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Abstract

The National Ecological Observatory Network (NEON)’s standardized monitoring program provides an unprecedented op-

portunity for comparing the predictability of ecosystems. To harness the power of NEON data for examining environmental

predictability, we scaled a near-term, iterative water temperature forecasting system to all six conterminous NEON lakes. We

generated 1 to 35-day ahead forecasts using a process-based hydrodynamic model that was updated with observations as they

became available. Forecasts were more accurate than a null model up to 35-days ahead among lakes, with an aggregated 1-day

ahead RMSE (root-mean square error) of 0.60 and 35-days ahead RMSE of 2.17. Water temperature forecast accuracy was

positively associated with lake depth and water clarity, and negatively associated with catchment size and fetch. Our results

suggest that lake characteristics interact with weather to control the predictability of thermal structure. Our work provides

some of the first probabilistic forecasts of NEON sites and a framework for examining continental-scale predictability.
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Abstract 38 

The National Ecological Observatory Network (NEON)'s standardized monitoring program 39 

provides an unprecedented opportunity for comparing the predictability of ecosystems. To 40 

harness the power of NEON data for examining environmental predictability, we scaled a near-41 

term, iterative water temperature forecasting system to all six conterminous NEON lakes. We 42 

generated 1 to 35-day ahead forecasts using a process-based hydrodynamic model that was 43 

updated with observations as they became available. Forecasts were more accurate than a null 44 

model up to 35-days ahead among lakes, with an aggregated 1-day ahead RMSE (root-mean 45 

square error) of 0.60℃ and 35-days ahead RMSE of 2.17℃. Water temperature forecast 46 

accuracy was positively associated with lake depth and water clarity, and negatively associated 47 

with catchment size and fetch. Our results suggest that lake characteristics interact with weather 48 

to control the predictability of thermal structure. Our work provides some of the first 49 

probabilistic forecasts of NEON sites and a framework for examining continental-scale 50 

predictability. 51 

 52 

Introduction 53 

 A primary goal of the U.S. National Ecological Observatory Network (NEON) is to 54 

“understand and forecast continental-scale environmental change” (National Research Council, 55 

2004). With standardized data available across multiple sites, NEON is uniquely positioned to 56 

advance the emerging discipline of near-term, iterative environmental forecasting – i.e., the 57 

prediction of future environmental conditions and their uncertainty that are updated when 58 

observations are available (Dietze et al. 2018). However, NEON data have yet to be broadly used 59 

for forecasting, a major gap in realizing the potential of the network.  60 
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In particular, forecasting the same environmental variables across sites has the potential 61 

to reveal gradients of predictability at multiple temporal and spatial scales, a fundamental 62 

ecological challenge (Petchey et al. 2015; Houlahan et al. 2017). While it has been established 63 

that forecast accuracy (i.e., realized predictability) declines with horizon (i.e., time into the 64 

future), it remains unknown how far into the future different ecological variables can be 65 

predicted, and how predictability varies among different sites (Adler et al. 2020; Lewis et al. 66 

2021). It is likely that both site-level characteristics (e.g., lake depth) and regional-scale 67 

characteristics (e.g., weather) affect forecast accuracy at different horizons (Heffernan et al. 68 

2014), but the drivers and gradients of predictability remain unknown and may differ among 69 

environmental variables.  70 

Lake water temperature is a promising first forecast variable for fulfilling NEON’s 71 

mission of forecasting environmental change. NEON currently has high-frequency water 72 

temperature sensors deployed in six lake sites in the conterminous U.S., providing a range of 73 

water temperature dynamics to forecast. Water temperature is a fundamental property of lakes 74 

that governs water chemistry, habitat for biota, and other ecological interactions, yet varies 75 

substantially throughout a year as a function of lake morphometry, hydrology, ecology, and 76 

weather (Wetzel 2001), making it an ideal forecasting case study. Moreover, lake water 77 

temperature forecasts have practical benefits, as they could help managers choose which depths 78 

to extract water for treatment or preemptively apply interventions to mitigate water quality 79 

impairment (Carey et al. 2022). 80 

Here, we developed the first known standardized, network-wide forecasts of NEON sites 81 

across the U.S. We applied an open-source forecasting system that uses forecasted weather data 82 

and a process-based hydrodynamic model to generate future predictions of lake water 83 
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temperature for 1-35 days ahead. These iterative forecasts were updated with NEON data when 84 

they became available. We analyzed the forecasts to address two research questions: 1) How 85 

accurately can we predict lake water temperature 1-35 days into the future? and 2) How does 86 

forecast accuracy vary among lakes with different site-level characteristics and regional-scale 87 

weather?  88 

 89 

Methods 90 

Forecasting framework 91 

 We developed water temperature forecasts for all six conterminous U.S. NEON lake 92 

sites, paired within three NEON-defined ecoclimatic domains (Figure 1). Forecasts were 93 

developed using standardized configurations of FLARE (Forecasting Lake And Reservoir 94 

Ecosystems), an open-source forecasting system (Thomas et al. 2020; Daneshmand et al. 2021). 95 

The lakes vary in multiple characteristics, including morphometry (depth, volume, surface area, 96 

fetch); hydrology (residence time, catchment size); ecology (water clarity); and weather (air 97 

temperature, precipitation; Figure 1, see WebTable 1 for lake metadata). FLARE has previously 98 

been deployed on a reservoir in Virginia, USA with similar sensor infrastructure to a NEON site 99 

but heretofore had not been deployed on other lakes (Thomas et al. 2020). FLARE forecasts 100 

water temperature at multiple depths in the water column using the General Lake Model (GLM), 101 

an open-source hydrodynamic model (Hipsey et al. 2019).  102 

FLARE's iterative forecasting cycle is summarized as: 1) each day, the output from the 103 

previous day's ensemble forecast (i.e., a set of equally likely simulations of potential future 104 

conditions) is used to initialize an ensemble forecast of the current day’s water temperature; 2) 105 

FLARE updates the current day’s ensemble forecast and key model parameters to be consistent 106 
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with the current day’s observations using data assimilation; and 3) after updating the forecast, a 1 107 

to 35-day-ahead ensemble forecast of the future is generated, for which no observations are yet 108 

available for assimilation. We forecasted water temperature at every 0.25–0.5 m depth interval in 109 

each lake, which encompassed all depths with sensors as well as depths without sensors. The 110 

forecasts into the future are driven by 35-day-ahead meteorological forecasts from NOAA’s 111 

Global Ensemble Forecasting System (Li et al. 2019). We used NEON’s water temperature data 112 

(NEON 2022b, c; Hensley 2022) for data assimilation and forecast evaluation (WebPanel 1). 113 

We used the ensemble Kalman filter (EnKF) for data assimilation (Evensen 2009). The 114 

EnKF updates model states and parameters based on differences between the ensemble forecast 115 

and observations from lake temperature sensors (following Thomas et al. 2020). We used this 116 

data assimilation approach, rather than directly initiating the forecast with observations, for 117 

multiple reasons. First, data assimilation provided initial conditions for forecasting water 118 

temperatures at depths without sensor observations. Second, data assimilation provided initial 119 

conditions on days when observations were not available. Third, data assimilation generated 120 

initial conditions that combined model predictions and observations based on the relative 121 

magnitudes of sensor observation and model error. Finally, data assimilation allowed us to 122 

dynamically calibrate the model by updating key model parameters. 123 

Altogether, the ensemble forecasts from FLARE represented uncertainty in initial water 124 

temperatures when the forecast was initiated (whereby each ensemble member had a different 125 

starting temperature profile set by data assimilation), future meteorology (by associating each 126 

ensemble member with a different future weather trajectory from NOAA GEFS), a select set of 127 

GLM parameters (whereby each ensemble member was associated with different parameter 128 

values set by data assimilation), and GLM model equations (whereby normally-distributed error 129 
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representing model process uncertainty was added to each ensemble member at each time step; 130 

Thomas et al. 2020).  131 

Our application of FLARE for each lake was initiated on 18 April 2021, the first date 132 

when all six lakes had consistent data availability after ice-off. Water temperature data were 133 

assimilated but no forecasts were generated from 18 April–18 May 2021, a spin-up period for 134 

initial parameter tuning. Other than this one-month spin-up period, we performed no model 135 

calibration, with all lakes sharing the same initial parameters at the beginning of the spin-up 136 

period. Beginning on 18 May 2021, 35 day-ahead forecasts were produced every day for each 137 

lake through 22 October 2021, when data availability ended at the Northern Plains lakes for the 138 

year. During May-October, data were assimilated and the forecast initial conditions and 139 

parameters were updated each day with observations. Data assimilation resulted in a temporally 140 

dynamic calibration of the GLM model for each lake. This iterative forecasting cycle resulted in 141 

159 unique 35-day forecasts , each with 200 ensemble members, for each of the six lakes. Our 142 

results below focus on the top 1 m (hereafter, surface).  143 

 144 

Evaluation of forecasts 145 

We evaluated forecast performance for each day in the 1–35 day horizon using root-mean 146 

square error (RMSE) of the forecasted mean water temperature across ensemble members at 147 

each depth and for each horizon (i.e., the 5 day-ahead RMSE included the 5th day of all forecasts 148 

at 1 m depth). Furthermore, we quantified: 1) forecast accuracy, defined as RMSE for the first 149 

day of the forecast, and 2) accuracy degradation, defined as the difference in maximum and 150 

minimum RMSE across the 35-day forecast horizon. We used Spearman rank correlations to 151 

quantify the relationships between lake characteristics (morphometry, hydrology, ecology, and 152 
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weather) and mean forecast accuracy and accuracy degradation for each lake. We used Spearman 153 

rank correlations because the sample size was low (n=6 lakes) and many of the variables were 154 

non-normally distributed. To ease interpretation of the correlation coefficient, we negated RMSE 155 

so positive correlations were associated with higher accuracy. Our RMSE calculations only 156 

included dates for a given lake when forecasts were available at all 1–35 day horizons.  157 

Additionally, we compared the forecasts generated using FLARE to null model forecasts 158 

that assumed the forecasted mean water temperature for a date and depth was equal to the mean 159 

water temperature observed historically on that day of year (DOY). The null model evaluated 160 

whether FLARE had higher forecast accuracy than a simple historical mean. The DOY null 161 

model was based on all historical NEON data available for a lake (WebTable 1). 162 

 163 

Results 164 

 Overall, aggregated across the forecasting period, the forecasts were able to accurately 165 

predict surface water temperature within 2.60℃ RMSE (root-mean square error) 1 to 35 days-166 

ahead for all six lakes (Figure 2a; see WebFigure 1 for two example forecasts). The forecasts 167 

performed better than a DOY null model at least 35 days-ahead for the Northern Plains domain 168 

lakes; at least 30 days-ahead for the Great Lakes domain lakes; and at least 5 days-ahead for the 169 

Southeast lakes (Figure 2b). The forecasts for surface water temperature in each lake had similar 170 

accuracy when aggregating forecasts across all depths with observations (WebFigure 2).   171 

 Forecast accuracy decreased as the forecast horizon increased among all lakes (Figure 172 

2a). At 1 day-ahead, the mean RMSE of all lakes’ forecasts was 0.61℃ (range across lakes: 173 

0.41-0.90℃); at 7 days-ahead, the mean RMSE of all lakes' forecasts was 1.21℃ (range: 0.68-174 

1.55℃); at 21 days-ahead, the RMSE of all lakes' forecasts was 2.03℃ (range: 1.20-2.45℃); and 175 
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at 35 days-ahead, the RMSE of all lakes' forecasts was 2.17℃ (range: 1.14-2.60℃). The 176 

decrease in forecast accuracy as the forecast horizon increased was much lower for BARC than 177 

the other lakes (Figure 2a). The Southeast and Northern Plains domain lakes exhibited near-178 

linear decreases in forecast accuracy until ~15-20 days-ahead, when the declines in accuracy 179 

saturated (Figure 2a). In comparison, the Great Lakes domain lakes exhibited a more constant 180 

decrease in accuracy throughout the 35-day horizon.  181 

 Differences in water temperature forecast accuracy and accuracy degradation among 182 

lakes were associated with multiple lake morphometric, hydrological, ecological, and weather 183 

characteristics. Although our inference space is extremely limited with n=6 lakes, we observed 184 

that forecast accuracy was positively correlated to maximum depth and water clarity, and 185 

negatively correlated to fetch and catchment size (Figure 3, WebTable 2, WebFigure 3). In 186 

contrast, accuracy degradation was positively correlated to volume and water clarity, and 187 

negatively correlated to mean annual air temperature (Figure 3, WebTable 2, WebFigure 4).   188 

 189 

Conclusions 190 

 Here, we present the first continental-scale forecasts of lakes uniquely enabled by NEON. 191 

We applied the same forecasting framework to six NEON lakes (i.e., the hydrodynamic model 192 

was configured identically among lakes, all lakes had the same initial model parameters, each 193 

lake received similar amounts of data for assimilation), thus creating a standardized analysis that 194 

can shed light on differences in realized predictability (i.e., forecast accuracy) among sites. 195 

Overall, our forecasts had high accuracy among lakes, with consistent patterns in degradation of 196 

forecast accuracy with horizon. Below, we explore gradients in accuracy observed among lakes, 197 

as well as how our study provides a framework for future NEON forecasting efforts. 198 
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 Among lakes, water temperature forecast accuracy was high overall, with a mean 1-day-199 

ahead RMSE of 0.62℃ and 35-day-ahead RMSE of 2.21℃. Data assimilation resulted in high 200 

accuracy at shorter horizons, with decreased forecast accuracy at longer horizons likely due to 201 

degradation in weather forecast accuracy. Regardless of horizon, we observed an overall high 202 

level of accuracy despite using forecasted, not observed, meteorological data as model inputs. 203 

Our forecast accuracy compares favorably to other multi-lake modeling studies that used 204 

observed meteorology as inputs: for example, Kreakie et al. (2021) predicted upper water 205 

column temperatures with an RMSE of 1.48℃ for lakes across the U.S with a random forest 206 

model. Similarly, Read et al. (2014) predicted upper water column temperatures with an RMSE 207 

of 1.74℃ for Wisconsin, USA lakes with a prior version of the GLM model. By comparing our 208 

forecasts to these studies and a DOY null, FLARE’s use of automated sensors, data assimilation, 209 

and iterative forecasting adds substantial predictive power, especially for the northern lakes 210 

where the forecasts all beat the null model >27 days ahead.   211 

 212 

Environmental drivers of predictability 213 

 The correlation analysis suggests potential relationships between forecast accuracy and 214 

environmental drivers that informs future research expanding beyond these six NEON lakes 215 

(Figure 3). Lake maximum depth, catchment size, fetch, and water clarity exhibited relationships 216 

with forecast accuracy. Deeper lakes have stronger thermal stratification and more resistance to 217 

wind-driven mixing (Gorham and Boyce 1989), thereby stabilizing their temperatures and 218 

increasing their predictability. In contrast, lakes with larger catchments experience greater inflow 219 

volumes (Messager et al. 2016) and lakes with greater fetch have greater wind-driven mixing 220 

(Rueda and Schladow 2009), both potentially resulting in more variable water temperatures and 221 
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lower predictability. We observed a positive relationship between forecast accuracy and water 222 

clarity, as highlighted in the contrast between the two Southeast lakes: BARC had approximately 223 

~10× higher water clarity than SUGG, and much higher forecast accuracy (Figure 2a, WebTable 224 

1). Deeper penetration of solar radiation results in more uniform heating of the surface waters, 225 

thereby increasing deep water temperatures and decreasing vertical temperature gradients 226 

(Kirillin and Shatwell 2016). Altogether, the higher predictability of water temperature in BARC 227 

than SUGG may be due to the interacting drivers of greater depth, smaller fetch, and greater 228 

clarity, as well as other factors. 229 

Forecast accuracy degradation was negatively related to mean annual temperature and 230 

positively related to water clarity and volume. The colder northern lakes (Northern Plains and 231 

Great Lakes domains) exhibited much greater degradation than one of the warmer Southeast 232 

lakes (BARC; Fig. 2a), potentially driving the relationship between air temperature and forecast 233 

degradation. While the two lakes with the highest water clarity (CRAM and LIRO in the Great 234 

Lakes domain) had a greater decline in forecast accuracy over the 35-day horizon than the three 235 

lakes with the lowest water clarity (PRLA, PRLO, and SUGG), thus driving the correlation, 236 

BARC was an important outlier because it had the highest water clarity yet the lowest decline in 237 

forecast accuracy (WebPanel 4). The patterns between degradation and water clarity/volume may 238 

have been an artifact of the lakes in the analysis, as the Great Lakes domain lakes had the 239 

greatest water clarity and volume and were the only lakes for which forecast accuracy did not 240 

saturate with horizon (Figure 2a, WebTable 1). We did not observe strong correlations between 241 

forecast accuracy/degradation and the other lake characteristics (Figure 3), though as noted 242 

above, our inference space with six lakes was limited. However, this initial analysis helps 243 
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develop hypotheses on the drivers of lake water temperature predictability that can be tested in 244 

future work. 245 

 246 

Using FLARE to forecast NEON lakes 247 

 Our application of FLARE to the NEON lakes both extends its current application from 248 

one reservoir in Virginia (Thomas et al. 2020) to six lakes across the USA, as well as increases 249 

its maximum forecast horizon from 16 days in the prior application to 35 days. FLARE forecasts 250 

of water temperature in the Virginia reservoir have similar accuracy as observed for the lakes in 251 

this study (RMSE of 0.52℃ at 1 day-ahead and 1.62℃ at 16 days-ahead at 1-m depth), and 252 

similar degradation of water temperature forecast accuracy with horizon (Thomas et al. 2020). 253 

This study also provides more evidence that FLARE can generate accurate forecasts rapidly, 254 

with only 1 month of spin-up following spring sensor deployment at the NEON lakes and 255 

initiating the spin-up with default model parameters. Interestingly, this study reveals that water 256 

temperature forecast degradation may saturate at longer horizons for some lakes (Figure 2a), 257 

which was only made possible by the recently extended duration of the NOAA meteorological 258 

forecasts as FLARE inputs.  259 

 We note caveats of this work. First, forecast accuracy/degradation is related to the ability 260 

of the GLM to simulate water temperature, so using a different model may influence the 261 

relationships we observed between the lake characteristics and accuracy/degradation (Figure 3). 262 

Second, our DOY null was limited to <4 years of data, depending on site (WebTable 1). As 263 

additional data become available, this null will potentially become more accurate, and may 264 

outcompete the forecasts at more horizons. Third, we only forecasted one year of water 265 

temperature due to the recent deployment of NEON infrastructure in the study lakes. Our 266 
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findings may change as we forecast water temperature in future years due to interannual 267 

variability. As NEON continues monitoring these lakes into the future (National Research 268 

Council 2004), we can test the hypotheses generated in this initial analysis. Fourth, the 269 

correlation analyses were constrained by low sample size, low variability in characteristics 270 

within an ecoclimatic domain (e.g., the Northern Plains lakes are similar along many axes of 271 

potential variation), and collinear variation across domains (e.g., the deep lakes and dimictic 272 

lakes are only in the Great Lakes domain; WebTable 1), an inherent limitation of the NEON 273 

sampling design. Supplementing future NEON cross-lake forecast comparisons with other lakes 274 

(e.g., those in the Global Lake Ecological Observatory Network; Weathers et al. 2013) would 275 

extend key environmental gradients as well as evaluate whether our observed patterns are 276 

supported by a larger sample of forecasts. This extension is important as the six conterminous 277 

NEON lakes are not representative of the full range of lakes across the U.S, and the addition of 278 

larger and deeper lakes with surface inflows would greatly benefit our analysis. 279 

  280 

Power and limitations of NEON for cross-lake forecasting 281 

 Similar to weather forecasting, which exhibited a large increase in the number of 282 

forecasts and prediction accuracy after an increase in data availability from sensors and satellites, 283 

improved models, and advanced data assimilation techniques (Bauer et al. 2015), we envision 284 

that NEON could catalyze a leap in continental-scale environmental forecasting. NEON’s 285 

standardized measurements, well-documented metadata, and rigorous data QA/QC provide a 286 

critical foundation for forecasting. However, we note that data latency currently limits the ability 287 

to generate real-time forecasts. An automated near-term, iterative forecasting system benefits 288 

from near-real time data availability. Given the 2-week–1.5-month lag in data availability in 289 
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NEON's current pipeline, our analysis here was based on hindcasts – i.e., generating forecasts 290 

using forecasted drivers to the perspective of the model but for a past date (Jolliffe and 291 

Stephenson 2012). Unless NEON's data latency decreases, forecast analyses such as ours are 292 

limited to predicting the past.   293 

 Our study provides a framework that can be adapted for additional lakes - as well as 294 

terrestrial NEON sites - for forecasting a range of environmental variables and exploring the 295 

drivers of predictability. Next steps for this work include forecasting water temperature in future 296 

years for the NEON lakes, as well as adding in forecasts for additional water quality variables 297 

that NEON monitors, such as dissolved oxygen and chlorophyll-a. Forecasting additional water 298 

quality variables would greatly expand the utility of the FLARE workflow for informing 299 

management, as well as using the NEON lakes as a multi-region test-bed for developing 300 

forecasting methods that can be applied to other waterbodies. Following Dietze and Lynch 301 

(2019), the future is bright for forecasting in ecology, in large part due to observatory networks 302 

like NEON.  303 
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Figure captions 386 

Figure 1. Map showing the locations of the six NEON (National Ecological Observatory 387 

Network) lakes forecasted in this study. The inset figures show a year of water temperature depth 388 

profiles, as measured by automated sensors deployed from a buoy (NEON 2022bc; Hensley 389 

2022) and monthly handheld probe data collection at each lake (NEON 2022a). The automated 390 

sensor data were used in the data assimilation and forecast analysis at depths provided in 391 

WebTable 1; the handheld probe data were only used in this figure to better characterize the full 392 

water temperature profile. The inset table provides each lake’s NEON Site ID, lake name, and 393 

NEON ecoclimatic domain. Summary statistics of each lake’s morphometry, hydrology, ecology, 394 

and weather characteristics are available in WebTable 1. 395 

 396 

Figure 2. (a) Surface water temperature (top 1 m) forecast accuracy, defined by RMSE (root-397 

mean square error in oC), for 1 to 35-day ahead (horizon) forecasts at the six NEON lakes. (b) A 398 

skill score of the RMSE (in oC) of the null day-of-year model vs. forecasts generated by the 399 

FLARE (Forecasting Lake And Reservoir Ecosystems) system for each lake. Positive values 400 

indicate that FLARE forecasts outperformed the null at a given horizon, zero indicates that the 401 

forecasts and null performed similarly, and negative values indicate that the null outperformed 402 

the forecasts. 403 

 404 

Figure 3. Spearman correlations between two metrics defining predictability at the six lakes: 405 

forecast accuracy (red points), defined as RMSE at 1-day ahead, and forecast accuracy 406 

degradation (blue points), defined as the difference in maximum and minimum RMSE across the 407 

35-day forecast horizon. To ease interpretation of the correlation coefficient, we negated RMSE 408 
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so positive correlations are associated with higher accuracy. Given the extremely limited sample 409 

size of lakes (n=6), which is too small for reliable p-values for rho, we focused our interpretation 410 

on Spearman rho correlations |≥| 0.5 (above the dashed line). WebFigures 3 and 4 show the 411 

relationships as scatterplots.  412 
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Figure 2. (a) Surface water temperature (top 1 m) forecast accuracy, defined by RMSE (root-427 
mean square error in oC), for 1 to 35-day ahead (horizon) forecasts at the six NEON lakes. (b) A 428 
skill score of the RMSE (in oC) of the null day-of-year model vs. forecasts generated by the 429 
FLARE (Forecasting Lake And Reservoir Ecosystems) system for each lake. Positive values 430 
indicate that FLARE forecasts outperformed the null at a given horizon, zero indicates that the 431 
forecasts and null performed similarly, and negative values indicate that the null outperformed 432 
the forecasts.  433 
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 434 
Figure 3. Spearman correlations between two metrics defining predictability at the six lakes: 435 
forecast accuracy (red points), defined as RMSE at 1-day ahead, and forecast accuracy 436 
degradation (blue points), defined as the difference in maximum and minimum RMSE across the 437 
35-day forecast horizon. To ease interpretation of the correlation coefficient, we negated RMSE 438 
so positive correlations are associated with higher accuracy. Given the extremely limited sample 439 
size of lakes (n=6), which is too small for reliable p-values for rho, we focused our interpretation 440 
on Spearman rho correlations |≥| 0.5 (above the dashed line). WebFigures 3 and 4 show the 441 
relationships as scatterplots. 442 
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WebPanel 1. Description of the forecasted NEON lakes, overview of the FLARE configuration 13 
for each lake, meteorological driver data, and mean day-of-year null model 14 
 15 
Lake and descriptions 16 

We generated forecasts for the six NEON lakes in the conterminous USA (WebTable 1). 17 
The six forecast sites were two paired lakes in the Great Lakes NEON ecoclimatic domain 18 
(Crampton Lake, NEON site ID – CRAM; Little Rock Lake, NEON site ID - LIRO), two paired 19 
lakes in the Northern Plains domain (Prairie Lake, NEON siteID – PRLA; Prairie Pothole, 20 
NEON siteID - PRPO), and two paired lakes in the Southeastern domain (Barco Lake, NEON 21 
siteID – BARC; Suggs Lake, NEON siteID - SUGG). We excluded the seventh NEON lake site 22 
(Toolik Lake) since it was not part of a paired NEON set and it has major surface inflows, unlike 23 
the other lakes.  24 

Each lake had 5-10 water temperature sensors (Precision Measurement Engineering Inc. 25 
T-Chain RS 232/485 thermistors) deployed at various depths in the water column. The first 26 
sensor is deployed 0.05 m below the surface, with remaining depths dependent on the total depth 27 
of the lake. Generally, sensors are deployed at more frequent intervals within the upper 1.05 m 28 
than at deeper depths. These discrete depth water temperature data are available from NEON 29 
(NEON 2022a, b), and were accessed using the neonstore R package, which creates a "store" of 30 
NEON data on a local computer and eases the iterative downloading of additional NEON data 31 
without re-downloading data already within the store (Boettiger et al. 2021).  32 

All data were filtered using the quality assurance codes provided by NEON. The 30-33 
minute data product was aggregated to the hour and only the 00:00-01:00 UTC hour was used 34 
each day for assimilation and evaluation. The NEON (NEON 2022a, b) data were exported using 35 
the neon_export function in the neonstore R package and archived at Thomas and Boettiger 36 
(2022). Gaps in NEON’s discrete depth water temperature dataset were filled using water 37 
temperature data collected by a YSI EXO2 multiparameter sonde as part of NEON’s water 38 
quality data product (Hensley 2022).   39 

 40 
FLARE and GLM configuration 41 

Adapting FLARE to NEON lakes required configuring six unique GLM models with 42 
each lake's bathymetry and physical specifications and developing functions to download and 43 
process NEON water temperature data. Across all six lakes, we used the same initial default 44 
GLM hydrodynamic parameters (Hipsey et al. 2019) and tuned the same set of three parameters 45 
governing lake water temperature during data assimilation (lw_factor, kw, and sed_mean_temp). 46 
Since none of the six NEON lakes have major surface inflows or outflows and prior applications 47 
at a reservoir in Virginia showed limited sensitivity of forecast uncertainty to inflows (Thomas et 48 
al. 2020), we parameterized each lake without inflows or outflows.  49 

We parameterized the process uncertainty in water temperature to be the same across 50 
sites and throughout the water column (standard deviation = 0.75℃). This value was based on 51 
the findings of Thomas et al. (2020), in which FLARE’s process uncertainty was estimated 52 
across water column depths at a reservoir in Virginia. The process uncertainty was added to each 53 
ensemble member and modeled depth at each daily timestep. Since we expect this uncertainty to 54 
be correlated with depth (e.g., if the modeled temperature at a certain depth was 1℃ warmer than 55 
observed, nearby depths should also likely be too warm as well), we included a correlation 56 
length that represents an exponential decay of correlations across depths (following Appendix A 57 
in Lenartz et al. 2007). The decay in correlation results in stronger correlations in water 58 
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temperature at closer depths than further away depths. This decorrelation length parameter was 59 
set to 2 m.  60 

Similarly, observation uncertainty in water temperature data was set to be the same across 61 
lakes and depths (standard deviation = 0.1℃), based on the FLARE application in Thomas et al. 62 
(2020). Since observation uncertainty represents sensor and sampling uncertainty, we did not 63 
expect observation uncertainty to be correlated with depth, and therefore the decorrelation length 64 
for this uncertainty source was set to 0 m. 65 

Parameter estimation using the ensemble Kalman filter (EnKF) uses the estimated 66 
correlation between parameter values and the size of the errors between the predicted and 67 
observed states across ensemble members (Evensen 2009). Ensemble members that require large 68 
adjustments in the states to be consistent with observations will also adjust parameters that are 69 
correlated with that error. One challenge with estimating parameters using the EnKF is that the 70 
variation in parameter values across ensemble members collapses over time. The small variance 71 
among ensemble members prevents the parameters from further adjusting to reduce new biases 72 
in the model predictions (i.e., the calibration does not change through time).  73 

As a result, parameter estimation methods using the EnKF need to use a technique to 74 
prevent a collapse in variance. Here, we use a method called variance inflation, in which the 75 
variance in parameter values among the ensemble members is increased at each time-step when 76 
data assimilation occurs. The variance inflation increases the spread in the parameters among 77 
ensemble members while maintaining the rank order of ensemble members. We used the same 78 
variance inflation factor across all parameters and lakes (0.04).  79 

The FLAREr R package that contains FLARE functions can be found in the Zenodo 80 
repository (Thomas et al. 2022b), as well as the scripts for running FLARE at the six NEON 81 
lakes (Thomas et al. 2022a). All analyses were conducted in R software version 4.1.1 (R Core 82 
Team 2021). 83 
 84 
Meteorological inputs 85 

The forecasts were driven by numerical meteorological forecasts produced by NOAA’s 86 
Global Ensemble Forecasting System (GEFS) version 12 (Li et al. 2019). We automated the 87 
downloading of ensemble members (n=31 total) from the NOAA GEFS output for each 88 
0.5°×0.5° grid cell that included a NEON lake. NOAA GEFS generates weather forecasts at 89 
multiple times per day (00:00, 06:00, 12:00, and 18:00 UTC), which vary in their forecast 90 
horizon length (i.e., days into the future). We focused on the GEFS weather forecast that started 91 
at 00:00 UTC each day, as 30 of its 31 ensemble members extended 35 days into the future on a 92 
6-hour time step and included all meteorological variables required by the GLM as model driver 93 
data. The 6-hour output resolution of each of the 30 ensemble members was temporally 94 
downscaled to 1-hour resolution for use in the GLM following Thomas et al. (2020).  95 

We used a “stacked” GEFS product during the 1-month spin-up period. One challenge 96 
when using data assimilation to set initial conditions and tune parameters is a potential mismatch 97 
between the meteorological data used in the spin-up and data used for generating future 98 
forecasts. Since observed and forecasted meteorology are rarely a 1:1 match, a smooth transition 99 
from data assimilation to forecasting requires either the forecasted meteorology to be corrected 100 
for the site or past meteorological forecasts to be used in place of observed meteorology for data 101 
assimilation. Here, we used the latter option because NEON meteorological data has a 1.5-month 102 
latency and often has gaps for some of the required meteorological variables. To develop a 103 
“stacked” GEFS product, we downloaded the first time step of the forecasts that were initiated at 104 
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06:00, 12:00, and 18:00 UTC. We then combined the meteorological forecast at the first time 105 
step of the 00:00, 06:00, 12:00, and 18:00 UTC forecasts together to generate a 6-hr data product 106 
starting on 18 April 2021. The first time step is used because it directly follows data assimilation 107 
in the GEFS, and therefore is most closely aligned with observed meteorology. The “stacked” 108 
data product is generated each time new GEFS forecasts are available, and thus is near-real time.   109 

To estimate the 10-day variance in air temperature that was used in the predictability 110 
correlation analysis, we calculated the running standard deviation over a rolling 10-day window 111 
between 18 May 2021 and 31 October 2021 from the “stacked” GEFS product.  We used the 112 
mean of the 10-day running standard deviation to represent air temperature variance for each 113 
lake during the period that forecasts were generated. 114 

All NOAA GEFS 1-hour forecasts and “stacked” products for the six NEON lakes are 115 
archived at Thomas and Woelmer (2022). 116 

 117 
Mean Day-of-Year Null Forecast 118 

We note that while the 1 to 3.5 years of data at the NEON lakes available for this day-of-119 
year (DOY) null model (see WebTable 1) is lower than the ~30 years of data typically used in 120 
weather forecasting null climatology models, it still included all NEON data available for each 121 
lake. Moreover, the DOY null model for the lake with just one year of data (PRLA) performed 122 
similarly to the DOY null model for its paired lake (PRPO), which had three years of data 123 
(Figure 2b). 124 
 125 
Analysis 126 

Thomas and Boettiger (2022) and Thomas and Woelmer (2022). This submission uses 127 
novel code, which is provided in Thomas et al. (2022a) and Thomas et al. (2022b). 128 
 129 
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WebTable 1.  Metadata of the six conterminous U.S. lake sites in the National Ecological Observatory Network. Variables that were 170 
included in the predictability correlation analysis included: latitude, maximum lake depth, fetch, volume, surface area, mean Secchi 171 
depth, mean annual temperature, mean annual precipitation, variance in air temperature, mean hydrological residence time, and 172 
catchment size. 173 

siteID Lake 
name 

NEON 
Ecoclimatic 
domain 

Latitude 
(°N) 

Longitude 
(°E) 

Elevation 
(m) 

Maximum 
lake depth 
(m) 

Fetch 
(m) 

Volume 
(m3) 

Surface 
area 
(km2) 

BARC Barco 
Lake 

Southeast 29.675982 -82.008414 27 6 425 256888 0.12 

SUGG Suggs 
Lake 

Southeast 29.68778 -82.017745 32 3 867 415356 0.31 

CRAM Crampton 
Lake 

Great Lakes 46.209675 -89.473688 509 19 782 889734 0.26 

LIRO Little 
Rock 
Lake 

Great Lakes 45.998269 -89.704767 501 10 623 466757 0.19 

PRLA Prairie 
Lake 

Northern 
Plains 

47.15909 -99.11388 565 4 1010 389429 0.23 

PRPO Prairie 
Pothole 

Northern 
Plains 

47.129839 -99.253147 579 4 511 158520 0.11 

 174 
  175 
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WebTable 1.  Continued 176 
siteID Mean 

Secchi 
depth (m) 

Mixing 
regime 

Mean annual 
temperature 
(°C) 

Mean annual 
precipitation 
(mm) 

Variance in air 
temperature 
(10-day 
standard 
deviation, °C) 

Mean 
hydrological 
residence time 
(yrs) 

Catchment 
size (km2) 

Number of 
years in 
time series 
for day-of-
year null 
model 

BARC 4.08 Polymictic 20.9 1308 1.09 3.3 0.8 2.4 

SUGG 0.43 Polymictic 20.9 1308 1.09 1.6 36.9 3.4 

CRAM 4.16 Dimictic 4.3 794 2.86 4.9 0.6 2.3 

LIRO 4.37 Dimictic 4.4 796 2.86 3.4 0.9 3.1 

PRLA 0.33 Polymictic 4.9 490 3.34 3.8 4.5 1.0 

PRPO 0.40 Polymictic 4.9 494 3.39 3.2 1.4 2.0 
  177 
  178 
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WebTable 1.  Continued 179 
siteID Catchment land cover NEON Website 

BARC shrub/scrub https://www.neonscience.org/field-sites/barc 

SUGG evergreen/forest; woody wetlands https://www.neonscience.org/field-sites/sugg 

CRAM woody wetlands https://www.neonscience.org/field-sites/cram 

LIRO deciduous forest; mixed forest https://www.neonscience.org/field-sites/liro 

PRLA grassland/herbaceous https://www.neonscience.org/field-sites/prla 

PRPO grassland/herbaceous https://www.neonscience.org/field-sites/prpo 
180 
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WebTable 2. Forecast accuracy, defined as root-mean square error (RMSE) at 1-day ahead, and 181 
forecast accuracy degradation, defined as the difference in maximum and minimum RMSE 182 
across the 35-day forecast horizon. We used Spearman rank correlations to quantify the 183 
relationships between morphometric, hydrological, ecological, and meteorological characteristics 184 
and mean forecast accuracy and accuracy degradation for each lake. To ease interpretation of the 185 
correlation coefficient, we negated RMSE so positive correlations are associated with higher 186 
accuracy. Given the extremely limited sample size of lakes (n=6), which is too small for reliable 187 
p-values for rho, we focused our interpretation on Spearman rho correlations |≥| 0.5 (included 188 
here). 189 

variable metric rho  

Catchment size accuracy -0.94  

Fetch accuracy -0.71  

Maximum depth accuracy 0.81  

Water clarity (Secchi depth) accuracy 0.60  

Mean annual air temperature degradation -0.79  

Water clarity (Secchi depth) degradation 0.60  

Volume degradation 0.60  

  190 
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191 
WebFigure 1. A diagram of the workflow used to generate the daily iterative forecasts using 192 
NOAA Global Ensemble Forecasting System (GEFS) meteorology forecasts, National 193 
Ecological Observatory Network (NEON) water temperature data, and the Forecasting Lake and 194 
Reservoir Ecosystems R package (FLAREr).    195 
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 196 
 197 

 198 
 199 

WebFigure 2. (a) Forecast accuracy for water temperature at all depths in each lake aggregated 200 
together. Accuracy is defined by RMSE (root-mean square error in oC), calculated separately for 201 
each 1 to 35-days ahead (horizon) at the six NEON lakes. (b) Surface water temperature forecast 202 
accuracy, defined by the Continuous Ranked Probability Score (CRPS, in oC), a metric that uses 203 
the entire ensemble to evaluate the forecast, which is analogous to mean absolute error. 204 
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 205 
 206 
WebFigure 3. Relationships between forecast accuracy (y-axis) and the morphometric, 207 
hydrological, ecological, and weather characteristics included in Figure 3 (x-axis). We negated 208 
RMSE (root-mean square error in oC), so positive correlations are associated with higher 209 
accuracy. WebTable 1 includes the units for each variable. 210 
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 211 
 212 
WebFigure 4. Relationships between forecast accuracy degradation (y-axis) and the 213 
morphometric, hydrological, ecological, and weather characteristics included in Figure 3 (x-214 
axis). Degradation is defined as the difference in RMSE (root-mean square error in oC) between 215 
the maximum and minimum RMSE over the 35-day forecast horizon. WebTable 1 includes the 216 
units for each variable. 217 
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WebPanel 1. Description of the forecasted NEON lakes, overview of the FLARE configuration 1 
for each lake, meteorological driver data, mean day-of-year null model, and guide to 2 
reproducibility. 3 
 4 
NEON Lake temperature data 5 

We generated forecasts for the six NEON lakes in the conterminous USA (WebTable 1). 6 
The six forecast sites were two paired lakes in the Great Lakes NEON ecoclimatic domain 7 
(Crampton Lake, NEON site ID – CRAM; Little Rock Lake, NEON site ID - LIRO), two paired 8 
lakes in the Northern Plains domain (Prairie Lake, NEON siteID – PRLA; Prairie Pothole, 9 
NEON siteID - PRPO), and two paired lakes in the Southeastern domain (Barco Lake, NEON 10 
siteID – BARC; Suggs Lake, NEON siteID - SUGG). We excluded the seventh NEON lake site 11 
(Toolik Lake) since it was not part of a paired NEON set and it has major surface inflows, unlike 12 
the other lakes.  13 

Each lake had 5-10 water temperature sensors (Precision Measurement Engineering Inc. 14 
T-Chain RS 232/485 thermistors) deployed at various depths in the water column. The first 15 
sensor was deployed 0.05 m below the surface, with remaining depths dependent on the total 16 
depth of the lake. Generally, sensors were deployed at more frequent intervals within the upper 17 
1.05 m than at deeper depths. These discrete depth water temperature data are available from 18 
NEON (NEON 2022a, b), and were accessed using the neonstore R package, which creates a 19 
"store" of NEON data on a local computer and eases the iterative downloading of additional 20 
NEON data without re-downloading data already within the store (Boettiger et al. 2021).  21 

All data were filtered using the quality assurance codes provided by NEON. The 30-22 
minute data product was aggregated to the hour and only the 00:00-01:00 UTC hour was used 23 
each day for assimilation and evaluation. The NEON (NEON 2022a, b) data were exported using 24 
the neon_export function in the neonstore R package and archived at Thomas and Boettiger 25 
(2022). Gaps in NEON’s discrete depth water temperature dataset were filled using water 26 
temperature data collected by a YSI EXO2 multiparameter sonde as part of NEON’s water 27 
quality data product (Hensley 2022).   28 

 29 
FLARE and GLM configuration 30 

Adapting FLARE to NEON lakes required configuring six unique GLM models with 31 
each lake's bathymetry and physical specifications and developing functions to download and 32 
process NEON water temperature data. Across all six lakes, we used the same initial default 33 
GLM hydrodynamic parameters (Hipsey et al. 2019) and tuned the same set of three parameters 34 
governing lake water temperature during data assimilation (lw_factor, kw, and sed_mean_temp). 35 
Since none of the six NEON lakes have major surface inflows or outflows and prior applications 36 
at a reservoir in Virginia showed limited sensitivity of forecast uncertainty to inflows (Thomas et 37 
al. 2020), we parameterized each lake without inflows or outflows.  38 

We parameterized the process uncertainty in water temperature to be the same across 39 
sites and throughout the water column (standard deviation = 0.75℃). This value was based on 40 
the findings of Thomas et al. (2020), in which FLARE’s process uncertainty was estimated 41 
across water column depths at a reservoir in Virginia. The process uncertainty was added to each 42 
ensemble member and modeled depth at each daily timestep. Since we expect this uncertainty to 43 
be correlated with depth (e.g., if the modeled temperature at a certain depth was 1℃ warmer than 44 
observed, nearby depths should also likely be too warm as well), we included a correlation 45 
length that represents an exponential decay of correlations across depths (following Appendix A 46 



 2 

in Lenartz et al. 2007). The decay in correlation results in stronger correlations in water 47 
temperature at closer depths than further away depths. This decorrelation length parameter was 48 
set to 2 m.  49 

Similarly, observation uncertainty in water temperature data was set to be the same across 50 
lakes and depths (standard deviation = 0.1℃), based on the FLARE application in Thomas et al. 51 
(2020). Since observation uncertainty represents sensor and sampling uncertainty, we did not 52 
expect observation uncertainty to be correlated with depth, and therefore the decorrelation length 53 
for this uncertainty source was set to 0 m. 54 

Parameter estimation using the ensemble Kalman filter (EnKF) uses the estimated 55 
correlation between parameter values and the size of the errors between the predicted and 56 
observed states across ensemble members (Evensen 2009). Ensemble members that require large 57 
adjustments in the states to be consistent with observations will also adjust parameters that are 58 
correlated with that error. One challenge with estimating parameters using the EnKF is that the 59 
variation in parameter values across ensemble members collapses over time. The small variance 60 
among ensemble members prevents the parameters from further adjusting to reduce new biases 61 
in the model predictions (i.e., the calibration does not change through time).  62 

As a result, parameter estimation methods using the EnKF need to use a technique to 63 
prevent a collapse in variance. Here, we use a method called variance inflation, in which the 64 
variance in parameter values among the ensemble members is increased at each time-step when 65 
data assimilation occurs. The variance inflation increases the spread in the parameters among 66 
ensemble members while maintaining the rank order of ensemble members. We used the same 67 
variance inflation factor across all parameters and lakes (0.04).  68 

The FLAREr R package that contains FLARE functions can be found in the Zenodo 69 
repository (Thomas et al. 2022b), as well as the scripts for running FLARE at the six NEON 70 
lakes (Thomas et al. 2022a). All analyses were conducted in R software version 4.1.1 (R Core 71 
Team 2021). 72 
 73 
Meteorological inputs 74 

The forecasts were driven by numerical meteorological forecasts produced by NOAA’s 75 
Global Ensemble Forecasting System (GEFS) version 12 (Li et al. 2019). We automated the 76 
downloading of ensemble members (n=31 total) from the NOAA GEFS output for each 77 
0.5°×0.5° grid cell that included a NEON lake. NOAA GEFS generates weather forecasts at 78 
multiple times per day (00:00, 06:00, 12:00, and 18:00 UTC), which vary in their forecast 79 
horizon length (i.e., days into the future). We focused on the GEFS weather forecast that started 80 
at 00:00 UTC each day, as 30 of its 31 ensemble members extended 35 days into the future on a 81 
6-hour time step and included all meteorological variables required by the GLM as model driver 82 
data. The 6-hour output resolution of each of the 30 ensemble members was temporally 83 
disaggregated to 1-hour resolution for use in the GLM following Thomas et al. (2020).  84 

We used a “stacked” GEFS product during the 1-month spin-up period. One challenge 85 
when using data assimilation to set initial conditions and tune parameters is a potential mismatch 86 
between the meteorological data used in the spin-up and data used for generating future 87 
forecasts. Since observed and forecasted meteorology are rarely a 1:1 match, a smooth transition 88 
from data assimilation to forecasting requires either the forecasted meteorology to be corrected 89 
for the site or past meteorological forecasts to be used in place of observed meteorology for data 90 
assimilation. Here, we used the latter option because NEON meteorological data has a 1.5-month 91 
latency and often has gaps for some of the required meteorological variables. To develop a 92 
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“stacked” GEFS product, we also downloaded the 0-hour and 6-hour horizon of the forecasts that 93 
were initiated every six hours at 06:00, 12:00, and 18:00 UTC each day (the 0-hour and 6-hour 94 
for the 00:00 UTC forecast were already downloaded as part of the full 35-day horizon). We then 95 
combined the temperature, relative humidity, and wind speed from the 0-hour horizon for all 96 
NOAA GEFS forecasts. The flux variables (precipitation, longwave radiation, and shortwave 97 
radiation) required using the 6-hour horizon because they integrate the 0th to 6th hour. The 0 and 98 
6-hour horizons were used because they directly follow data assimilation in the GEFS, and 99 
therefore are most closely aligned with observed meteorology. The resulting “stacked” product 100 
was a 6-hr time-step meteorology product because the time step between the initiation of new 101 
forecasts was six hours. The stacked data product was updated each time new GEFS forecasts are 102 
available, and thus was near-real time.   103 

To estimate the 10-day variance in air temperature that was used in the predictability 104 
correlation analysis, we calculated the running standard deviation over a rolling 10-day window 105 
between 18 May 2021 and 31 October 2021 from the “stacked” GEFS product. We used the 106 
mean of the 10-day running standard deviation to represent air temperature variance for each 107 
lake during the period that forecasts were generated. 108 

All NOAA GEFS 1-hour forecasts and “stacked” products for the six NEON lakes are 109 
archived at Thomas et al (2022b). 110 

 111 
Mean Day-of-Year Null Forecast 112 

We note that while the 1 to 3.5 years of data at the NEON lakes available for this day-of-113 
year (DOY) null model (see WebTable 1) is a shorter duration than the ~30 years of data 114 
typically used in weather forecasting null climatology models, it still included all NEON data 115 
available for each lake. Moreover, the DOY null model for the lake with just one year of data 116 
(PRLA) performed similarly to the DOY null model for its paired lake (PRPO), which had three 117 
years of data (Figure 2b). 118 
 119 
Guide to Reproducibility 120 

We have provided all code used to generate forecasts, analyze forecasts, and recreate 121 
figures in this manuscript as a GitHub repository that has been archived on Zenodo (Thomas et 122 
al. 2022a). There are three steps to the analysis that are documented as separate R scripts within 123 
the repository. First, the “01_combined_paper_workflow.R” in the “workflows/neon_lakes_ms/” 124 
directory of the repository obtains the NEON data and NOAA GEFS weather forecasts and then 125 
runs FLARE on the six sites. Since this script runs 159 separate 35-day horizon forecasts for the 126 
six lakes, the time required to generate all forecasts depends on the number and speed of 127 
computer processors available and can be a multi-day execution. This first step produces a set of 128 
output files for the GLM-based and day-of-year null forecasts in a “forecasts” directory.  129 

Second, each ensemble forecast from the first step is aggregated to a mean with 130 
predictive intervals and scored (by matching to the corresponding observation, if available), with 131 
the summary statistics and observations saved as a set of scored files (one per output file) in a 132 
“scores” directory in the repository. The scoring is generated by the “02_score_forecasts.R” 133 
script located in the “workflows/neon_lakes_ms/” directory of the repository. While the scores 134 
can be generated using output files from the first step, we also provide the output files as an 135 
additional Zenodo repository (Thomas et al. 2022b) that can be downloaded and scored using the 136 
script without needing to re-run the forecasts.  137 
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Third, the scored files are analyzed using an Rmarkdown script located in the main 138 
directory of repository (“analysis_notebook.Rmd“) to produce the figures and data reported in 139 
the text. The Rmarkdown script can use the scored files produced by the second step or the 140 
scores files available in the additional Zenodo repository (Thomas et al. 2022b). 141 
 Our analysis can be reproduced by downloading the Zenodo GitHub repository and 142 
running the three scripts associated with the steps described above. Re-running the full analysis 143 
requires downloading R, Rstudio, and all the required packages, and as noted above, can take 144 
multiple days of execution, depending on the computation available. We provide a script that 145 
downloads the required packages (“install.R” in the main directory of the repository). However, 146 
there is no guarantee that other versions of R and packages will produce the same results as 147 
presented here.  148 

To enable greater reproducibility, we adapted the GitHub repository (Thomas et al. 149 
2022a) to generate a Binder that is produced by mybinder.org (Jupyter et al 2018). Mybinder.org 150 
provides a web-based version of Rstudio for re-running our GitHub repository code that uses the 151 
same version of R and R packages that we used in this analysis 152 
(https://mybinder.org/v2/zenodo/10.5281/zenodo.6267616/?urlpath=rstudio). As a result, there is 153 
more confidence that the analysis can be reproduced by harnessing the Binder infrastructure, 154 
which directly re-runs the analysis on a remote server and provides an Rstudio interface via a 155 
web browser for running the scripts described above for each of the three analysis steps.   156 

There are important caveats to using the Binder. First, at the time of this analysis, 157 
mybinder.org is free to use, and therefore its computational resources have limits and processing 158 
times can be slow. Consequently, we do not recommend running the full generation of the 35-159 
day forecasts in the Binder. The Binder is ideally suited for exploring the scored forecasts and 160 
reproducing the figures and values presented in the text (i.e., the “analysis_notebook.Rmd” script 161 
described in the third step above). Second, at the time of this analysis, the Binder does not 162 
always consistently launch when accessing the Binder link and occasionally the connection times 163 
out. It may require accessing the Binder link again to get a successful launch of the R studio 164 
interface. 165 
 166 
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WebTable 1.  Metadata of the six conterminous U.S. lake sites in the National Ecological Observatory Network. Variables that were 207 
included in the predictability correlation analysis included: latitude, maximum lake depth, fetch, volume, surface area, mean Secchi 208 
depth, mean annual temperature, mean annual precipitation, variance in air temperature, mean hydrological residence time, and 209 
catchment size. 210 

siteID Lake 
name 

NEON 
Ecoclimatic 
domain 

Latitude 
(°N) 

Longitude 
(°E) 

Elevation 
(m) 

Maximum 
lake depth 
(m) 

Fetch 
(m) 

Volume 
(m3) 

Surface 
area 
(km2) 

BARC Barco 
Lake 

Southeast 29.675982 -82.008414 27 6 425 256888 0.12 

SUGG Suggs 
Lake 

Southeast 29.68778 -82.017745 32 3 867 415356 0.31 

CRAM Crampton 
Lake 

Great Lakes 46.209675 -89.473688 509 19 782 889734 0.26 

LIRO Little 
Rock 
Lake 

Great Lakes 45.998269 -89.704767 501 10 623 466757 0.19 

PRLA Prairie 
Lake 

Northern 
Plains 

47.15909 -99.11388 565 4 1010 389429 0.23 

PRPO Prairie 
Pothole 

Northern 
Plains 

47.129839 -99.253147 579 4 511 158520 0.11 

 211 
  212 
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WebTable 1.  Continued 213 
siteID Mean 

Secchi 
depth (m) 

Mixing 
regime 

Mean annual 
temperature 
(°C) 

Mean annual 
precipitation 
(mm) 

Variance in air 
temperature 
(10-day 
standard 
deviation, °C) 

Mean 
hydrological 
residence time 
(yrs) 

Catchment 
size (km2) 

Number of 
years in 
time series 
for day-of-
year null 
model 

BARC 4.08 Polymictic 20.9 1308 1.09 3.3 0.8 2.4 

SUGG 0.43 Polymictic 20.9 1308 1.09 1.6 36.9 3.4 

CRAM 4.16 Dimictic 4.3 794 2.86 4.9 0.6 2.3 

LIRO 4.37 Dimictic 4.4 796 2.86 3.4 0.9 3.1 

PRLA 0.33 Polymictic 4.9 490 3.34 3.8 4.5 1.0 

PRPO 0.40 Polymictic 4.9 494 3.39 3.2 1.4 2.0 
  214 
  215 
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WebTable 1.  Continued 216 
siteID Catchment land cover Depths with sensor observations  

(value is top of 0.25 m thick bin) 
NEON Website 

BARC shrub/scrub 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 
1.50, 2.00 2.50, 3.00 

https://www.neonscience.org/field-sites/barc 

SUGG evergreen/forest; woody wetlands 0.00, 0.25, 0.50, 0.75, 1.00 https://www.neonscience.org/field-sites/sugg 

CRAM woody wetlands 0.00, 0.25, 0.50, 0.75, 1.00, 1.75, 
2.00, 2.50, 3.25, 3.50, 4.25, 4.75, 
5.00, 6.25, 6.50, 6.75, 7.75, 8.00, 
8.50, 9.25, 9.50, 10.25, 10.75, 11.00 
12.00, 12.50, 13.50, 14.00, 15.50 

https://www.neonscience.org/field-sites/cram 

LIRO deciduous forest; mixed forest 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 
1.50, 2.00, 2.25, 2.50, 2.75, 3.00, 
3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 
5.00, 5.75, 6.00, 6.75 

https://www.neonscience.org/field-sites/liro 

PRLA grassland/herbaceous 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 
1.50, 1.75, 2.00 

https://www.neonscience.org/field-sites/prla 

PRPO grassland/herbaceous 0.00, 0.25, 0.50, 0.75, 1.00 https://www.neonscience.org/field-sites/prpo 

217 
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WebTable 2. Forecast accuracy, defined as root-mean square error (RMSE) at 1-day ahead, and 218 
forecast accuracy degradation, defined as the difference in maximum and minimum RMSE 219 
across the 35-day forecast horizon. We used Spearman rank correlations to quantify the 220 
relationships between morphometric, hydrological, ecological, and meteorological characteristics 221 
and mean forecast accuracy and accuracy degradation for each lake. To ease interpretation of the 222 
correlation coefficient, we negated RMSE so positive correlations are associated with higher 223 
accuracy. Given the extremely limited sample size of lakes (n=6), which is too small for reliable 224 
p-values for rho, we focused our interpretation on Spearman rho correlations |≥| 0.5 (included 225 
here). 226 

variable metric rho  

Catchment size accuracy -0.94  

Fetch accuracy -0.71  

Maximum depth accuracy 0.81  

Water clarity (Secchi depth) accuracy 0.60  

Mean annual air temperature degradation -0.79  

Water clarity (Secchi depth) degradation 0.60  

Volume degradation 0.60  

 227 
  228 
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 229 
WebFigure 1. Example 35-day forecasts of surface water temperature that were initiated on 230 
2021-06-15 and 2021-07-01. The shaded region represents the 10% and 90% quantiles. The 231 
observations (black dots) are provided for reference.   232 
  233 



 11 

 234 

 235 
 236 

WebFigure 2. Forecast accuracy for water temperature at all depths in each lake aggregated 237 
together. Accuracy is defined by RMSE (root-mean square error in oC), calculated separately for 238 
each 1 to 35-days ahead (horizon) at the six NEON lakes. 239 
  240 
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 241 
 242 
WebFigure 3. Relationships between forecast accuracy (y-axis) and the morphometric, 243 
hydrological, ecological, and weather characteristics included in Figure 3 (x-axis). We negated 244 
RMSE (root-mean square error in oC), so positive correlations are associated with higher 245 
accuracy. WebTable 1 includes the units for each variable. 246 
 247 
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 248 
 249 
WebFigure 4. Relationships between forecast accuracy degradation (y-axis) and the 250 
morphometric, hydrological, ecological, and weather characteristics included in Figure 3 (x-251 
axis). Degradation is defined as the difference in RMSE (root-mean square error in oC) between 252 
the maximum and minimum RMSE over the 35-day forecast horizon. WebTable 1 includes the 253 
units for each variable. 254 


