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Abstract

As phytoplankton form the base of the marine food web, understanding the controls on their abundance is fundamental to

understanding marine ecology and how it might be altered by global climate change. While many Earth System Models (ESMs)

predict phytoplankton biomass, it is unclear whether they properly capture the mechanistic relationships that control this

quantity in the real ocean. In this paper, we used Random Forest (RF) analysis to analyze the output of ESMs and observational

datasets. We gathered information from 13 ESMs and two observational datasets. The target variable was phytoplankton

carbon and the predictors included environmental parameters known to influence phytoplankton, such as nutrients, light,

mixed layer depth, salinity, temperature, and upwelling. We examined three questions: (1) What fractions of variability in

ESMs and observations can be linked to the large-scale environmental variables simulated by ESMs? (2) What are the dominant

predictors and relationships affecting phytoplankton biomass? (3) How well do ESMs simulate phytoplankton carbon and do

they simulate the relationships we see in observations? We show that about 88% to 96% of the variability in observational

datasets and greater than 98% in the ESMs was accounted for by variables known to influence phytoplankton biomass from

large-scale environmental variables. The dominant predictors in the observational datasets were dissolved iron and shortwave

radiation. The dominant predictors in the ESMs were dissolved iron, shortwave radiation, and mixed layer depth. While

relationships in most of the ESMs matched the general trends seen in the observations, significant quantitative differences were

seen. While the assumption made by ESMs that large-scale environmental conditions control phytoplankton biomass appears

to hold in the real world, much work remains to be done to ensure that ESMs properly represent these controls.
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Abstract 

As phytoplankton form the base of the marine food web, understanding the controls on 

their abundance is fundamental to understanding marine ecology and how it might be altered by 

global climate change. While many Earth System Models (ESMs) predict phytoplankton biomass, 

it is unclear whether they properly capture the mechanistic relationships that control this quantity 

in the real ocean. In this paper, we used Random Forest (RF) analysis to analyze the output of 

ESMs and observational datasets. We gathered information from 13 ESMs and two observational 

datasets. The target variable was phytoplankton carbon and the predictors included environmental 

parameters known to influence phytoplankton, such as nutrients, light, mixed layer depth, salinity, 

temperature, and upwelling. We examined three questions: (1) What fractions of variability in 

ESMs and observations can be linked to the large-scale environmental variables simulated by 

ESMs? (2) What are the dominant predictors and relationships affecting phytoplankton biomass? 

(3) How well do ESMs simulate phytoplankton carbon and do they simulate the relationships we 

see in observations? We show that about 88% to 96% of the variability in observational datasets 

and greater than 98% in the ESMs was accounted for by variables known to influence 

phytoplankton biomass from large-scale environmental variables. The dominant predictors in the 

observational datasets were dissolved iron and shortwave radiation. The dominant predictors in 

the ESMs were dissolved iron, shortwave radiation, and mixed layer depth. While relationships in 

most of the ESMs matched the general trends seen in the observations, significant quantitative 



differences were seen. While the assumption made by ESMs that large-scale environmental 

conditions control phytoplankton biomass appears to hold in the real world, much work remains 

to be done to ensure that ESMs properly represent these controls. 

 

Introduction 

Phytoplankton form the base of the marine food web and play a fundamental role in the 

biological carbon pump1. Acting with bottom-up control, phytoplankton have been shown to limit 

the size of fisheries2, a concerning prospect given the demand that there is an increasing demand 

for fish3. Phytoplankton also affect the optical properties of the upper ocean where they are 

present4, which can affect other physical and biogeochemical parameters of their local 

environment. To understand the potential impact on marine food webs and the potential for carbon 

sequestration, it is important to understand the spatial distribution of particle export as well as the 

drivers of phytoplankton dynamics. 

 

A major goal of Earth System Models (ESMs) is to understand how feedbacks between 

changes in ocean circulation affect biological cycling and the uptake/sequestration of carbon in the 

ocean interior. For ESMs to model this behavior requires accurate predictions of phytoplankton 

biomass. If this is to be possible, biomass itself must be reasonably predictable from environmental 

conditions. A quick comparison of mean phytoplankton biomass modelled by 13 ESMs (Fig. 1 a-

m) and estimated from two satellite remote-sensed products (Fig. 1 n, o) shows clear disagreement 

in the magnitude and spatial patterns of biomass. The reason for these differences could be due to 

various factors. One fundamental difference is that ESMs contain simplified representations of 

ocean biology, with each ESM having different assumptions. The ESMs could use different values 

for the coefficients controlling phytoplankton physiology, such as half-saturation growth 

constants, or one ESM may include nitrogen as a nutrient affecting phytoplankton growth, while 

another does not. It is also uncertain whether particular ESMs could be missing fundamental 

ecological processes affecting phytoplankton biomass. For example, viral lysis is a process that is 

not included in many ESMs5, even though viruses can strongly influence marine ecosystems6,7. 

 



In this study, we used a machine learning (ML) method known as random forests (RFs)8 

to investigate the connections between environmental variables commonly simulated by ESMs 

and phytoplankton biomass in both observations and the models. RFs are capable of modelling 

complex non-linear behaviors between predictor and target variables without having to know any 

prior information about a dataset. Using RFs, along with metrics for measuring the importance of 

predictor variables and sensitivity analyses, allows us to visualize the contributions of each 

predictor variable and their relationships to phytoplankton which can circumvent some uncertainty 

of why ESMs agree/disagree with the patterns in observations. We sought to address two main 

questions: 

1. What fraction of variability in ESMs and observations can be linked to large-scale 

environmental variables that might be plausibly simulated by ESMs? 

2. What are the dominant predictors and relationships between these variables and 

observed phytoplankton carbon? 

3. How well do ESMs simulate phytoplankton carbon and do they simulate the 

relationships we see in observations?  

 

Methods 

Earth System Models 

The data for each ESM was downloaded through the Earth System Grid Federation (ESGF) 

portal through the Department of Energy Lawrence Livermore National Laboratory node. All 

ESMs were part of the CMIP6 era. For the selection of the ESMs, we searched the ESGF portal 

using “esm-piControl” and “piControl” for the Experiment ID, “r1i1p1f1” for the Variable Label, 

“mon” (i.e. monthly) for the Frequency field, “ocean,” “ocnBgChem,” and ocnBgchem” for the 

Realm, and “phyc” for phytoplankton carbon as the Variable. We chose to use the PI Control 

experiments since this allowed us to establish the baseline behavior and natural variability of the 

phytoplankton without anthropogenic forcings, as this would limit the extent to which the drivers 

of phytoplankton biomass exhibited correlated trends. We limited our search to models that 

provided a phytoplankton carbon field as this is somewhat better constrained than primary 

productivity, which shows large differences across algorithms, models, and measurements9. 



Additionally, while chlorophyll can show large variability over the course of a day even in 

relatively static parts of the ocean10, particulate carbon is relatively constant which leads to smaller 

potential biases in comparing remotely sensed products observed at a particular time of day to 

monthly-averaged model output. Of the ESMs that matched the search criteria, we did not use 

CanESM5, GISS-E2-1-G-CC, and NorESM1-F. CanESM5 did not have enough available 

predictors to make it worthwhile to include in the analysis, GISS-E2-1-G-CC contained errors in 

the magnitudes of the concentrations for dissolved iron and silicate, and NorESM1-F reported 

depth in density making it difficult to isolate the surface layer. A brief summary of the ESMs used 

in this study can be found in Table 1, which includes information about the nutrients, 

phytoplankton groups, and zooplankton groups within each ESM. 

 

 We chose to use predictors for our analysis that were known to either directly influence 

phytoplankton growth rates or that were known to be associated with concentration/dilution of 

phytoplankton: dissolved iron, mixed layer depth, ammonia, nitrate, phosphate, silicate, shortwave 

radiation, salinity, sea surface temperature, and vertical velocity at 50 m depth. Mixed layer depth 

was included as shallower mixed layers are associated with reducing light limitation and increasing 

the frequency of zooplankton-phytoplankton interactions11. Vertical velocity at 50 m was included 

as a predictor since this can identify regions of upwelling nutrient-rich waters, but also regions 

where surface divergence could remove phytoplankton from a region. When an ESM did not 

specifically include a vertical velocity measurement at 50 m, the next closest depth was used. In 

cases where 45 and 55 m (but not 50 m) were both available, 55 m was used. 

 

 We restricted our analysis to a monthly climatology constructed using the output of the last 

100 years of each ESM run. This allowed sufficient time for the models to reach a steady state 

which allows for easier identification of the apparent relationships. Using a climatology also 

allows us to train computationally intensive methods, such as RFs, using a smaller dataset. 

 

 The regridded versions of variables were used when they were available. These were files 

denoted with “gr” in their file description, as opposed to those with “gn” which stood for the native 

grid of an ESM. The regridded versions were at lower resolution than the native grid files. The 

regridded versions were favored with the reasoning that variables that needed to be regridded to 



match the others should do so from higher to lower resolution. Additionally, any negative values 

for variables that should not have negatives (which were likely artifacts of the regridding process) 

were replaced with zeros. 

  

Observational Data 

We chose to use two target observational datasets. The first dataset was from Kostadinov 

et al.12,13, which contains estimates for phytoplankton size classes as carbon derived from remote 

sensing measurements. Briefly, the spectral shape and magnitude of particulate backscattering at 

blue-green wavelengths is used to relate them to the particle size distribution and concentration of 

suspended particles of a reference diameter, with the assumption that the particles are spherical. 

These measurements are then integrated across three specified ranges of diameters (0.5-2 μm for 

picoplankton, 2-20 μm for nanoplankton, and 20-50 μm for microplankton) to acquire particle size 

classes and then multiplied by 1/3 to acquire the phytoplankton carbon biomass of living 

phytoplankton. Although separated into size classes, the sum of the phytoplankton carbon size 

classes provided an estimate of the total phytoplankton carbon.  

 

The second target dataset we used was the MODIS-Aqua particulate organic carbon (POC) 

product14. This dataset used remote sensing reflectances at 443 and 555 nm as inputs to a power-

law to predict particulate organic carbon. We took the additional step of using a phytoplankton 

carbon to POC ratio of 1:3 to acquire estimates of living phytoplankton carbon. The 1:3 ratio was 

chosen in order to match the ratio used in the previously listed Kostadinov publications12,13, where 

they describe this as the middle estimate of the published range for this ratio15–18.  

 

Observational climatologies for temperature, salinity, mixed layer, depth, silicate, 

phosphate, and nitrate were downloaded from the World Ocean Atlas (WOA) 201819–21. The 

objectively analyzed mean fields at a 1-degree resolution were monthly averages for the previous 

variables, except for the mixed layer depth. The mixed layer depth was available in two 

timeframes, 1981-2010 and 2005-2017. The later was selected for our analysis since it overlaps 

the timeframe of the Kostadinov phytoplankton carbon dataset. For shortwave radiation, we used 

the International Satellite Cloud Climatology Project (ISCCP) estimates as provided by the 



Objectively Analyzed Air-Sea Fluxes (OAFlux) Project22. The monthly vertical velocity was 

acquired from the Estimating the Circulation and Climate of the Ocean (ECCO) reanalysis data on 

the EarthData portal (Version 4 Release 4)23–25. To remain consistent with the vertical velocity 

values of the ESMs, we used the vertical velocity at 55 m since the 50 m vertical velocity was 

unavailable. We used the ensemble average of the ESMs for dissolved iron and ammonia, since 

no globally interpolated observational datasets exist for these variables that are not sparsely 

sampled.  

 

Since both observational datasets were based on passive satellite products, regions of low 

light did not have any phytoplankton carbon concentrations associated with them, such as high 

latitude regions in winter. This meant the analysis would not have been able to account for these 

areas, even though it is well-known that phytoplankton persist. To include these low light areas in 

the analysis, we used the respective 5th percentile value of phytoplankton carbon for each of the 

observational datasets.  

 

Random Forests 

RFs are a type of ML method that use a large ensemble of decision trees to make 

predictions8. This ensemble approach provides the benefit of turning single “weak learning” trees 

into a collective “strong learning” ensemble of trees. For a more thorough description of how RFs 

used in this analysis were constructed, please refer to Holder and Gnanadesikan26 section 2.4.1 

titled “Random forests.” 

 

RFs are a useful ML method because of their robust predictions, their tendency to not 

overfit data, and their ability provide variable importance metrics. The importance of variables 

within a dataset can be determined in a number of ways, but we chose to use the permutation 

method for this analysis. Briefly, the permutation method determines the relative importance of 

variables by first calculating the model error of the trained RF and using that as a “baseline.” One 

variable is then randomly shuffled, and this altered dataset is provided to the trained RF to acquire 

predictions. The error of these new predictions is calculated and compared to the original error. 

This process is repeated for each predictor variable. A large relative increase in error is associated 



with predictors that are more important, while variables with smaller relative increases in error are 

considered less important.  

 

To minimize the biases in the variable importance metrics, we constructed the decision 

trees without sample replacement, as it has been demonstrated that RF variable importance metrics 

can be inaccurate if the predictors vary greatly in their range or in their number of unique values27. 

The suggested solution was to construct decision trees without sample replacement, which is not 

the usual practice for RFs. Since our predictor variables can vary greatly in their ranges and values, 

such as phosphate at 10-7 concentrations vs shortwave radiation at levels around 102, we opted to 

implement their suggestion in our analysis. Additionally, the usual percentage of a dataset used in 

the construction of a RF decision tree with sample replacement is about 63.2%. To keep the relative 

number of samples consistent with sample-replacement tree construction, we selected 63.2% of 

the samples to be used for the construction of each decision tree. We also allowed the RF to 

consider 2nd order interactions between predictor variables along with the individual predictors, 

when considering how to divide the dataset at each branch. This allowed the RFs to find and 

account for important interactions between variables. Lastly, we constructed 50 trees for each RF, 

except for the RF trained on the MODIS observations which required 250 trees. A meta-analysis 

was conducted to determine the number trees for each dataset where we measured the out-of-bag 

(OOB) error compared to the number of trees. Based on where the OOB error no longer 

significantly decreased, we selected that number of trees, doubled it to ensure generalization, and 

used that final number as the number of trees for each dataset.  

 

RFs by construction tend not to overfit datasets because of sample replacement, the random 

selection of variables at node splits, and the averaging of many decision trees. Although our 

construction of RFs still maintains the latter two, we took the additional step of randomly 

separating the datasets for each ESM and observation set into training and testing subsets to further 

minimize the chances of overfitting. The training subsets each consisted of 80% of the values of 

their respective dataset and the testing subsets consisted of the other 20%. Thus, the testing subsets 

contained values that the RFs had not seen during their training. To assess the performance of each 

RF, we calculated the coefficient of determination (R2) and the root mean squared error (RMSE) 



between the RF predictions and the actual values. This performance evaluation was conducted on 

both the training and testing subsets for each RF. 

 

To visualize the relationships within each RF, we used sensitivity analyses. For the 

sensitivity analysis of each predictor variable, we determined the min-max range of that variable 

from the observational datasets. We set the remaining predictors at the median value of the 

respective predictors from the observational dataset. We gave each trained RF the same 

conditions, rather than giving them the median conditions of their respective dataset. This allowed 

us to ask whether the models would get the right relationships for the right reasons, since it 

evaluates whether they can predict the correct relationships of a single predictor when presented 

with the correct values of other variables. This artificial set of observations was provided to each 

trained RF to get their predictions and plotted on a sensitivity analysis plot. For example, the values 

of the sensitivity analysis for the shortwave radiation variable were set at the min-max range of 

shortwave radiation in the observational dataset, the remaining variables were set at the median 

value of the other variables in the observational dataset, and this artificial dataset was provided to 

each trained RF. Each RF was provided with the same conditions so a direct comparison of the 

relationships from each dataset (ESM and observations) could be made. 

 

 We trained RFs on two versions of each dataset: one where all variables were left non-

transformed and one where only the phytoplankton carbon (target) variable was Log10 transformed. 

Log10 transforming the target variable allows for greater predictability of the outcome, because the 

effect of outliers is reduced. However, the non-transformed datasets are also informative, 

especially in the comparison between the variable importance metrics of the non-transformed 

versus Log10 transformed datasets, which allowed us to examine the effect of outliers on the 

variable importances. Additionally, the non-transformed datasets allowed us to view the unbiased 

version of the sensitivity analyses. Even though the differences in the sensitivity analyses between 

the non-transformed and Log10 transformed datasets would be assumed to be minimal due to the 

nature of RFs’ construction, we chose to compare the non-transformed and Log10 sensitivity 

analyses for certainty. 



Results 

Comparing the models and observations (Fig. 1) reveals large, systematic differences 

between observations and ESMs, and smaller, though still systematic, differences between the 

observational datasets themselves. Moreover, although there are similarities in phytoplankton 

carbon between the versions of ESMs, significant variation exists between the different ESMs (Fig. 

1). The MPI ESM models show high concentrations of phytoplankton carbon, especially in the 

equatorial and southern latitudes (Fig. 1 i-k; Fig. 2 a). The GFDL models exhibit the opposite 

pattern with high concentrations in the northern latitudes and with GFDL-CM4 showing the largest 

asymmetry (Fig. 1 e-f; Fig. 2 a). The CESM2 models exhibit low concentrations in the gyre regions 

and in the extreme northern/southern latitudes, while showing high concentrations in the northern 

mid-latitudes and around coastal areas of the southern latitudes (Fig. 1 a-d). The IPSL models 

show lower variability compared to the other datasets but mirror the general pattern of low 

concentrations in the gyre regions (Fig. 1 g-h). The NorESM2 models show their highest 

phytoplankton carbon concentrations occurring in the equatorial regions and decreasing toward 

the higher latitudes and gyre centers (Fig. 1 l-m). The observational datasets based on MODIS and 

Kostadinov exhibit some similarity in their general patterns (Fig. 1 n-o; 2 a) with the gyre regions 

being low in phytoplankton carbon and high in the coastal regions of the northern latitudes. 

However, the Kostadinov observations have greater extremes than MODIS (Fig. 1 n-o). 

Kostadinov shows lower concentrations in the gyre regions and in the Southern Ocean, while 

exhibiting higher concentrations in the North Atlantic compared to MODIS (Fig. 1 n-o; Fig. 2 a). 

 

The agreement between the ESMs and observations with respect to individual predictor 

variables also varies depending on the variable and model. The models underestimated zonal mean 

mixed layer depth, phosphate, and salinity relative to observations (Fig. 2 c, f, i). Since the 

observations for dissolved iron and ammonium were the ensemble averages of the ESMs (Fig. 2 

b, d) they were constrained to lie within that range. Some variables (shortwave radiation, nitrate, 

silicate) show good agreement in some latitude bands but not others (Fig. 2 e, g, h). Shortwave 

radiation (Fig. 2 g) is generally well-simulated but is too high in the Southern Ocean, a well-known 

problem in climate models28. There is also agreement in the mid-latitude regions for nitrate (Fig. 

2 e) and between about 30°S to 30°N for silicate (Fig. 2 h), but the models and observations begin 



to deviate outside these regions. Finally, there is consensus between the observations and models 

for temperature and vertical velocity (50 m) (Fig. 2 j, k).  

 

Using environmental predictors, phytoplankton carbon concentrations in both the ESMs 

and observations were predictable with high levels of accuracy in both the non-transformed and 

Log10 transformed datasets (Table 2). However, the performance metrics were generally better in 

the Log10 transformed dataset compared to the non-transformed. When compared to the mean null 

model RMSE, the RFs trained on the non-transformed observational and ESM datasets showed 

decreases in the RMSE of 33-71% and 82-97% respectively. Additionally, the R2 values between 

the true values and the RF predictions were .559 to 0.921 for the observations and 0.959-0.995 for 

the ESMs.  This suggests the absolute abundance of phytoplankton in the real ocean is significantly 

controlled by large-scale environmental predictors, while in models it is almost completely 

controlled by such predictors. 

 

There were further reductions in RMSE when the phytoplankton carbon target variable was 

Log10 transformed (giving us a measure of the relative, rather than the absolute abundance). When 

compared with the mean model RMSE, the RFs decreased the RMSE by 87-96% for the ESMs 

and 65-80% for the observational datasets (Table 2). This was also associated with R2 values 

between the true values and the RF predictions of 0.983-0.998 for the ESMs and 0.881-0.961 for 

the observations. This increase in performance metrics for the Log10 transformed dataset was likely 

due to the reduced effect of outliers. Compared to the non-transformed dataset, where outliers can 

have a greater influence on the predictability, the Log10 transformed dataset reduces this effect, 

suggesting that the relative abundance of monthly-averaged phytoplankton carbon is largely 

controlled by large-scale environmental variables.  

 

There were differences for the variable importances between the different versions of the 

same ESMs and between the two observational datasets in the non-transformed data (Fig. 3). For 

the observations, both MODIS and Kostadinov agreed that dissolved iron and shortwave radiation 

were the important predictors, but shortwave radiation was most important for MODIS, whereas 

dissolved iron was most important for Kostadinov (Fig. 3 n, o). The ESMs do not show a consensus 

on the most important predictor, with large differences between models and differences amongst 



them as well. The GFDL models (Fig. 3 e, f) show qualitatively strong agreement with the 

Kostadinov dataset (Fig. 3 o), with iron and shortwave being the first and second most important 

predictors in both codes. The CESM2 models showed mixed layer depth as the most important 

predictor, but dissolved iron was equally important in the FV2 versions and not in the others (Fig. 

3 a-d). The IPSL models showed dissolved iron and mixed layer depth as important, but phosphate 

and shortwave radiation were equally important in the LR version (Fig. 3 g, h). The NorESM2 

models showed mixed layer depth as most important, but the MM version showed vertical velocity 

at 50 m as important as well (Fig. 3 l, m).  

 

More consistent patterns were seen when the phytoplankton carbon target variable was 

Log10 transformed (Fig. 4). For the Log10 transformed datasets, the observational datasets showed 

agreement on dissolved iron and shortwave radiation (Fig. 4 n, o). The CESM2 models agreed that 

both dissolved iron and mixed layer depth were generally of equal importance (Fig. 4 a-d). 

Although mixed layer depth was less important in the CESM2-FV2 model compared to the other 

versions (Fig. 4 b). The GFDL models (Fig. 4 e, f) switch from having dissolved iron as the most 

important predictor to having shortwave radiation as the most important predictor – a switch, 

which as we will see below, is driven by this model allowing for very low values of phytoplankton 

biomass in winter months. The IPSL models showed agreement for the importance of dissolved 

iron and shortwave radiation (Fig. 4 g, h), the MPI models collectively agreed on shortwave 

radiation importance (Fig. 4 i-k), and the NorESM2 models agreed on mixed layer depth (Fig. 4 l, 

m). 

  

 General similarities exist between the observations and ESMs in the sensitivity analyses 

using log10-transformed data (Fig. 5). For dissolved iron, the models and observations showed a 

general trend of increases in phytoplankton carbon with increasing iron before eventually 

plateauing, although the observations and GFDL-CM4 plateaued much later than the others (Fig. 

5 a). Shallower mixed layer depths, colder temperatures, and upwelling were associated with 

increases in phytoplankton carbon (Fig. 5 b, i, j). The temperature relationship was especially 

pronounced in the CESM2 models (Fig. 5 i). Higher concentrations of phosphate and silicate 

yielded greater concentrations of phytoplankton carbon, with this relationship being more 



pronounced in the ESMs (except for the CESM2 models) than in the observational datasets (Fig. 

5 e, g). 

 

 There are both qualitative and quantitative disagreements across the sensitivity analyses as 

well (Fig. 5). The MPI models showed an initial decrease in biomass with increasing dissolved 

iron unlike the other datasets which showed continual increases (Fig. 5 a). IPSL-CM5A2-INCA 

showed a decrease in phytoplankton concentrations with increasing ammonium, while the other 

ESMs (where ammonium was present as a predictor) and observations exhibited increases in 

phytoplankton carbon (Fig. 5 c). The ESMs showed that increases in shortwave radiation led to 

higher phytoplankton carbon, with a much sharper dependence on it than was seen in the 

observations (Fig. 5 f). The MPI models and GFDL-ESM4 indicated higher phytoplankton carbon 

concentrations when salinity levels were high, while the other ESMs and observations suggested 

the opposite trend (Fig. 5 h). Michaelis-Menten-like curves were seen in the ESMs and the 

Kostadinov observations for nitrate, but the MODIS observations showed two rapid increases in 

phytoplankton carbon before eventually plateauing, one around 1 x 10-3 mol NO3 m
-3 and the other 

around 15 x 10-3 mol NO3 m
-3 (Fig. 5 d). 

 

Discussion 

The first result of our study is that a large portion of the spatiotemporal variability of 

phytoplankton biomass in the observational datasets and ESMs can be explained by a relatively 

small set of environmental predictors (Table 2). The RFs trained on the non-transformed 

observations explained about 73% to 94% of the variability in phytoplankton carbon and the RFs 

trained on the ESMs explained even more. This increased further to 88-96% of the variability for 

the RFs trained on the Log10 transformed data. This implies a good portion of the variance observed 

in phytoplankton dynamics on global scales can be explained by variables known to influence 

phytoplankton that are directly simulated in ESMs. It is possible that this could differ for specific 

regions and/or specific times of year. For example, it is well known that grazing increases with 

phytoplankton blooms, such as the spring bloom in the North Atlantic. Zooplankton grazing could 

control phytoplankton growth on smaller timescales, such as daily29 to weekly. Additionally, the 

lower estimate of the variability explained for the observations likely could have been higher if 



some of the outlier values in the MODIS dataset were excluded from the analysis. The RF trained 

on MODIS underpredicted these high values, which likely decreased its performance metrics (data 

not shown).  

 

 The second main result of our study was that there were common predictors that were most 

important in the ESMs and observations for both the non-transformed and Log10 transformed data: 

dissolved iron, shortwave radiation, and mixed layer depth (Fig. 3 and 4). Although there were 

differences in the variable importance for the different versions of the same ESMs for the non-

transformed data, this was mainly due to the influence of outliers. The influence of these outliers 

was reduced in the Log10 transformed data leading to greater similarities between the observational 

datasets and between different versions of the same ESMs. The importance of any single variable 

was not necessarily associated with any particular pattern in the sensitivity analyses, such as 

magnitude or the difference between the lowest to highest biomass. For example, the datasets that 

showed dissolved iron as most important demonstrated typical Michalis-Menten patterns, but the 

difference between the lowest and highest concentration of the relationship did not necessarily 

indicate absolute importance when the median values were used for the other variables (Fig. 3, 4, 

and 5 a). Additionally, the magnitude of the range in the sensitivity plots made little difference in 

importance ranking, as highlighted in the sensitivity analysis for sea surface temperature with the 

CESM2 models (Fig. 5 i). These models show a higher sensitivity to temperature than any of the 

other datasets, and yet it is never listed as being higher than the third most important variable in 

any of the CESM2 models (Fig. 3 and 4).  

 

The reason for this apparent mismatch between sensitivity and importance of given 

variables is not simply due to their individual effects on phytoplankton carbon. Rather, the 

interaction effects of any one variable with the other variables likely explain a large component of 

their importance. This does suggest that when any of the ESMs showed agreement with one of the 

observational datasets with respect to their variable importances, they are capturing both the 

importance of that variable and the importance of its interaction effects with other variables. 

Because our sensitivity plots set the drivers at the median values of the observations, they cannot 

show such interactions.  

 



The third result was that RFs captured the general trends for most of the relationships. 

However, this result could be a demonstration of how different datasets can get similar answers 

for different reasons. For example, the agreement of the GFDL and IPSL models with the 

Kostadinov observations in selecting dissolved iron as the most important variable did not mean 

they found all the same relationships in the sensitivity analysis. The Kostadinov dataset showed 

slight decreases in phytoplankton carbon with increasing shortwave radiation, while the GFDL 

and IPSL models showed continual increases. Though there are similarities between the individual 

relationships, it is difficult to say if the models were capturing the same degree of interactions 

between the same variables as the Kostadinov and MODIS datasets. That type of analysis could 

be carried out in future work using interaction plot analyses, as observed in previous publications26. 

Due to the number of plots and complex interactions between the numerous variables this requires, 

we chose not to go into depth for any particular interactions in this manuscript.  

 

It is worth noting that we were not expecting the ESMs to match the sensitivity analysis 

curves of the observational datasets perfectly, partly due to the biases in the models. The purpose 

of the sensitivity analyses was to examine whether the models would have the right 

qualitative/quantitative dependence on environmental variables if they simulated those variables 

perfectly. The conditions of the sensitivity analysis were based on the values of the observational 

datasets (which each had the same predictor values). The reason for this was to ensure that each 

RF was provided with the same conditions, since metrics like the min-max range and the median 

were different for each dataset. It then makes sense that we would not expect the sensitivity curves 

to match perfectly since each RF was trained on a dataset with different ranges for each variable 

and, as seen in Fig. 2, many models exhibit systematic biases with respect to these variables. 

 

One limitation of this study is that we chose to use RF analysis. It is known that at more 

extreme values, RFs can underestimate the response in sensitivity analyses caused by a lack of 

training observations within that area of the dataspace26. It has been noted in other studies that 

neural network ensembles (NNEs) are able to approximate the actual behavior more closely within 

those data-poor regions of the dataspace, but this is also accompanied by higher uncertainty26. We 

chose not to use NNEs for this study because there was a large degree of uncertainty with some of 

the models (data not shown). This was due to the varying ranges of the variables for each dataset 



and the set of conditions that each sensitivity analysis asked the trained NNEs to predict. For 

example, the set of conditions for the dissolved iron sensitivity analysis asked each trained NNE 

to make predictions on conditions that were based on the observations (ie. the min-max range for 

dissolved iron and the median values for the other variables relative to the observations). If this set 

of conditions was closer to the edges of the dataspace for any of the ESMs, the predictions the 

NNEs provided contained higher levels of uncertainty. This meant that trying to visualize all the 

varying responses on a single sensitivity analysis plot was difficult because of the difference in 

predictions and uncertainties between each trained NNE. Moreover, when we compared NNE and 

RF sensitivity plots using the median values taken from the individual models, the sensitivity plots 

were very similar. For these reasons, we chose to use RFs, despite their known shortcomings to 

help constrain the uncertainty and the range of predictions so they could be visualized on a single 

sensitivity analysis plot. We also chose RFs because we were mainly trying to identify patterns in 

the sensitivity analyses, rather than absolute predictions in certain conditions. 

 

A second limitation of this study stems from the observational datasets. As mentioned 

previously, we used the average of the ESMs for the dissolved iron and ammonium variables in 

the observational dataset. The values for phytoplankton carbon were based on satellite remote 

sensed products that have their own uncertainties associated with them and it is worth noting that 

both datasets were largely based on similar measurements. The remaining variables were 

combinations of data averaged over decades and interpolated variables that can perform poorly in 

regions with low numbers of samples or in regions with large degrees of variability. Additionally, 

we did not include estimates of grazing by zooplankton or other potential predators, which could 

induce variations due to spatiotemporal variability in top-down control on phytoplankton. Given 

the limitations mentioned, this type of study should be revisited every few years to include new 

and updated predictor variables, along with any improvements in ML algorithms and visualization 

techniques. 

 

Conclusions 

In our study, we sought to answer three questions: 

 



1. What fraction of variability in ESMs and observations can be linked to variables known 

to influence phytoplankton biomass? 

2. What are the dominant predictors and relationships between these variables and 

phytoplankton biomass? 

3. How well do ESMs simulate phytoplankton carbon and do they simulate the 

relationships we see in observations?  

 

First, we demonstrated that a large portion of the variability in ESMs and observations can 

be explained by variables known to influence phytoplankton biomass that are directly simulated 

in ESMs. When the target variable was Log10 transformed, between 88% and 96% of the variability 

in phytoplankton carbon was explained in the observational datasets and greater than 98% of the 

variability was explained in the ESMs. The fact that the observations are in fact so tightly linked 

to these observed fields supports the idea that relatively simple ESMs can capture much of the 

underlying dynamics. 

 

Second, we showed that the dominant predictors across the datasets were dissolved iron, 

shortwave radiation, mixed layer depth. Dissolved iron and shortwave radiation were most 

important for the observational datasets. All three of the previously listed predictors were 

important across the ESMs, with the greatest similarities observed in Log10 transformed data and 

the greatest differences being seen in the different versions of the same ESMs for the non-

transformed data.  

 

Third, we noted that most of the ESMs captured the general trend in the relationships 

compared to the observational datasets. Additionally, iron was important over a much larger range 

in the observations than in the models, which could have profound implications for 

biogeochemistry. 

 

Our study provides many avenues for future work. With a large number of satellite products 

coming online in the next few years30, it will be possible to identify individual phytoplankton 

functional groups from observations and allow us to conduct the same type of analyses we 

performed in this manuscript on individual functional groups. Additionally, we plan to examine 



the relationships from individual ESMs and from the observational datasets. As mentioned 

previously, it would be exciting to take a closer look at the interactions between variables and the 

effect they have on phytoplankton. 
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Tables 

Table 1: Information about the nutrients, number/type of phytoplankton groups and zooplankton 

groups, and the respective references for the various ESMs. 

  
    Nutrients   

Phytoplankton 

Groups 
  

Zooplankton 

Groups 
  References 

                    

Earth 

System 

Model 

CESM2   

N, P, Si, 

and Fe 

  Three 

(diatoms, 

diazotrophs, 

and pico/nano) 

  

One 

  

 31,32 
CESM2-FV2         

CESM2-WACCM         

CESM2-WACCM-FV2         

                  

GFDL-CM4   P and Fe   
Two (small 

and large) 
  

Two 

parameterized 

(Micro and 

meso, 

respectively) 

  33,34  

                  

GFDL-ESM4   
N, P, Si, 

and Fe 
  

Four (small, 

large diatoms, 

large non-

diatoms, 

diazotrophs) 

  Three   35–37 

                  

IPSL-CM5A2-INCA   
N, P, Si, 

and Fe 

  
Two (diatoms 

and nano) 

  Two (Micro 

and meso, 

respectively) 

  
38–40 

IPSL-CM6A-LR         

                  

MPI-ESM1.2-HAM   
N, P, Si, 

and Fe 

  Two 

(bulk/calcifiers 

and 

diazotrophs) 

  

One* 

  

41–44 MPI-ESM1.2-HR         

MPI-ESM1.2-LR         

                  

NorESM2-LM   N, P, Si, 

and Fe 

  Two (diatoms 

and calcifiers) 

  
One 

  
45,46  

NorESM2-MM         

 

*There was no grazing term for zooplankton on the diazotrophs in the MPI models. 

  



Table 2: Performance metrics for the training and testing subsets of the RFs trained on each ESM 

and observational dataset. The non-transformed metrics are above the Log10 transformed metrics. 

The coefficient of determination (R-squared) and root mean squared error (RMSE) were calculated 

by comparing the phytoplankton carbon predictions of each RF against the actual phytoplankton 

carbon values of their respective subset. 

 

  

Mean Model 

RMSE
RMSE

Percent 

Decrease in 

RMSE

R-squared
Mean Model 

RMSE
RMSE

Percent 

Decrease in 

RMSE

R-squared

CESM2 2.13 x 10⁻³ 2.07 x 10⁻⁴ 90.3% 0.991 2.13 x 10⁻³ 3.06 x 10⁻⁴ 85.6% 0.981

CESM2-FV2 2.06 x 10⁻³ 2.01 x 10⁻⁴ 90.2% 0.991 2.09 x 10⁻³ 2.85 x 10⁻⁴ 86.3% 0.982

CESM2-WACCM 2.18 x 10⁻³ 2.13 x 10⁻⁴ 90.2% 0.991 2.16 x 10⁻³ 3.19 x 10⁻⁴ 85.2% 0.980

CESM2-WACCM-FV2 2.03 x 10⁻³ 1.94 x 10⁻⁴ 90.5% 0.992 2.01 x 10⁻³ 3.16 x 10⁻⁴ 84.3% 0.979

GFDL-CM4 3.80 x 10⁻³ 4.37 x 10⁻⁴ 88.5% 0.987 3.85 x 10⁻³ 6.16 x 10⁻⁴ 84.0% 0.976

GFDL-ESM4 2.40 x 10⁻³ 3.76 x 10⁻⁴ 84.3% 0.976 2.43 x 10⁻³ 4.95 x 10⁻⁴ 79.6% 0.959

IPSL-CM5A2-INCA 1.36 x 10⁻³ 1.60 x 10⁻⁴ 88.3% 0.987 1.37 x 10⁻³ 2.45 x 10⁻⁴ 82.2% 0.969

IPSL-CM6A-LR 1.45 x 10⁻³ 1.21 x 10⁻⁴ 91.6% 0.993 1.44 x 10⁻³ 1.71 x 10⁻⁴ 88.2% 0.986

MPI-ESM1-2-HAM 7.27 x 10⁻³ 8.68 x 10⁻⁴ 88.1% 0.987 7.30 x 10⁻³ 1.25 x 10⁻³ 82.9% 0.972

MPI-ESM1-2-HR 9.42 x 10⁻³ 6.80 x 10⁻⁴ 92.8% 0.995 9.46 x 10⁻³ 9.22 x 10⁻⁴ 90.3% 0.991

MPI-ESM1-2-LR 6.64 x 10⁻³ 2.10 x 10⁻⁴ 96.8% 0.986 6.76 x 10⁻³ 1.20 x 10⁻³ 82.3% 0.970

NorESM2-LM 1.64 x 10⁻³ 1.94 x 10⁻⁴ 88.2% 0.987 1.65 x 10⁻³ 2.75 x 10⁻⁴ 83.4% 0.973

NorESM2-MM 1.60 x 10⁻³ 8.69 x 10⁻⁵ 94.6% 0.987 1.61 x 10⁻³ 2.63 x 10⁻⁴ 83.6% 0.974

MODIS 1.65 x 10⁻³ 8.45 x 10⁻⁴ 48.6% 0.754 1.73 x 10⁻³ 1.16 x 10⁻³ 33.1% 0.559

Kostadinov 1.26 x 10⁻³ 3.64 x 10⁻⁴ 71.1% 0.921 1.26 x 10⁻³ 5.24 x 10⁻⁴ 58.5% 0.830

CESM2 6.06 x 10⁻¹ 2.70 x 10⁻² 95.5% 0.998 6.06 x 10⁻¹ 3.70 x 10⁻² 93.9% 0.996

CESM2-FV2 5.92 x 10⁻¹ 2.71 x 10⁻² 95.4% 0.998 5.92 x 10⁻¹ 3.75 x 10⁻² 93.7% 0.996

CESM2-WACCM 6.07 x 10⁻¹ 2.73 x 10⁻² 95.5% 0.998 6.05 x 10⁻¹ 3.77 x 10⁻² 93.8% 0.996

CESM2-WACCM-FV2 5.91 x 10⁻¹ 2.66 x 10⁻² 95.5% 0.998 5.90 x 10⁻¹ 3.58 x 10⁻² 93.9% 0.996

GFDL-CM4 1.62 x 10⁰ 1.55 x 10⁻¹ 90.4% 0.991 1.61 x 10⁰ 2.12 x 10⁻¹ 86.9% 0.983

GFDL-ESM4 6.38 x 10⁻¹ 3.63 x 10⁻² 94.3% 0.997 6.35 x 10⁻¹ 4.74 x 10⁻² 92.5% 0.995

IPSL-CM5A2-INCA 3.73 x 10⁻¹ 2.65 x 10⁻² 92.9% 0.995 3.71 x 10⁻¹ 3.90 x 10⁻² 89.5% 0.989

IPSL-CM6A-LR 3.78 x 10⁻¹ 2.08 x 10⁻² 94.5% 0.997 3.79 x 10⁻¹ 2.81 x 10⁻² 92.6% 0.995

MPI-ESM1-2-HAM 1.04 x 10⁰ 6.70 x 10⁻² 93.6% 0.996 1.04 x 10⁰ 9.38 x 10⁻² 90.9% 0.992

MPI-ESM1-2-HR 7.22 x 10⁻¹ 4.43 x 10⁻² 93.9% 0.996 7.22 x 10⁻¹ 5.36 x 10⁻² 92.6% 0.995

MPI-ESM1-2-LR 1.02 x 10⁰ 6.99 x 10⁻² 93.2% 0.995 1.02 x 10⁰ 9.46 x 10⁻² 90.7% 0.992

NorESM2-LM 9.00 x 10⁻¹ 5.58 x 10⁻² 93.8% 0.996 8.98 x 10⁻¹ 7.41 x 10⁻² 91.8% 0.993

NorESM2-MM 9.24 x 10⁻¹ 5.94 x 10⁻² 93.6% 0.996 9.23 x 10⁻¹ 8.05 x 10⁻² 91.3% 0.992

MODIS 2.53 x 10⁻¹ 5.10 x 10⁻² 79.9% 0.961 2.54 x 10⁻¹ 7.35 x 10⁻² 71.0% 0.917

Kostadinov 3.26 x 10⁻¹ 7.87 x 10⁻² 75.9% 0.944 3.26 x 10⁻¹ 1.13 x 10⁻¹ 65.4% 0.881

Log10 

Transformed

Earth System 

Model

Observational

Training Data Testing Data

Non-

Transformed

Earth System 

Model

Observational



Figures 

 

Figure 1: Contour plots showing the Log10 concentration of phytoplankton carbon for the ESMs 

(a-m) and the observations (n-o). Blue colors represent lower concentrations of phytoplankton 

carbon and moving up the spectrum to yellow represents higher concentrations of phytoplankton 

carbon. The values of the contour plots for the ESMs were calculated using the values from the 

last 100 years of each model and the values of the observations were determined using all available 

data. 
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Figure 2: Zonal mean plots for the ESMs (various colors and line styles) and observations (MODIS 

– solid black line; Kostadinov Biomass – dashed black line). The zonal means for the ESMs were 

determined using the last 100 years of data for each model. The zonal means of the observations 

were calculated using all available data for each variable. The solid black lines of all the plots 

(except phytoplankton carbon) show the zonal mean of the observations, which were the same in 

both the MODIS and Kostadinov Biomass datasets. The solid black lines for dissolved iron and 

ammonium were the ensemble average of the ESMs, for those ESMs that had values for those 

variables. 

  

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)



 

Figure 3: Variable importance plots for the ESMs (a-m) and the observations (n-o) of the non-

transformed datasets. The x-axis shows the variables that were used in each RF. The predictor 

variables are color-coded. The y-axis shows the relative importance of each variable. Higher values 

represent higher relative importance of a variable. The variable importance measures were 

determined using the permutation method (see Methods section for details). 
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Figure 4: Variable importance plots for the ESMs (a-m) and the observations (n-o) of the Log10 

transformed datasets. The x-axis shows the variables that were used in each RF. The predictor 

variables are color-coded. The y-axis shows the relative importance of each variable. Higher values 

represent higher relative importance of a variable. The variable importance measures were 

determined using the permutation method (see Methods section for details). 
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Figure 5: Sensitivity analyses for the RFs trained on the ESMs (various colors and line styles) and 

observations (MODIS POC – solid black line; Kostadinov Biomass – dashed black line) for the 

Log10 transformed datasets. For each variable, the min-max range was based on the values in the 

observational datasets and the variables that were not varying were set at the median value of the 

other observational variables (ex. For subplot a, dissolved iron was varied across the min-max 

range of the dissolved iron variable in the observational dataset and the values of the other variables 

relative to the observational dataset were set at their median value.) The same conditions were 

presented to each trained RF. 
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