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Abstract

High-throughput phenotyping (HTP) has the potential to revolutionize plant breeding by providing scientists with exponentially

more data than was available through traditional observations. Even though data collection is rapidly increasing, the optimum

use of this data and implementation in the breeding program has not been thoroughly explored. In an effort to apply HTP

to the earliest stages of a plant breeding program, we extended field-based HTP pipelines to evaluate and extract data from

spaced single plants. Using a panel of 340 winter wheat lines planted in full plots and grid-spaced single plants for two growing

seasons, we evaluated relationships between single plants and full plot yields. Normalized difference vegetation index (NDVI)

was collected multiple times through the growing season using an unmanned aerial vehicle. NDVI measurements during grain

filling stage from both single plants and full plots were typically positively associated with their respective grain yield with

correlation ranging from -0.22 to 0.74. The relationship between single plant NDVI and full plot yield, however, was variable

between seasons ranging from -0.40 to 0.06. A genome wide association analysis (GWAS) identified the same significant markers

for traits measured in both full plots and single plots, but also displayed variability between growing seasons. Strong genotype

by environment interactions could impede selection on quantitative traits, yet these methods could provide an effective tool

for plant breeding programs to quickly screen early-generation germplasm especially for qualitative traits. Effective use of

early-generation, affordable HTP data could improve overall genetic gain in plant breeding.
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High-throughput phenotyping (HTP) has the potential to revolutionize plant
breeding by providing scientists with exponentially more data than was avail-
able through traditional observations. Even though data collection is rapidly
increasing, the optimum use of this data and implementation in the breeding
program has not been thoroughly explored. In an effort to apply HTP to the ear-
liest stages of a plant breeding program, we extended field-based HTP pipelines
to evaluate and extract data from spaced single plants. Using a panel of 340
winter wheat lines planted in full plots and grid-spaced single plants for two
growing seasons, we evaluated relationships between single plants and full plot
yields. Normalized difference vegetation index (NDVI) was collected multiple
times through the growing season using an unmanned aerial vehicle. NDVI
measurements during grain filling stage from both single plants and full plots
were typically positively associated with their respective grain yield with corre-
lation ranging from -0.22 to 0.74. The relationship between single plant NDVI
and full plot yield, however, was variable between seasons ranging from -0.40
to 0.06. A genome wide association analysis (GWAS) identified the same sig-
nificant markers for traits measured in both full plots and single plots, but
also displayed variability between growing seasons. Strong genotype by envi-
ronment interactions could impede selection on quantitative traits, yet these
methods could provide an effective tool for plant breeding programs to quickly
screen early-generation germplasm especially for qualitative traits. Effective use
of early-generation, affordable HTP data could improve overall genetic gain in
plant breeding.

1 Introduction

In the twentieth century, the Green Revolution led to more than doubling pro-
duction of many cereal grains (Pingali, 2012) while preventing large swaths of
land from being degraded by agriculture (Stevenson et al., 2013). Today, agri-
culture faces a myriad of challenges including feeding an increasing population,
more demand for agriculture products due to changing consumptions patterns,
climate change, and limited resources to increase agriculture productivity (The
Royal Society, 2009). Meeting these needs requires an increased agriculture
productivity of which plant breeding can play an integral role. Modern plant
improvement is focused to improve agronomic performance of plants for food,
fiber, feed, and fuel.

While the premise of plant breeding to improve populations has not changed, the
tools of plant breeders has rapidly expanded in the 21st century. Meuwissen et al.
(2001) proposed whole genome prediction (genomic selection, GS) using dense
genetic markers. This method functions by ensuring dense molecular markers
are linked to quantitative trait loci and utilizing a training population that has
been genotyped and phenotyped. Using the training population, a model can
be developed that can predict individuals that have only been genotyped, po-
tentially eliminating the need for large scale, costly field trials and phenotyping
(Heffner et al., 2010; Poland, 2015). With the advent of next-generation sequenc-
ing (NGS) and the rapid decline in marker cost, GS has become a tractable
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plant breeding method for many staple crops including wheat (Poland et al.,
2012b; Rutkoski et al., 2014; Belamkar et al., 2018), maize (Zhang et al., 2017),
sorghum (Muleta et al., 2019), potato (Enciso-Rodriguez et al., 2018) as well
as forage and tree species (Lin et al., 2014). Genomic selection has been used
to increase yield (Crain et al., 2021a), improve disease resistance (Rutkoski et
al., 2012; Enciso-Rodriguez et al., 2018), and to speed the domestication of
new crops (Crain et al., 2020). In many breeding applications, GS reduces the
breeding cycle timeline improving genetic gains per unit time (Heffner et al.,
2009).

A key component of GS is having an adequate training population that has
been both genotyped and phenotyped. With the potential to use NGS for
applications of marker and gene discovery for both model and non-model plants
(Bräutigam and Gowik, 2010), phenotyping quickly became a limiting factor for
genetic studies and plant breeding (White et al., 2012; Cobb et al., 2013; Poland,
2015). GS has led to a paradigm shift from phenotyping for plant evaluation and
selection to phenotyping for GS model development with a greater emphasis on
precision of measurement as well as phenotyping different sets of lines (Heffner
et al., 2009; Cobb et al., 2013). For successful implementation of advanced
breeding methodologies including GS, phenotyping has emerged as the critical
bottleneck.

Realization of the phenomic bottleneck has led to the relatively new discipline of
phenomics (Furbank and Tester, 2011). Over the past decade a variety of tools
have been developed to aid in high-throughput phenotyping (HTP) of plants.
Phenomics now offers an array of tools from aerial platoforms (Liebisch et al.,
2015; Haghighattalab et al., 2016; Singh et al., 2019) to ground-based vehicles
(Deery et al., 2014; Andrade-Sanchez et al., 2014; Barker et al., 2016) and even
pushcarts (White and Conley, 2013; Crain et al., 2016). These phenotyping
platforms can collect a variety of data from the electromagnetic spectrum in-
cluding visible imagery, hyperspectral data, and canopy temperature (reviwed
in Fahlgren et al., 2015), which can be assigned to plots or plants providing
data to evaluate genotypes (Haghighattalab et al., 2016; Wang et al., 2016).

The advances in HTP platforms have provided massive data sets that can be
used to dissect plant growth and architecture (Busemeyer et al., 2013; Crain
et al., 2017), identify quantitative trait loci (Tanger et al., 2017), and be used
for GS and breeding decision making (Rutkoski et al., 2016; Crain et al., 2018).
In addition to complementing genomic data, phenomics data is also being con-
sidered for directly making prediction and selection decisions in breeding. For
example, Rincent, et al. (2018) provided proof of concept of phenomic selection
using near infrared spectroscopy to generate predictions as accurate as predic-
tions using molecular markers (GS) in both wheat and poplar (Populus nigra
L.). Work by Krause et al. (2019) also found that phenomic data could pro-
vide equivalent accuracy as molecular data for predictions in wheat. Phenomic
predictions have also been used successfully in soybean (Parmley et al., 2019)
with prediction accuracy equivalent to GS (Zhu et al., 2021). Regardless of
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whether phenotypic data is used in conjunction with molecular markers or in-
dependently, these methods are providing novel methods for plant breeders to
increase genetic gains.

Even though systems now exist to collect dense phenotypic and genotypic data,
less work has been performed on how to best integrate these methods into a
breeding program. While both Rutkoski et al. (2016) and Crain et al. (2018)
concluded that adding phenotypic data could increase breeding efficiency in
elite wheat breeding germplasm, both studies used material from the advance
yield trials at the International Maize and Wheat Improvement Center. While
representative of a typical breeding program, these trials were advanced lines
that had already progressed through multiple stages of selection and were near
the end of the breeding cycle. This material would have been inbred to at least
the F5 generation and there would have been additional time spent on seed
increases through preliminary yield trials (Rajaram et al., 2002). In an effort
to introduce phenotyping earlier into the breeding cycle Krause et al. (2020)
phenotyped breeding lines in unreplicated small plots, which represents the first
field plot evaluation as inbred lines derived from single plants. While this en-
abled high-throughput phenotyping earlier in the plant breeding cycle, multiple
rounds of inbreeding and visual selection had already occurred, representing
significant time and resource inputs, while potentially decreasing the impact of
advanced tools for selection in the breeding pipeline.

As any new technology can shift breeding activities throughout the cycle, maxi-
mum genetic gain will be achieved by optimally allocating resources within the
plant breeding program given the balance of selection accuracy, selection inten-
sity and cost of evaluation. Resource allocation is a challenging problem that
encompasses all stages of the breeding program and fluctuates as key selection
targets such as grain yield and disease resistance vary throughout the stages of
the breeding cycle (Heslot et al., 2015). For example, thousands of lines are of-
ten evaluated during the inbreeding stage of the cycle, yet only tens or hundreds
may be evaluated in full, replicated plots later in the breeding cycle where the
evaluations are more accurate yet more costly per line. The emergence of molec-
ular tools (GS), HTP, and environmental data has brought new focus on how
plant breeding programs can successfully implement and exploit these advances
(Crossa et al., 2021).

A critical stage in the breeding pipeline is early generation testing of single
plants, which could be a powerful entry point of improved selection method-
ologies within breeding programs. To date, early generation selection on single
plants in wheat is typically visual and has not routinely included advanced tools
(Rajaram et al., 2002). Thus, the potential of increasing selection gains in this
stage of the breeding program has created strong research interest. Fischer and
Rebetzke (2018) reviewed literature of early generation phenotyping in cereal
grains and identified areas where selection would be possible in early stages of
the breeding cycle. Many traits are indirectly related to grain yield, including
some traits that may scale to the size of breeding programs including plant

4



height, harvest index, kernel weight, and leaf angle (Quail et al., 1989). Ad-
ditionally, other traits such as carbon isotope discrimination (Rebetzke et al.,
2002) and stomatal aperture traits (Condon et al., 2008) were correlated with
yield; however, there is no current viable methods to scale these to the level
of commercial breeding programs. Efficient and precise measurement of these
traits could be used to enhance genetic gains at later stages of the breeding
cycle.

High-throughput phenotyping methods could provide an opportunity to quan-
titatively evaluate early generation breeding material, where insufficient seed is
available for large plots. With the right approach, such HTP screening could
scale to the level of breeding programs to evaluate and select in populations of
thousands to millions of individual plants (Deery and Jones, 2021). In addi-
tion, HTP measurements could provide a level of precision that is not available
through visual or qualitative assessments (Tanger et al., 2017; Duddu et al.,
2019). This could be useful for programs working with inbreeding as well as
outcrossing species. Our objectives were to (a) adopt the methods of field-based
HTP from plot level to single plant level, (b) evaluate the relationship between
HTP measurements in single plants and full yield plots of the same genotype,
and (c) provide proof of concept of early generation HTP within breeding pro-
grams.

2 Materials and Methods

2.1 Plant Material

We used 340 unique lines of which 274 have been used in the hard winter wheat
association mapping panels described by Guttieri et al. (2015) and Grogan et
al. (2016). These lines are representative of pedigrees and germplasm grown
in the Great Plains regions and include lines developed in Colorado, Kansas,
Montana, North Dakota, Nebraska, Oklahoma, South Dakota, and Texas from
both public and private breeding programs. The majority of the lines are from
release in the years of 1960-2010, with several historic lines (Bison, Cheyenne,
Comanche, Kharkof, Kiowa, Tascosa, and Wichita). The remaining 66 lines
represented newer material and were additional advanced lines and cultivars
from the region.

2.2 Experimental Design

Field trials were conducted using all lines for two growing years in Kansas.
The 2019-2020 season was at the Rocky Ford Experiment station (39˚13’48.82”
N, 96˚34’41.87” W), while the 2019-2020 season was grown at the Ashland
Bottoms Experiment Station (39˚08’19.07” N, 96˚38’21.00”W). To allow single
plant comparisons to full yield plots, all entries were planted in two separate
trials.

2.2.1 Association Mapping Panel

The association mapping (AM) panel was planted as a two replicate, complete
block design where experimental plots were 2.4 m x 1.4 m (3.36 m2). Each
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plot consisted of six rows on 20 cm spacing and was seeded at a rate of 1.25
g m-2. Plots were sown within the normal planting time for winter wheat in
KS (24 October 2018, and 17 October 2019), and management practices for
optimal yield were maintained. Herbicide (Finesse®, 0.03 kg ha-1 chlorsulfuron
+ metsulfuron-methyl, and MCPA 0.84 kg ha-1 4-chloro-2-methylphenoxy) was
applied on April 9, 2019. Grain yield was harvested using a Kincaid 8XP plot
combine (Kincaid Manufacturing., Haven, KS, USA). Grain weight was moisture
corrected to 12% and recorded for each plot using a Harvest Master Classic
GrainGage and Mirus harvest software (Juniper Systems, Logan, UT, USA).

2.2.2 Single Plant Association Mapping Panel

To replicate the situation of genetically distinct single plants during early stages
of a breeding program, all AM entries were also planted in the single plant
association mapping (SPAM) trials. The SPAM trial consisted of a four replicate
complete block design, where single plants were grid spaced with 50 cm in 2018-
2019. To provide better separation of individual plants, 2019-2020 trials were
spaced on a 70 cm grid. Single seeds were started in greenhouse plugs on October
12, 2018 and October 8, 2019 respectively. Plants were allowed to grow to the
two-leaf stage before being field transplanted on November 5, 2018 and October
25, 2019. Starting plants in plugs insured that only one seed per entry was
grown, after plants were transplanted to the field, management was the same
for both AM and SPAM trials. At maturity, single plants were hand-harvested
and threshed individually to obtain final plant grain weight.

2.3 Phenotypic Data Collection

Several hand-measured phenotypic parameters were collected in both the AM
and SPAM panels. Heading date (growth stage 55, Zadoks et al., 1974) was
recorded as the days after January 1 for each respective growing year. Spikelets
per spike and spike length, excluding the awns, were measured on three (sub-
samples) random spikes from the same plant in the SPAM panel and different
plants in the AM panel. Number of fertile tillers, excluding any secondary or
non-fertile tillers when the primary tillers reached physiological maturity, were
counted for each plant in SPAM. In the AM panel tillers m-2 was determined by
counting the number of tillers in a 50 cm length for the middle two rows of the
AM plots. Tiller count was then transformed to spikes m-2 using the following
formula:

spikes 𝑚−2 = tiller count
2∗0.5 𝑚∗0.20 𝑚 Equation 1

where 2 rows of 0.5m length were counted with a 0.20m row spacing. In 2019,
two separate tiller counts were completed per plot, but due to labor constraints
in 2020 only one representative count of tillers were performed per plot. All
field phenotypic data was digitally recorded in Field Book app (Rife and Poland,
2014). After harvest, thousand kernel weight was measured for all SPAM and
AM plots.

2.4 High-Throughput Phenotyping Data
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High-throughput phenotyping data was collected during the spring growing sea-
son from AM and SPAM experiments each year using DJI Matrice 100 (DJI,
Shenzhen, China) unmanned aerial vehicles (UAV) (quadcopter). The UAV
was equipped with MicaSense RedEdge-M multispectral camera (MicaSense Inc.
United States) that captured blue, red, green, near infrared (NIR), and red edge
wavelengths allowing the calculation of vegetation indices including normalized
difference vegetation index (NDVI) (Rouse et al., 1974):

𝑁𝐷𝑉 𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑
𝑁𝐼𝑅+𝑅𝑒𝑑 Equation 2

Following the methods of Haghigattalab et al. (2016) and Wang et al. (2020),
white square tiles (30 cm x 30 cm) ground control points were distributed in
the trials to improve geospatial accuracy and surveyed with an Emlid Reach RS
(Emlid Ltd. Hong Kong), Real-Time Kinematic (RTK) Global Navigation Satel-
lite System (GNSS). Similar to Wang et al. (2020) flight speed and elevation
were chosen to maintain a desired 80% overlap between parallel flight paths for
orthomosaic image stitching. Flight missions were created using the CSIRO mis-
sion planner application (https://uavmissionplanner.netlify.app/) and executed
using the Litchi Mobile App (https://flylitchi.com/). The AM panel was flown
at a height of 20 m above ground, while the SPAM panel was flown at a lower 10
m above ground corresponding to a ground resolution of approximately 6 mm
pixel-1. Flight speed for all AM trials was 2.0 m s-1 and SPAM trials were flown
at 1.3 m s-1 with all flights occurring within 1.5 hours of solar noon (typically
between 12:00 pm and 3:00 pm). A semi-automated image processing pipeline
developed by Wang et al. (2020) was used to ortohomosaic all images and ex-
tract plot level data (NDVI). The processing pipeline used Agisoft PtotoScan
Python API (Version 1.4.0, Agisoft LLC, Russia) to create the orthomosaiced
images, followed by trait extraction using Python scripts.

2.5 Statistical Analysis

All statistical analysis were conducted in R version 4 (R Core Team, 2020).
All subsample data, multiple measurements of spikelets spike-1, spike length,
and spike number on each plot, were averaged into a single phenotype before
analysis. Models were fit separately for the AM and SPAM trials using a linear
mixed model in the lme4 (Bates et al., 2015) R package. Best linear unbiased
estimators (BLUEs) for each line were obtained from the emmeans (Lenth, 2020)
R package with data combined across years using Equation 3:

𝑦ijk = 𝜇 + 𝑔𝑖 + 𝑡𝑗 + 𝑟𝑘(𝑗) + 𝛽𝑙ijk
+ 𝜀ijk Equation 3

where 𝑦ijk is the phenotype, 𝜇 is the overall mean for the trait of interest, 𝑔𝑖 is
the fixed effect for genotype i, 𝑡𝑗 is a random effect for year (2018-19 or 2019-
20), independently and identically distributed 𝑡𝑗 ~ N(0, 𝜎2

𝑗 ), 𝑟𝑘(𝑗) is the random
effect for the kth replicate (AM k = 1-2, SPAM k = 1-4) nested within the jth
growing season distributed as 𝑟𝑘 ~N(0, 𝜎2

𝑙 ), 𝛽𝑙ijk
is a fixed covariate for heading

date for each genotype, year, replicate combination, and 𝜀ijk is the residual
effect for the ith genotype, jth year, and kth replicate distributed as 𝜀ijk ~ N(0,
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𝜎2
𝜀). To calculate heritability for traits across the two growing years, the fixed

genotype effect was changed to a random effect. Broad sense heritability (H2)
or repeatability (Piepho and Möhring, 2007) was then calculated according to
Holland et al. (2010) as:

𝐻2 = 𝜎2
𝑔

𝜎2𝑔+ 𝜎2gy
𝑦 + 𝜎2𝜀

yr

Equation 4

where 𝜎2
𝑔 is the genotypic variance, 𝜎2

gy is the variance attributed to genotype
by year (genotype by environment [GxE]) variance, and 𝜎2

𝜀 is the residual error
variance from Eqn. 3, y is the number of years (2), and r is the number of
replicates (AM = 2, SPAM = 4). Data was also analyzed within each year by
dropping the year term from Eq. 3 resulting in Eq. 5

𝑦ik = 𝜇 + 𝑔𝑖 + 𝑟𝑘 + 𝛽𝑙ik
+ 𝜀ik Equation 5

where all terms are equivalent to Eq. 3. Broad sense heritability was calculated
similarly by dropping the genotype by year term as Eq. 6:

𝐻2 = 𝜎2
𝑔

𝜎2𝑔+ 𝜎2𝜀
𝑟

Equation 6

with all terms being defined as Eq. 4.

2.6 Genotypic Data

A total of 321 unique lines from the AM panel detailed by Guttieri et al.
(2015) and Grogan et al. (2016) were genotyped using genotyping-by-sequencing
(GBS). Single nucleotide polymorphic (SNP) markers were discovered with GBS
following the protocols of Poland et al. (2012a) using the TASSELv2 pipeline
(Glaubitz et al., 2014) and the Chinese Spring reference genome (International
Wheat Genome Sequencing Consortium, 2014). Samples were sequenced on
multiple lanes of Illumina Hi Seq to increase sample coverage, with three mil-
lion average good-barcoded reads per sample (range 876286 – 12001293). A
total of 112,248 unique SNPs were identified across all samples. Data filtering
consisted of removing individual markers with: (a) a minor allele frequency <
0.05; (b) percent heterozygous > 0.05; (c) percent missing < 0.5. Beagle ver-
sion 4.1 was used to impute missing markers with default setting (Browning
and Browning, 2016). The final genotypic data set for evaluating population
structure and genome-wide association analysis (GWAS) consisted of 321 lines
and 11,452 SNPs.

2.7 Genomic Analysis

Using the SNP markers and phenotypic data, a GWAS was performed for both
the AM and SPAM panels for each growing season. A mixed model following
Yu et al. (2006) that can account for both population structure and kinship was
implemented in the rrBLUP (Endelman, 2011) R package as:

𝑦= X𝛽+Z𝑔+S�+𝑒 Equation 7
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where y is an n x 1 vector of phenotypes (BLUEs from Eq. 5), 𝛽 is a p x 1
vector of fixed effects and p is the number of effects for population structure,
X is an n x p design matrix for population structure, 𝑔 is an n x 1 vector of
random genetic effects representing kinship, Z is an n x n genomic relationship
matrix, 𝜏 is the fixed marker effect for each marker tested individually and
𝑆 is an n x 1 vector of genotypes for the marker being tested, and 𝑒 is an n
x 1 vector of residuals. The genomic relationship matrix was calculated with
the A.mat function in rrBLUP package (Endelman, 2011) and according to
methods of Endelman and Jannink (2012). The first six principal components
(p = 6) where each component explained more than 2% of the variation, were
used to account for population structure. The P3D ‘population parameters
previously determined’ option was used (Zhang et al., 2010). A false discovery
rate of 0.1 was used to identify significant markers within the GWAS (Storey
and Tibshirani, 2003) and the qqman (Turner, 2017) R package was used for
data visualization.

2.8 Data Availability

Phenotypic data, including raw images and analysis scripts are available in the
Dryad Digital Repository: doi:10.5061/dryad.w0vt4b8s4

temporary link for peer review: https://datadryad.org/stash/share/SGRdMl
rASBRSzIHocMhGdz9fONynvLUN7m8y8LTDbjU

DNA sequence data from genotypes used in this study is available in NCBI
Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/bioproject/) as
BioProject accession number PRJNA764168.

3 Results

In order to translate field-based HTP methodology to single plants as well as
evaluate the potential for HTP based selection early within the breeding pro-
gram, we evaluated two growing years of full plot association mapping (AM) and
single plant association mapping (SPAM) panels under the same field conditions.
Using fixed lines in the SPAM trials enabled us to create an artificial segregat-
ing population similar to individual F2s that could be replicated from year to
year. Additionally, having the full AM plots allowed a comparison between data
measured on single plants and full plots. Data were collected from the AM and
SPAM trials throughout the growing season with HTP data acquisition respec-
tively spanning the growing season from stem elongation to ripening. Using
UAVs equipped with sensors, there were 14 dates of data collection in AM and
six in the SPAM trial in the 2018-19 season of which five occurred on the same
day for both trials. In 2019-20 there were seven overlapping days of for both AM
and SPAM data collection and a total of 11 AM and nine SPAM data sets. The
majority of the measurements occurred between mid-April to mid-June each
year with approximately 5-10 days between measurement. Each data collection
resulted in approximately 700 and 500 images for AM and SPAM that were
processed (Figure 1) using a semi-automated pipeline to construct orthomosaic
image and extract phenotypic traits. Broad-sense heritability, or repeatability,
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for the HTP data was higher for the AM plots than SPAM each season. In
addition, H2 was higher in the 2018-19 season than in 2019-20 with this trend
observed for both AM and SPAM experiments (Figure 2, Supplementary Table
1).

Figure 1. Orthomosaic image of single-spaced planted association mapping
(SPAM) and full association mapping (AM) field trials, Manhattan, KS, 2020.
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Figure 2. Broad-sense heritability of high-throughput normalized difference
vegetation index data collected throughout the 2018-2019 year (a) and 2019-
2020 year (b) with an unmanned aerial vehicle in association mapping (AM)
and single plant (SPAM) panels, Manhattan, KS. Days of observations are rep-
resented by points with smoothed trend lines for multiple days of data collection.

3.1 Association Mapping Panel

Within the AM trials, several hand-measured phenotypes were evaluated to de-
termine their relationship to grain yield. Across both growing years, plant height
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was the only trait that had a strong, consistent, negative correlation to grain
yield (Figure 3). In the 2020 growing season, yield component traits of spikes
m-2, spikelets spike-1, and thousand kernel weight were strongly associated with
yield; however, in the 2019 season these traits were not significantly correlated
to yield (Figure 3). Broad sense heritability for all traits was high at H2=0.45
or greater, with the exception of spikes m-2 having low heritability (Figure 3).
Complementing the hand-measurements were the HTP data that was tested for
correlation to full plot grain yield. Across both years after mid-April, correla-
tions tended to be positive and significantly associated with grain yield with the
strongest correlations occurring after heading (Figure 4, Supplementary Table
2).
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Figure 3. Correlation between grain yield (GRYLD), heading date (HDDT),
plant height (PTHT), spike length (SPKLNG), spikelets spike-1 (SPLSPK),
spikes m-2 (SPNAREA), and thousand grain weight (TKW) for full plots (AM,
panels a and b) and single plants (SPAM, panels c and d) grown for two growing
seasons in Manhattan, KS. The lower triangle in each panel has a scatter plot
and line of best fit, the upper panel is the correlation between variable, and the
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diagonal is the broad-sense heritability of each trait.

Figure 4. Correlation between normalized difference vegetation index collected
with high throughput phenotyping (HTP) and wheat grain yield (GY) for full
plots (AM) and single plants (SPAM) for growing years (2018-2019, 2019-2020,
panels a and b). The SPAM trial includes both correlation to single plants and
the correlation to full plot yields. The area above or below the shaded region
represents significant correlation values (p-value < 0.001, n = 330).

3.2 Single Plant Association Mapping Panel

To evaluate the potential of phenotyping and selecting single plants, we collected
both hand-measured traits and HTP data in the SPAM trial. In comparison
to the full AM plots, plant height was positively associated with yield both
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seasons as was the number of spike plant-1 (Figure 3). Spikelets spike-1 had
significant but opposing correlations between the two seasons, and thousand
kernel weight was significant in 2020, yet not strongly associated with yield
in 2019 (Figure 3). Broad-sense heritability was more variable between years
compared to heritability observed in the full plots, yet most traits had H2 > 0.4
(Figure 3). Single plant NDVI was always positively associated with grain yield
of the single plants and the correlations were of similar magnitude of correlations
observed between full plot grain yield and NDVI (Figure 4).

3.3 Relationship Between Single Plants and Full Plots

Leveraging the fixed lines grown both in the AM and SPAM panels, allowed
a comparison of how single plant could be used to predict full plot agronomic
characteristics including grain yield. In the 2018-19 season, we found that HTP
data collected in the SPAM trials showed a strong and consistently negative
correlation (r = -0.40 — -0.31) to full plot grain yield even though there was
a positive correlation between single plant grain yield and NDVI (Figure 4).
However, in the 2019-20 season, even though single plant yield and NDVI were
related, there was no relationship (r = 0.01— 0.05) between single plants and
full plot yields (Figure 4).

3.4 Genome-wide Association Analysis

A genome-wide association analysis was used to evaluate genetic architecture of
trait expression in both the full plots and single plants. As the lines in each panel
were fixed, this allowed us to test if trait expression was controlled under both
growing conditions similarly and potentially allow selection on single plants for
full plot characteristics. In the 2018-19 growing season spikelets spike-1 showed
a GWAS peak on chromosome 7A and spike length had high scoring markers
on chromosome 2B for both AM and SPAM panels (Figure 5, Supplementary
Figure 1). For these same traits, there were no associations found for either
panel in 2019-20 season. No significant associations were found for grain yield,
thousand kernel weight, or spikes m-2 for either season of evaluation. Within the
full plot AM panel, an association was found for plant height on chromosome 4B
for both growing seasons. While no significant markers were identified within
the SPAM panel, the same marker that was identified in the AM panel had one
of the highest values each year (Supplementary Figure 2).
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Figure 5. Manhattan plots of spikelets spike-1 with phenotypic data taken from
full plots (a) and single plots (b). Horizontal blue line is the false discovery
rage (FDR = 0.1). The same highest scoring markers in both single plants
and full plots have been denoted with black diamonds. Quantile-quantile plots
showing the expected and observed residual distribution for each genome-wide
association analysis (c and d).

3.5 Genotype by Environment Interaction

Based on our contrasting findings of strong associations between traits in one
season and then no association in another season, we evaluated data across
years. This allowed us to partition variance components, including GxE, to
determine the proportion of genetic and non-genetic effects. Across both years
for the AM and SPAM panel, the heritability for grain yield was lower than
for individual single seasons suggesting GxE interactions, and this trend carried
through to several traits including thousand kernel weight. Across all traits, the
proportion of genetic variance was less than 50% of total variation indicating
strong environment and year effects complicating potential selection strategies
(Figure 6).
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Figure 6. Proportion of variance explained for each type of effect for pheno-
typic traits collected in full plot (AM) and single plant (SPAM) wheat panels.
GRYLD, grain yield; PTHT, plant height; SPKLNG, spike length; SPLSPK,
spikelets spike-1, SPNAREA, spike m-2; TGW, thousand kernel weight.

4 Discussion

4.1 Single Plant HTP Analysis

In an effort to extend HTP methodology to the earliest time points in the breed-
ing program, we adapted existing processing and analysis pipelines to extract
data from single plants. Our choice of experimental population grown both as
single plants and full plots, enabled us to evaluate an artificially created segre-
gating population similar to single F2 plants that could provide an idea of the
plasticity that could be observed in single plants for HTP and how that would
compare to full plots. The positive correlations between NDVI and grain yield
is similar to other research finding where NDVI has been suggested as a selec-
tion tool in plant breeding (Babar et al., 2006; Prasad et al., 2007; Crain et al.,
2017). While we only assessed NDVI, these methods should be practical for a
broad range of phenotypic measurements. For example, UAVs have been used
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to quantify plant height (Singh et al., 2019; Volpato et al., 2021), plant diseases
(Wu et al., 2019), morphological and physiological traits such as heading date
and presence of awns (Wang et al., 2019), and canopy temperature (Tattaris
et al., 2016). Although previous research in early-generation plant phenotyping
has been promising but limited by volume of phenotyping throughput (reviewed
extensively by Fischer and Rebetzke, 2018), the advent of HTP methodology
has opened the possibilities for expanded observation and selection in early gen-
erations. Even though our methods were applied to space planted individuals,
we expect that continued refinement in algorithms and methodology will allow
for evaluation of single plants that are more densely planted and not completely
separated.

4.2 Application to Breeding Programs

Many wheat breeding programs have minimal observations of early-generation
material such that HTP could provide affordable and accessible data that can
help enhance selection decisions. Using pipelined analysis, we envision that
breeding programs could collect data on all generations of data while simulta-
neously making selection decisions. Instead of breeding lines being promoted
to yield trials in advanced generations (F5 or later) with only breeder visual
selection during each generation, lines could have multiple cycles of selection
through impartial computational methods. As methods are refined, breeders
could choose phenotypes that are expressed in single plants and maintained in
full plots or optimal HTP phenotypes that are well correlated to full plot yield,
even if the trait per se is not correlated or important for yield in full plots.

While we observed variable results between single plot yield and full plot yield for
correlation of HTP data and grain yield, we did observe several GWAS hits that
were similar between the two panels. For example, in 2018-19 season spikelets
spike-1 both had the same significant markers. In addition, a significant marker
for plant height was the same for both growing seasons and panels. This marker
on chromosome 4B corresponds to the reduced height (Rht-B1) locus (Jobson et
al., 2019; Chai et al., 2021). These results suggest that selection methods can
be developed to identify desired characteristics even in segregating populations.
As HTP advances, the opportunity to link desired ideotypes (Donald, 1968)
expression to single and full plots will allow breeders to implement enhanced
selection on all breeding germplasm.

Based on the changing results between the two growing seasons, we examined
the effect of GxE within the growing panels. Decomposition of variance revealed
that there were large environmental and GxE effects which could explain the
difference observed between years and impede efficient selection decisions. Un-
fortunately, GxE is a well-known and documented challenge (e.g. De Leon et
al., 2016; Elias et al., 2016; Van Eeuwijk et al., 2016) facing plant breeding and
effects all stages of plant breeding (Kang, 1997) and evaluation of breeding lines
in replicated full plots does not escape the confounding effects of GxE on selec-
tion. Even though in our analysis the selection potential has been constrained
by GxE, the methods developed may allow for better dissection of GxE results.
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In addition, given the small spatial scale of single plants known, repeated check
lines could be included to provide an evaluation in comparison to best material,
which is not feasible in large plots. The HTP data may allow plant breeders to
better quantify plant growth and environmental conditions providing selection
and modeling opportunities to understand plant growth (De Leon et al., 2016).

Within wheat breeding HTP methodology applied in early generations could
provide breeding programs with five or more rounds of selection before material
is widely tested. The use of pipelined analysis should allow trait extraction to be
automated with minimal user intervention and time commitment. At these early
stages of the plant breeding program large investments in time and resources is
challenging. This study has focused on wheat and wheat breeding applications,
yet these methods should be applicable to a wide range of crops. For example,
crops that are clonally propagated such as potato (Solanum tuberosum L.) could
benefit through individual analysis (Slater et al., 2017). An intermediate wheat-
grass (Thinopyrum intermedium) breeding program that uses genomic selection
could also complement their selection strategy by combining HTP data increas-
ing selection strategy in a perennial crop (Crain et al., 2021b). For crops with
extremely long growth cycles such as trees, the precision phenotyping could cost
effectively increase breeding gains (Alves et al., 2020).

5 Conculsions

We have provided proof of concept for field-based, single plant phenotyping
by modifying existing HTP pipelines. As new advancements further enhance
HTP systems, breeders can combine this new data with computational resources
for efficient phenotyping of plants ranging from segregating F2 generations to
fixed lines. As processing pipelines are further refined, plant breeding programs
should be able to utilize HTP methods that scale to the size of the breeding
program compared to time consuming phenotypic measurements or genotyping
that would be infeasible in terms of cost and time for evaluating segregating
material. This will greatly increase the amount and precision of data that can
be used to drive genetic gain. The methodology utilized in this work should be
applicable to a range of different crops and plant breeding programs, and allow
the development of crops that can meet the world’s food, fiber, and fuel needs.
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Supplemental Material

Supplementary Table 1. Broad-sense heritability of high-throughput pheno-
typing data collected throughout the growing season with an unmanned aerial
vehicle in association mapping (AM) and single plant (SPAM) panels, Manhat-
tan, KS.

Season Date Trial
AM SPAM

2018-2019 3 January 0.23
12 April 0.60
19 April 0.49
22 April 0.42
24 April 0.54 0.50
2 May 0.77 0.53
10 May 0.40 0.50
16 May 0.52
20 May 0.87
22 May 0.84 0.49
30 May 0.72 0.43
5 June 0.69
12 June 0.40
17 June 0.80
24 June 0.83

2019-2020 20 March 0.27
1 April 0.23
9 April 0.32
11 April 0.19 0.29
23 April 0.54 0.25
3 May 0.36 0.19
8 May 0.54 0.17
18 May 0.54
19 May 0.12
23 May 0.58 0.08
5 June 0.77 0.32
11 June 0.75 0.36
12 June 0.79
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Supplementary Table 2. Correlation between normalized difference vegeta-
tion index collected with high throughput phenotyping and wheat grain yield
for full plots (AM) and single plants (SPAM) for two growing seasons of obser-
vations (2018-19, 2019-20). The SPAM trial includes both correlation to single
plants and the correlation to full plot yields.

AM trial SPAM trial
Season Date AM Yield SPAM Yield AM Yield
2018-2019 3 January -0.02

12 April -0.1
19 April 0.1
22 April 0.61*** -0.38***
24 April 0.28*** 0.65*** -0.40***
2 May 0.35*** 0.69*** -0.38***
10 May 0.15** 0.74*** -0.39***
16 May 0.41***
20 May 0.52***
22 May 0.52*** 0.72*** -0.38***
30 May 0.60*** 0.59*** -0.31***
5 June 0.55***
12 June 0.51***
17 June 0.46***
24 June 0.06

2019-2020 20 March -0.22***
1 April -0.20***
9 April 0.32*** 0.01
11 April -0.02 0.35*** 0.02
23 April 0.24*** 0.17** 0.04
3 May 0.09 0.44*** 0.05
8 May 0.27*** 0.48*** 0.02
18 May 0.23***
19 May 0.48*** 0.06
23 May 0.30*** 0.52*** 0.03
5 June 0.63*** 0.50*** 0.04
11 June 0.56*** 0.47*** 0.05
12 June 0.55***
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Supplementary Figure 1. Manhattan plots of spike length with phenotypic
data taken from full plots (a) and single plots (b). Markers above significance
threshold, false discovery rate (FDR = 0.1), in each panel have been highlighted
with larger marker character. Quantile-quantile plots showing the expected and
observed residual distribution for each genome-wide association analysis (c and
d).
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Supplementary Figure 2. Manhattan plots of plant height with phenotypic
data taken from full plots (a, c) and single plots (b, d) in the 2018-19 and 2019-
20 season. The highest scoring marker for all trials has been highlighted on
chromosome 4B, with the genome-wide false discovery rate (FDR = 0.1) as a
horizontal blue line. Quantile-quantile plots showing the expected and observed
residual distribution for each genome-wide association analysis (e and f)
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