNO+1 and increasing magmatic S increase sulfur gas emissions but has little effect magma compressibility.
- Volcanoes with volatile-rich magma but stiff host rock have high magma compress ibility and low chamber compressibility, respectively, which leads to more muted
 ground deformation during eruptions when compared to volcanoes that have volatile poor magma and compliant host rock.
- The volatile content of magmas varies between tectonic settings and this influences
 both ground deformation and degassing during eruptions. Arc basalts, which tend
 to have higher magmatic volatile contents, have more muted ground deformation
 than ocean island basalts, which is reflected in observations over the satellite era.

Our thermodynamic framework has the potential to link observations of volcanic 628 deformation and degassing. However, there are caveats to this framework, such as 1) magma 629 chambers with different geometries exhibit different magnitude of deformation (e.g., Gud-630 mundsson, 2008; Amoruso & Crescentini, 2009; Anderson & Segall, 2011), 2) the mag-631 nitude of deformation may be influenced by viscoelastic responses of the crust (e.g., Hickey 632 et al., 2013; Head et al., 2019; Gottsmann et al., 2020), 3) both magma composition and 633 pre- and co-eruption gas segregation affect observations of deformation and degassing 634 (e.g., Wallace, 2005; Edmonds et al., 2014; Edmonds & Woods, 2018), and 4) it is dif-635 ficult to differentiate which parameter has the biggest influence on the observations of 636 each eruption. Additional complexities listed above are not introduced to this framework 637 as the goal of this study is to reconcile observations of volcanic deformation and degassing. 638

While the simplicity of this model is useful for considering general trends, oversimplification reduces the applicability to individual eruptions. The assumption of a typ-

-30-

ical crustal shear modulus may be appropriate for the sensitivity tests, but it is not applicable to all volcanoes. Similarly, we did not consider the effects of pre-eruptive gas
segregation on magma properties, which in reality could affect co-eruptive observations
(e.g., Wallace, 2001; Huppert & Woods, 2002; Rivalta & Segall, 2008). In practice, more
parameters are needed to be considered to provide realism (Masterlark, 2003).

With results from the thermodynamic framework, we have developed a better understanding of the effects of magmatic volatile content and crustal compressibility on the physicochemical properties of magma. Our future work will explore pre-eruptive gas segregation processes such as gas accumulation and degassing to understand its implications on observations of volcanic deformation and degassing. Future studies should refine this framework for specific circumstances to resolve additional complexities.

652 Acknowledgments

This research is supported by the NERC-BGS Centre for the Observation and Modelling of Earthquakes Volcanoes and Tectonics (COMET) for SY, JB and ME. SY and JB are funded by the Leverhulme Trust, and PL acknowledges funding from the Embiricos Trust Scholarship from Jesus College, Cambridge.

657 References

- Albino, F., Biggs, J., & Syahbana, D. K. (2019, 12). Dyke intrusion between neighbouring arc volcanoes re- sponsible for 2017 pre-eruptive seismic swarm at
 Agung, Bali. Nature Communications, 10(1), 748. Retrieved from http://
 www.nature.com/articles/s41467-019-08564-9http://dx.doi.org/
 10.1038/s41467-019-08564-9 doi: 10.1038/s41467-019-08564-9
- Amoruso, A., & Crescentini, L. (2009, 2). Shape and volume change of pressurized
 ellipsoidal cavities from deformation and seismic data. Journal of Geophysical
 Research, 114(B2), B02210. Retrieved from http://doi.wiley.com/10.1029/
 2008JB005946 doi: 10.1029/2008JB005946
- Anderson, K., & Segall, P. (2011, 7). Physics-based models of ground deformation
 and extrusion rate at effusively erupting volcanoes. Journal of Geophysical Re search: Solid Earth, 116(7), 1–20. Retrieved from http://doi.wiley.com/10
 .1029/2010JB007939 doi: 10.1029/2010JB007939
- Bachmann, O., & Bergantz, G. W. (2006, 1). Gas percolation in upper-crustal silicic

672	crystal mushes as a mechanism for upward heat advection and rejuvenation of
673	near-solidus magma bodies. Journal of Volcanology and Geothermal Research,
674	149(1-2), 85–102. doi: 10.1016/J.JVOLGEORES.2005.06.002
675	Belousov, A., Belousova, M., Edwards, B., Volynets, A., & Melnikov, D. (2015, 12).
676	Overview of the precursors and dynamics of the 2012-13 basaltic fissure erup-
677	tion of Tolbachik Volcano, Kamchatka, Russia. Journal of Volcanology and
678	Geothermal Research, 307, 22–37. doi: 10.1016/j.jvolgeores.2015.06.013
679	Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S.,
680	& Mather, T. A. (2014). Global link between deformation and volcanic
681	eruption quantified by satellite imagery. <i>Nature Communications</i> , 5. doi:
682	10.1038/ncomms4471
683	Biggs, J., & Pritchard, M. E. (2017). Global volcano monitoring: What does it mean
684	when volcanoes deform? <i>Elements</i> , $13(1)$, 17–22. doi: 10.2113/gselements.13.1
685	.17
686	Biggs, J., & Wright, T. J. (2020, 12). How satellite InSAR has grown from op-
687	portunistic science to routine monitoring over the last decade (Vol. 11)
688	(No. 1). Nature Research. Retrieved from https://doi.org/10.1038/
689	s41467-020-17587-6 doi: 10.1038/s41467-020-17587-6
690	Burgisser, A., Alletti, M., & Scaillet, B. (2015). Simulating the behavior of volatiles
691	belonging to the C-O-H-S system in silicate melts under magmatic condi-
692	tions with the software D-Compress. Computers and Geosciences. doi:
693	10.1016/j.cageo.2015.03.002
694	Burgisser, A., Chevalier, L., Gardner, J. E., & Castro, J. M. (2017, 7). The per-
695	colation threshold and permeability evolution of ascending magmas. ${\it Earth}~{\it and}$
696	Planetary Science Letters, 470, 37-47. Retrieved from http://dx.doi.org/10
697	.1016/j.epsl.2017.04.023 doi: 10.1016/j.epsl.2017.04.023
698	Candela, P. A. (1997, 12). A Review of Shallow, Ore-related Granites: Textures,
699	Volatiles, and Ore Metals. Journal of Petrology, 38(12), 1619–1633. Retrieved
700	from https://academic.oup.com/petrology/article/38/12/1619/1604064
701	doi: 10.1093/PETROJ/38.12.1619
702	Carboni, E., Grainger, R. G., Mather, T. A., Pyle, D. M., Thomas, G. E., Siddans,
703	R., Balis, D. $(2016, 4)$. The vertical distribution of volcanic SO2 plumes
704	measured by IASI. Atmospheric Chemistry and Physics, 16(7), 4343–4367.

705	doi: 10.5194/acp-16-4343-2016
706	Carmichael, I. S., & Ghiorso, M. S. (1986, 6). Oxidation-reduction relations in basic
707	magma: a case for homogeneous equilibria. Earth and Planetary Science Let-
708	ters, 78(2-3), 200–210. doi: 10.1016/0012-821X(86)90061-0
709	Carn, S. A., Clarisse, L., & Prata, A. J. (2016, 2). Multi-decadal satellite measure-
710	ments of global volcanic degassing (Vol. 311). Elsevier B.V. doi: 10.1016/j
711	.jvolgeores.2016.01.002
712	Carn, S. A., Fioletov, V. E., Mclinden, C. A., Li, C., & Krotkov, N. A. (2017, 3).
713	A decade of global volcanic SO2 emissions measured from space. Scientific
714	Reports, 7(1), 1-12. Retrieved from https://www.nature.com/articles/
715	srep44095 doi: 10.1038/srep44095
716	Chaussard, E., & Amelung, F. (2014, 4). Regional controls on magma ascent and
717	storage in volcanic arcs. $Geochemistry, Geophysics, Geosystems, 15(4), 1407-$
718	1418. Retrieved from http://doi.wiley.com/10.1002/2013GC005216 doi: 10
719	.1002/2013 GC 005216
720	Chaussard, E., Amelung, F., & Aoki, Y. (2013). Characterization of open and closed
721	volcanic systems in Indonesia and Mexico using InSAR time series. $Journal of$
722	Geophysical Research: Solid Earth. doi: 10.1002/jgrb.50288
723	Collins, S. J., Pyle, D. M., & Maclennan, J. (2009, 6). Melt inclusions track pre-
724	eruption storage and dehydration of magmas at Etna. $Geology, 37(6), 571-$
725	574. doi: 10.1130/G30040A.1
726	Colombier, M., Wadsworth, F. B., Scheu, B., Vasseur, J., Dobson, K. J., Cáceres,
727	F., Dingwell, D. B. $(2020, 4)$. In situ observation of the percolation
728	threshold in multiphase magma analogues. Bulletin of Volcanology, $82(4)$,
729	1-15. Retrieved from https://doi.org/10.1007/s00445-020-1370-1 doi:
730	10.1007/s00445-020-1370-1
731	Coppola, D., Laiolo, M., Cigolini, C., Massimetti, F., Delle Donne, D., Ripepe, M.,
732	\ldots William, R. (2020, 1). Thermal Remote Sensing for Global Volcano Moni-
733	toring: Experiences From the MIROVA System. Frontiers in Earth Science, 7,
734	362. doi: 10.3389/FEART.2019.00362/BIBTEX
735	Delgado, F., Pritchard, M. E., Ebmeier, S., González, P., & Lara, L. (2017,
736	9). Recent unrest (2002–2015) imaged by space geodesy at the highest
737	risk Chilean volcanoes: Villarrica, Llaima, and Calbuco (Southern An-

738	des). Journal of Volcanology and Geothermal Research, 344, 270–288. doi:
739	10.1016/j.jvolgeores.2017.05.020
740	Duan, X. (2014). A general model for predicting the solubility behavior of
741	H2O-CO2 fluids in silicate melts over a wide range of pressure, tempera-
742	ture and compositions. Geochimica et Cosmochimica Acta, 125, 582–609.
743	Retrieved from http://dx.doi.org/10.1016/j.gca.2013.10.018 doi:
744	10.1016/j.gca.2013.10.018
745	Ebmeier, S. K., Andrews, B. J., Araya, M. C., Arnold, D. W. D., Biggs, J., Cooper,
746	C., Williamson, J. L. (2018, 12). Synthesis of global satellite observations
747	of magmatic and volcanic deformation: implications for volcano monitoring $\&$
748	the lateral extent of magmatic domains. Journal of Applied Volcanology, $7(1)$,
749	1-26. Retrieved from https://appliedvolc.springeropen.com/articles/
750	10.1186/s13617-018-0071-3https://appliedvolc.biomedcentral.com/
751	track/pdf/10.1186/s13617-018-0071-3 doi: 10.1186/s13617-018-0071-3
752	Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013a). Applicability of
753	InSAR to tropical volcanoes: insights from Central America. Geological Soci-
754	ety, London, Special Publications. doi: 10.1144/SP380.2
755	Ebmeier, S. K., Biggs, J., Mather, T. A., & Amelung, F. (2013b, 5). On the
756	lack of InSAR observations of magmatic deformation at Central Ameri-
757	can volcanoes (Vol. 118) (No. 5). Blackwell Publishing Ltd. Retrieved
758	<pre>from https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/</pre>
759	jgrb.50195https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
760	jgrb.50195https://agupubs.onlinelibrary.wiley.com/doi/10.1002/
761	jgrb.50195 doi: 10.1002/jgrb.50195
762	Ebmeier, S. K., Elliott, J. R., Nocquet, J. M., Biggs, J., Mothes, P., Jarrín, P.,
763	Samsonov, S. V. (2016, 9). Shallow earthquake inhibits unrest near
764	Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth and Plane-
765	tary Science Letters, 450, 283–291. doi: 10.1016/j.epsl.2016.06.046
766	Edmonds, M., Cashman, K. V., Holness, M., & Jackson, M. (2019). Architecture
767	and dynamics of magma reservoirs. Philosophical Transactions of the Royal So-
768	ciety A: Mathematical, Physical and Engineering Sciences, 377(2139). doi: 10
769	.1098/rsta.2018.0298
770	Edmonds, M., Humphreys, M. C., Hauri, E. H., Herd, R. A., Wadge, G., Rawson,

-34-

771	H., Guida, R. (2014, 1). Pre-eruptive vapour and its role in controlling
772	eruption style and longevity at Soufrière Hills Volcano. Geological Society
773	<i>Memoir</i> , $39(1)$, 291–315. doi: 10.1144/M39.16
774	Edmonds, M., Mather, T. A., & Liu, E. J. (2018). A distinct metal fingerprint in
775	arc volcanic emissions. Nature Geoscience, $11(10)$, 790–794. Retrieved from
776	http://dx.doi.org/10.1038/s41561-018-0214-5 doi: 10.1038/s41561-018
777	-0214-5
778	Edmonds, M., & Woods, A. W. (2018). Exsolved volatiles in magma reser-
779	voirs. Journal of Volcanology and Geothermal Research, 368, 13–30. Re-
780	trieved from https://doi.org/10.1016/j.jvolgeores.2018.10.018 doi:
781	10.1016/j.jvolgeores.2018.10.018
782	Fialko, Y., Simons, M., & Agnew, D. (2001, 8). The complete (3-D) surface dis-
783	placement field in the epicentral area of the 1999 Mw 7.1 Hector Mine earth-
784	quake, California, from space geodetic observations. Geophysical Research
785	Letters, 28(16), 3063-3066. Retrieved from https://agupubs.onlinelibrary
786	.wiley.com/doi/full/10.1029/2001GL013174https://agupubs
787	.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https://
787 788	.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi:
787 788 789	.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174
787 788 789 790	.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A.,
787 788 789 790 791	.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi-
787 788 789 790 791 792	.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i>
787 788 789 790 791 792 793	.onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i> , 365, 38-56. doi: 10.1016/j.jvolgeores.2018.10.002
787 788 789 790 791 792 793 794	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring. <i>Journal of Volcanology and Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de-
787 788 789 790 791 792 793 794 795	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de- gassing chemistry in a comparative planetology perspective and implications
787 788 789 790 791 792 793 794 795 796	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring. <i>Journal of Volcanology and Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. <i>Earth and Planetary Science Letters</i>, 403, 307–316.
787 788 789 790 791 792 793 794 795 796 797	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de- gassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. <i>Earth and Planetary Science Letters</i>, 403, 307–316. doi: 10.1016/j.epsl.2014.07.009
 787 788 789 790 791 792 793 794 795 796 797 798 	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de- gassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. <i>Earth and Planetary Science Letters</i>, 403, 307–316. doi: 10.1016/j.epsl.2014.07.009 Ge, C., Wang, J., Carn, S., Yang, K., Ginoux, P., & Krotkov, N. (2016, 4). Satellite-
 787 788 789 790 791 792 793 794 795 796 797 798 799 	 onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de- gassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. <i>Earth and Planetary Science Letters</i>, 403, 307–316. doi: 10.1016/j.epsl.2014.07.009 Ge, C., Wang, J., Carn, S., Yang, K., Ginoux, P., & Krotkov, N. (2016, 4). Satellite- based global volcanic SO2 emissions and sulfate direct radiative forcing during
 787 788 789 790 791 792 793 794 795 796 797 798 799 800 	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de- gassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. <i>Earth and Planetary Science Letters</i>, 403, 307–316. doi: 10.1016/j.epsl.2014.07.009 Ge, C., Wang, J., Carn, S., Yang, K., Ginoux, P., & Krotkov, N. (2016, 4). Satellite- based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005-2012. <i>Journal of Geophysical Research</i>, 121(7), 3446–3464. Retrieved
 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de- gassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. <i>Earth and Planetary Science Letters</i>, 403, 307–316. doi: 10.1016/j.epsl.2014.07.009 Ge, C., Wang, J., Carn, S., Yang, K., Ginoux, P., & Krotkov, N. (2016, 4). Satellite- based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005-2012. <i>Journal of Geophysical Research</i>, 121(7), 3446–3464. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/
 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 	 .onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013174https:// agupubs.onlinelibrary.wiley.com/doi/10.1029/2001GL013174 doi: 10.1029/2001GL013174 Furtney, M. A., Pritchard, M. E., Biggs, J., Carn, S. A., Ebmeier, S. K., Jay, J. A., Reath, K. A. (2018, 10). Synthesizing multi-sensor, multi-satellite, multi- decadal datasets for global volcano monitoring. <i>Journal of Volcanology and</i> <i>Geothermal Research</i>, 365, 38–56. doi: 10.1016/j.jvolgeores.2018.10.002 Gaillard, F., & Scaillet, B. (2014, 10). A theoretical framework for volcanic de- gassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. <i>Earth and Planetary Science Letters</i>, 403, 307–316. doi: 10.1016/j.epsl.2014.07.009 Ge, C., Wang, J., Carn, S., Yang, K., Ginoux, P., & Krotkov, N. (2016, 4). Satellite- based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005-2012. <i>Journal of Geophysical Research</i>, 121(7), 3446–3464. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/ 2015JD023134https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/

804	10.1002/2015JD023134 doi: 10.1002/2015JD023134
805	Girona, T., Costa, F., Newhall, C., & Taisne, B. (2014, 12). On depressurization
806	of volcanic magma reservoirs by passive degassing. Journal of Geophysical Re-
807	search: Solid Earth, 119(12), 8667-8687. Retrieved from http://doi.wiley
808	.com/10.1002/2014JB011368 doi: 10.1002/2014JB011368
809	Gottsmann, J., Biggs, J., Lloyd, R., Biranhu, Y., & Lewi, E. (2020, 4). Ductility and
810	compressibility accommodate high magma flux beneath a silicic continental rift
811	caldera: Insights from Corbetti caldera (Ethiopia). Geochemistry, Geophysics,
812	Geosystems, 21(4), e2020GC008952.doi: 10.1029/2020gc008952
813	Gualda, G. A., Ghiorso, M. S., Lemons, R. V., & Carley, T. L. (2012, 5). Rhyolite-
814	MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-
815	bearing Magmatic Systems. Journal of Petrology, 53(5), 875–890. Retrieved
816	from https://academic.oup.com/petrology/article/53/5/875/1527627
817	doi: 10.1093/PETROLOGY/EGR080
818	Gudmundsson, A. (2005, 9). The effects of layering and local stresses in composite
819	volcanoes on dyke emplacement and volcanic hazards. Comptes Rendus - Geo-
820	science, 337(13), 1216–1222. doi: 10.1016/j.crte.2005.07.001
821	Gudmundsson, A. (2008, 1). Chapter 8 Magma-Chamber Geometry, Fluid Trans-
822	port, Local Stresses and Rock Behaviour During Collapse Caldera Formation
823	(Vol. 10) (No. C). Elsevier. doi: $10.1016/S1871-644X(07)00008-3$
824	Hamling, I. J., Cevuard, S., & Garaebiti, E. (2019, 5). Large-Scale Drainage of a
825	Complex Magmatic System: Observations From the 2018 Eruption of Am-
826	brym Volcano, Vanuatu. Geophysical Research Letters, $46(9)$, $4609-4617$. doi:
827	10.1029/2019GL082606
828	Hautmann, S., Gottsmann, J., Sparks, R. S. J., Mattioli, G. S., Sacks, I. S., &
829	Strutt, M. H. (2010, 9). Effect of mechanical heterogeneity in arc crust on
830	volcano deformation with application to Soufrière Hills Volcano, Montserrat,
831	West Indies. Journal of Geophysical Research: Solid Earth, 115(B9), 9203.
832	Retrieved from https://onlinelibrary.wiley.com/doi/full/10.1029/
833	2009JB006909https://onlinelibrary.wiley.com/doi/abs/10.1029/
834	2009JB006909https://agupubs.onlinelibrary.wiley.com/doi/10.1029/
835	2009JB006909 doi: 10.1029/2009JB006909
836	Head, M., Hickey, J., Gottsmann, J., & Fournier, N. (2019, 8). The Influ-

837	ence of Viscoelastic Crustal Rheologies on Volcanic Ground Deforma-
838	tion: Insights From Models of Pressure and Volume Change. Journal of
839	Geophysical Research: Solid Earth, 124(8), 8127–8146. Retrieved from
840	https://onlinelibrary.wiley.com/doi/10.1029/2019JB017832 doi:
841	10.1029/2019JB017832
842	Heap, M. J., Villeneuve, M., Albino, F., Farquharson, J. I., Brothelande, E.,
843	Amelung, F., Baud, P. (2020, 1). Towards more realistic values of elas-
844	tic moduli for volcano modelling. Journal of Volcanology and Geothermal
845	Research, 390, 106684. doi: 10.1016/j.jvolgeores.2019.106684
846	Hickey, J., Gottsmann, J., & Del Potro, R. (2013, 3). The large-scale sur-
847	face uplift in the Altiplano-Puna region of Bolivia: A parametric study
848	of source characteristics and crustal rheology using finite element analy-
849	sis. Geochemistry, Geophysics, Geosystems, 14(3), 540–555. Retrieved
850	from https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/
851	ggge.20057https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
852	ggge.20057https://agupubs.onlinelibrary.wiley.com/doi/10.1002/
853	ggge .20057 doi: 10.1002/ggge.20057
854	Huppert, H. E., & Woods, A. W. (2002). The role of volatiles in magma chamber
855	dynamics. Nature, 420(6915), 493–495. doi: 10.1038/nature 01211
856	Kilbride, B. M. C., Edmonds, M., & Biggs, J. (2016, 12). Observing eruptions of
857	gas-rich compressible magmas from space. Nature Communications, $7(1)$, 1–8.
858	Retrieved from http://dx.doi.org/10.1038/ncomms13744www.nature.com/
859	naturecommunications doi: 10.1038/ncomms13744
860	Liggins, P., Jordan, S., Rimmer, P. B., & Shorttle, O. (2021, 11). Growth and evolu-
861	tion of secondary volcanic atmospheres: I. Identifying the geological character
862	of warm rocky planets. arXiv. Retrieved from https://arxiv.org/abs/
863	2111.05161v1
864	Liggins, P., Shorttle, O., & Rimmer, P. B. (2020, 11). Can volcanism build
865	hydrogen-rich early atmospheres? Earth and Planetary Science Letters, 550,
866	116546. doi: 10.1016/J.EPSL.2020.116546
867	Lindoo, A., Larsen, J. F., Cashman, K. V., & Oppenheimer, J. (2017, 9). Crys-
868	tal controls on permeability development and degassing in basaltic andesite
869	magma. Geology, 45(9), 831-834. Retrieved from https://imagej.nih.gov

-37-

870	doi: 10.1130/G39157.1
871	Lowenstern, J. B. (1994, 10). Dissolved volatile concentrations in an ore-forming
872	magma. Geology, $22(10)$, 893–896. doi: $10.1130/0091-7613(1994)022(0893:$
873	$dvciao\rangle 2.3.co;2$
874	Masterlark, T. (2003, 11). Finite element model predictions of static deforma-
875	tion from dislocation sources in a subduction zone: Sensitivities to homo-
876	geneous, isotropic, Poisson-solid, and half-space assumptions. Journal of
877	Geophysical Research: Solid Earth, 108(B11), 2540. Retrieved from https://
878	onlinelibrary.wiley.com/doi/full/10.1029/2002JB002296https://
879	onlinelibrary.wiley.com/doi/abs/10.1029/2002JB002296https://
880	agupubs.onlinelibrary.wiley.com/doi/10.1029/2002JB002296 doi:
881	10.1029/2002JB002296
882	Mogi, K. (1958). Relations between the eruptions of various volcanoes and the
883	deformations of the ground surfaces around them. Bulletin of the Earthquake
884	Research Institute, 36, 99–134. Retrieved from http://repository.dl.itc
885	.u-tokyo.ac.jp/dspace/handle/2261/11909%5Cnpapers://8461d6ef-4184
886	-45b2-aa3d-395291ea6525/Paper/p3868 doi: 10.1016/j.epsl.2004.04.016
887	Morales Rivera, A. M., Amelung, F., & Mothes, P. (2016, 7). Volcano deforma-
888	tion survey over the Northern and Central Andes with ALOS InSAR time
889	series. Geochemistry, Geophysics, Geosystems, 17(7), 2869–2883. Re-
890	trieved from https://onlinelibrary.wiley.com/doi/full/10.1002/
891	2016GC006393https://onlinelibrary.wiley.com/doi/abs/10.1002/
892	2016GC006393https://agupubs.onlinelibrary.wiley.com/doi/10.1002/
893	2016GC006393 doi: 10.1002/2016GC006393
894	Moran, S. C., Kwoun, O., Masterlark, T., & Lu, Z. (2006, 2). On the absence of
895	In SAR-detected volcano deformation spanning the 1995–1996 and 1999 erup-
896	tions of Shishaldin Volcano, Alaska. Journal of Volcanology and Geothermal
897	Research, $150(1-3)$, 119–131. doi: 10.1016/J.JVOLGEORES.2005.07.013
898	Naismith, A. K., Matthew Watson, I., Escobar-Wolf, R., Chigna, G., Thomas, H.,
899	Coppola, D., & Chun, C. (2019, 2). Eruption frequency patterns through time
900	for the current (1999–2018) activity cycle at Volcán de Fuego derived from
901	remote sensing data: Evidence for an accelerating cycle of explosive paroxysms
902	and potential implications of eruptive activity. Journal of Volcanology and

-38-

903	Geothermal Research, 371, 206–219. doi: 10.1016/j.jvolgeores.2019.01.001
904	Neal, C. A., Brantley, S. R., Antolik, L., Babb, J. L., & Etc. (2019). The 2018 rift
905	eruption and summit collapse of Kīlauea Volcano. Science, 363 (January), $367-$
906	374.
907	Ohmoto, H., & Kerrick, D. M. (1977, 10). Devolatilization equilibria in
908	graphitic systems. American Journal of Science, 277(8), 1013–1044. Re-
909	trieved from http://www.ajsonline.org/content/277/8/1013 doi:
910	10.2475/ajs.277.8.1013
911	Okada, Y. (1985). SURFACE DEFORMATION DUE TO SHEAR AND TEN-
912	SILE FAULTS IN A HALF-SPACE (Vol. 75; Tech. Rep. No. 4). Retrieved
913	from http://www.bosai.go.jp/study/application/dc3d/download/
914	Okada_1985_BSSA.pdf
915	Papale, P. (1999). Modeling of the solubility of a two-component H2O + CO2 fluid
916	in silicate liquids. American Mineralogist, 84(4), 477–492. doi: 10.2138/am
917	-1999-0402
918	Papale, P., Moretti, R., & Barbato, D. (2006). The compositional dependence of the
919	saturation surface of H 2O + CO 2 fluids in silicate melts. Chemical Geology,
920	229(1-3), 78–95. doi: 10.1016/j.chemgeo.2006.01.013
921	Piochi, M., Bruno, P. P., De Astis, G., Piochi, M., Bruno, P. P., & De Astis, G.
922	(2005, 7). Relative roles of rifting tectonics and magma ascent processes: In-
923	ferences from geophysical, structural, volcanological, and geochemical data for
924	the Neapolitan volcanic region (southern Italy). Geochemistry, Geophysics,
925	Geosystems, 6(7). Retrieved from https://onlinelibrary.wiley.com/doi/
926	full/10.1029/2004GC000885https://onlinelibrary.wiley.com/doi/abs/
927	10.1029/2004GC000885https://agupubs.onlinelibrary.wiley.com/doi/
928	10.1029/2004GC000885 doi: 10.1029/2004GC000885
929	Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H., & Wallace, P. J. (2013, 2).
930	Why do mafic arc magmas contain $~~4\mathrm{wt\%}$ water on average? Earth and Plane-
931	tary Science Letters, 364, 168–179. doi: 10.1016/j.epsl.2012.11.044
932	Prata, A. J., & Kerkmann, J. (2007, 3). Simultaneous retrieval of volcanic ash and
933	SO2 using MSG-SEVIRI measurements. Geophysical Research Letters, $34(5)$.
934	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/full/
935	10.1029/2006GL028691https://agupubs.onlinelibrary.wiley.com/doi/

-39-

936	abs/10.1029/2006GL028691https://agupubs.onlinelibrary.wiley.com/
937	doi/10.1029/2006GL028691 doi: 10.1029/2006GL028691
938	Pritchard, M. E., Biggs, J., Wauthier, C., Sansosti, E., Arnold, D. W., Delgado, F.,
939	\ldots Zoffoli, S. (2018). Towards coordinated regional multi-satellite InSAR
940	volcano observations: results from the Latin America pilot project. $Journal of$
941	Applied Volcanology, 7(1). doi: 10.1186/s13617-018-0074-0
942	Reath, K., Pritchard, M., Biggs, J., Andrews, B., Ebmeier, S. K., Bagnardi, M.,
943	Poland, M. (2020, 1). Using Conceptual Models to Relate Multiparameter
944	Satellite Data to Subsurface Volcanic Processes in Latin America. Geochem-
945	istry, Geophysics, Geosystems, 21(1), 1–26. doi: $10.1029/2019$ GC008494
946	Reath, K., Pritchard, M., Poland, M., Delgado, F., Carn, S., Coppola, D.,
947	Bagnardi, M. (2019, 1). Thermal, Deformation, and Degassing Remote
948	Sensing Time Series (CE 2000–2017) at the 47 most Active Volcanoes in
949	Latin America: Implications for Volcanic Systems. Journal of Geophys-
950	ical Research: Solid Earth, 124(1), 195–218. Retrieved from https://
951	onlinelibrary.wiley.com/doi/abs/10.1029/2018JB016199http://
952	doi.wiley.com/10.1029/2018JB016199 doi: 10.1029/2018JB016199
953	Rivalta, E., & Segall, P. (2008). Magma compressibility and the missing source for
954	some dike intrusions. Geophysical Research Letters, $35(4)$, 1–5. doi: 10.1029/
955	2007GL032521
956	Rust, A. C., & Cashman, K. V. (2011, 11). Permeability controls on expansion and
957	size distributions of pyroclasts. Journal of Geophysical Research: Solid Earth,
958	116(11). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
959	full/10.1029/2011JB008494https://agupubs.onlinelibrary.wiley.com/
960	<pre>doi/abs/10.1029/2011JB008494https://agupubs.onlinelibrary.wiley</pre>
961	.com/doi/10.1029/2011JB008494 doi: 10.1029/2011JB008494
962	Scaillet, B., & Pichavant, M. (2005). A model of sulphur solubility for hy-
963	drous mafic melts: application to the determination of magmatic fluid com-
964	positions of Italian volcanoes. Annals of Geophysics. Retrieved from
965	https://www.earth-prints.org/handle/2122/930
966	Sigmundsson, F., Pinel, V., Grapenthin, R., Hooper, A., Halldórsson, S. A., Einars-
967	son, P., Yamasaki, T. (2020, 12). Unexpected large eruptions from buoyant
968	magma bodies within viscoelastic crust. Nature Communications, 11(1), 1–

-40-

969	11. Retrieved from https://doi.org/10.1038/s41467-020-16054-6 doi:
970	10.1038/s41467-020-16054-6
971	Spera, F. J. (2000). Physical properties of magma. <i>Encyclopedia on Volcanoes</i> . Re-
972	trieved from https://ci.nii.ac.jp/naid/10015606430
973	Telling, J., Flower, V. J., & Carn, S. A. (2015, 12). A multi-sensor satellite assess-
974	ment of SO2 emissions from the 2012–13 eruption of Plosky Tolbachik volcano,
975	Kamchatka. Journal of Volcanology and Geothermal Research, 307, 98–106.
976	doi: 10.1016/J.JVOLGEORES.2015.07.010
977	Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., Van Roozen-
978	dael, M. (2019, 12). Global monitoring of volcanic SO 2 degassing with
979	unprecedented resolution from TROPOMI onboard Sentinel-5 Precur-
980	sor. Scientific Reports, $9(1)$, 1–10. Retrieved from www.nature.com/
981	scientificreports doi: 10.1038/s41598-019-39279-y
982	Voight, B., Widiwijayanti, C., Mattioli, G., Elsworth, D., Hidayat, D., & Strutt,
983	M. (2010, 10). Magma-sponge hypothesis and stratovolcanoes: Case for
984	a compressible reservoir and quasi-steady deep influx at Soufrière Hills
985	Volcano, Montserrat. Geophysical Research Letters, 37(19), n/a-n/a.
986	Retrieved from http://doi.wiley.com/10.1029/2009GL041732 doi:
987	10.1029/2009GL041732
988	Wallace, P. J. (2001). Volcanic SO2 emissions and the abundance and distribution
989	of exsolved gas in magma bodies. Journal of Volcanology and Geothermal Re-
990	search, $108(1-4)$, 85–106. doi: 10.1016/S0377-0273(00)00279-1
991	Wallace, P. J. (2005, 1). Volatiles in subduction zone magmas: Concentrations and
992	fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology
993	
	and Geothermal Research, $140(1-3)$, $217-240$. doi: 10.1016 /j.jvolgeores.2004.07
994	and Geothermal Research, 140(1-3), 217–240. doi: 10.1016/j.jvolgeores.2004.07 .023
994 995	.023 Wallace, P. J., & Carmichael, I. S. (1992, 5). Sulfur in basaltic magmas. <i>Geochimica</i>
994 995 996	 and Geothermal Research, 140(1-3), 217–240. doi: 10.1016/J.Jvolgeores.2004.07 .023 Wallace, P. J., & Carmichael, I. S. (1992, 5). Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta, 56(5), 1863–1874. doi: 10.1016/0016-7037(92)90316-B
994 995 996 997	 and Geothermal Research, 140(1-3), 217–240. doi: 10.1016/J.Jvolgeores.2004.07 .023 Wallace, P. J., & Carmichael, I. S. (1992, 5). Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta, 56(5), 1863–1874. doi: 10.1016/0016-7037(92)90316-B Wallace, P. J., & Carmichael, I. S. (1999, 6). Quaternary volcanism near the Val-
994 995 996 997 998	 and Geothermal Research, 140(1-3), 217-240. doi: 10.1016/j.jvolgeores.2004.07 .023 Wallace, P. J., & Carmichael, I. S. (1992, 5). Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta, 56(5), 1863-1874. doi: 10.1016/0016-7037(92)90316-B Wallace, P. J., & Carmichael, I. S. (1999, 6). Quaternary volcanism near the Valley of Mexico: Implications for subduction zone magmatism and the effects of
994 995 996 997 998 999	 and Geothermal Research, 140(1-3), 217-240. doi: 10.1016/j.jvolgeores.2004.07 .023 Wallace, P. J., & Carmichael, I. S. (1992, 5). Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta, 56(5), 1863-1874. doi: 10.1016/0016-7037(92)90316-B Wallace, P. J., & Carmichael, I. S. (1999, 6). Quaternary volcanism near the Valley of Mexico: Implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contributions
994 995 996 997 998 999 999	 and Geothermal Research, 140(1-3), 217-240. doi: 10.1016/j.jvolgeores.2004.07 .023 Wallace, P. J., & Carmichael, I. S. (1992, 5). Sulfur in basaltic magmas. Geochimica et Cosmochimica Acta, 56(5), 1863-1874. doi: 10.1016/0016-7037(92)90316-B Wallace, P. J., & Carmichael, I. S. (1999, 6). Quaternary volcanism near the Valley of Mexico: Implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contributions to Mineralogy and Petrology, 135(4), 291-314. doi: 10.1007/s004100050513

-41-

1002	released during volcanic eruptions: Evidence from Mount Pinatubo. $Science$,
1003	265(5171), 497-499. Retrieved from http://science.sciencemag.org/ doi:
1004	10.1126/science.265.5171.497
1005	Wong, Y., & Segall, P. (2020, 11). Joint Inversions of Ground Deformation, Extru-
1006	sion Flux, and Gas Emissions Using Physics-Based Models for the Mount St.
1007	Helens 2004–2008 Eruption. Geochemistry, Geophysics, Geosystems, 21(12), 1–
1008	24. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/full/
1009	10.1029/2020GC009343https://agupubs.onlinelibrary.wiley.com/doi/
1010	abs/10.1029/2020GC009343https://agupubs.onlinelibrary.wiley.com/
1011	doi/10.1029/2020GC009343 doi: 10.1029/2020GC009343
1012	Wong, Y., Segall, P., Bradley, A., & Anderson, K. (2017). Constraining the
1013	Magmatic System at Mount St. Helens (2004–2008) Using Bayesian Inver-
1014	sion With Physics-Based Models Including Gas Escape and Crystallization.
1015	Journal of Geophysical Research: Solid Earth, 122(10), 7789–7812. doi:
1016	10.1002/2017JB014343
1017	Woods, A. W., & Huppert, H. E. (2003). On magma chamber evolution during slow
1018	effusive eruptions. Journal of Geophysical Research, 108(B8), 1–16. doi: 10
1019	.1029/2002jb 002019
1020	Yang, XM., Davis, P. M., & Dieterich, J. H. (1988, 5). Deformation from inflation
1021	of a dipping finite prolate spheroid in an elastic half-space as a model for vol-
1022	canic stressing. Journal of Geophysical Research: Solid Earth, 93(B5), 4249–
1023	4257. Retrieved from http://doi.wiley.com/10.1029/JB093iB05p04249
1024	doi: $10.1029/JB093iB05p04249$
1025	Yip, S. T. H., Biggs, J., & Albino, F. (2019, 12). Reevaluating Volcanic Defor-
1026	mation Using Atmospheric Corrections: Implications for the Magmatic Sys-
1027	tem of Agung Volcano, Indonesia. $Geophysical Research Letters, 46(23),$
1028	13704-13711. Retrieved from https://onlinelibrary.wiley.com/doi/
1029	full/10.1029/2019GL085233https://onlinelibrary.wiley.com/doi/abs/
1030	10.1029/2019GL085233https://agupubs.onlinelibrary.wiley.com/doi/
1031	10.1029/2019GL085233 doi: 10.1029/2019GL085233
1032	Zhan, Y., Gregg, P. M., Le Mével, H., Miller, C. A., & Cardona, C. (2019, 12). In-
1033	tegrating Reservoir Dynamics, Crustal Stress, and Geophysical Observations
1034	of the Laguna del Maule Magmatic System by FEM Models and Data Assim-

-42-

- ilation. Journal of Geophysical Research: Solid Earth, 124(12), 13547–13562.
 Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1029/
- ¹⁰³⁷ 2019JB018681 doi: 10.1029/2019JB018681
- ¹⁰³⁸ Zimmer, M. M., Plank, T., Hauri, E. H., Yogodzinski, G. M., Stelling, P., Larsen,
- J., ... Nye, C. J. (2010, 12). The role of water in generating the calc-
- alkaline trend: New volatile data for aleutian magmas and a new tholei-
- ¹⁰⁴¹ itic index. Journal of Petrology, 51(12), 2411–2444. Retrieved from
- 1042 https://academic.oup.com/petrology/article/51/12/2411/1541257
- ¹⁰⁴³ doi: 10.1093/petrology/egq062