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Abstract

The fractal dimension and multifractal spectrum can characterize the complexity of fracture sets. However, studies of impacts

of fracture geometries on their fractal and multifractal characteristics are largely insufficient, especially for three-dimensional

(3-D) fracture networks (natural fractures are always 3-D instead of 2-D). In this work, we construct 3-D stochastic discrete

fracture networks with an open-source DFN software, HatchFrac. Systematical investigations are then conducted to study the

impact of geometrical fracture properties and system sizes on the fractal and multifractal characteristics. The box-counting

method is adopted to calculate the fractal dimension and multi-fractal descriptors. The fractal dimension, D, and the difference

of the singularity exponent, [?]α, represent the fractal and multifractal patterns, respectively. Two critical (percolative and over-

percolative) stages of fracture networks are considered. 3-D fracture networks share similar characteristics with 2-D fracture

networks at percolation. However, results at an over-percolative stage are systematically different. At the first stage, fracture

orientations (κ), lengths (a) and system sizes (L) have positive correlations with D and [?]α. D is weakly correlated with fracture

positions (FD), meaning that the fractal dimension is insensitive to clustering effects. However, [?]α is strongly correlated with

FD, implying that [?]α can characterize the heterogeneity caused by clustering effects. a and L are positively correlated with

[?]α, and κ and FD have negative correlations. At stage two, the sensitivity results on D are similar to stage one, but a and L

become negatively correlated with [?]α. Impacts of κ and FD become more significant.
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Abstract

The fractal dimension and multifractal spectrum can characterize the complex-

ity of fracture sets. However, studies of impacts of fracture geometries on

their fractal and multifractal characteristics are largely insufficient, especially

for three-dimensional (3-D) fracture networks (natural fractures are always 3-

D instead of 2-D). In this work, we construct 3-D stochastic discrete fracture

networks with an open-source DFN software, HatchFrac. Systematical in-

vestigations are then conducted to study the impact of geometrical fracture

properties and system sizes on the fractal and multifractal characteristics. The

box-counting method is adopted to calculate the fractal dimension and multi-

fractal descriptors. The fractal dimension, D, and the difference of the singular-

ity exponent, ∆α, represent the fractal and multifractal patterns, respectively.

Two critical (percolative and over-percolative) stages of fracture networks are

considered. 3-D fracture networks share similar characteristics with 2-D frac-

ture networks at percolation. However, results at an over-percolative stage are

systematically different. At the first stage, fracture orientations (κ), lengths (a)

and system sizes (L) have positive correlations with D and ∆α. D is weakly

correlated with fracture positions (FD), meaning that the fractal dimension is
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insensitive to clustering effects. However, ∆α is strongly correlated with FD,

implying that ∆α can characterize the heterogeneity caused by clustering ef-

fects. a and L are positively correlated with ∆α, and κ and FD have negative

correlations. At stage two, the sensitivity results on D are similar to stage

one, but a and L become negatively correlated with ∆α. Impacts of κ and FD
become more significant.

Keywords: Fractal; Multifractal; Complexity; Heterogeneity; Stochastic

discrete fracture networks;

1. Introduction1

Fractures are pervasive in crustal rocks and usually form complicated net-2

works. Partially open or stimulated fractures typically have a much higher per-3

meability than the surrounding matrix, which makes fracture networks essential4

in many fluid transportation problems in the subsurface (Berkowitz, 2002; Follin5

et al., 2014; Pérez-Flores et al., 2017; He et al., 2021). Similar fracture network6

patterns are observable in different scales, from millimeters (Wu et al., 2019) to7

kilometers (Aviles et al., 1987). Therefore, natural fractures are usually regarded8

as self-similar sets (Otsuki and Dilov, 2005; Shi et al., 2018).9

Fractal and multifractal theory (Mandelbrot, 1977, 1982) is used to charac-10

terize the complexity of irregular sets regardless of the scales. The complexity11

of fracture networks refers to two main aspects. One is the spatial coverage12

and can be characterized by the fractal dimension. A larger fractal dimension13

represents better spatial coverage. The other aspect of complexity is the hetero-14

geneity of the fracture network. The heterogeneity of fracture networks can be15

observed from fracture data in different dimensions. For 1-D fracture data, such16

as scanline sampling and borehole images, fracture spacing (Priest and Hudson,17

1976) can quantify space variations of fractures, but information on the fracture18

length and interaction between fractures are unavailable. For 2-D fracture data,19

such outcrop observations, fracture intensity (Dershowitz et al., 1992) or graph20

representation (Prabhakaran et al., 2021) can provide more information on the21
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fracture arrangements and variations. However, quantifying and evaluating the22

heterogeneity is nontrivial. Variations of the 2-D fracture intensities can rep-23

resent the heterogeneity, but this descriptor is sensitive to the grid size of the24

domain partition. Different fracture geometrical properties can cause the het-25

erogeneity of fracture networks, such as fracture length, orientations, positions26

of fracture centers. Without quantifying the heterogeneity, the separation of27

impacts from different fracture geometries is impossible. Alternately, in multi-28

fractal theory, the target set is regarded as a collection of fractal subsets, and29

each subset can be characterized by a specific fractal dimension, which in turn30

yields a multifractal spectrum (Berkowitz and Hadad, 1997). The multifractal31

spectrum provides abundant information about the target set, and its variations32

can reflect the heterogeneity of the set.33

From lab experiments, CT-images, or outcrop maps, many researchers col-34

lected 2-D mappings of fracture networks and performed the fractal and mul-35

tifractal analysis (Barton, 1995; Berkowitz and Hadad, 1997; Cello, 1997). How-36

ever, natural fractures are always three-dimensional rather than two-dimensional37

in the subsurface. The fractal and multifractal analyses on 3-D fracture net-38

works are rarely conducted. The main difficulty is that detailed mappings of39

subsurface fracture networks are almost impossible with current approaches,40

including outcrop observations and seismic mappings. Furthermore, a compre-41

hensive investigation of the fracture geometrical properties on the fractal and42

multifractal characteristics of complex 3-D fracture networks is largely insuffi-43

cient, such as fracture orientations, lengths, positions of fracture centers, and44

system sizes. It is because obtaining systematic 3-D geological data with vari-45

ous fracture features is extremely difficult. Stochastic discrete fracture network46

(SDFN) modeling method provides a practical alternative. In 3-D SDFN, sim-47

ple shapes represent fractures, such as polygons, disks, and ellipses. Fracture48

geometries, such as orientations, lengths, and center positions, are described49

with different statistic distributions (Lei et al., 2017). Although the geometry50

details of natural fractures are significantly simplified, the topological struc-51

tures, like the intersection relationship, are well preserved. HatchFrac is an52
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efficient DFN modeling software (Zhu et al., 2021a), which makes it possible to53

generate systematic fracture networks and conduct statistic analysis. Zhu et al.54

(2022) used the stochastic discrete fracture network models to systematically55

investigate the impacts of fracture proprieties on the fractal and multifractal56

characteristics in complex 2-D fracture networks. In this work, we further ex-57

tend their work to 3-D fracture networks. The impact of important geometrical58

properties, such as fracture lengths, center positions, and orientations, on the59

complexity characterization of 3-D stochastic fracture networks, are studied.60

Artificially generated fracture networks always have a finite size, and different61

system sizes are included to evaluate the finite-size effect.62

We extend the conventional image-based box-counting technique (Barton,63

1995) to calculate the fractal and multifractal descriptors of 3-D fracture net-64

works. This research represents a 3-D fracture with a convex polygon for sim-65

plicity. Convex polygons have more degrees of freedom than a simple disk66

shape, and it is also convenient to change their shapes to elliptical shapes or67

other polygon shapes by minor adjustments to the number of vertices and co-68

ordinates. Furthermore, it is also easier to analyze intersection relationships in69

convex polygons (Zhu et al., 2021a). It is worthwhile to mention that the specific70

shape of fractures is insignificant when the number of fractures is large (Jing71

and Stephansson, 2007). Different statistical distributions are implemented to72

describe fracture geometries (Bonnet et al., 2001a). A power-law distribution is73

predominately adopted to describe fracture lengths because of extensive obser-74

vations from outcrop maps and lab experiments (Bour and Davy, 1997; Bonnet75

et al., 2001b). The exponent of the power-law distribution, a, determines the76

probability of generating large fractures. If a is large, it will be difficult to77

generate large fractures. The von Mises—Fisher distribution can describe the78

orientation of fractures (Song et al., 2001; Whitaker and Engelder, 2005). A79

concentration parameter κ represents the concentration level of the fracture80

orientations. Uniform spatial density distribution (Bour and Davy, 1997) and81

fractal spatial density distribution (Darcel et al., 2003) are used to describe82

fracture center positions. A fractal spatial density distribution causes fracture83
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centers to cluster, which is commonly observed in reality(Akara et al., 2021).84

A fractal dimension, FD, constrain the clustering degree. For 3-D fracture net-85

works, if FD < 3.0, there will be clustering effects, and the distribution reduces86

to a uniform spatial density distribution when FD = 3.0. A smaller fractal87

dimension refers to more server clustering effects. Please note that the fractal88

dimension (FD) is the key parameter in the fractal spatial density distribution,89

and it is completely different from the fractal dimension calculated in the fractal90

analysis.91

This paper is organized as follows. In Section 2, techniques for constructing92

three-dimensional (3-D) stochastic fracture networks are introduced. The box-93

counting method to calculate fractal and multifractal descriptors is covered. In94

Section 3, impacts of different fracture geometrical properties on the complexity95

of 3-D fracture networks are presented. The input/output correlation method96

is adopted to analyze the sensitivity of fracture geometrical parameters on the97

fractal and multifractal patterns. Finally, important findings are concluded in98

Section 4.99

2. Methods and materials100

In this section, we introduce the process to implement the SDFN model and101

generate 3-D fracture networks. Detailed procedures to apply the box-counting102

method for calculating fractal and multifractal descriptors are presented.103

2.1. Construction of three-dimensional stochastic discrete fracture networks104

Accurate information of natural fracture networks in the subsurface is un-105

available with current technologies. Fractures in the subsurface also have com-106

plex and irregular shapes. To reduce modeling complexity, four-vertex convex107

polygons are adopted to simulate fractures in 3-D. Each fracture is described108

by three key geometrical parameters, i.e., fracture orientations, sizes, and frac-109

ture center positions, characterized by different statistic distributions. Fracture110

lengths is widely described by a power-law distribution (Bour and Davy, 1997).111

N(l) = βl−a, (1)
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where N(l)dl is the number of fractures with their lengths varying in the interval112

of l and l + dl, β is the proportionality coefficient. a is the exponent of the113

power-law distribution, which usually varies between 2.0 and 3.0 (Bonnet et al.,114

2001b; Zhu et al., 2018). To successfully generate length variables, a minimum115

and maximum length are required, which are set to be 1 and 100,000 units in116

this work. For 3-D fracture networks, fracture sizes are more appropriate than117

lengths to describe the fracture geometry. Therefore, we first generate convex118

polygons with a random side length varying between 0 and 1. Then a scaling119

operation is performed with l as the scaling factor to change the size of the 3-D120

fracture.121

The von Mises–Fisher distribution (Whitaker and Engelder, 2005) is usually122

adopted to describe fracture orientations.123

F (~x, ~µ, κ) = B(κ) exp(κ~µT~x), (2)

where B(κ) is the constant for normalization. ~µ is the mean orientation. κ is a124

concentration parameter and refers to the degree of concentration with respect125

to ~µ. Here, ~µ is set as [1, 0, 0] and κ varies between the interval of [0, 20].126

Fracture center positions are described with a fractal spatial density distri-127

bution (Darcel et al., 2003). A fractal dimension FD is used to generate the128

fractal spatial density distribution. However, FD is totally different from the129

fractal dimension of the complete fracture network. FD varies between 2.0 and130

3.0 for 3-D space. When FD < 3.0, fracture centers are clustered, and the131

clustering degree increases with decreasing FD.132

The 3-D discrete fracture networks are generated by in-house DFN modeling133

software, HatchFrac. Detailed information on the cluster-check algorithm can134

be found at Zhu et al. (2021a). In 2-D fracture networks, the termination crite-135

rion of generating new fractures is forming a spanning cluster (Zhu et al., 2022)136

because fracture networks observed from outcrop maps usually show good con-137

nectivity, and connected fracture networks are essential for fluid transportation138

in formations with low permeability. However, real fracture networks are always139

three-dimensional instead of two-dimensional. 2-D fracture networks can only140
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be regarded as cross-section maps of the corresponding 3-D fracture networks.141

If the cross-section map has a spanning cluster formed, the corresponding 3-142

D fracture network should have a much higher intensity than the intensity at143

percolation (Zhu et al., 2021c). The percolation status here refers to the state144

where a spanning cluster is formed. A spanning cluster is a cluster of connected145

fractures, shown as red fractures in Fig. 1. It connects six faces of the 3-D146

domain, and serves as the main fluid flow pathway in subsurface formations147

with low permeability. Therefore, we consider two stages of the 3-D fracture148

network in this research. Stage one is a percolative stage when a spanning149

cluster is formed in the 3-D fracture system, but 2-D fracture networks from150

the cross-section maps are usually sparse and poorly connected. Stage two is an151

over-percolative stage when a spanning cluster is formed in the 2-D cross-section152

map of the 3-D fracture network, and the corresponding 3-D fracture network153

has an intensity much higher than the intensity at stage one. Without loss of154

generality, the cross-section map is taken from the middle-position of the 3-D155

fracture networks as shown in Fig. 1(b), which usually have an intermediate156

fracture intensity. Fig. 1 presents a demonstration of the two stages. The span-157

ning cluster is marked red, while fractures disconnected to the spanning cluster158

are marked green. Both stages are possible in reality, and they have a spanning159

cluster formed, which is essential for the fluid flow in the subsurface. Stage160

two might be more common since many outcrop maps collected have formed a161

spanning cluster (Zhu et al., 2021c). However, the outcrop maps collected are162

usually biased because regions with well-developed fractures are preferred.163

2.2. Fractal and multifractal descriptors164

The fractal dimension measures the spatial coverage of the examined set. A165

larger fractal dimension indicates a higher spatial coverage. The box-counting166

method is a convenient and robust method to calculate the fractal dimension167

of any examined set. Boxes with varying sizes (r), are superimposed on a168

fracture network, as shown in Fig. 2. Under each box size, the number of boxes169

containing fractures is recorded, denoted as Nr. If the examined set shows a170
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(a) (b) (c)

Figure 1: (a) A 3-D fracture network at stage one; (b) A 3-D fracture network at stage two;

(c) The cross-section map of the 3-D fracture network at stage two (b) and the cross-sectional

plane is marked blue in (b). The red polygons in (a) and (b) and red line segments in (c)

compose the spanning cluster. The green polygons in (a) and (b) and green line segments in

(c) refer to locally connected clusters. For 3-D fracture networks, the fracture lengths obey a

power-law distribution with a = 3, and an uniform distribution describes orientations. The

positions of fracture centers follow a fractal spatial density distribution with FD = 2.5.

fractal pattern, Nr and r, the following relation should hold:171

Nr = r−D, (3)

where D is the fractal dimension of the examined set, obtained from the slope172

of a linear fitting of ln(Nr) and ln(1/r). For 3-D fracture networks, the fractal173

dimension varies between 2.0 and 3.0, where 3.0 is the euclidean dimension of a174

3-D volume.

Figure 2: Demonstration of the box-counting method to calculate the fractal and multifractal

descriptors of a 3-D fracture network
175

Moreover, the multifractal spectrum reveals more information of an exam-176

ined set, such as the heterogeneity. We detail the corresponding step-by-step177

procedure as follows:178
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1. A probability distribution function is defined for a 3-D fracture network:179

pi(r) = Ai∑N
i=1 Ai

, (4)

where Ai is the total area of all fracture segments included in the ithe180

box, r is the box size, N is the number of boxes.181

2. A partition function (Halsey et al., 1986) is calculated, which is the sum-182

mation of qth power of Eq. 4:183

χq(r) =
∑

pi(r)q, (5)

where q is the order of the probability moment, ranging from −∞ to184

+∞ for a complete spectrum. Different q can magnify the significance185

of different boxes with different values of pi. The negative and positive186

values of q can emphasize the significance of boxes with small and large pi,187

respectively. It is impossible to have infinite values of q, and usually, an188

interval of [−18, 18] is sufficient for the implementation. If the examined189

set has multifractal features, the linear relation below should hold:190

χq(r) ∝ rτ(q), (6)

where τ(q) is a mass exponent. Its value is obtained by a linear fitting of191

ln(χq(r)) and ln(r) since:192

τ(q) ∝ ln(χq(r))
ln(r) , (7)

3. Legendre transform is implemented on τ(q), which yields the multifractal193

spectrum f(α)194

α = dτ(q)
dq

∝
∑N
i=1 pi(r)q ln(pi(r))∑N
i=1 pi(r)q ln(r)

, (8)

195
f(α) = αq − τ(q), (9)

where α is the Lipschitz-Hölder exponent. Different α values indicate196

singular degrees of different fractal subsets. f(α) is corresponding fractal197

dimension of the subset characterized by α.198
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Salat et al. (2017) suggested an average over several samples to avoid the199

accuracy decrease caused by the numerical Legendre transform. Therefore, all200

results discussed below are averaged over ten independent realizations.201

2.3. Sensitivity analysis202

The fractal dimension and multifractal spectrum can characterize different203

aspects of fracture networks’ complexity. In this work, we analyze three fracture204

geometrical properties, including fracture orientations, lengths, and fracture205

center positions, and one property of the fracture system, the system size. The206

system size is different from the other geometrical properties because it describes207

the complete system instead of individual fracture. However, the system size208

can still impact the configuration of a fracture network.209

We consider 10 levels for each geometrical parameters (a, FD, κ) in differ-210

ent intervals. Three levels of the system sizes are considered ({10, 20, 30}).211

Considering the computational capacity, the maximum system size is set as 30.212

A full factorial design of these four parameters needs 3,000 cases, and each213

case should be stabilized by averaging over ten realizations. Therefore, a huge214

amount of computational resources are required. To reduce computation re-215

sources, we generate 100 orthogonal cases concerning a, FD, and κ for a given216

system size (Karna et al., 2012). The responses of the sensitivity analysis are217

the single fractal dimension (D) and the difference of the singularity exponent218

(∆α). Abundant information is available from a multifractal spectrum, such as219

different values of α, their corresponding fractal dimension f(α), and general-220

ized dimension Dq. However, the difference of the singularity exponent (∆α)221

is better to describe the heterogeneity of the set since α is an indicator of the222

singular degree of fractal subsets. Therefore, ∆α is chosen to represent the223

multifractal spectrum and serves as a response in the sensitivity analysis. The224

detailed information of the parameters considered for the sensitivity analysis is225

summarized in Table. 1.226

In this paper, we assume the geometrical parameters of fracture networks are227

independent of each other. To quantify the impact of each geometrical parame-228
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Table 1: Summary of parameters for the sensitivity analysis
Parameter Range/Type Usage / Definition

a

(power-law distribution)
[2, 3]/Input Describing fracture lengths

FD

(fractal spatial density distribution)
[2, 3]/Input Describing fracture center positions

κ

(von Mises–Fisher distribution)
[0, 20]/Input Describing fracture orientations

L

(system size)
{10, 20, 30}/Input Describing system sizes

D Response Single fractal dimension

∆α Response Difference of the singularity exponent α

ter on the fractal and multifractal characteristics (D and ∆α), an input/output229

correlation method is adopted because it is simple, robust and straightforward230

for independent input parameters. To determine the sensitivity of the response231

R with respect to the input parameters ~X, the correlation coefficient of each pair232

of R and Xi is calculated. For the ith parameter, suppose that Xi has n sam-233

ples, Xi = {X(1)
i , X

(2)
i , X

(3)
i , . . . , X

(n)
i }, and the corresponding response R also234

have n elements, R = {R(1), R(2), R(3), . . . , R(N)}. The correlation coefficient of235

Xi and R is calculated by:236

ρi = ρ(Xi, R) = E[(Xi − µi)(R− µR)]
σiσR

, (10)

where µi and σi are the expected value and standard deviation of Xi, µR and σR237

are the corresponding values of R. the magnitude of the correlation coefficient238

reveals the significance of each factor on the response. The input vector included239

a, FD, κ and L, for 3-D fracture networks. The response parameter is the fractal240

dimension (D) and the difference of the singularity exponent (∆α).241

3. Results and discussion242

Considering the computational cost, six values are chosen for the box sizes243

in the box-counting method:244

bs = L

2i = Lr, i = 0, 1, 2, 3, 4, 5 (11)
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where bs is the box size, r is the dimensionless box size with respect to the245

system size, L.246

From a linear fitting of ln(N(r)) and ln(1/r), the fractal dimension is ob-247

tained. At the initial state, when only one box is superimposed on the fracture248

network, the box size is L, and the corresponding number of boxes is one. The249

fitting curve must pass a fixed point (0, 0) in the linear fitting. This con-250

straint is significant for the fractal dimension calculation but ignored by many251

researchers. Fig. 3 shows the fractal dimensions calculated for fracture networks252

at both stages (Fig. 1(a,b)). The fracture network at stage one has a smaller253

fractal dimension (2.70) than the fracture network at stage two (2.90).
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Figure 3: The calculated fractal dimension D for fracture networks in Fig. 1 (Left:Fig. 1a ;

Right: Fig. 1b). The red dash line is the linear fitting result.
254

To perform multifractal analysis, we should test the linear relationship be-255

tween ln(χq(R)) and ln(r). The constraint of passing (0,0) should be satisfied.256

Fig. 4 (a) shows the double-log plot of χq(r) and r of the fracture network in257

Fig. 1(a). If the fracture network has multifractal features, a linear relation258

between ln(χq(R)) and ln(r) should hold. In Fig. 4(b), the correlation coeffi-259

cients of these two parameters for different q values are shown. The correlation260

coefficient are either 1 or -1, supporting the linear relation. Variations of the cor-261

relation coefficient happen with q = 1 because the corresponding χq(r) = 1 for262

all box sizes. ln(χq(R)) and ln(r) fall on a horizontal line and cause vibrations263

of the correlation coefficient as shown in Fig. 4(b) . If q = 0, the corresponding264
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χq(r) = N(r), where the fitting slope yields −D. The multifractal spectrum of265

the considered fracture network in Fig. 1 (a) are presented in Fig. 4 (c). For frac-266

tal subsets with the same α value, they have a unique fractal dimension f(α).267

Fig. 5 shows results of the fracture network at stage 2 (Fig. 1(b)). ln(χq(r)) and268

ln(r) show a good linear relationship and the multifractal spectrum is provided.269

The value of α suggests the singular degree of fractal subsets. However, the270

difference of α, ∆α, can characterize the heterogeneity of the complete fracture271

system. For two fracture networks shown in Fig. 1(a, b), ∆α equal 5.81 and272

5.88, respectively.273
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Figure 4: Stage 1: (a) Double-Log plot of χq(r) and r. Scatter points and their linear fitting

under the same q value are shown in the same color. (b) Correlation coefficient of each linear

fit in (a), (c) The multifractal spectrum of Fig. 1 (a)
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under the same q value are shown in the same color. (b) Correlation coefficient of each linear

fit in (a). (c) The multifractal spectrum of Fig. 1 (b)

The next two sections present the results of D and ∆α of the fracture net-274

works with different configurations. Impacts of each geometrical property on275

the fractal and multifractal characteristics are also analyzed. The results of276
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Table 2: Summary of statistics of D and ∆α
Response D (stage one) D (stage two) ∆α (stage one) ∆α (stage two)

Number of scenarios 300 300 300 300

Max 2.96 2.99 6.58 6.06

Min 2.57 2.85 4.92 2.50

Mean 2.78 2.96 5.67 5.00

Median 2.79 2.97 5.67 5.11

Standard deviation 0.08 0.03 0.27 0.56

P10 2.64 2.90 5.33 4.32

P50 2.78 2.97 5.67 5.11

P90 2.87 2.99 6.01 5.56

fracture networks in two stages are presented simultaneously.277

3.1. Behavior of D in 3-D fracture networks at two stages278

In this section, we present the behavior of the single fractal dimension, D, in279

complex 3-D fracture networks at both stages. The sensitivity of each geometri-280

cal parameter on D is analyzed. The mean values of the single fractal dimension281

(D) over ten realizations at both stages are shown in Figs. 6(a) and (b). The282

cumulative plots of D at both stages are show in Figs. 6(c) and (d), where esti-283

mates of P10, P50 and P90 are denoted. For stage one, D scatters in the interval284

between 2.50 and 2.95. The P10, P50 and P90 estimates are 2.65, 2.77 and 2.87,285

respectively. For stage two, D varies between 2.84 and 3.0, and the estimates286

are 2.90, 2.97, and 2.99, respectively. D at stage two has a narrower range but287

a much higher value than results at stage one. A larger fractal dimension refers288

to better space coverage. Therefore, fracture networks at stage two have better289

coverage of 3-D space than fracture networks at stage one, mainly because of290

the large fracture intensity at stage two. From Zhu et al. (2021c)’s observations,291

the fracture intensity at stage two can be more than 3.5 times of the intensity292

at stage one. A detailed summary of the statistics of D and ∆α over 300 cases293

at both stages is presented in Table. 2.294

Different colors in Fig. 6 refer to calculated D in fracture networks with295
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varying system sizes. It is not straightforward to observe the difference caused296

by different system sizes from the scatter plots. Therefore, the mean value of297

D over 100 cases under different sizes are calculated and shown as different line298

segments. It turns out that fracture networks with a larger system size have a299

larger mean value of D. The system size is a property of the system instead300

of a geometrical property of fractures. However, different system sizes can still301

change the configuration of a fracture network. It should be noted that the302

system sizes and scales are completely different because all fracture geometric303

properties honor the same statistic distributions regardless of system sizes. For304

fracture lengths, the intervals of sampling become wider for a larger fracture305

system, but the resolution is fixed with the same minimum fracture length lmin.306

As the system size increases, the population of fractures generally increases307

because more samples of fracture orientations, lengths, and center positions are308

collected, forming a more complex fracture network.309

Generated fracture networks always have a finite size and variations of a310

statistic parameter in a finite fracture network may depend on the system size.311

To evaluate the finite-size effect of D and ∆α, we further extend the Eq. 12312

adopted by Bour and Davy (1997) for percolation parameters.313

f(L)− f∞ ∼ ∆f(L), (12)

where L is the system size, f(L) and f∞ are the quantities examined in a system314

with a finite and infinite size, respectively. ∆f(L) is the standard deviation of315

f(L).316

Standard deviations of D over ten realizations are shown in Fig. 7. The317

standard deviation of D varies between 0 and 0.18. Mean values of the standard318

deviations in fracture networks with different system sizes are denoted for better319

visualization. The mean values of the standard deviation slightly decrease with320

the increasing system sizes, indicating a weak finite-size effect. Therefore, a321

large fracture system is more suitable for a stable fractal dimension estimation.322

Fractal dimension measures the system complexity regarding spatial cover-323

age. However, the sensitivity of geometrical parameters on the fractal dimension324
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Figure 6: (a, b) Scatter plots of means of the single fractal dimension, D, over 10 realizations

at two stages. Different colors represent results under different system sizes. The line segments

are the corresponding mean values of the scatter points. (c, d) the CDF of D at two stages

of the fracture network is rarely investigated. With the input/output correla-325

tion method, the impacts of geometrical properties of fractures, including the326

fracture length (a), positions of fracture centers (FD) and fracture orientations327

(κ), and the system size are presented. The results of the sensitivity analysis of328

each parameter on D are shown in Fig. 8329

At stage one, a, L, and κ have a positive correlation with D, meaning that330

a large fracture network dominated by small fractures with concentrated orien-331

tations tend to have a large fractal dimension and cover more space. FD has a332

slightly positive correlation with D, indicating that the single fractal dimension333
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Figure 7: Scatter plots of standard deviations of the single fractal dimension, D, over ten

realizations at two stages. Different colors represent results under different system sizes. The

line segments are the corresponding mean values of the scatter points.
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Figure 8: The sensitivity analysis of each factor on the fractal dimension (D) at two stages

is insensitive to clustering effects. Similar observations are found in 2-D fracture334

networks (Zhu et al., 2022).335

At stage two, the sensitivity of each property does not change much. The336

orientation concentration parameter κ has the most significant impact on D,337

following the exponent a and the system size L. The clustering effect is weakly338

correlated with D. Clustering effects represent the heterogeneity of the fracture339

network. Therefore, a fractal dimension cannot capture heterogeneity.340
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3.2. Behavior of ∆α in 3-D fracture networks at two stages341

In this section, we present the behavior of the difference of the singularity342

exponent, ∆α, in complex 3-D fracture networks at both stages. The sensitivity343

of each geometrical parameter on ∆α is analyzed.344

The mean values of ∆α over ten realizations at both stages are shown in345

Figs. 9(a, b). The cumulative plots of ∆α at both stages are show in Fig. 9(c,346

d), where estimates of P10, P50 and P90 are denoted. For stage one, ∆α scatters347

in the interval between 4.8 and 6.6. The P10, P50 and P90 estimates are 5.33,348

5.67 and 6.01 respectively. For stage two, ∆α varies between 2.0 and 6.5. The349

corresponding estimates are 4.32, 5.11, and 5.56, which have a much wider350

range and relatively lower values than the results at stage one. A larger ∆α351

value indicates a higher heterogeneity degree. Fracture networks at stage two352

have a much higher fracture intensity than stage one. Therefore, more fractures353

tend to cover more void space in the system and make the fracture system less354

heterogeneous.355

Different colors refer to results in fracture networks with varying system356

sizes. The mean value of ∆α over 100 cases under different sizes are calculated357

and shown as different line segments in Figs. 9(a, b). At stage one, fracture358

networks with a larger system size have a larger mean value of ∆α. However,359

the variations of ∆α at stage two in fracture networks with different system sizes360

are small, and fracture networks with a larger system size even have a slightly361

smaller ∆α value. Therefore, the heterogeneity of a fracture network at stage362

two does not increase with increasing system sizes.363

The standard deviations of ∆α over ten realizations are shown in Fig. 10.364

Mean values of the standard deviations in fracture networks with different sys-365

tem sizes are denoted with varying line segments for better visualization. For366

stage one, ∆α has standard deviations ranging between 0.2 and 1.2. Mean val-367

ues of the standard deviations for different system sizes are almost the same.368

For stage two, standard deviations of ∆α vary between 0.2 and 1.0, and slightly369

increase with increasing system sizes. Therefore, there are no finite-size effects370

on ∆α. It is unnecessary to have a large system to obtain the stable ∆α results371

18



for a fracture network with predesigned configurations.372

Impacts of the geometrical properties of fractures, including the fracture373

length (a), positions of fracture centers (FD) and fracture orientations (κ), and374

the system size, on ∆α are presented in Fig. 11.375

At stage one, the fracture length (a) and system sizes (L) positively corre-376

late with ∆α, indicating that a large system dominated by small fractures is377

more likely to have a larger ∆α and more heterogeneous. The clustering effect378

represented by FD has a significant negative correlation with ∆α, which means379

the clustering effect can make the fracture system more heterogeneous, and ∆α380

can capture the difference caused by clustered center positions. The concen-381

tration of fracture orientations has a slightly negative correlation, indicating382

an insignificant impact on ∆α. We test the correlation coefficient between the383

FD and ∆α with different system sizes, and we find that coefficient decreases384

with increasing system sizes. For fracture networks with system sizes of 10, 20,385

and 30, the correlation coefficients between FD and ∆α are -0.40, -0.55, -0.62.386

In larger fracture networks, the impact of clustering effects on the ∆α is more387

significant. In a small fracture system, 3-D fractures can interact with all the388

other fractures in a volume, while 2-D fractures can only intersect fractures in389

the same plane. Therefore, 2-D fracture networks are more sensitive to the local390

clustering effects than 3-D fracture networks (Zhu et al., 2021b). However, the391

clustering effect can also be significant in 3-D fracture networks if the fracture392

networks are large enough with abundant fractures.393

At stage two, For ∆α, the sensitivity results significantly differ from stage394

one. Instead of positive correlations, the exponent a and system size negatively395

correlate with ∆α. The clustering effect (FD) has the most significant impact on396

∆α, following the orientation concentration κ. Therefore, in a fracture network397

with pervasive fractures, small fractures, and a large system size can reduce the398

heterogeneity. The clustering effect and concentrated orientations can enhance399

the heterogeneity.400

The correlation ofD and ∆α at two stages are shown in Fig. 12. At stage one,401

the correlation is 0.08, indicating that the D and ∆α are almost independent402
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Figure 9: (a, b) Scatter plots of the mean values of the difference of the singularity exponent,

∆α, over 10 realizations at two stages. Different colors represent results under different system

sizes. The line segments are the corresponding mean values of the scatter points. (c, d) the

CDF of ∆α at two stages

of each other. For stochastic discrete fracture networks in 2-D, D and ∆α are403

positively correlated(Zhu et al., 2022). However, for 3-D fracture networks, these404

two parameters have different behaviors and are uncorrelated. At stage two, the405

correlation is -0.58. However, the negative correlation is significant when the406

fractal dimension D is close to 3.0, meaning the fracture network will cover the407

full 3-D space. In this condition, the heterogeneity degree becomes insignificant408

and causes ∆α to decrease. In Zhu et al. (2022)’s work, they collected 80 outcrop409

maps and calculated their fractal dimension and multifractal spectrum. In real410
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Figure 10: Scatter plots of the standard deviations of the difference of the difference of

the singularity exponent, ∆α, over 10 realizations. Different colors represent results under

different system sizes. The line segments are the corresponding mean values of the scatter

points.
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Figure 11: The sensitivity analysis of each factor on the difference of the singularity exponent,

∆α, at two stages

outcrop maps, they find a slightly negative correlation between D and ∆α,411

which is closer to the results of 3-D fracture networks at stage two. In general,412

the fractal dimension and multifractal spectrum can be regarded as independent413

measures of different aspects of fracture systems. One characterizes the spatial414

coverage, and the other one measures the heterogeneity.415
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Figure 12: Correlations between D and ∆α at two stages (Left: stage one; Right: stage two)

For 2-D fracture networks, we can calculate the fractal dimension and mul-416

tifractal spectrum of outcrop maps and compare the results of discrete frac-417

ture networks and real fracture networks. However, it is extremely difficult418

to have detailed information of real 3-D fracture networks in the subsurface419

with current technologies. Therefore, it is also impractical to check the fractal420

and multifractal features of natural 3-D fracture networks. Stochastic discrete421

fracture networks are far different from real fracture networks. However, they422

still share similarities in their geometrical properties and topological structures.423

Therefore, stochastic discrete fracture networks can be a practical alternative424

to mimic subsurface fracture networks. More importantly, we can systemati-425

cally analyze the impacts of fracture geometries on fracture complexity. The426

quantitative values of fractal dimensions and multifractal spectrum might not427

be important, but the qualitative observations of the variations of D and ∆ can428

provide valuable hints for a better understanding of the subsurface structures.429

The complexity of fracture networks can be important to the geometrical and430

hydrological connectivity of fracture networks. However, this work focuses more431

on the fractal and multifractal characteristics of 3-D stochastic discrete fracture432

networks and the impacts of fracture geometries on those characteristics. The433

correlations and impacts between fracture complexity and connectivity can be434

investigated in future research.435
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4. Conclusions436

This work implements the stochastic discrete fracture network model meth-437

ods to systematically investigate the fractal and multifractal characteristics of438

complex 3-D fracture networks at two stages. Different geometrical proper-439

ties are considered, such as fracture orientations, lengths, and center positions.440

Their impacts on the fractal and multifractal characteristics are evaluated. The441

finite-size effects and the impact of system sizes on the responses are included.442

Key conclusions are summarized below.443

• For stage one, where a spanning cluster is formed in the 3-D fracture net-444

work, the power-law exponent (a) and the system size (L) and the concen-445

tration parameter of fracture orientations (κ) have a positive correlation446

with D. κ is the most significant factor on D among the three parameters.447

The clustering effect FD has a weak correlation with D, indicating that448

D is insensitive to clustering effects.449

However, for ∆α in stage one, FD has a significant negative correlation,450

indicating that multifractal spectrum are sensitive to clustering effects. κ451

has a slightly negative correlation with ∆α, while a and L have a weak452

positive correlation.453

• For stage two, where a spanning cluster is formed in the cross-section map454

of a 3-D fracture network, the results of sensitivity of each geometrical455

parameter and the system sizes on D are the same as the results in stage456

one. κ is the most significant parameter, following a and L. FD has a457

weak correlation with D.458

However, for ∆α at stage two, the sensitivity results are different from459

results at stage one concerning a and L, and they have negative instead of460

positive correlations. Impacts of κ and FD become more significant. ∆α461

is a good indicator for the heterogeneity of fracture networks.462
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