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Abstract

Owing to the importance of serpentinites for planetary geochemical and geodynamic processes, there has been much work

discerning the origins of their parent rocks, including distinguishing between serpentinites derived from a subducting plate vs.

overlying mantle in exhumed subduction complexes. The island of New Caledonia (SW Pacific Ocean) provides a rare window

into Cenozoic Pacific subduction processes. The island is unique in exposing both an exceptionally-preserved high-pressure,

low-temperature subduction complex and one of the largest supra-subduction zone ophiolites in the world. Previous studies

disagree on the origin of serpentinites in the subduction complex. In this study, we analyze twenty-three serpentinites from this

subduction complex for whole-rock major and trace element geochemistry and stable isotope (δD, δ18O) compositions. Our data

reveal two distinct groups of serpentinites: Group I samples in the northern portion of the complex are pervasively serpentinized,

and exhibit enriched heavy rare earth element (REE) compositions and δ18O between +6.7preserve relict orthopyroxene and

olivine, and show depleted trace element compositions and comparatively lower δ18O values between +5.1derive from downgoing

plate mantle, whereas Group II serpentinites derive from overlying mantle wedge, exhibiting remarkable similarity to the REE

geochemistry of the structurally-overlying New Caledonia ophiolite. Our results establish the subduction complex in New

Caledonia as an unusual natural record of the entrainment and exhumation of mantle from both the overlying mantle wedge

and the downgoing plate in an oceanic subduction zone.
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Abstract 22 

Owing to the importance of serpentinites for planetary geochemical and geodynamic 23 

processes, there has been much work discerning the origins of their parent rocks, including 24 

distinguishing between serpentinites derived from a subducting plate vs. overlying mantle in 25 

exhumed subduction complexes. The island of New Caledonia (SW Pacific Ocean) provides a 26 

rare window into Cenozoic Pacific subduction processes. The island is unique in exposing both 27 

an exceptionally-preserved high-pressure, low-temperature subduction complex and one of the 28 

largest supra-subduction zone ophiolites in the world. Previous studies disagree on the origin of 29 

serpentinites in the subduction complex. In this study, we analyze twenty-three serpentinites 30 

from this subduction complex for whole-rock major and trace element geochemistry and stable 31 

isotope (δD, δ18O) compositions. Our data reveal two distinct groups of serpentinites: Group I 32 

samples in the northern portion of the complex are pervasively serpentinized, and exhibit 33 

enriched heavy rare earth element (REE) compositions and δ18O between +6.7‰ and 10.2‰. In 34 

contrast, Group II serpentinites in the south preserve relict orthopyroxene and olivine, and show 35 

depleted trace element compositions and comparatively lower δ18O values between +5.1‰ and 36 

+8.0‰. We interpret Group I serpentinites to derive from downgoing plate mantle, whereas 37 

Group II serpentinites derive from overlying mantle wedge, exhibiting remarkable similarity to 38 

the REE geochemistry of the structurally-overlying New Caledonia ophiolite. Our results 39 

establish the subduction complex in New Caledonia as an unusual natural record of the 40 

entrainment and exhumation of mantle from both the overlying mantle wedge and the 41 

downgoing plate in an oceanic subduction zone. 42 

Plain Language Summary  43 

The hydration of Earth’s mantle produces rocks called serpentinites that are important to 44 

chemical cycling within the Earth system. This process, a form of metamorphism, occurs in 45 

several types of tectonic settings on Earth. Serpentinites formed in these different settings are 46 

imparted with unique geochemical “fingerprints” due to different types of fluids and varied 47 

compositions of the original mantle material. In metamorphic complexes that preserve remnants 48 

of subduction zones, serpentinites can offer clues to the original tectonic setting and subsequent 49 

mechanics of subduction. We analyze stable isotope and whole-rock compositions to determine 50 

the origin of the mantle that produced serpentinites found in the metamorphic complex preserved 51 
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in New Caledonia (SW Pacific). We discover two distinct groups of serpentinites: one group in 52 

the northern portion of the complex likely formed on the ocean floor prior to subduction, and 53 

experienced high degrees of fluid alteration as it was metamorphosed. In contrast, a second 54 

group of serpentinites in the southern portion of the complex resembles material from the mantle 55 

overlying the subducting plate and is less altered. This locality represents an uncommon 56 

example, globally, where material from this overlying mantle is entrained and preserved at the 57 

surface in an exhumed subduction complex. 58 

1 Introduction 59 

Serpentinites are hydrated fragments of Earth’s mantle and commonly occur in exhumed 60 

subduction complexes. They are important vehicles in the global cycling of water, carbon, 61 

nitrogen, fluid-mobile elements (FME), and halogens, releasing these elements by prograde 62 

dehydration at forearc to subarc depths during subduction (e.g., Alt et al., 2013; Barnes et al., 63 

2018; Collins et al., 2015; Deschamps et al., 2011; Halama et al., 2014; Hattori & Guillot, 2003; 64 

John et al., 2011; Kerrick & Connolly, 1998; Kodolanyi et al., 2012; Scambelluri et al. 2004, 65 

2019; Tenthorey & Hermann, 2004; van Keken et al., 2011). Serpentinites and their hybridized, 66 

metasomatized derivatives formed at depth in subduction zones are critical in producing the 67 

distinct chemical composition of arc magmas (e.g., Codillo et al. 2018; Hattori & Guillot, 2003; 68 

Marschall & Schumacher, 2012; Nielsen & Marschall, 2017; Shimoda & Kogiso, 2019; Tatsumi, 69 

1986) and contribute significantly to the net redox budget of subducted oceanic plates and the 70 

oxidation state of dehydration fluids infiltrating the overlying mantle (Debret & Sverjensky, 71 

2017; Evans, 2012; Evans & Frost, 2021; Evans et al., 2017). The wide stability field of the 72 

serpentine mineral antigorite also makes possible the transport of these chemical components 73 

deeper into the mantle, past subarc depths (e.g., Hacker, 2008; Hattori & Guillot, 2003; Kendrick 74 

et al., 2011, 2017; Scambelluri & Tonarini, 2012; Schmidt & Poli, 1998; Ulmer & Tromsdorff, 75 

1995; Wunder & Schreyer, 1997).  76 

Serpentinites are also critical to the rheology of the subducting zone, and in particular the 77 

plate interface (Gerya et al., 2002; Hermann et al., 2000; Rüpke et al., 2004; van Keken et al., 78 

2011). Their high water contents and low density facilitate the exhumation of denser blueschist 79 

and eclogite (Guillot et al., 2000; Magott et al., 2020; Schwartz et al., 2001), and serpentinization 80 

of the cold “nose” of the mantle wedge carries implications for mantle wedge flow and the 81 
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minimum depth of decoupling of the subducting plate and overlying mantle (Hilairet & Reynard, 82 

2009; Kerswell et al., 2021; Reynard, 2013; Wada et al., 2008). Furthermore, serpentinites have 83 

been correlated with zones of slow slip and intermediate-depth seismicity in subduction zones, 84 

possibly associated with dehydration embrittlement resulting from the breakdown of antigorite 85 

(Behr & Bürgmann, 2021; Ferrand, 2019; Hacker et al., 2003; Hilairet et al., 2006, 2007; Hirth & 86 

Guillot, 2013; Jung & Green, 2004; Peacock, 2001; Proctor & Hirth, 2015; Toffol et al., 2022). 87 

In short, the occurrence, composition, and spatial distribution of serpentinites and associated 88 

metasomatic rocks in paleo-subduction complexes reveals information about first-order 89 

subduction processes, including the transport and chemical evolution of fluids during subduction 90 

and exhumation. 91 

In exhumed subduction complexes, mantle material may originate from the downgoing 92 

plate or the overriding plate (Figure 1). Prior to subduction, serpentinites form in the (eventual) 93 

downgoing plate via hydrothermal circulation at ridge-transform systems where lithospheric 94 

mantle underlying the igneous oceanic crust or exposed at/near the seafloor by extension is 95 

hydrated by heated seawater (Barnes & O’Neil, 1969; Bonatti, 1976; Cannat, 1993; Cannat et al., 96 

2010; Mével, 2003; Rouméjon et al., 2015). Hydration may also occur as the plate approaches 97 

the trench, if water circulates through slab-bend faults (Ranero et al., 2003). In the overriding 98 

plate, the mantle wedge experiences hydration from fluid fluxing off the dehydrating downgoing 99 

plate (e.g., Bostock et al., 2002; Fyfe & McBirney, 1975; Hyndman & Peacock, 2003). 100 

Serpentinites formed in each of these distinct tectonic settings are geochemically distinct 101 

owing to differences in (1) mantle protolith composition (i.e., melt depletion and refertilization 102 

histories and degrees of fractional crystallization) and (2) the chemistry and nature of fluid 103 

alteration, such as fluid-rock ratio and temperature of serpentinization (Figure 1) (e.g., 104 

Deschamps et al., 2010, 2013; Peters et al., 2017). These distinctions are evident in bulk-rock 105 

major and trace element geochemistry, stable isotopes (e.g., O, H, Cl, B), and the composition of 106 

relict primary minerals (e.g., spinel, pyroxene, and/or olivine) and have been proposed to be 107 

diagnostic of the tectonic setting of serpentinization. This has unlocked opportunities to discern 108 

the tectonic setting of mantle material exhumed in subduction complexes (Deschamps et al., 109 

2010, 2013; Peters et al., 2017). 110 
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 Studies aiming to determine the tectonic source of formerly subducted serpentinites must 111 

grapple with a nuanced, multi-staged history of serpentinization associated with pre-subduction 112 

processes and the prograde and retrograde paths of subduction and exhumation (Figure 1). 113 

Quantitatively determining the pressure (P), temperature (T), and time (t) conditions experienced 114 

by exhumed serpentinites is challenging owing to high-variance phase assemblages, though 115 

promising new approaches expand options for unlocking both temperature and time in these 116 

rocks (Cooperdock & Stockli, 2016; Schwartz et al., 2020). 117 

Complexities notwithstanding, there is a growing body of literature with examples of 118 

provenance interpretations of serpentinites in exhumed subduction complexes, such as studies 119 

assigning serpentinite associated with blueschist and eclogite to the downgoing plate (e.g., 120 

Cooperdock et al., 2018; Katzir et al., 2000; Li et al., 2004; Scambelluri et al., 1991; Shen et al., 121 

2015). Some studies have further resolved detail within the oceanic realm of the protolith, 122 

interpreting exhumed serpentinites to derive from passive margin settings (e.g., Barnes et al., 123 

2014) or from abyssal transform faults (e.g., Cárdenas-Párraga et al., 2017). In many cases, 124 

however, non-distinctive geochemical signatures, lack of relict phases, and heterogeneity of the 125 

analyzed samples makes this level of resolution untenable. In other regions, the capturing of 126 

hangingwall mantle via subduction erosion and other mass transfer mechanisms has been 127 

identified (e.g., Bhat et al., 2019; Guice et al., 2021; Hattori et al., 2010; Lazar et al., 2021; Li et 128 

al., 2018; Tewksbury-Christle et al., 2021; Wu et al., 2018). In yet other localities, serpentinites 129 

from both the downgoing slab and the overlying mantle wedge are interpreted to be present, 130 

implying complex slab-mantle interactions at a range of depths (e.g., Barnes et al., 2013; Blanco-131 

Quintero et al., 2011). These results generate discussion of deep tectonic slicing of slabs at depth, 132 

degrees of mechanical mixing and styles of deformation (e.g., coherent nappe stacking, block-133 

and-matrix shear zones), and the processes of underplating and interaction with the mantle 134 

material of the overriding plate. 135 

In this contribution, we discern the tectonic origin and alteration histories of serpentinites 136 

entrained in an Eocene high-pressure / low-temperature (HP/LT) subduction complex on the 137 

island of New Caledonia (SW Pacific) and explore implications for the subduction and 138 

exhumation history of the complex. The island of New Caledonia exposes an extraordinarily 139 

complete Eocene subduction-obduction complex, including a high-temperature metamorphic 140 

sole representing incipient stages of subduction initiation, an HP/LT subduction complex, and an 141 
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obducted supra-subduction zone ophiolite sequence (Maurizot et al., 2020a). These entities are 142 

well-studied and world-class sites: the ophiolite comprises one of the world’s largest continuous 143 

mantle exposures and has provided invaluable insights into upper mantle processes and melt 144 

transfer in the lower crust (e.g., Cluzel et al., 2016; Dupuy et al., 1981; Marchesi et al., 2009; 145 

Pirard et al., 2013; Secchiari et al., 2016, 2018; Ulrich et al., 2010). The subduction complex 146 

exposes slivers of oceanic and thinned continental lithosphere that experienced blueschist and 147 

eclogite-facies metamorphism and has served as a location for investigation of subduction zone 148 

fluid-rock interaction, volatile recycling, and slab-mantle interactions (e.g., Cluzel, 2021; 149 

Spandler et al., 2008; Taetz et al., 2016, 2018). Despite the geodynamic importance of mantle 150 

rocks throughout the subduction-obduction complex, studies addressing the distribution, 151 

structure, texture, or geochemistry of meta-ultramafic rocks in the HP/LT complex are few 152 

(Cluzel, 2021; Fitzherbert et al., 2004; Rawling & Lister, 2002; Spandler et al., 2008). These 153 

studies arrive at differing conclusions regarding the source of the ultramafic material entrained in 154 

the complex. To evaluate these differences and determine the tectonic provenance and 155 

petrogenesis of ultramafic rocks in this subduction complex, our approach integrates field 156 

observations, petrographic characterization, whole rock major and trace element geochemistry, 157 

and stable isotope (O and H) geochemistry. Our results reveal the existence of two distinct 158 

groups of serpentinites, which we interpret to indicate differing tectonic settings for their 159 

protoliths. 160 

2 Geologic History of New Caledonia 161 

Located in the SW Pacific Ocean, the main island of New Caledonia exposes a dense 162 

array of geologic terranes that record Paleozoic and Mesozoic histories through to present day: a 163 

material archive that stands in contrast to many other islands in the Pacific, which are mostly 164 

entirely Cenozoic in age and volcanic in origin (Cluzel et al., 2012; Maurizot et al., 2020a; Paris, 165 

1981). The island (~16,000 km2) is a rare emergent portion of the NW-SE trending submarine 166 

Norfolk Ridge, a continental sliver located ~200-400 km southwest of active subduction at the 167 

New Hebrides trench and comprising part of the largely submerged Zealandia microcontinent 168 

(Figure 2a) (Crawford et al., 2003; Dubois et al., 1974; Lafoy et al., 2005; Mortimer et al., 2017). 169 

New Caledonia exposes Late Carboniferous to Early Cretaceous basement rocks deriving 170 

from the last accretionary stages of the active southern Gondwana margin (Figure 2b, 171 
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‘undifferentiated “basement” terranes’) (Aitchison & Meffre, 1992; Campbell et al., 1985; 172 

Maurizot et al., 2020b); unless otherwise noted, we adopt the naming conventions of Maurizot et 173 

al. (2020c) for New Caledonian rock units. In the Late Cretaceous, regional tectonic stresses 174 

shifted, prompting divergence and rifting associated with the breakup of the Gondwanan 175 

supercontintent. In the SW Pacific, the Tasman Sea and additional small ocean basins opened, 176 

rifting ribbons of continental crust away from the eastern margin of Gondwana (Figure 2a) (e.g., 177 

the submarine Dampier Ridge and Lord Howe Rise, for instance; e.g., Bache et al., 2014; Davies 178 

& Smith, 1971; Mortimer et al., 2018). 179 

Plate convergence in the SW Pacific began in the Late Paleocene, with an intra-oceanic 180 

NE-dipping subduction zone initiating at ~56 Ma, as recorded by the recrystallization age of 181 

high-temperature amphibolite in the basal sole of the ophiolite, and further corroborated by 182 

boninite and adakite series dikes that range from 55-50 Ma (Cluzel et al., 2006, 2012). Two 183 

distinct packages of differing protolith types and P-T-t paths are recognized to have been 184 

subducted and exhumed. The Pouébo Terrane (Figure 2c, d), which subducted first, consists of 185 

fragments of oceanic lithosphere, and was followed by the Diahot-Panié Complex (Figure 2c, d), 186 

which consists dominantly of metasediments and metavolcanic rocks (Cluzel et al., 1994; Clarke 187 

et al., 1997; Maurizot et al., 2020b). The Pouébo Terrane reached peak eclogite facies 188 

metamorphic conditions of ~2.2-2.4 GPa and ~550-600C, equating to ~70-80 km burial depth, 189 

by ~44 Myr (Pirard & Spandler, 2017; Spandler et al., 2005; Vitale-Brovarone et al., 2013). The 190 

Diahot-Panié Complex ranges in grade from lawsonite-blueschist facies (~0.5 GPa, ~250C) to 191 

eclogite facies (~1.8-2.2 GPa, ~500-550C) and likely reached peak conditions at ~38 Ma 192 

(Cluzel et al., 2010; Pirard and Spandler, 2017; Potel et al., 2006; Vitale-Brovarone et al., 2018). 193 

Exhumation is interpreted to have occurred in two stages: the first stage brought the Pouébo 194 

Terrane rocks up to ~40-50 km, where they were juxtaposed with the Diahot-Panié Complex. In 195 

the second stage, the two terranes exhumed together between 38-36 Myr, with the last gasps of 196 

rapid exhumation taking place at ~34 Ma (Baldwin et al., 2007; Vitale-Brovarone et al., 2018). 197 

The arrival and partial subduction of the buoyant continental-affinity Diahot-Panié Complex 198 

effectively halted subduction and triggered the obduction of a large fragment of overlying fore-199 

arc mantle and oceanic crust from the modern-day Loyalty Basin onto Grande Terre (referred to 200 

as the Peridotite Nappe and Poya Terrane, respectively; Brothers, 1974; Coleman, 1967). 201 
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2.1 Ultramafic rocks in New Caledonia 202 

Ultramafic rocks occur in several discrete tectonic terranes on the island. We briefly 203 

summarize the state of knowledge with respect to the provenance of these mantle rocks, 204 

organized into tectonic groups. 205 

2.1.1. The Peridotite Nappe: Massif du Sud and isolated ophiolitic klippen 206 

The southern end of New Caledonia is dominated by the Massif du Sud, one of the 207 

largest coherent exposures of mantle in the world (Figure 2b). This body is notably free of 208 

significant tectonic overprint and remains attached to non-obducted lithospheric mantle in some 209 

areas (Collot et al., 1987; Patriat et al., 2018; Prinzhofer & Nicolas, 1980). Additional remnants 210 

of the large overthrust ophiolite dot the west coast of the island as small klippen. Most of the 211 

mantle portion of the Nappe consists of harzburgite and dunite, with lherzolite being found in the 212 

north (Belep, Poum, and Tiébaghi massifs; Moutte, 1982; Prinzhofer, 1981; Sécher, 1981; Ulrich 213 

et al., 2010). The transition to the crustal sequence (pyroxenite, wehrlite, and gabbro) is 214 

preserved on the southern portion of the island; the ophiolite lacks an uppermost dike complex 215 

and pillow basalts (Maurizot et al., 2020c). The ophiolite is highly geochemically depleted 216 

(Marchesi et al., 2009; Prinzhofer & Allègre, 1985), implying high degrees of melt production, 217 

and this has made this body, and in particular, the continuous exposures in the Massif du Sud, a 218 

globally-important site for studying melt transfer within the mantle and into the lower crust 219 

(Marchesi et al., 2009; Pirard et al., 2013; Pirard & Hermann, 2015; Ulrich et al., 2010). 220 

2.1.2. “Basement” ultramafic bodies of Gondwanan affinity  221 

Serpentinites are reported in several Gondwanan basement terranes on the island. 222 

Portions of these units experienced local low-grade (greenschist and/or lawsonite blueschist 223 

facies) overprinting by Eocene HP/LT metamorphism. In some cases, serpentinites occur 224 

amongst swaths of schist and contain tectonically-entrained oceanic crustal components (e.g., 225 

metamorphosed pyroxenite, gabbro, basalt, chert). This ultramafic material is proposed to derive 226 

from an incoming oceanic plate that reached maximum depths of ~30-35 km beneath the 227 

overriding Gondwanan plate (‘Boghen Terrane’; Black, 1993; Cluzel & Meffre, 2002; Guérangé 228 

et al., 1977; Maurizot et al., 2020b). In other localities within the basement, serpentinites appear 229 

at faulted boundaries between coherent volcanic and abyssal sedimentary units (e.g., chert, 230 
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siltstones) (Maurizot et al., 2020b; Meffre et al., 1996). Published geochemical data on these 231 

rocks are lacking and a protolith origin for these serpentinites is not known. 232 

2.1.3. Foreland accretionary units 233 

Ultramafic rocks are reported to cross-cut the Montagnes Blanches Nappe, a remnant 234 

foreland fold-thrust belt preserved immediately west of the HP/LT complex (Koumac Terrane of 235 

Cluzel et al., 1994). Early interpretations link these rocks to the underlying oceanic lithosphere 236 

of the folded abyssal Montagnes Blanche Nappe sedimentary units (Brothers, 1974; Maurizot et 237 

al., 1989). These rocks have alternatively been interpreted as overthrust remnants of the 238 

Peridotite Nappe (Cluzel et al., 1995; Gautier et al., 2016; Maurizot, 2011), though a recent 239 

systematic field description of serpentinite occurences in these units by Cluzel (2021) has 240 

pointed out inconsistencies with this hypothesis, instead positing that they are part of the upper 241 

plate. We emphasize that these hypotheses are based on field context, and published geochemical 242 

studies of the serpentinites are lacking. 243 

2.1.4. Ultramafic and hybrid “blackwall” rocks of the HP/LT complex 244 

Serpentinites occur throughout the HP/LT metamorphic belt in the NE portion of the 245 

island (Figure 2b-d). The exposed subduction complex is sprawling, spanning ~ 200 km long and 246 

~20 km wide. The far northern area of the complex is most often referred to as the Pam 247 

Peninsula and exposes some of the best-preserved blueschists and eclogites in the complex 248 

(Figure 2c). Though observations and descriptions of serpentinite outcrops exist (e.g., Black & 249 

Brothers, 1977; Brothers & Blake, 1973; Cluzel, 2021; Lillie, 1975; Maurizot et al., 1989), 250 

geochemical and textural studies of these ultramafic rocks are sparse (Fitzherbert et al., 2004; 251 

Spandler et al., 2008), and the tectonic origin of this ultramafic material is debated. Spandler et 252 

al. (2008) interpret a seafloor origin based on major and trace element geochemistry, stable 253 

isotope measurements, and calculated temperatures of serpentinization for four serpentinite 254 

samples in the far NE portion of the complex (Figure 2c). In contrast, Fitzherbert et al. (2004) 255 

note the similarity of P-T paths and the existence of serpentinites across mapped terrane 256 

boundaries (the Diahot Terrane and Pouébo Terrane of Cluzel et al. (1995) and Fitzherbert et al. 257 

(2003)), interpreting this distribution as inconsistent with a downgoing slab origin, and instead 258 

indicating interaction with the overlying mantle. This idea can be traced to earlier interpretations 259 

that the ultramafic rocks exposed in the metamorphic complex today were part of a larger, now 260 
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extensively eroded overthrust “serpentinite sheet” that was incorporated from the hangingwall, 261 

based on their consistent existence at the structurally highest levels of the complex (Rawling & 262 

Lister, 2002). At a small, weathered massif outcropping in the SE portion of the complex, near 263 

the town of Yambé (Figure 2d), Fitzherbert et al. (2004) interpret the ultramafic rocks to derive 264 

from hangingwall mantle that was incorporated with the downgoing plate, subducting with it to 265 

P-T conditions past the stability of antigorite. Critically, a geochemical link between the 266 

serpentinites in the HP/LT complex and the interpretation of an overriding plate or supra-267 

subduction mantle origin is lacking. 268 

3 Sample Localities and Description 269 

Twenty-three serpentinites, one chlorite schist, and one talc schist were collected in the 270 

HP/LT complex for the purposes of discerning their tectonic origin and fluid histories (Table S1; 271 

Figure 2c, d). For comparison, four serpentinites were collected from outside the HP/LT 272 

complex: two from the Boghen Terrane basement unit, one from the serpentinite sole at the base 273 

of the Peridotite Nappe, and one from Kalaa-Gomen, a small klippe of the ophiolite on the 274 

northwest coast (Figure 2b). Representative thin section photomicrographs are presented in 275 

Figures S1-S4. 276 

3.1 Field Context 277 

Serpentinites in the northernmost portion of the HP/LT complex - defined here as an area 278 

encompassed by the Pam Peninsula and extending south along the eastern coastal road (RPN7) to 279 

the town of Balade - outcrop both as highly sheared and deformed lenses and as weathered 280 

boulders on hillslopes (Figure 2c). In highly sheared areas, the serpentinites act as a matrix for 281 

rounded pods of metamorphosed mafic, sedimentary, and other ultramafic rocks. With the 282 

exception of a small quarry south of Col d’Amos (NC19-14) and a locality in the foothills north 283 

of Ouégoa (NC18-26), all samples group spatially within the “Pouébo-Tiarì” unit of Vitale-284 

Brovarone et al. (2018). These samples are entirely encompassed within the “mélange 285 

ophiolitique glaucophanite” unit of Maurizot et al. (1989) and fall variably within the “Pouébo 286 

metabasite dominates” and “Diahot metabasite dominates” units of Fitzherbert et al. (2004). 287 

Nine samples in the HP/LT complex are located SE of the northern domain samples. A 288 

small (~ 0.5 km2) ultramafic body crops out within blueschist and eclogite facies metamafic 289 
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rocks near the town of Yambé (Figure 2d). Prior studies reference this ultramafic body as 290 

“Yambé” or “Yambé massif” (Fitzherbert et al., 2004; Spandler et al., 2008) and “Pwa Radèn” 291 

(e.g., Cluzel, 2021). With permission from Kanak tribal leadership, we adopt the local name 292 

given to this ultramafic body, “Poadja.” In some areas of the Poadja Massif, relict magmatic 293 

foliation is discernable at outcrop scale. Further south along the coast, two minor serpentinite 294 

outcrops (within 1 km of each other) are exposed in shear zones in beach outcrops, juxtaposed 295 

with meta-mafic blocks. 296 

3.2 Petrographic Context 297 

Serpentinites in the NE region are characterized by a dominant mineral assemblage of 298 

antigorite + talc + magnetite (Table S1; Figures 3a, b and S1) and are > 90% serpentinized, with 299 

rare relict chromian spinel (NC19-54), olivine (NC18-26B), and clinopyroxene (NC19-54). 300 

Antigorite most commonly occurs as the dominant matrix phase, forming interlocking crystals 301 

with variably preserved evidence for mesh texture. Some samples exhibit anhedral fine-grained 302 

(<10 µm), recrystallized antigorite intergrown with talc and less commonly, tremolite (e.g., 303 

NC18-15C, NC18-15D, NC18-22A). In some cases, well-developed bastite pseudomorph 304 

textures are evidenced by clumped aggregates of coarser-grained (~100-200 µm) euhedral 305 

antigorite crystals accompanied by euhedral magnetite (~10’s of µm) (e.g., NC19-86). Magnetite 306 

additionally occurs as a matrix phase as single subhedral grains (~10’s of µm up to ~1 mm) or as 307 

polymineralic aggregates of smaller euhedral grains (~10’s of µm). In deformed samples these 308 

aggregates lie within the foliation (e.g., NC19-54, NC18-22A). In rare cases, relict chromite is 309 

preserved in the core of grains mantled by ferritchromite and rimmed by magnetite (Figure 3a). 310 

Two types of veins assemblages are present as cross-cutting networks: antigorite-magnetite 311 

(NC19-86; Figures S1e, j) and antigorite-tremolite (NC19-94; Figure 3b). 312 

Serpentinites in the SE region are characterized by the presence of relict phases 313 

(orthopyroxene and olivine) and range between ~50 to ~90% serpentinized (Table S1; Figures 314 

3c-f and S2). Samples from this locality notably lack talc (with the exception of NC19-158), and 315 

four samples contain the Fe-Ni alloy awaruite as an accessory phase (Figure 3d). Oxide textures 316 

show varying degrees of retrogression from skeletal chromite with magnetite rims (Figure 3c) to 317 

chromian magnetite cores complexly replaced by magnetite (Figure 3e). Texturally-late brucite 318 
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veins are observed in one sample (NC18-39A). Mesh textures are less developed compared to 319 

the complete pseudomorphing observed in the NE (Figure 3f).  320 

4 Methods 321 

4.1 Whole-rock major and trace element geochemistry (XRF, ICP-MS) 322 

Twenty-three serpentinites, one talc schist, and one chlorite schist were analyzed for 323 

whole-rock major and trace element compositions. Major element analyses were acquired by 324 

lithium tetraborate fusion X-ray fluorescence methods at the GeoAnalytical Laboratory 325 

(Washington State University, USA; WSU) and Franklin & Marshall College (Pennsylvania, 326 

USA; F&M). Hand-picked fresh chips of each sample were powdered and fused on-site. 327 

Additional details on preparation and fusion are reported in supporting information S1. At WSU, 328 

major elements were analyzed on a ThermoARL Advant’XP+sequential X-ray fluorescence 329 

(XRF) spectrometer using the preparation and analytical procedure described in detail by 330 

Johnson et al. (1999) and Kelly (2018). At F&M, major elements were analyzed on a Malvern 331 

PANalytical Zetium X-ray fluorescence spectrometer. Trace element concentrations were 332 

acquired at WSU and the University of Rhode Island (USA). Digestions and dilution were 333 

performed on-site. At WSU, trace elements were analyzed on an Agilent quadrupole ICP-MS 334 

using the method of Knaack et al. (1994). Analytical precision is <5% for REE’s and <10% for 335 

the remaining elements. At University of Rhode Island, trace elements were analyzed on a 336 

Thermo X-Series 2 quadrupole ICP-MS following the method of Savov et al. (2005). 337 

Interference corrections were applied for TiO on Zn, Ba++ on Ga, and CrO on Nb. Analytical 338 

precision is <5% for most elements, and precision for Cr and Ni was <2%. Two samples (NC18-339 

15D, NC18-49) were analyzed by all three labs (Table S2, S3). 340 

4.2 Oxygen and hydrogen stable isotope geochemistry 341 

Oxygen and hydrogen isotope compositions of serpentine, talc, and magnetite mineral 342 

separates were measured at the University of Texas at Austin using a ThermoElectron MAT 253 343 

mass spectrometer. Serpentinite samples were coarsely crushed and handpicked under a 344 

binocular microscope to ensure purity of mineral separates. Handpicked serpentine and talc 345 

grains were washed with dilute HCl to remove any trace carbonate material. Approximately 2.0 346 

mg of each mineral separate were analyzed using the laser fluorination method of Sharp (1990) 347 
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in which samples were heated by a CO2 laser in the presence of a BrF5 atmosphere to liberate 348 

oxygen. Liberated oxygen was cryogenically purified and analyzed as O2. Precision and accuracy 349 

of oxygen analyses were verified through garnet standard UWG-2 (δ18O = +5.8‰) (Valley et al., 350 

1995), in-house olivine standard San Carlos (δ18O= +5.2‰), and in-house quartz standard 351 

Lausanne-1 (δ18O= +18.1‰). All δ18O values are reported relative to SMOW, where the δ18O 352 

value of NBS-28 is +9.7‰. The error on each δ18O analysis is ±0.1‰, based on the long-term 353 

average of standard analyses. Seven samples were run in duplicate to ensure reproducibility and 354 

consistency over four analytical runs. 355 

Hydrogen isotope ratios were measured using the method of Sharp et al. (2001). Samples 356 

were hand-powdered using an agate mortar and pestle. Approximately 1 mg of each sample were 357 

loaded into silver foil capsules, dried under vacuum at 70° C for 24 h, transferred to a Costech 358 

zero-blank autosampler, and flushed with He gas. Samples were measured by continuous-flow 359 

mass spectrometry using a ThermoElectron TC/EA (high-temperature conversion elemental 360 

analyzer) coupled to the ThermoElectron MAT 253 mass spectrometer. Four internationally 361 

referenced and certified standard materials (IAEA-CH7, NBS-22, USGS-57, USGS-58) and one 362 

in-house working glass standard were analyzed with the samples throughout the run. Raw δD 363 

values were corrected for instrumental drift and normalized to SMOW using a calibration curve 364 

generated from the measurements of the standard reference materials. Error based on the 365 

reproducibility of standards measured in the analytical runs is ± 2‰. δD values referenced in the 366 

text and plotted are the mean of two individual replicate analyses. 367 

4.3 Raman spectroscopy 368 

Raman spectra were acquired on eight serpentinite samples (two samples from Group I, 369 

four samples from Group II, one from the Boghen Terrane, and the sample from Kalaa-Gomen). 370 

In situ spot analyses on 30 µm polished thin sections were acquired on a Witec Alpha 300R 371 

confocal Raman microscope at the Characterization Facility, University of Minnesota. The 372 

confocal Raman microscope is equipped with a UHTS300 spectrometer and DV401 CCD 373 

detector. Spectra were acquired with a frequency doubled Nd:YAG 532 nm laser, a 1,800 g/mm 374 

grating, and a 100x objective. Spot size was ~1 µm in diameter. Each spectra resulted from the 375 

average of two 20 s acquisitions to optimize the signal/noise ratio. Two spectral intervals were 376 

measured: a low-wavenumber region (100-1200 cm-1) for structural bonding characterization and 377 
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a high-wavenumber region (3300- 4050 cm-1) for characterization of hydroxyl groups. A range 378 

of relevant textural settings were targeted in each thin section (e.g., serpentine matrix, veins, and 379 

pseudomorphs). Data were processed using the WITec Project Five+ software. Raw spectra 380 

underwent background subtraction followed by smoothing using a third-order polynomial 381 

Savitzsky-Golay filter. Serpentine species were identified by comparison to previously published 382 

data (Auzende et al., 2004; Groppo et al., 2006, Petriglieri et al., 2015; Tarling et al. 2018). 383 

5 Results 384 

5.1 Whole rock major elements 385 

Serpentinites from the HP/LT complex display differences in SiO2, Al2O3, MgO, and 386 

CaO contents and cluster in two distinct geochemical groupings (Table 1; Figure 4). One group 387 

of serpentinites (n = 15; herein referred to as Group I) is depleted in MgO compared to other 388 

serpentinites (herein referred to as Group II, n = 9): 34.05 ± 3.34 wt% in Group I versus 40.19 ± 389 

3.20 wt% in Group II. Group I serpentinites contain higher Al2O3 contents than Group II (2.34 ± 390 

1.47 versus 0.75 ± 0.34 average wt%, respectively). Group I samples are generally elevated in 391 

SiO2 compared to Group II, though they overlap within uncertainty, with averages of 44.96 ± 392 

5.23 wt% and 41.13 ± 2.13 wt%, respectively. Fe2O3(T) contents do not vary significantly 393 

between the two groups, though samples in Group I display a broader range of variation (7.92 ± 394 

1.85 wt % versus 7.38 ± 0.68 wt% for Group II). CaO concentrations in the HP/LT serpentinites 395 

overall are <0.5 wt%, with the exception of the three least serpentinized samples (Table 1 and 396 

Figure S2); all Group II samples located in the SE portion of the complex (0.53, 0.57, and 1.08 397 

wt%). The ophiolitic reference sample from Kalaa-Gomen (NC19-178) has 0.66 wt% CaO. 398 

Samples have a range of loss-on-ignition (LOI) values, from 5.25 to 12.64%, indicating varying 399 

degrees of hydration, with an overall average of 10.43% ± 2.77%. Na2O, K2O, and P2O5 are 400 

close to or below detection limits. 401 

The chlorite schist (NC19-85) is elevated with respect to the talc schist (NC19-169) in 402 

Al2O3, Fe2O3(T), and TiO2, whereas the talc schist is elevated in SiO2 and MgO (Table 1). The 403 

chlorite schist (NC19-85) has CaO and P2O5 contents of 2.47 and 1.88 wt%, respectively, due to 404 

the presence of ~5% modal abundance apatite. 405 
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5.2 Whole-rock trace elements 406 

Group I and II samples are overall depleted in trace elements with respect to primitive 407 

mantle (Figure 5a, b). Both groups show enrichments in Cs and Pb and negative Rb and Nb 408 

anomalies. Group I samples show marked Th and U enrichments and a strong negative Sr 409 

anomaly compared to Group II. Group I samples show greater overall enrichment enrichment in 410 

middle to heavy rare-earth elements (M-HREE; Sm, Eu, Gd, Tb, Dy, Y, Ho, Er, Yb, Lu) 411 

compared to Group II (Figure 5c-f). Differences in the pattern of light-rare earth elements 412 

(LREE; La, Ce, Pr, Nd, Pm) to HREE most clearly distinguish the two groups (LaN/HoN = 1.66 ± 413 

1.33 for Group I and 6.59 ± 1.92 for Group II; normalized to primitive mantle). 414 

The chlorite schist (NC19-85) and talc schist (NC19-169) samples display distinct 415 

enrichments in trace elements. The chlorite schist is enriched in Li, Sc, V, Cu, Zn, Sr, Y, Zr, Nb, 416 

Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, and Dy relative to the talc schist. Conversely, the talc schist 417 

is enriched in Cr and Ni relative to the chlorite schist. 418 

5.3 Stable isotope geochemistry 419 

5.3.1 Oxygen isotopes 420 

Serpentine from the high-pressure complex displays a wide range of oxygen isotope 421 

values: from +5.1 to +10.2‰ (Table 2 and Figure 6a, b). Group I samples are between +6.7 and 422 

+10.2‰, whereas Group II samples are between +5.1 to +8.0‰. The mean serpentine δ18O value 423 

for Group I is +8.7 ± 0.9‰ (n = 15) and +5.5 ± 0.4‰ (n = 9) for Group II. A Group II sample 424 

(NC18-39A) shows a 1‰ increase in δ18O between serpentine extracted from the sample interior 425 

(+5.4‰) and serpentine from an outer altered rind (+6.4‰). δ18O sample replicates reproduced 426 

within 0.2‰, with the exception of two samples, NC18-15D and NC18-22A, which show 427 

variability of 1.8‰ and 0.9‰, respectively. Comparative samples from the Boghen Terrane, 428 

Kalaa-Gomen Massif, and the Peridotite Nappe serpentinite sole have δ18O values of +7.5‰ 429 

(average of two samples), +5.7‰, and +6.5‰, respectively. 430 

Oxygen isotopes in magnetite were measured in three samples from the NE part of the 431 

complex: a serpentinite (NC19-86), a chlorite schist (NC19-85), and a talc schist (NC19-169). 432 

The δ18O value of magnetite is +1.5‰ in the serpentinite and +2.4‰ in the chlorite schist. In the 433 

talc schist, two separate grain size fractions were measured, 125-250 µm and >710 µm. The 125-434 
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250 µm grain size fraction has a δ18O value of +4.3‰, whereas the >710 µm has a value of +4.6 435 

µm. Oxygen isotopes in talc from two samples (one from the SE and one from the NE), were 436 

+9.0 and +10.5‰, respectively. 437 

5.3.2. Hydrogen isotopes 438 

δD values of serpentine in the high-pressure complex range from −79 to −29‰ (Figure 439 

6a). Group I sample range between -76 and -29‰ and Group II samples range between -79 and -440 

39‰. The mean serpentine δD value is -44 ± 10‰ (n = 30) for Group I and -52 ± 14‰ (n = 18) 441 

for Group II. The relatively large standard deviation in both groups derives from three samples 442 

(one in Group I and two in Group II) that have δD values between -79 and -70‰. Without these 443 

values, the remaining samples from Group I exhibit a more restricted range of δD values from -444 

49 to -32, with an average of -41± 5‰ (n = 28). Group II ranges from -59 to -39‰, with an 445 

average of -46 ± 8‰ (n = 14). Comparative samples from the Boghen Terrane, Kalaa-Gomen 446 

Massif, and the Peridotite Nappe serpentinite sole have δD values of -81‰ (average of two 447 

samples), -85‰, and -82‰, respectively. Across all samples, δD sample replicates reproduced 448 

within 2‰, on average. 449 

5.4 Raman spectroscopy 450 

Serpentine has three primary structural polymorphs that vary over P-T space: the low-T 451 

form is chrysotile, followed by lizardite and antigorite. Diagnosing the polymorph in exhumed 452 

serpentinites can aid in retrieving information about its prograde and/or retrograde path and 453 

alteration. Serpentine in two samples from Group I and four samples from Group II was found to 454 

be antigorite (only) in contrast to lizardite identified in comparative samples from the Boghen 455 

Terrane basement unit and Kalaa-Gomen massif in the Peridotite Nappe (Figure 7 and S5-6). 456 

5.5 Categorization of New Caledonia HP/LT serpentinites 457 

As presented above, serpentinites in the high-pressure metamorphic complex cluster in 458 

two distinct groups, revealed by petrography, major and trace element, and stable isotope 459 

geochemistry. The significance of these groups and their composition will be discussed in the 460 

next section. The results are summarized as follows: 461 
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Group I: >90% serpentinized, common assemblage of antigorite + talc + magnetite, 462 

lower, more homogeneous MgO contents (relative to Group II), δ18O values between 463 

+6.7‰ and 10.2‰, flat M-HREE patterns; 464 

Group II: ~50-90% serpentinized, notable preservation of orthopyroxene and olivine and 465 

distinct presence of awaruite, higher MgO contents (relative to Group I), δ18O between 466 

+5.1‰ and +8.0‰, distinct curved LREE to HREE pattern compared to Group I.  467 

6 Discussion 468 

Prior studies of serpentinites in the HP/LT terrane of New Caledonia have disagreed on 469 

the tectonic origin of the mantle protolith (Fitzherbert et al., 2004; Spandler et al., 2008). Our 470 

results indicate the existence of two geochemically-distinct groups of serpentinites in the 471 

blueschist- to eclogite-facies portions of the complex. This heterogeneity may derive from (1) 472 

geochemical differences in the original mantle source material, (2) processes occurring 473 

throughout serpentinization, (3) subsequent metamorphism during subduction and exhumation, 474 

or (4) a combination of the above. 475 

6.1 Assessing major and trace element mobility 476 

The major and trace element compositions of exhumed serpentinites result from (a) the 477 

original composition and melt history of the parent peridotite, (b) fluid-rock reactions occurring 478 

at the source location for serpentinization (e.g., seafloor, mantle wedge), and (c) fluid-rock 479 

reactions occurring during subduction and exhumation. Extensive study of variably serpentinized 480 

abyssal and mantle wedge peridotites and serpentinites in exhumed subduction complexes has 481 

demonstrated high-field strength elements (HFSE; Nb, Ta, Zr, Hf) and REE are generally (but 482 

not wholly) immobile during serpentinization and aqueous fluid alteration and can be used to 483 

discern information about protolith composition and pre-serpentinization magmatic processes 484 

(e.g., Deschamps et al., 2013; Kodolányi et al., 2012; Niu, 2004; Parkinson & Pearce, 1998; 485 

Savov et al., 2005; Scambelluri et al., 2004). By contrast, major elements and FME (e.g., Li, Pb, 486 

U, Cs, Sr, Ba) must be interpreted with additional caution, as serpentinization is not isochemical 487 

with respect to some of these elements and/or they are more readily mobilized during fluid 488 

interaction over the course of subduction and exhumation (e.g., Cannao et al., 2016; Malvoisin, 489 

2015; Peters et al., 2017). With this in mind, we first assess the degree to which major and trace 490 
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elements in the New Caledonia HP/LT serpentinites may have been mobilized, or whether they 491 

otherwise retain faithful geochemical signatures of their initial mantle protolith. 492 

Ratios of immobile trace elements (e.g., LREE, HFSE vs HREE; La/Yb, Zr/Yb, Hf/Yb, 493 

Nd/Yb) are observed to vary independently of LOI for both groups of HP/LT serpentinites 494 

(Figure 8). This result, combined with the observed similarity of intra-group REE patterns for 495 

Groups I and II (Figure 5), provides initial confidence in the retention of protolith mantle 496 

geochemical signatures for these elements (c.f. Savov et al., 2005). For further assessment, plots 497 

of LREE (La, Ce, Pr, Nd) versus HFSE (Nb, Ta, Zr, Hf) elucidate whether a common process or 498 

processes were responsible for the enrichment or depletion of these groups of elements (c.f. Niu, 499 

2004). It is worth noting that LREE are more readily mobilized by aqueous fluids than MREE 500 

and HREE, so this test is a conservative indicator of trace element and REE immobility.  501 

Group I LREE’s are almost entirely decoupled from HFSE (Figure 9). Indications of a 502 

once-coupled relationship between the LREE and HFSE are partially retained in a few samples, 503 

as indicated by consistent low abundances that correlate somewhat more linearly (but to a degree 504 

no longer statistically significant). More often, however, these samples have been overprinted by 505 

a process or processes that added LREE (Figure 9). In contrast, statistically significant 506 

correlations are observed for Group II serpentinites between the LREE and Zr and Nb (RLREE-Zr 507 

(avg) = 0.942 ± 0.027, RLREE-Nb (avg) = 0.678 ± 0.024) (Figure 9). Notably, LREE appear decoupled 508 

from Ta and Hf (RLREE-Ta (avg) = -0.267 ± 0.037, RLREE-Hf (avg) = 0.308 ± 0.106). Of the HFSE, Zr 509 

and Nb (here coupled with LREE) are lighter in mass than Ta and Hf. Niu (2004) addresses the 510 

potential importance of mass-dependent effects on the observed magmatic fractionation of Nb/Ta 511 

and Zr/Hf ratios in global abyssal peridotite datasets, proposing that elevated LREE abundances 512 

could be produced or enhanced by mass-dependent transfer rates, but notes that observational 513 

tests of this hypothesis are necessary. These data possibly corroborate this hypothesis, 514 

particularly given that none of the four elements correlate with LOI. However, the possibility 515 

that this decoupling reflect later aqueous alteration processes cannot be ruled out, though it is 516 

unclear whether subduction zone temperatures would be sufficiently high enough to mobilize 517 

these HFSE.  518 

In summary, both groups show variations in trace and REE independent of LOI - a 519 

valuable first indicator for retained magmatic trace element signatures. Strong correlation 520 
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between LREE and HFSE in Group II samples bolsters this argument. Observed mobility in 521 

Group I LREE does not preclude us from utilizing the REE data to ascertain a tectonic setting for 522 

the mantle protolith, as there is no demonstrated correlation between the M-HREE with LOI; 523 

though care must be taken in interpreting the significance of LREE abundances and their 524 

contribution to the overall shape of L-HREE trends. 525 

6.2 Serpentinization processes and fluid interactions 526 

Within the ultramafic rock system, oxygen and hydrogen isotopes have been widely 527 

utilized to discern the source of serpentinizing fluids and subsequent post-serpentinization fluid 528 

histories (e.g., Alt and Shanks, 2006; Burkhard and O’Neil, 1988; Früh-Green et al., 1990, 2001; 529 

Kyser et al., 1999). Ultimately, stable isotope values are the amalgamated product of several 530 

important variables – the stable isotope composition of the interacting fluid, the fluid-rock ratio, 531 

the composition of the reactive solid phase(s) in the system, and the fractionation factors 532 

between these components and the fluid. Stable isotope data for the HP/LT serpentinites indicate 533 

differing serpentinizing fluid compositions and/or T conditions for serpentinization between the 534 

two groups of samples. Group II δ18O values (+5.5 ± 0.4‰) cluster tightly around the typical 535 

upper mantle value (+5.4‰), indicating little to no additional alteration of the primary mantle 536 

signature during serpentinization, subduction, or exhumation (Figure 6). This assessment is 537 

supported by recent stable isotope modeling of the ophiolite that indicates limited interaction of 538 

slab sediment-derived fluids within New Caledonia’s mantle wedge during the initial phases of 539 

subduction (Ulrich et al., 2020). Moreover, these authors discern, on the basis of Sr isotopes and 540 

low abundances of sediment-derived elements such as As and Sb (Deschamps et al., 2013), that 541 

the input of subducted sediments was low at the time of serpentinization of the mantle wedge, 542 

and instead the dehydration of altered oceanic crust comprised the dominant fluid source. 543 

Though our data do not include measurements of As and Sb, we observe similarly low degrees of 544 

elements typically regarded as classic markers of serpentinization in the mantle wedge via 545 

shallow dewatering fluids released from slab sediments and lower-T metamorphic dehydration 546 

reactions (e.g., Cs, Sr, Rb, Li) (Figure 1). The narrow range of  δ18O values across all degrees of 547 

hydration (as indicated by LOI %) supports a consistent temperature of serpentinization and/or a 548 

consistent fluid composition (Figure 6). The close relation between the δ18O values of Group II 549 
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serpentinites and antigorite within slab-derived tremolite-antigorite veins in the Peridotite Nappe 550 

also supports a similar source for serpentinizing fluids. 551 

By contrast, Group I samples show increased and variable δ18O, which may be 552 

interpreted to reflect: (1) interaction with metamorphic fluids with a sedimentary component, (2) 553 

differing temperatures of serpentinization in a seafloor environment, or (3) a mix of these two 554 

influences. Both end-member explanations are plausible - all but two Group I samples are 555 

located within 2 km of interpreted boundaries between the Pouébo Terrane and the sediment-556 

dominated Diahot-Panié Complex. Moreover, significant fluid fluxing is evident for these 557 

samples given major element concentrations, which show a clear deviation from the terrestrial 558 

array as a function of increasing modal abundances of talc (Figure 6). The development of talc-559 

rich serpentinite and hybrid rock assemblages in the NE portion of this HP/LT complex has been 560 

attributed to high fluid flux-driven metasomatism at depth and is the source of a separate study 561 

by Spandler et al. (2008). 562 

A suite of discriminant fluid-mobile trace element diagrams complements our 563 

interpretation of significantly different fluid and tectonic histories for Groups I and II. FME’s in 564 

serpentinites are an sensitive recorder of fluid interactions, in part because peridotite protoliths 565 

are depleted in these elements, so increases in their concentration are attributable to fluid 566 

interactions (e.g., Peters et al., 2017; Scambelluri et al., 2019). Recent re-analysis and refinement 567 

of compiled serpentinite data has also demonstrated that these elements are sensitive tracers of 568 

the tectonic environments of serpentinization (Peters et al., 2017). For the New Caledonia HP/LT 569 

serpentinites, plots of fluid-mobile element enrichments (e.g., Ba, Cs) relative to fluid-immobile 570 

elements such as Yb show compelling trends (Figure 10). Ba in Groups I and II (Figure 10a) 571 

indicates a mantle wedge origin for Group II samples, which are relatively enriched compared to 572 

Group I samples, which fall squarely within the field for mid-ocean ridge serpentinites. This 573 

trend is not observed for Cs, which we interpret as becoming enriched in Group I samples during 574 

intense fluid flow and deformation, and possible interaction with neighboring sediments from the 575 

Diahot-Panié Complex. Cs in Group II falls lower than compiled forearc data, commensurate 576 

with our interpretations for limited influence of sedimentary-derived fluids based on stable 577 

isotope data. This Cs depletion is apparent in a plot of Cs vs fluid-immobile Yb, though the data 578 

in this context better overlap with the range of observed values for drilled or dredged forearc 579 

samples, and the Group I samples correlate well with the compiled mid-ocean ridge dataset. 580 
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Trends between U and Th enrichments show that Group I samples lack the seafloor U 581 

enrichment that defines some (but not all) of the mid-ocean ridge dataset (Figure 10c). 582 

6.3 Tectonic origin of New Caledonia HP/LT-complex serpentinites 583 

Given evidence presented above, we interpret differing tectonic origins for serpentinites 584 

in the NE and SE portions of the terrane:  585 

Group I: Found dominantly in the NE part of the complex, these serpentinites are 586 

remnants of lithospheric mantle from the downgoing plate (Figure 11a). They experienced 587 

progressive serpentinization on or near the ocean floor prior to subduction and then faced high-588 

fluid-rock ratios, metasomatism leading to the development of talc-bearing assemblages, and 589 

deformation in the subduction channel. The formation of these rocks was possibly associated 590 

with the development of several major shear zones, which facilitated slicing of the complex at 591 

depth and have given parts of the Pouébo Terrane the appearance of a mélange. This geodynamic 592 

interpretation is supported by recent reevaluations of the architecture of the belt (Maurizot et al., 593 

2020c; Vitale-Brovarone et al., 2018) and consistent with our observation of the proximity of 594 

serpentinites to major unit boundaries and faults (e.g., NC18-22A, NC18-26B, NC19-63) and 595 

their prevalence as matrix hosts for dismembered blocks in km-scale shear zones. It is plausible 596 

that the pre-subduction abyssal environment for the future Pouébo Terrane ultramafic rocks was 597 

characterized by lower-T conditions, consistent with stable isotope data presented here (Figure 598 

6b). Seismic imaging of the New Caledonia Basin to the west of the island has revealed thinned 599 

continental crust interpreted to consist of a significant volume of serpentinized upper mantle and 600 

resembling the structure of crust formed during slow, low-T amagmatic seafloor spreading 601 

(Klingelhoefer et al., 2007). 602 

Group II: These samples cluster in the southern portion of the complex, comprising the 603 

Poadja Massif. Incorporated onto the top of the slab prior to the onshore obduction of the 604 

Peridotite Nappe, this slice of mantle wedge was subducted and exhumed intact, with striking 605 

preservation of relict minerals and comparatively minor degrees of fluid alteration, as evidenced 606 

by δ18O isotope values that remain near the pristine upper mantle average and lower degrees of 607 

LREE and FME (Cs, U, Pb, and Sr) enrichment relative to other global forearc mantle settings 608 

(Figure 11b). We interpret these data to reflect the lack of a strong sedimentary-derived fluid flux 609 

during serpentinization of these rocks in their mantle wedge setting, and this is supported by 610 
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independent evidence from analyses of slab-derived tremolite vein assemblages at the base of the 611 

obducted Peridotite Nappe (Cluzel et al., 2020). This muted enrichment of LREE and FME also 612 

indicates that later overprinting by meta-sedimentary derived fluids during transport within the 613 

subduction channel was limited. The samples display characteristic REE patterns that remarkably 614 

resemble the harzburgitic mantle of New Caledonia’s Peridotite Nappe (Figure 11b). 615 

6.4 Relevance for the architecture of the New Caledonia HP/LT complex 616 

In the NE portion of the complex, our combined field observations and geochemical data 617 

suggest that Group I (downgoing-slab) serpentinites: (a) overwhelmingly appear in the highest-618 

grade portions of the complex, within the oceanic affinity Pouébo Terrane, and (b) show distinct 619 

geochemical markers for high degrees of fluid interaction and deformation during subduction 620 

and/or exhumation (i.e., elevated δ18O values, decoupled LREE’s, enriched FME’s such as Cs). 621 

These observations are broadly consistent with recent re-interpretations of this subduction 622 

complex by Vitale-Brovarone et al. (2018), which posits the existence of two accretionary 623 

domains preserved in a nappe-type belt formed by progressive underplating and stacking. The SE 624 

portion of the complex is far less studied: the existence of Group II mantle wedge serpentinites 625 

carries implications for the structural level of the subduction zone sampled by rocks in the 626 

immediate vicinity of the Poadja Massif. The existence of mantle wedge serpentinites adds to 627 

independent observations made by Cluzel (2021) of the presence of hangingwall mafic rocks in 628 

lower-grade portions of the Diahot-Panié Complex further north. Integrating these observations 629 

into a unified subduction complex-scale picture of preserved lithostratigraphy requires further 630 

studies. Nevertheless, these observations provide compounding evidence for greater structural 631 

coherence within the New Caledonia subduction “mélange” than has previously been posited. 632 

6.5 Implications for slab-mantle wedge interactions 633 

Our finding of mantle wedge material within the exhumed HP/LT complex on New 634 

Caledonia provides direct evidence for interaction with the hangingwall mantle in this Eocene 635 

subduction zone. Geochemical modeling has demonstrated the importance of the mantle wedge 636 

as a reservoir for water and fluid-mobile elements that contribute to arc magma isotope and 637 

elemental budgets (e.g., Debret et al., 2019, 2020; Ribeiro & Lee, 2017; Savov et al., 2005, 638 

2007), and there are strong conceptual bases, observational evidence, and modeled predictions 639 
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for the incorporation and downward dragging of mantle wedge material in some subduction 640 

zones (e.g., Bebout & Barton, 2002; Bebout, 2007; Cloos & Shreve, 1988; Malatesta et al., 2012; 641 

Peacock & Hyndman, 1999; Savov et al., 2005). New Caledonia provides an important natural 642 

rock record comparison for geodynamic modeling: particuarly for outcomes in which 643 

exhumation of downgoing plate mantle and overlying mantle wedge material is predicted (e.g., 644 

Gerya & Stockert, 2006; Gerya et al., 2002; Malatesta et al., 2012). In these cases, the rheology 645 

of serpentine and evolving hydration state of the ultramafic material are critical to the locus of 646 

the weak, low-viscosity subduction channel and eventual migration of the plate interface 647 

upwards into the mantle wedge. The development of talc in the overlying mantle assemblage 648 

provides a possible physiochemical mechanism for this migration, and its stability in the 649 

ultramafic chemical system may even control the depth of plate decoupling (Peacock & Wang, 650 

2021).  651 

This hypothesis is interesting to consider in light of our observations of relatively 652 

undeformed, nearly talc-absent mantle wedge assemblages observed in the SE and deformed, 653 

talc-bearing downgoing mantle assemblages in the NE. A local bulk assemblage-induced 654 

rheological switch in the mantle wedge and consequent avulsion of the slab-mantle interface 655 

could be broadly consistent with the results presented here. In this scenario, deformation rapidly 656 

re-localizes in the new region of weakness and a stranded slice of mantle wedge material is 657 

incorporated atop the downgoing slab. This mantle may feasibly have already experienced partial 658 

high-T serpentinization from fluxed aqueous dehydration fluids (consistent with stable isotope 659 

data presented here) and might largely escape prolonged intense deformation, because the 660 

subduction interface was localized first below, and then above the mantle wedge slice in 661 

rheologically weaker assemblages (consistent with observed petrographic textures and field 662 

observations). 663 

Tectonic erosion of the mantle wedge, and the type of HP/LT ultramafic material it 664 

produces, contrasts markedly with the processes that retrieve lithospheric mantle under 665 

subducted oceanic crust. Slicing and nappe development along lithologic (rheologic) 666 

heterogeneities in the slab are commonly invoked as ways by which downgoing mantle may be 667 

incorporated into the subduction channel (e.g., Angiboust & Agard, 2010; Guillot et al., 2009; 668 

Hermann et al., 2000; Wakabayashi, 1992). During these processes, the mantle is juxtaposed and 669 

reacts with sedimentary and mafic components of the slab, as reflected by stable isotope 670 
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compositions and Si and trace element enrichments. The data presented here for New 671 

Caledonia’s NE serpentinites reflect this type of metamorphic history, including their spatial 672 

concentration within the oceanic Pouébo Terrane and proximity to inferred boundaries with the 673 

Diahot-Panié Complex. 674 

7 Summary 675 

In this study, we resolve two petrographically, geochemically, and spatially distinct 676 

groups of serpentinites within New Caledonia’s HP/LT subduction complex. Our work 677 

reconciles existing disparate interpretations of the tectonic origin of these rocks, with 678 

implications for slab-mantle interaction during subduction. In the NE portion of the complex 679 

serpentinite geochemistry and field relations indicate a downgoing slab origin. By contrast, the 680 

chemistry of serpentinites in the SE points to a mantle wedge origin, indicating incorporation and 681 

subduction of upper plate material. The exhumation of serpentinites from these two different 682 

geodynamic settings within a single HP/LT complex is not common in the natural rock record, 683 

but predicted for certain modeled scenarios as a function of serpentine rheology and hydration 684 

state, among other subduction parameters. The mineralogy, chemistry, and spatial distribution of 685 

New Caledonia’s HP/LT serpentinites hold clues for understanding the architecture of this 686 

subduction complex, and more broadly, for the modeled dynamics of deep tectonic slicing of 687 

subducted oceanic plates and mass transfer between the upper and lower plates. 688 
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Figure 1. Schematic subduction zone cross-section showing relevant locations of 1321 

serpentinization and enrichments and loss of fluid-mobile elements during subduction and 1322 

exhumation (after Deschamps et al., 2013; Peters et al., 2017). Large semi-transparent arrow 1323 

indicates subduction and exhumation path of serpentinites, emphasizing that these rocks can 1324 

encounter chemical changes on both the prograde and retrograde paths. Subduction zone after 1325 

Guillot et al. (2015). 1326 

Figure 2. (a) Regional map highlighting significant tectonic features of the SW Pacific region 1327 

after Maurizot & Collot (2009) and Sutherland et al. (2019). (b) Simplified geologic map of the 1328 

main island of New Caledonia showing sample locations and additional localities referenced in 1329 

text. Map and units after Maurizot et al. (2020c). (c) Simplified map of Pam Peninsula showing 1330 

locations of Group I serpentinites samples (this study) and prior studied samples. Unit names 1331 

after Maurizot et al. (2020c) and boundaries modified after Vitale-Brovarone et al. (2018). (d) 1332 

Simplified map showing sampled locations at Poadja Massif. Estimated uncertainty for 1333 
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Fitzherbert et al. (2004) georeferenced raster map locations (c, d) is ~500-700 m and ~200-400 1334 

m, respectively. Solid black lines denote roads, solid blue lines denote streams, and dashed black 1335 

line denotes high-angle normal fault. 1336 

Figure 3. Backscatter electron images from select high-pressure serpentinites. (a) A relict 1337 

chromite core surrounded by a mantle of ferritchromite and rim of chromian magnetite 1338 

containing inclusions of antigorite (NC19-48). (b) Delicate veins of tremolite and antigorite cross 1339 

cut a pervasively serpentinized matrix (NC19-94). (c) Skeletal chromite replaced by magnetite 1340 

and antigorite (NC18-39B). (d) Inclusions of Fe-Ni alloy awaruite and antigorite in magnetite 1341 

(NC18-39A). (e) Brightness-contrast enhanced image highlighting complex curvilinear 1342 

retrogression of chromian magnetite to magnetite (NC19-154A). (f) Representative texture of 1343 

typical replacement of olivine by antigorite and magnetite via growth from fractures (NC18-1344 

39A). 1345 

Figure 4. Whole rock major element ratios of MgO/SiO2 vs. Al2O3/SiO2 for serpentinites and 1346 

hybrid rocks in New Caledonia’s HP/LT terrane. Samples are plotted with compiled data for 1347 

harzburgites in the New Caledonia ophiolite (gray circles) (Liu et al., 2018; Mothersole, 2014; 1348 

Mothersole et al., 2017; Ulrich et al., 2010). Also shown is the field for abyssal serpentinites 1349 

from Niu (2004).  Depleted mantle value from McDonough and Sun (1995), primitive mantle 1350 

value from Salters and Stracke (2004).  “Terrestrial array” line after Hart and Zindler (1986), 1351 

Jagoutz et al. (1979), and Niu (2004). 1352 

Figure 5. Whole rock trace and REE compositions for New Caledonia HP/LT serpentinites. 1353 

Samples are plotted together (a, b) and separately into respective categories: Group I (c, d) and 1354 

Group II (e, f). Trace element concentrations are normalized to primitive mantle values of Sun 1355 

and McDonough (1989) (a,c,e). REE concentrations are normalized to C1 chondrite 1356 

(McDonough & Sun, 1995) (b,d,f). 1357 

Figure 6.  (a) Hydrogen (δD) and oxygen (δ18O) stable isotope compositions of New Caledonia 1358 

HP/LT serpentinites compared with existing data for serpentine in the overlying Peridotite Nappe 1359 

(ophiolite groups after Cluzel et al., 2020; Ulrich et al., 2020). Weathered samples and samples 1360 

for which antigorite was not specified in Cluzel et al. (2020) were excluded. Upper mantle values 1361 
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from Eiler (2001), Kyser and O’Neil (1984), and Mattey et al. (1994). (b) δ18O versus loss on 1362 

ignition (LOI) for HP/LT serpentinites. Group I serpentinites show decreasing δ18O with 1363 

progressive hydration whereas Group II serpentinites exhibit a narrow range of δ18O values 1364 

irrespective of degree of hydration. An arrow denotes the direction of δ18O change when 1365 

serpentine is formed at increasing temperatures in equilbirium with seawater (e.g., Saccocia et 1366 

al., 2009). 1367 

Figure 7. Representative cross-polarized photomicrographs and correlated Raman spectra for (a) 1368 

two separate matrix sites in Group I sample NC18-09B and (b) one pseudomorph (red) and one 1369 

vein (blue) in Group II sample NC19-152. Diagnostic Raman peaks for antigorite are highlighted 1370 

tan vertical bars. All serpentine polymorphs in Group I and II were identified as antigorite 1371 

(Figures S5, S6). 1372 

Figure 8. Variations in ratios of HFSE/HREE (i.e., Yb) with increasing LOI (%) for New 1373 

Caledonia HP/LT serpentinites. Variations in trace element ratios are independent of LOI value. 1374 

Figure 9. Plots of LREE (La, Ce, Pr, and Nd) versus HFSE (e.g., Zr) for all HP/LT serpentinites, 1375 

with zoomed insets in upper right of graphs to highlight trace element depleted Group II samples. 1376 

Groups I and II symbols are the same as Figure 8. One sample, NC19-158 (open orange circle), 1377 

has been excluded from the trendline and computed R values. 1378 

Figure 10. Plots for investigation of FME trends among New Caledonia HP/LT serpentinites. 1379 

Data are plotted against compilations for mid-ocean ridge (MOR) serpentinites (teal circles) and 1380 

forearc (FA) serpentinites (tan circles) from Peters et al. (2017). (a) Ba/Yb vs. Ba, (b) Cs/Yb vs. 1381 

Cs, (c) U vs. Th, and (d) Cs vs. Yb. 1382 

Figure 11. REE compositions for New Caledonia HP/LT serpentinites. (a) Group I serpentinites 1383 

plotted versus a global dataset of mid-ocean ridge serpentinites (Peters et al., 2017); (b) Group II 1384 

serpentinites plotted versus harzburgite compositions from the New Caledonia ophiolite 1385 

(Marchesi et al., 2009; Secchiari et al., 2020; Ulrich et al., 2010). 1386 
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Figure 7.



Figure 7. Representative cross-polarized photomicrographs and correlated Raman spectra for (a) two separate 
matrix sites in Group I sample NC18-09B and (b) one pseudomorph (red) and one vein (blue) in Group II 
sample NC19-152. Diagnostic Raman peaks for antigorite are highlighted tan vertical bars. All serpentine 
polymorphs in Group I and II were identified as antigorite (Figure S5).
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Table 1

Whole rock major and trace element compositions

Lithology Serpentinite

Sample name NC18-07C NC18-09B NC18-15C NC18-15D NC18-22A

IGSN IENHR0002 IENHR0003 IENHR0004 IENHR0005 IENHR0006

Group/Locality I I I I I

Major elements (wt%)

SiO2 53.95 43.78 41.90 42.25 41.32

TiO2 0.02 0.02 0.02 0.02 0.02

Al2O3 1.31 2.18 2.46 1.73 3.46

Fe2O3(T) 6.39 8.56 8.63 7.50 9.63

MnO 0.04 0.11 0.16 0.10 0.14

MgO 29.65 33.74 34.44 36.22 33.97

CaO 0.03 0.02 0.01 <0.01 0.01

Na2O 0.00 0.00 0.00 <0.01 <0.01

K2O 0.01 0.00 0.00 <0.01 <0.01

P2O5 0.01 0.00 0.01 <0.01 <0.01

LOIa 7.59 11.30 12.06 11.67 11.21

Total 98.98 99.69 99.68 99.50 99.76

Mg# 0.82 0.80 0.80 0.83 0.78

Lab WSU WSU WSU WSU WSU

Trace elements (ppm)

Li n.d. n.d. n.d. 0.0464 n.d.

Be n.d. n.d. n.d. 0.110 n.d.

Sc 7.12 10.4 8.33 7.97 11.5

V n.d. n.d. n.d. 37.3 n.d.

Cr n.d. n.d. n.d. 2252 n.d.

Co n.d. n.d. n.d. 94.8 n.d.

Ni n.d. n.d. n.d. 2384 n.d.

Cu n.d. n.d. n.d. 1.89 n.d.

Zn n.d. n.d. n.d. 29.4 n.d.

Ga n.d. n.d. n.d. 2.73 n.d.

Rb 0.293 0.0691 0.0525 bdl 0.0992

Sr 3.27 1.34 1.43 0.274 1.29

Y 2.36 0.720 4.99 0.637 0.478

Zr 2.95 2.93 2.68 0.938 2.40

Nb 0.180 0.251 0.136 0.0356 0.519

Cs 0.0111 0.0211 0.00898 0.00551 0.0156

Ba 3.04 0.359 5.33 0.168 0.636



La 0.554 0.267 1.58 0.131 0.506

Ce 1.40 0.653 1.36 0.285 1.12

Pr 0.165 0.0655 0.659 0.0526 0.116

Nd 0.677 0.228 3.57 0.253 0.410

Sm 0.283 0.0592 0.845 0.0761 0.0970

Eu 0.0977 0.0117 0.238 0.0144 0.0165

Tb 0.108 0.0163 0.133 0.0168 0.0151

Gd 0.388 0.0638 0.906 0.101 0.0755

Dy 0.765 0.113 0.765 0.100 0.0943

Ho 0.166 0.0281 0.159 0.0244 0.0208

Er 0.515 0.0925 0.411 0.0742 0.0614

Tm 0.102 0.0169 0.0533 0.0122 0.0117

Yb 0.852 0.146 0.291 0.0843 0.0986

Lu 0.151 0.0262 0.0509 0.0152 0.0199

Hf 0.0733 0.0808 0.0779 0.0538 0.0705

Ta 0.0605 0.0998 0.0528 0.0443 0.0864

Pb 0.121 0.512 0.371 0.00955 0.173

Th 0.292 0.495 0.458 0.163 0.534

U 0.0667 0.120 0.0717 0.0180 0.123
Lab WSU WSU WSU URI WSU

Note . n.d. = not determined; bdl = below detection limits; F&M = Franklin & Marshall College; URI =

aLOI measured by combustion

 



NC18-26B NC18-43 NC19-14 NC19-48 NC19-54 NC19-63 NC19-81

IENHR0008 IENHR000C IENHR000G IENHR000I IENHR000J IENHR000K IENHR000L

I I I I I I I

38.46 46.20 42.45 54.34 42.52 42.48 51.51

0.22 0.01 0.01 0.01 0.01 0.01 <0.01

6.73 1.68 1.96 1.18 0.84 2.68 2.48

13.39 7.00 6.50 6.30 7.09 8.29 6.83

0.14 0.07 0.10 0.07 0.09 0.12 0.07

29.19 32.94 37.65 30.61 38.67 34.64 30.92

0.44 0.11 0.01 0.02 0.01 0.02 0.14

<0.01 0.18 0.03 0.01 0.03 0.02 0.02

<0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

11.78 12.33 11.83 7.25 11.36 12.49 8.16

100.35 100.54 100.54 99.79 100.62 100.75 100.13

0.69 0.82 0.85 0.83 0.85 0.81 0.82

WSU F&M F&M F&M F&M F&M F&M

n.d. 5.72 0.0154 0.907 1.75 2.08 0.820

n.d. 0.846 0.0985 0.155 0.126 0.236 0.0904

13.8 10.5 6.72 4.03 6.71 11.5 7.75

n.d. 43.0 27.8 25.2 33.7 41.2 45.4

n.d. 2400 2500 2193 2861 2280 2103

n.d. 88.8 91.9 88.0 169 69.6 82.1

n.d. 2209 2299 2368 5877 1942 2288

n.d. 4.09 4.61 2.98 17.1 24.6 2.12

n.d. 39.4 35.9 40.9 106 34.0 34.7

n.d. 4.51 2.00 1.98 1.83 3.18 3.31

0.139 0.122 bdl 0.00760 0.0662 0.0250 bdl

5.54 5.40 0.135 0.0957 0.602 1.39 0.558

4.41 5.59 0.374 0.507 0.595 1.69 1.26

16.6 0.543 1.22 0.196 5.11 0.609 0.409

0.384 0.661 0.134 0.0100 3.07 0.331 0.296

0.139 0.0591 0.00267 0.0187 0.00863 0.0313 0.00140

1.80 1.65 0.135 0.522 0.537 4.47 0.292



0.587 0.903 0.0988 0.0619 0.266 0.194 0.185

1.07 3.21 0.339 0.0607 0.827 0.317 0.124

0.195 0.468 0.0355 0.0146 0.0857 0.0896 0.0798

0.902 2.26 0.165 0.0770 0.336 0.455 0.457

0.323 0.744 0.0489 0.0274 0.0878 0.155 0.181

0.0947 0.172 0.0129 0.00537 0.0211 0.0475 0.0375

0.0975 0.158 0.0177 0.00776 0.0216 0.0390 0.0472

0.489 0.881 0.0646 0.0530 0.105 0.228 0.246

0.702 0.994 0.0680 0.0477 0.141 0.260 0.308

0.169 0.211 0.0164 0.0142 0.0307 0.0586 0.0614

0.520 0.604 0.0482 0.0485 0.0921 0.173 0.182

0.0849 0.0911 0.00814 0.00799 0.0169 0.0268 0.0323

0.589 0.579 0.0532 0.0581 0.124 0.189 0.249

0.107 0.0837 0.00963 0.0124 0.0191 0.0306 0.0374

0.411 0.0786 0.0645 0.0436 0.182 0.0570 0.0382

0.0639 0.0939 0.0745 0.0362 0.0744 0.0322 0.0434

0.204 0.114 0.0482 0.0606 0.169 0.278 0.0475

0.304 0.547 0.101 0.155 0.0946 0.161 0.149

0.0646 0.158 0.0107 0.0163 0.126 0.0140 0.0210
WSU URI URI URI URI URI URI

= University of Rhode Island; WSU = Washington State University.



NC19-86 NC19-89 NC19-94 NC18-39A (core) NC18-39A (rxn) NC18-39B

IENHR000N IENHR000O IENHR000P IENHR0009 IENHR0009 IENHR000A

I I I II II II

 

41.69 50.75 42.12 38.57 40.64 40.05

0.02 0.01 0.01 0.01 0.01 0.01

0.95 1.93 2.81 0.51 0.52 0.57

7.15 7.10 7.50 7.49 7.29 7.59

0.05 0.09 0.13 0.11 0.12 0.11

39.25 31.28 36.47 40.34 38.42 41.55

0.03 0.02 0.06 <0.01 0.17 0.57

0.03 <0.01 0.03 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.01 <0.01 <0.01 <0.01 <0.01 <0.01

11.23 9.10 11.71 12.62 12.64 9.01

100.41 100.28 100.84 99.66 99.81 99.46

0.85 0.82 0.83 0.84 0.84 0.85

F&M F&M F&M WSU WSU WSU

0.0470 0.602 1.60 n.d. n.d. n.d.

0.0267 0.124 0.326 n.d. n.d. n.d.

8.03 10.7 9.49 6.68 7.12 7.12

30.4 45.2 58.0 n.d. n.d. n.d.

2454 2747 2796 n.d. n.d. n.d.

52.5 93.9 110 n.d. n.d. n.d.

1601 2386 2678 n.d. n.d. n.d.

3.68 11.9 0.604 n.d. n.d. n.d.

30.0 42.3 40.8 n.d. n.d. n.d.

1.33 3.64 4.44 n.d. n.d. n.d.

bdl 0.0364 0.0736 0.264 0.0577 0.108

bdl 1.13 1.07 1.99 4.47 2.92

0.183 6.48 4.13 0.238 0.254 0.198

1.35 0.302 0.799 2.09 2.69 2.26

0.0397 0.194 0.0574 0.0947 0.122 0.0900

bdl 0.0184 0.0819 0.0227 0.0222 0.0423

0.339 5.59 1.47 0.431 2.23 0.741



0.0649 1.91 0.165 0.265 0.325 0.271

0.154 0.242 0.652 0.620 0.760 0.654

0.0124 0.637 0.101 0.0616 0.0723 0.0646

0.0643 2.72 0.507 0.242 0.256 0.250

0.00798 0.903 0.262 0.0605 0.0550 0.0503

0.00181 0.249 0.0545 0.0190 0.0183 0.0134

0.00341 0.198 0.0909 0.00773 0.00814 0.00639

0.0230 1.13 0.444 0.0464 0.0485 0.0396

0.0239 1.13 0.655 0.0491 0.0493 0.0355

0.00747 0.215 0.158 0.0109 0.0104 0.00772

0.0192 0.563 0.507 0.0320 0.0347 0.0272

0.00424 0.0848 0.0867 0.00475 0.00558 0.00478

0.0315 0.587 0.627 0.0350 0.0362 0.0285

0.00637 0.0891 0.110 0.00679 0.00687 0.00567

0.0592 0.0325 0.0544 0.0505 0.0669 0.0624

0.0377 0.0546 0.0257 0.0356 0.0416 0.0308

0.0841 0.0793 0.340 0.0981 0.0745 0.320

0.0245 0.0820 0.454 0.112 0.152 0.108

0.00827 0.0145 0.142 0.0424 0.0510 0.0453
URI URI URI WSU WSU WSU



NC18-39C NC19-42 NC19-152 NC19-154A NC19-157 NC19-158 NC18-45

IENHR000B IENHR000H IENHR000Q IENHR000R IENHR000S IENHR000T IENHR000D

II II II II II II Boghen Terrane

41.61 41.96 40.80 38.86 40.64 41.98 40.26

0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01

0.75 0.72 0.69 0.72 0.68 0.67 0.41

7.21 7.75 8.28 5.75 7.55 7.91 9.41

0.09 0.11 0.12 0.09 0.11 0.11 0.15

38.01 43.46 42.29 39.31 42.35 43.24 36.43

0.01 0.50 1.08 0.02 0.42 0.53 0.01

<0.01 0.06 0.05 0.04 0.05 0.08 <0.01

<0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

12.00 5.33 6.90 17.28 8.32 5.25 13.19

99.70 99.90 100.21 102.07 100.12 99.78 99.86

0.84 0.85 0.84 0.87 0.85 0.85 0.79

WSU F&M F&M F&M F&M F&M WSU

n.d. 0.717 0.481 0.0560 0.180 0.630 n.d.

n.d. bdl bdl 0.0160 bdl bdl n.d.

7.20 8.75 7.01 6.74 6.01 5.39 9.79

n.d. 21.4 12.1 17.8 19.2 17.6 n.d.

n.d. 2672 1773 2285 2117 1819 n.d.

n.d. 104 97.8 98.4 103 112 n.d.

n.d. 2331 2184 2461 2278 2555 n.d.

n.d. 10.2 2.16 2.36 3.21 2.04 n.d.

n.d. 30.1 33.2 29.3 23.3 29.7 n.d.

n.d. 0.977 1.76 0.933 0.878 0.463 n.d.

0.0598 0.254 0.0568 0.00982 0.0229 0.276 0.0814

1.13 0.670 2.20 0.724 0.788 0.934 2.19

0.289 0.0115 0.0454 0.108 0.0895 0.126 0.197

2.43 0.929 0.334 0.388 0.264 2.82 2.06

0.219 0.00648 bdl 0.0284 0.0109 0.185 0.0892

0.00464 0.0112 0.00517 0.00189 0.00512 0.0169 0.0921

0.562 0.911 1.82 0.772 0.661 0.706 3.88



0.220 0.131 0.0586 0.121 0.0682 0.0437 0.281

0.559 0.282 0.135 0.266 0.189 0.0916 0.556

0.0520 0.0214 0.0141 0.0326 0.0224 0.0102 0.0546

0.194 0.0674 0.0442 0.121 0.0844 0.0231 0.212

0.0477 0.00564 0.00616 0.0227 0.0151 0.00348 0.0367

0.00634 bdl 0.00495 0.00752 0.00277 0.00163 0.0772

0.00705 0.000708 0.000971 0.00312 0.00225 0.00161 0.00446

0.0444 0.00616 0.00608 0.0195 0.0141 0.00625 0.0273

0.0517 bdl 0.00629 0.0176 0.0139 0.00989 0.0308

0.0130 0.00117 0.00154 0.00355 0.00294 0.00239 0.00704

0.0423 0.00451 0.00627 0.0114 0.00971 0.0115 0.0230

0.00821 0.00128 0.00118 0.00187 0.00176 0.00219 0.00417

0.0813 0.0115 0.0138 0.0166 0.0176 0.0239 0.0300

0.0181 0.00363 0.00315 0.00319 0.00357 0.00449 0.00509

0.0705 0.109 0.0290 0.0224 0.0257 0.0607 0.0558

0.0403 0.105 0.0240 0.123 0.0259 0.0952 0.0311

0.0555 0.0684 0.0932 0.0369 0.0576 0.0191 0.860

0.175 0.0176 0.00867 0.0372 0.0134 0.0186 0.123

0.0488 0.00653 0.00626 0.0782 0.00465 0.0119 0.0374
WSU URI URI URI URI URI WSU



Peridotite Chlorite schist Talc schist

NC18-46 NC18-49 NC19-178 NC19-85 NC19-169

IENHR000E IENHR000F IENHR000V IENHR000M IENHR000U

Boghen Terrane Serpentinite Sole Kalaa-Gomen I I

39.00 42.04 40.51 22.35 54.16

0.02 <0.01 <0.01 3.54 0.02

1.05 0.51 0.69 13.43 2.99

10.22 6.91 7.73 29.21 6.62

0.15 0.06 0.11 0.24 0.02

36.38 37.51 40.91 19.23 29.93

<0.01 0.04 0.66 2.47 0.03

<0.01 0.03 0.05 0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01

0.01 <0.01 <0.01 1.88 0.01

12.90 13.67 9.77 7.88 6.25

99.72 100.77 100.43 100.24 100.03

0.78 0.84 0.84 0.40 0.82

WSU WSU F&M F&M F&M

n.d. 1.91 1.27 7.12 0.162

n.d. 0.0109 bdl 0.252 0.0814

11.8 5.60 7.30 35.9 8.51

n.d. 19.7 26.6 448 49.0

n.d. 2314 2307 284 2336

n.d. 95.5 95.7 140 93.1

n.d. 2563 2069 247 1985

n.d. 2.55 1.82 59.7 7.40

n.d. 25.3 82.9 128 43.3

n.d. 0.645 0.879 8.47 4.28

0.144 0.00673 0.0809 0.0242 0.167

1.74 0.677 0.428 36.0 2.27

0.453 1.08 0.0220 54.8 0.327

3.12 0.497 0.353 25.0 0.256

0.155 0.00694 bdl 12.7 0.0267

0.787 0.00578 0.00336 0.00499 0.0109

3.50 0.709 0.168 12.9 0.341



0.296 0.202 0.0183 13.1 0.0523

0.600 0.170 0.0501 35.7 0.192

0.0760 0.0701 0.00444 4.29 0.0302

0.350 0.330 0.0101 20.5 0.156

0.0475 0.100 0.00109 6.42 0.0523

0.0220 0.0264 bdl 1.82 0.00663

0.00897 0.0199 0.000194 1.76 0.0118

0.0493 0.143 0.00120 9.71 0.0693

0.0652 0.110 0.000929 11.4 0.0706

0.0175 0.0273 0.000413 2.30 0.0141

0.0556 0.0752 0.00259 5.50 0.0355

0.00961 0.00983 0.000758 0.662 0.00444

0.0711 0.0544 0.00955 3.44 0.0237

0.0128 0.0109 0.00254 0.453 0.00355

0.0668 0.0437 0.0224 0.738 0.0105

0.0891 0.0525 0.0217 0.641 0.0135

0.362 0.260 0.00374 0.984 0.0827

0.0939 0.0165 0.00392 3.08 0.0223

0.0368 0.00565 0.00129 0.133 0.00457
WSU URI URI URI URI



Table 2

Oxygen and hydrogen stable isotope data.

Sample Rock type Group/Locality ẟDsrp (‰) ẟ18Osrp  (‰)

NC18-07C serpentinite I -45, -41 10.2

NC18-09B serpentinite I -35, -36 8.0

NC18-15C serpentinite I -34, -32 8.6

NC18-15D serpentinite I -33, -29 8.5, 6.7

NC18-22A serpentinite I -40, -40 7.7, 6.8

NC18-26B serpentinite I -44, -46 8.9

NC18-43 serpentinite I -75, -77 7.5

NC19-14 serpentinite I -38, -39 8.7, 8.8

NC19-48 serpentinite I -42, -42 9.8

NC19-54 serpentinite I -42, -41 7.4, 7.2

NC19-63 serpentinite I -49, -49 10.6

NC19-81 serpentinite I -47, -44 8.6

NC19-86 serpentinite I -47, -47 8.3

NC19-89 serpentinite I -45, -45 8.9, 8.8

NC19-94 serpentinite I -44, -44 8.3

NC18-39A (core) serpentinite II -59, -53 5.4

NC18-39A (rxn) serpentinite II -56, -55 6.4

NC18-39B serpentinite II -52, -49 5.1, 5.5

NC18-39C serpentinite II -39, -40 5.7

NC19-42 serpentinite II -73, -79 5.7

NC19-152 serpentinite II -43, -44 5.2

NC19-154A serpentinite II -40, -37 5.6

NC19-157 serpentinite II -42, -39 5.2

NC19-158 serpentinite II -70, -72 5.5

NC19-85 chlorite schist I

NC19-169 talc schist I

NC18-45 serpentinite Boghen Terrane -82, -86 8.0

NC18-46 serpentinite Boghen Terrane -78, -79 7.0

NC18-49 serpentinite Serpentinite Sole -82, -82 6.5

NC19-178 serpentinite Kalaa-Gomen Massif -84, -85 5.7

Note. Mineral abbreviations after Whitney and Evans (2010): Srp serpentine, Mag  mag
1>710 µm grain size fraction
2 125-250 µm grain size fraction



ẟ18Omag (‰) ẟ18Otlc (‰)

9.0

1.5

2.3, 2.5

4.31, 4.62
10.5

gnetite, Tlc  talc
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Text S1. Major element preparation methods for Washington State University and 

Franklin & Marshall College 

Franklin & Marshall College: Fifty to sixty grams of representative, clean (exterior 

weathered surfaces removed) whole rock chips for each sample were sent to Franklin & 

Marshall College for analysis. Samples were further ground in a mullite grinder and then 

powdered via shatterbox in a ceramic container (to eliminate the possibility of tungsten 

carbide contamination). Approximately 1 gram of rock powder is weighed into a clean and 

dry porcelain crucible for each sample, and placed in a muffle furnace for 90 minutes at 

950° C. The crucibles are removed and placed immediately in a desiccator. After reaching 

room temperature, samples are weighed again. Powders are placed in a small vial and 

stored in the desiccator- this is the starting material for XRF analysis.  

To prepare the XRF disc (“bead”), 3.6000 ± 0.0002 g of lithium tetraborate is 

weighed into a clean glass bottle. Next, 0.4000 ± 0.0001 g of anhydrous rock powder are 

added. The bottle is gently mixed by hand for 20-30 seconds and then the bottle is mixed 

for an additional 10 minutes in a Spex Mixer Mill. The homogenized powder is transferred 

to a 25 cc. 95% Pt-5% Au crucible and 3-4 drops of a 2% solution of Lithium Iodide are 

added. The crucible is mounted on a standard ring stand and covered with a 95% Pt-5% 

Au lid with a flat and polished bottom. The crucible is heated over a Meeker burner for 12-

15 minutes (sample is vigorously stirred at the 5-minute and 10-minute marks, and once 

again before pouring). Once the sample is fully convecting, the Pt lid is removed and 

heated over a second Meeker burner until it is red hot. The crucible is removed from the 

ring stand and rapidly emptied onto the hot Pt lid. Immediately after, the crucible is 

dropped into a warm beaker containing 4N HCl (enough to cover the crucible). The Pt lid 

is set on a flat slab of polished granite, left to cool (3-5 min), labeled on the side of the 

disc that is exposed to air, and stored in a dessicator to await analysis. 

 

Washington State University: The following description summarizes preparation details 

most relevant for this paper. The full method is outlined in Johnson et al. (1999). 

Approximately 50 grams of representative, clean (exterior weathered surfaces removed) 

whole rock chips for each sample were transported to Washington State University. A 

standard volume of chips (enough to fit in a 2 oz Solo clear plastic soufflé cup; ~30 g) was 

ground in a swing mill with tungsten carbide surfaces for 2 minutes. The contamination of 

W and Co in the Rock Labs WC ring mills is well-documented, and these elements were 

not measured. Contamination of Nb and Ta, which is typically of the same order of 

magnitude as the precision of the method, is discussed in the procedures of Johnson et 

al. (1999). Next, 3.5 g of sample powder was weighted into a plastic mixing jar with 7.0 g 

of pure dilithium tetraborate and mixed using a vortex mixer until homogenized. For 

serpentinites, a high-purity silica powder was added at the weighing stage to prevent 

crystallization of the bead and to bring the Mg concentration within the lab’s calibration 

range. The result is back calculated to remove the known amount of silica. 

 Homogenized sample-flux mixtures are placed into graphite crucibles placed on a 

silica tray and loaded into a muffle furnace (the furnace is just large enough to contain the 

tray). After the preheated furnace returns to 1000° C after loading, fusion takes five 

minutes. The silica plate with graphite crucibles is removed from the oven and allowed to 
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cool. Each beach is reground in the swing mill for 35 seconds. This glass powder is put 

back into the crucibles and refused for five minutes. After the second fusion, the beads are 

labeled with an engraver, and the lower flat surface is ground on 600 silicon carbide grit 

and finished briefly on a glass plate with 600 grit and alcohol (to remove any metal from 

the grinding wheel). The bead is then washed in an ultrasonic cleaner, rinsed in alcohol 

and wiped dry. 
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Figure S1. Representative plane-polarized (A-E) and cross-polarized (F-J) thin section 

scans of serpentinites from the northeastern portion of the HP terrane. NC18-09B (A, F). 

NC18-22A (B, G). NC19-54 (C, H). NC19-63 (D, I). NC19-86 (E, J). 
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Figure S2. Representative plane-polarized (A-F) and cross-polarized (G-L) thin section 

scans of serpentinites from the southeastern portion of the HP terrane. NC18-39A (A, G); 

NC18-39C (B, H); NC19-152 (C, I); NC19-154A (D, J); NC19-157 (E, K); NC19-158 (F, L). 
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Figure S3. Representative plane-polarized (A-C) and cross-polarized (D-F) thin section 

scans of serpentinites from the Boghen Terrane and Kalaa-Gomen. NC18-45 (A, D); NC18-

46 (B, E); NC19-178 (C, F). 
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Figure S4. Plane-polarized (A, B) and cross-polarized (C, D) thin section scans of hybrid 

rocks. NC19-85 (A, B) is a chlorite schist consisting of chlorite, ilmenite, titanomagnetite, 

and inclusion-rich apatite. NC19-169 (C, D) is a foliated talc-magnetite schist consisting of 

talc and magnetite with minor serpentine and ilmenite. 
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Figure S5. Raman spectra acquired on a representative suite of Group I samples (NC19-

54, NC18-09B), a Boghen Terrane sample (NC18-46), and the Kalaa-Gomen sample (NC19-

178). 
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Figure S6. Raman spectra acquired on a representative suite of Group II samples (NC19-

154A, NC19-152, NC19-158, NC19-157). 
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Table S1. Raia-ds02.xlsx: Sample localities and descriptions. 

 

 

 NC18-15D NC18-49 

Major 

elements 

(wt%) 

WSU XRF F&M XRF URI ICP-

MS 

WSU XRF F&M XRF URI ICP-

MS 

SiO2 42.25 42.74  41.03 42.04  

TiO2 0.02 0.01 0.0115 <0.01 <0.01 0.00211 

Al2O3 1.73 1.84  0.39 0.51  

Fe2O3(T) 7.50 7.36  7.09 7.86  

MnO 0.10 0.10  0.06 0.06  

MgO 36.22 36.89  36.51 37.51  

CaO <0.01 0.02  <0.01 0.04  

Na2O <0.01 0.03  <0.01 0.03  

K2O <0.01 <0.01 bdl <0.01 <0.01 bdl 

P2O5 <0.01 <0.01 bdl <0.01 <0.01 0.00246 

LOI 11.67 11.72  14.49 13.67  

Total 99.50 100.72  99.57 100.77  

 

Table S2. Duplicate major element analyses of NC18-15D and NC18-49 acquired at 

Washington State University and Franklin & Marshall College. These analyses incorporate 

all analytical variations and errors (from preparation through data acquisition and 

reduction) and sample heterogeneity, as separate aliquots of hand-picked chips from each 

sample were sent to each lab. 
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 NC18-15D NC18-49 

Trace 

elements 

(ppm) 

WSU 

ICP-MS 

URI  

ICP-MS 

F&M 

XRF 

WSU  

ICP-MS 

URI ICP-MS F&M 

XRF 

Li  0.0464   1.91  

Be  0.110   0.0109  

Sc 8.03 7.97  5.68 5.60  

V  37.3   19.7  

Cr  2252 2312  2314 2933 

Co  94.8   95.5  

Ni  2384   2563  

Cu  1.89   2.55  

Zn  29.4   25.3  

Ga  2.73   0.645  

Rb 0.176 bdl  0.110 0.0067  

Sr 0.990 0.274  1.09 0.677  

Y 0.781 0.637  0.906 1.08  

Zr 2.30 0.938  2.76 0.497  

Nb 0.124 0.0356  0.137 0.00694  

Cs 0.00965 0.00551  0.0105 0.00578  

Ba 0.378 0.168  0.688 0.709  

La 0.281 0.131  0.335 0.202  

Ce 0.680 0.285  0.502 0.170  

Pr 0.0855 0.0526  0.0933 0.0701  

Nd 0.377 0.253  0.388 0.330  

Sm 0.115 0.0761  0.103 0.100  

Eu 0.0228 0.0144  0.0283 0.0264  

Tb 0.0216 0.0168  0.0183 0.0199  

Gd 0.119 0.101  0.121 0.143  

Dy 0.144 0.100  0.109 0.110  

Ho 0.0310 0.0244  0.0244 0.0273  

Er 0.0953 0.0742  0.0626 0.0752  

Tm 0.0154 0.0122  0.00801 0.00983  

Yb 0.0968 0.0843  0.0577 0.0544  

Lu 0.0195 0.0152  0.00949 0.0109  

Hf 0.0622 0.0538  0.0588 0.0437  

Ta 0.0512 0.0443  0.0828 0.0525  

Pb 0.0702 0.00955  0.313 0.260  

Th 0.299 0.163  0.121 0.0165  

U 0.0582 0.0180  0.0420 0.00565  

Table S3. Duplicate trace element analyses of NC18-15D and NC18-49 acquired at 

Washington State University and University of Rhode Island. These analyses incorporate 
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all analytical variations and errors (from preparation through data acquisition and 

reduction) and sample heterogeneity, as separate aliquots of hand-picked chips from each 

sample were sent to each lab. 

 



Table S1

Sample descriptions and localities

Sample IGSN
a Latitude (S) Longitude (E) Location

NC18‐07C IENHR0002 ‐20.26346 164.38982 NE HP

NC18‐09B IENHR0003
‐20.29316 164.41791 NE HP

NC18‐15C IENHR0004 ‐20.29555 164.42465 NE HP

NC18‐15D IENHR0005 ‐20.29555 164.42465 NE HP

NC18‐22A IENHR0006 ‐20.25241 164.33636 NE HP

NC18‐26B IENHR0008 ‐20.34202 164.44055 NE HP

NC19‐14 IENHR000G ‐20.30642 164.42471 NE HP

NC19‐48 IENHR000I ‐20.28663 164.41519 NE HP

NC19‐54 IENHR000J
‐20.30266 164.44181 NE HP

NC19‐63 IENHR000K
‐20.29904 164.42134 NE HP

NC19‐81 IENHR000L ‐20.28055 164.43731 NE HP

NC19‐86 IENHR000N ‐20.28569 164.43714 NE HP

NC19‐89 IENHR000O ‐20.27831 164.42915 NE HP

NC19‐94 IENHR000P
‐20.28916 164.42836 NE HP

NC18‐39A IENHR0009
‐20.45731 164.65489 SE HP

NC18‐39B IENHR000A
‐20.45731 164.65489 SE HP

NC18‐39C IENHR000B
‐20.45731 164.65489 SE HP

NC18‐43 IENHR000C
‐20.65633 164.92468 SE HP

NC19‐42 IENHR000H ‐20.45807 164.65467 SE HP

NC19‐152 IENHR000Q ‐20.46006 164.65543 SE HP

NC19‐154A IENHR000R ‐20.46192 164.65336 SE HP

NC19‐157 IENHR000S ‐20.45856 164.65565 SE HP

NC19‐158 IENHR000T ‐20.45738 164.65575 SE HP

NC18‐45 IENHR000D ‐20.90704 165.11151 Boghen Terrane

NC18‐46 IENHR000E ‐20.94518 165.03639 Boghen Terrane

NC18‐49 IENHR000F ‐21.56731 166.08440 Serpentinite Sole

NC19‐178 IENHR000V ‐20.63114 164.41613 Kalaa‐Gomen

NC19‐85 IENHR000M ‐20.28749 164.43612 NE HP

NC19‐169 IENHR000U ‐20.26362 164.38982 NE HP

Note.  Datum: WGS84. Mineral abbreviations after Whitney and Evans (2010): Ap apatite

a International Geo Sample Number, www.geosamples.org



Description 

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

serpentinite

peridotite

chlorite schist

talc schist

e, Atg antigorite, Awr awaruite, Chl ch



Mineralogy

Atg + Tlc + Mag

Atg + Tlc + Mag

Atg + Tlc + Mag

Atg + Tlc + Mag

Atg + Tlc + Mag

Atg + Chl + Ol

Atg + Tlc + Mag

Atg + Tlc + Mag + Fe‐Chr + Chr

Atg + Cpx  + Mag + Cr‐Spl

Atg + Fe‐Ni oxide 

Atg + Mag + Chr + Tr

Atg + Mag

Atg + Tlc

Atg + Tr

Atg + Mag + Brc + Awr

Atg + Ol + Mag + Chr + Cpx + Awr

Atg + Mag + Chl

Atg + Tr

Atg +  Opx + Mag

Atg + Opx + Ol + Mag

 Atg + Mag + Opx + Ol + Awr

 Atg + Mag + Opx + Ol

Atg + Opx + Ol + Tlc + Awr

Lz + Spl + Mag

Lz + Spl + Mag

Atg + Mag

Atg + Ol + Cpx  + Spl

Chl + Ilm + Mag + Ap + Zrn

Tlc + Mag + Atg + Ilm

hlorite, Chr chromite, Cpx clinopyroxene, Cr‐Spl Chromium spinel, Fe‐Chr ferritchromite, Ilm ilmenite, Lz li



Field context

sheared serpentinite in gradational contact with talc‐mg schist reaction zone and metasediments at 

sheared serpentinite in meters‐scale block‐bearing shear zone exposed in roadcut along east side of 

RN7; blocks contained in serpentinite matrix include garnet blueschist and epidote‐dominated rocks 

foliated serpentinite body exposed at quarry along dirt road NE of Col d'Amos

foliated serpentinite body exposed at quarry along dirt road NE of Col d'Amos

serpentinite in meters‐scale outcrop along dirt road on NE Pam Peninsula

meter‐long serpentinite outcrop exposed in ditch at northern outer limits of Ouégoa

small serpentinite quarry south of Col d'Amos on E side of RN7 within mafic‐dominated hillside

serpentinite in large road exposure along RN7

numerous resistant serpentinite blocks (<10 m in length) on north‐facing hillslope past antenna, 

surrounded by variably retrogressed eclogite blocks  

steeply‐dipping serpentinite shear zone in direct contact with well‐exposed, highly foliated 

metasediments; at top of hill directly across road from Col d'Amos

sheared serpentinite in direct contact with metasediments along dirt road

resistant serpentinite blocks on N‐dipping ridge

meter‐long serpentinite outcrop exposed within mafic‐dominated area

elongate, resistant serpentinite blocks with anastamosing foliation and singular elongation trend on 

mafic‐dominated hillslope

streambed at Poadja Massif consisting of fresh serpentinite, cross‐cutting serp veins and alteration 

rinds visible in some places

streambed at Poadja Massif consisting of fresh serpentinite, cross‐cutting serp veins and alteration 

rinds visible in some places

streambed at Poadja Massif consisting of fresh serpentinite, cross‐cutting serp veins and alteration 

rinds visible in some places

weathered serpentinite exposure with abundant white veins exposed at water's edge along beach ~400 

m north of Tilougne 

coarser‐grained serpentinite in streambed outcrop at Poadja Massif

oxidized and weathered serpentinite outcrop on top of southern segment of Poadja Massif

serpentinite in streambed outcrop at Poadja Massif, near inferred contact with mafic rocks

oxidized and weathered serpentinite outcrop in natural drainageon southern segment of Poadja Massif

serpentinite with visible pseudomorphs in float on top of southern segment of Poadja Massif

serpentinite roadcut in Boghen Terrane containing volumetrically‐minor sedimentary lenses and blocks 

serpentinite roadcut in Boghen Terrane containing volumetrically‐minor sedimentary lenses and blocks 

sheared serpentinite exposed in roadcut exposing metamorphic sole

highly weathered serpentinite in float in drainage on SE slopes of Kalaa‐Gomen massif

single chlorite schist block (~1 m3) in float along recently exposed  rural roadcut 

sheared talc‐magnetite schist reaction zone between serpentinite and metasediments at Abwala 

zardite, Mag magnetite, Opx orthopyroxene, Spl spinel, Tlc talc, Tr tremolite, Zrn zircon
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