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Abstract

This paper describes a technique for identifying hydrometeor particle types using airborne HIAPER Cloud Radar (HCR) and

High Spectral Resolution Lidar (HSRL) observations. HCR operates at a frequency of 94 GHz (3 mm wavelength), while HSRL

is an eye-safe lidar system operating at a wavelength of 532 nm. Both instruments are deployed on the NSF-NCAR HIAPER

aircraft. HCR is designed to fly in an underwing pod and HSRL is situated in the cabin. The HCR and HSRL data used in

this study were collected during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES).

Comprehensive observations of the vertical distributions of liquid and mixed-phase clouds were obtained using in-situ probes

on the aircraft and remote sensing instruments. Hydrometeor particle types were retrieved from HCR, HSRL, and temperature

fields with a newly-developed fuzzy logic particle identification (PID) algorithm. The PID results were validated with in-situ

measurements collected onboard the HIAPER aircraft by a 2D-Stereo (2D-S) cloud probe. Particle phases derived from the

PID results compare well with those obtained from the 2D-S observations and agree in over 70 % of cases. Size distributions

are also consistent between the two methods of observation. Knowledge of the particle type distribution gained from the PID

results can be used to constrain microphysical parameterization and improve the representation of cloud radiation effects in

weather and climate models.
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Abstract 16 

This paper describes a technique for identifying hydrometeor particle types using 17 

airborne HIAPER Cloud Radar (HCR) and High Spectral Resolution Lidar (HSRL) observations. 18 

HCR operates at a frequency of 94 GHz (3 mm wavelength), while HSRL is an eye-safe lidar 19 

system operating at a wavelength of 532 nm. Both instruments are deployed on the NSF-NCAR 20 

HIAPER aircraft. HCR is designed to fly in an underwing pod and HSRL is situated in the cabin. 21 

The HCR and HSRL data used in this study were collected during the Southern Ocean Clouds, 22 

Radiation, Aerosol Transport Experimental Study (SOCRATES). Comprehensive observations 23 

of the vertical distributions of liquid and mixed-phase clouds were obtained using in-situ probes 24 

on the aircraft and remote sensing instruments. Hydrometeor particle types were retrieved from 25 

HCR, HSRL, and temperature fields with a newly-developed fuzzy logic particle identification 26 

(PID) algorithm. The PID results were validated with in-situ measurements collected onboard the 27 

HIAPER aircraft by a 2D-Stereo (2D-S) cloud probe. Particle phases derived from the PID 28 

results compare well with those obtained from the 2D-S observations and agree in over 70 % of 29 

cases. Size distributions are also consistent between the two methods of observation. Knowledge 30 

of the particle type distribution gained from the PID results can be used to constrain 31 

microphysical parameterization and improve the representation of cloud radiation effects in 32 

weather and climate models. 33 

1 Introduction 34 

The knowledge of cloud and precipitation particle types, that is, their phase and size 35 

distribution, aids our understanding of cloud microphysical and dynamic processes, and their 36 

representation in weather and climate models. Accurate observations of particle characteristics 37 

are essential for the development of microphysical parameterization schemes. They help to 38 

reduce biases in radiative effects in earth simulation system models, and to improve estimates of 39 

liquid and ice water content. Sophisticated weather and climate models use bin microphysics 40 

parameterization schemes that represent explicit particle size distributions of the liquid and ice 41 

phases (Paukert et al., 2019). In the past decade, particle size distributions were tracked using 42 

Lagrangian schemes (Morrison et al., 2020). 43 

Condensation, freezing, evaporation, and melting lead to the production of liquid and 44 

frozen particles, which play a crucial role in the earth's radiation budget by scattering shortwave 45 
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radiation and absorbing and re-emitting longwave radiation. However, the radiative properties of 46 

liquid and frozen particles are different, as their dielectric constant, size, and concentrations are 47 

not the same. Therefore, the erroneous representation of liquid and frozen particles causes 48 

significant biases in cloud radiation and earth radiation budgets. Accurate identification of 49 

particle phase is especially important for stratocumulus clouds as they are a dominant cloud type, 50 

covering large regions of the globe (Wood, 2012). 51 

In numerical weather forecast and climate simulation models, cloud water is partitioned 52 

into liquid and ice, which is parameterized as a function of temperature between -40 °C and 0 °C 53 

(DelGenio et al., 1996). In a self-contained air parcel with liquid and ice particles, and in the 54 

absence of any external dynamical forcing, theoretical studies suggest that the glaciation time 55 

scale is on the order of an hour (Korolev & Isaac, 2003). However, observational studies indicate 56 

that supercooled liquid droplets and frozen particles can continue to exist in individual layers or 57 

in mixed phase conditions for much longer periods, even days (de Boer et al., 2011). 58 

Specifically, observations of stratocumulus boundary layer clouds in mid-latitude and polar 59 

regions show a thin layer of cloud liquid droplets at the top of the clouds, while cloud droplets, 60 

drizzle, and frozen particles coexist within the cloud (Korolev & Isaac, 2003). 61 

While in-situ measurements are considered the best means for observing microphysical 62 

properties of clouds and precipitation particles, they are often limited in spatial and temporal 63 

extent. Remote sensing instruments are well suited to expand hydrometeor observations spatially 64 

and temporally. For example, cloud radar and lidar measurements were used to retrieve the 65 

effective radius of droplets and the liquid water content in stratiform precipitation 66 

(Vivekanandan et al., 2020). However, since remote sensing instruments do not provide direct 67 

measurements of particle phase, type, and size, retrieval algorithms are necessary for the 68 

microphysical characterization of particles. Individual remote sensing fields, such as reflectivity 69 

alone, cannot be used to discriminate between liquid and ice, as there is, for example, a 70 

significant overlap in observed reflectivity values between liquid and frozen precipitation. The 71 

combination of polarimetric Doppler radar and lidar measurements reduces ambiguity in 72 

differentiating liquid from frozen particles (Shupe, 2007). 73 

Many of the current techniques for identifying hydrometeor particles in remote sensing 74 

observations use thresholds or rigid boundaries (Ceccaldi et al., 2013; Kikuchi et al., 2017; 75 
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Shupe, 2007). They also often lack validation due to the difficulty of obtaining independent in-76 

situ measurements. Because of the aforementioned overlap in remote measurements for different 77 

particle types, rigid boundaries can misclassify particle types. Fuzzy-logic methodologies are 78 

well suited for classifying hydrometeors with overlapping and smooth transition boundaries in 79 

clouds and precipitation (J. Vivekanandan et al., 1999). Neural networks and machine learning 80 

techniques can also be used for classifying hydrometeor types.  81 

This paper describes a fuzzy logic methodology for identifying cloud and precipitation 82 

particle types using airborne cloud radar and lidar observations. It was developed and validated 83 

using measurements from the Southern Ocean Clouds, Radiation, Aerosol Transport 84 

Experimental Study (SOCRATES) field campaign. Section 2 describes the remote sensing and 85 

in-situ instruments and corresponding datasets. Section 3 describes components of the PID 86 

algorithm and the fuzzy logic method. Particle type identification results from remote 87 

measurements and comparisons with in-situ observations are presented in Section 4. Conclusions 88 

are drawn in Section 5. 89 

2 Description of instruments and datasets 90 

2.1 HIAPER Cloud Radar (HCR) and High Spectral Resolution Lidar (HSRL) 91 

As part of its mission to aid the scientific community in observational field campaigns, 92 

the Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research 93 

(NCAR) deploys the High-performance Instrumented Airborne Platform for Environmental 94 

Research (HIAPER), a Gulfstream V research aircraft. Two of the instruments requestable by the 95 

scientific community as part of the HIAPER instrument suite are the HIAPER Cloud Radar 96 

(HCR, Vivekanandan et al., 2015) and the Gulfstream V High Spectral Resolution Lidar 97 

(HSRL). 98 

HCR is a dual-polarimetric millimeter-wavelength W-band radar that is deployed in an 99 

underwing pod on HIAPER. It has collected data in four major and one minor field campaigns, 100 

ranging in location from the Southern Ocean to the tropics (Albrecht et al., 2019; Fuchs‐Stone et 101 

al., 2020; McFarquhar et al., 2020; Rauber et al., 2017). Care has been taken to optimize radar 102 

calibration and data quality, and provide additional data products, such as reanalysis fields or 103 

melting layer altitude (Ellis et al., 2019; Romatschke, 2021; Romatschke et al., 2021; 104 

Romatschke & Dixon, 2022). HCR observations are computed with a resolution of ~20 m in 105 
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range and a temporal resolution of 10 Hz. The along-track spatial resolution is a function of 106 

aircraft speed and the dwell time of the sample. At typical flight speeds of 200 ms-1, the 10 Hz 107 

temporal resolution yields a sample volume of approximately 20 m in the direction of flight. The 108 

HCR beam’s footprint is 3 m at a range of 250 m and it increases to 180 m at 15 km in range. 109 

Polarimetric and Doppler radar fields are calculated from the measured in-phase and quadrature 110 

(I/Q) time-series data. The dynamic range of the HCR reflectivity is between -35 and +30 dBZ 111 

and can be estimated with a 1-2 dB accuracy (Romatschke et al., 2021). 112 

The HSRL is a calibrated lidar (Razenkov et al., 2008) and operates at a wavelength of 113 

532 nm with a pulse repetition frequency of 4000 Hz and a power of 300 mW. It uses a high-114 

repetition, low-pulse energy laser which meets the eye-safety criteria of the American National 115 

Standards Institute (ANSI) at all ranges. It samples the atmosphere with a temporal resolution of 116 

2 Hz and a range resolution of 7.5 m. HSRL measures the backscatter coefficient and 117 

depolarization properties of atmospheric aerosols and clouds, and the cloud extinction 118 

coefficient. 119 

The PID method described in this study was developed using data collected during the 120 

SOCRATES field campaign, where HCR, HSRL, and in-situ cloud probes were deployed on the 121 

HAIPER aircraft (McFarquhar et al., 2020). The combination of co-located remote sensing and 122 

in-situ observations makes SOCRATES data especially valuable as they provide the opportunity 123 

to verify the results of the PID method. The aircraft flew 15 research flights (RFs) consisting of 124 

north-south transects south of Hobart, Australia, between 15 January and 24 February, 2018. The 125 

Southern Ocean is a large heat reservoir and influences the atmospheric and oceanic circulation 126 

of the entire Southern Hemisphere and beyond. To expand upon sparse observations of clouds 127 

over the Southern Ocean, HCR and HSRL obtained comprehensive observations of boundary 128 

layer structure and vertical distributions of liquid, frozen, and mixed-phase clouds. 129 

For the purposes of this study, HCR and HSRL data were resampled onto a common grid. 130 

The HCR data was averaged to 2 Hz to match HSRL’s temporal resolution. Then in the vertical 131 

the HSRL range gate closest to each HCR gate was used to re-sample the 7.5 m HSRL data onto 132 

the 19 m HCR range resolution. Both instruments are capable of operating in nadir and zenith 133 

pointing modes. HCR has a rotatable reflector which allows for 240° cross-track scanning and 134 

the antenna is stabilized when staring in nadir or zenith directions. HSRL can be manually turned 135 
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to point either nadir or zenith through specially designed windows in the aircraft floor and 136 

ceiling. (HSRL points 4 degrees off zenith and nadir to avoid specular reflection from 137 

horizontally-oriented ice particles.) During SOCRATES the radar and lidar operator intended to 138 

point both instruments in the same direction at all times but since the manual rotation of HSRL 139 

takes about half a minute, some discrepancies in the pointing direction were unavoidable. The 140 

datasets were merged only when the two instruments were pointing in the same direction, within 141 

some margin of pointing error. Also, since the HSRL pointing angle is fixed relative to the 142 

aircraft, it pointed off zenith/nadir during aircraft turns. Therefore, during aircraft turns the data 143 

sets were not merged and the HSRL data were set to missing. 144 

The radar fields that were used in the HCR-HSRL combined PID algorithm development 145 

are reflectivity (DBZ), radial velocity (VEL), linear depolarization ratio (LDR), and spectrum 146 

width (WIDTH). The lidar variables were the aerosol backscatter coefficient (BACKSCAT) and 147 

the lidar linear depolarization ratio (LLDR). The altitude of the lowest melting layer at each time 148 

step was utilized in post-processing (Romatschke, 2021). Note that we differentiate between the 149 

freezing level of 0 °C and the melting layer where actual melting occurs. Outside of regions with 150 

significant updrafts, the melting layer is generally located below the freezing level of 0 °C 151 

(Romatschke, 2021). In addition, ERA5 temperatures (TEMP, European Centre for Medium-152 

Range Weather Forecasts, 2018) interpolated to the HCR-HSRL time-range grid (Romatschke et 153 

al., 2021) were used. The proposed PID method was applied to data from all HCR-HSRL 154 

combined and HCR-only field campaigns. All data is available in the EOL Field Data Archive 155 

(NCAR/EOL Remote Sensing Facility, 2022a, 2022b, 2022e, 2022c, 2022d, 2022f). 156 

A trimmed-down version of the PID algorithm can be applied to the HCR radar fields 157 

alone (Section 3.4) to provide particle information for field campaigns where HSRL was not 158 

deployed. This HCR stand-alone algorithm was created using the 10 Hz HCR data. 159 

2.2 2D cloud probes 160 

To tune the PID scheme and validate the results (Section 4) we used in-situ 161 

measurements collected by the 2-Dimensional Stereo (2D-S) cloud probe (Lawson et al., 2006) 162 

which was deployed on HIAPER during SOCRATES. The cloud probe imaged particles with 163 

diameters ranging from 0.01 to 1.28 mm. Specifically, for PID validation, we used the University 164 

of Washington Ice-Liquid Discriminator (UWILD) particle phase classifications and size 165 
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distributions, which are based on the 2D-S measurements and available in the EOL Field Data 166 

Archive (Atlas et al., 2021; Mohrmann et al., 2021). The UWILD dataset provides the phase of 167 

all detected particles in different size bins at a 1 Hz resolution which we compared with the 168 

particle phases and sizes derived with the PID scheme. UWILD data is available for RF01 to 169 

RF14 - no cloud probe data was collected in RF15. 170 

3 The PID algorithm 171 

The PID algorithm consists of three basic data processing steps. In the pre-processing 172 

step, we determine which subsets of the radar and lidar fields can be used for specific purposes, 173 

and mask unsuitable data. The second step applies a fuzzy logic scheme to identify the particle 174 

types. In the post-processing step, minor adjustments are made to the particle classification based 175 

on a priori knowledge. 176 

3.1 Pre-processing 177 

The PID technique retrieves particle size and particle phase (liquid and frozen). Variables 178 

suitable for size characterization are DBZ and VEL (which we will call the size-defining fields). 179 

LDR and LLDR (the phase-defining fields) are used to distinguish between liquid and frozen 180 

particles. The TEMP field only provides a weak indication of particle phase as liquid particles 181 

can be observed well below the freezing point (Houze, 2014). BACKSCAT offers a limited 182 

capability for detecting particle phase, but it is not reliable by itself. Therefore it is only used in 183 

regions where LLDR is also present. In earlier versions of the PID algorithm, the HCR Doppler 184 

spectrum width field was also included but we found that it did not provide additional value. It 185 

was therefore eliminated to simplify the algorithm. 186 

In the warm regions below the melting layer, only liquid particles are expected to be 187 

present. We therefore do not use the phase defining fields LDR, LLDR, and BACKSCAT below 188 

the melting layer. TEMP is retained to constrain the melting particles (Section 3.2) to within a 189 

certain distance of the melting layer. The remaining fields, DBZ and VEL, discriminate between 190 

the different particle sizes in the warm regions. 191 

Particle phase discrimination is most challenging above the melting layer because both, 192 

supercooled liquid and frozen particles, can exist at temperatures well below freezing. We rely 193 

on the major phase-defining fields LDR and LLDR to distinguish liquid from frozen particles. 194 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

However, these fields exist only where the weak cross-pol signal is above the noise floor. As 195 

DBZ and VEL are unsuitable for phase discrimination, and TEMP alone does not fulfill the 196 

purpose, no attempt is made to determine particle phase in regions where neither of the phase-197 

defining fields is usable. TEMP is unused in these areas as it does not benefit size estimation. 198 

It is important to note that the Doppler velocity is the sum of the particle fall speed and 199 

the air motion. Ideally, particle size is inferred from particle fall speed alone, without the air 200 

motion component, and it is therefore not appropriate to use VEL in areas of significant air 201 

motion. To find such areas a velocity texture field is used (Romatschke & Dixon, 2022). The 202 

texture field is a measure of the smoothness of the VEL field on the horizontal dimension. VEL 203 

is not used in areas with high velocity texture values above the melting layer. 204 

3.2 Fuzzy logic scheme 205 

Fuzzy logic is a powerful tool for classifying hydrometeors in HCR and HSRL field 206 

measurements. Its biggest strength is that it combines a range of input fields instead of relying on 207 

fixed thresholding of values from individual fields. It also allows for smooth transitions between 208 

various cloud and precipitation particle type classifications. 209 

The core components of a fuzzy logic method are the membership functions (MFs). The 210 

MFs describe how likely a specific value of a measured input field is a member of the desired 211 

output hydrometeor classification on a scale of 0 (no member) to 1 (member). Since the values of 212 

the MFs vary between 0 and 1, they can more realistically represent the degree to which a 213 

particular measurement identifies a specific hydrometeor type. Initial shapes of the MFs were 214 

determined using information from previous studies (Houze, 2014; Shupe, 2007). 215 

The PID algorithm with the initial MFs was applied to a subset of the SOCRATES 216 

observations (the tuning data), consisting of 27 representative cases observed throughout the 217 

field campaign. The duration of the tuning cases ranged from a few minutes to over 20 minutes. 218 

They encompass about half of the times when coincident remote sensing and cloud probe data 219 

were available. The PID results from this initial analysis were visually compared to cloud probe 220 

data and the MFs were then carefully adjusted to improve the accuracy of the PID algorithm in 221 

an iterative process. Note that this section focuses on the description of the methodology and 222 

details on how cloud probe data were processed and compared to PID results are described later 223 

in Section 4.2. The algorithm with the final MFs was then applied to all data. We chose manual 224 
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tuning over the use of an analytical optimization tool since it can take a vertical offset of 100-200 225 

m between the cloud probe and the first valid HCR and HSRL range gates into account (see 226 

Sections 3.3 and 4.4 for details on this offset and how it can affect the comparison). Manual 227 

tuning also allowed adjustments for known problems in the cloud probe dataset. 228 

 229 

Figure 1. Membership functions for the six input fields (top to bottom) and six initial 230 

hydrometeor types (colored lines). 231 

The six input fields for the fuzzy logic scheme are DBZ, VEL, LDR, LLDR, 232 

BACKSCAT, and TEMP (Section 2.1) which were initially mapped to six output fields: three 233 

liquid categories with decreasing drop sizes (rain, drizzle, cloud drops), two frozen categories 234 
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(large frozen, small frozen), and one category representing melting particles (melting). The MFs 235 

are shown in Figure 1. 236 

The MFs of the size-defining fields were chosen to represent the particle types from small 237 

to large. The small classes (cloud drops, small frozen) are most likely in the low DBZ regions, 238 

while increasing reflectivity suggests drizzle and ultimately raindrop-sized and large frozen 239 

particles (Figure 1a). Melting particles can occur at all reflectivity values. VEL MFs roughly 240 

follow fall speeds described in (Houze, 2014) which were adjusted to match to the corresponding 241 

DBZ categories during the tuning process (Figure 1b). 242 

The MFs of LDR and LLDR are low for axisymmetric particles such as liquid drops, but 243 

high for irregularly shaped ice particles in zenith and nadir pointing (Figure 1c and d). In other 244 

words LDR and LLDR are higher in areas with frozen particles due to their non-spherical shape. 245 

BACKSCAT is higher in high concentrations of small liquid drops than in small concentrations 246 

of ice-dominated regions (Figure 1e, Shupe, 2007). Interestingly, during the tuning process we 247 

found that the phase change from liquid to ice occurs at higher LLDR values for small particles 248 

than for large ones. For BACKSCAT, the ice to liquid transition occurs at smaller values for 249 

large than for small particles. The highest LDR values are associated with melting particles, 250 

mostly in the bright band region (Romatschke, 2021). 251 

As already mentioned, TEMP is only a mild indicator of particle phase in cold regions. 252 

Nonetheless, the likelihood of liquid drops still decreases with decreasing (Figure 1f). Melting 253 

particles are unlikely to occur at very low temperatures. In regions of above 0 °C temperatures, 254 

frozen particles are unlikely to occur. However, as it was observed that there can be a significant 255 

vertical distance between the freezing level and the melting layer (Romatschke, 2021), we phase 256 

out frozen and melting particles from 0 °C to 5 °C. 257 

Once the shapes of the MFs were determined, they were used to map the input fields to 258 

the so-called fuzzy fields where each input value is then represented by a value between 0 and 1. 259 

This step created 36 fuzzy fields (Pi
j), from the six particle types (i) and six input fields (j). Each 260 

fuzzy field was then multiplied with a predetermined weight (Wj) which represents the 261 

robustness of the respective input field for determining particle phase or size and the 262 

measurement accuracy of the input field. The weights were adjusted during the tuning phase and 263 

set to 22% for DBZ, 16% for VEL, 16% for LDR, 16% for LLDR, 14% for BACKSCAT, and 264 
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16% for TEMP. The weighted fuzzy fields (Pi
jWj) were summed to produce a single aggregated 265 

field (Qi) for each of the six particle types: 266 

𝑄𝑖 = ∑ 𝑃𝑖
𝑗
𝑊𝑗

6
𝑗=1 . (1) 

The aggregated field with the maximum value was identified as the likely particle type 267 

for the given observations. 268 

The mathematical operations involved in the above-described fuzzy logic procedure are 269 

(a) mapping of the input variables to the fuzzy fields, (b) multiplication of the fuzzy fields with 270 

the weights and aggregation, and (c) finding the maximum among the aggregated values for 271 

particle-type identification. The simplicity and efficiency of the method is suitable for real-time 272 

classification and display of hydrometeor types. 273 

3.3 Post-processing 274 

In the first post-processing step, classifications of particles above the melting layer where 275 

neither LDR nor LLDR is present were reassigned. Particles identified as cloud liquid and small 276 

frozen were grouped in a new small particle category (cloud), and drizzle, rain, melting, and 277 

large frozen particles were classified as an additional large particle category (precipitation). This 278 

step is necessary because a phase assessment without the phase defining fields is ambiguous. 279 

However, there is one exception to this rule. As described in Section 4.3, regions with very low 280 

DBZ values are dominated by liquid phase particles. Therefore particles in regions with no phase 281 

defining fields, but DBZ≤-30 dBZ were identified as cloud liquid. 282 

In the next step, the liquid particles above the freezing level were identified and labeled 283 

as supercooled (SC). Hence, the eleven final particle classes are rain, SC rain, drizzle, SC 284 

drizzle, cloud liquid, SC cloud liquid, melting, large frozen, small frozen, cloud, and 285 

precipitation. 286 

In the warm region below the melting layer we do not allow frozen particle types, or 287 

melting particles in regions with no LDR and no LLDR. Grid points fulfilling these criteria were 288 

replaced with the nearest neighboring particles of the non-frozen categories. Only a small 289 

number of particles were re-classified in this post-processing step. 290 

One last post-processing step was necessary because HCR samples the first valid data at 291 

range gate 18 at a range of 107 m off the aircraft, while HSRL starts sampling at range gate 21 292 
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(165 m). To avoid unrealistic category borders at gate 21, we checked whether the first three 293 

valid HCR gates (18, 19, and 20) were assigned the same category, but a different category from 294 

the first HSRL range gate 21. If that was the case, we removed the phase classification from the 295 

first three valid HCR range gates and replace them with the cloud or precipitation categories. 296 

More trust was put into the range gate with both HCR and HSRL measurements since our 297 

analysis (Section 4.2) showed that PID from combined measurements is likely more accurate. 298 

3.4 HCR stand-alone algorithm 299 

To identify particle types for field campaigns where HCR was deployed, but HSRL was 300 

not, we created a version of the PID algorithm that uses only HCR data. The principle of the 301 

algorithm is the same as for the HCR-HSRL combined algorithm. It was based on the same 302 

membership functions but only for the DBZ, VEL, LDR, and TEMP input fields. The weights in 303 

the fuzzy logic scheme were set to 34% for DBZ and 22% for the other three fields. The HCR 304 

stand-alone algorithm relies on LDR as the sole phase defining field. Therefore, regions where 305 

LDR was not valid were classified as cloud or precipitation, except for regions of DBZ≤-30 dBZ, 306 

which were set to cloud liquid (Section 4.3). The limited coverage of LDR lead to a significantly 307 

reduced number of pixels with phase classification. 308 

4 Results and validation 309 

4.1 PID example 310 

An example of the PID results for 19 January, 2018, between 4:25 and 4:30 UTC, is 311 

shown in Figure 2g. During this time, HCR and HSRL were operated in nadir pointing mode and 312 

sampled a mostly stratiform precipitating cloud. Measurements of all input fields for the PID 313 

scheme are shown in Figure 2a-f. Note that per the standard radar-based convention, downward 314 

motion in VEL is positive in nadir pointing mode but negative while zenith pointing. 315 

The spatial variation in HCR and HSRL measurements suggests that liquid, frozen, and 316 

melting hydrometeors were present in the sampled cloud (Figure 2a-e), and this is reflected in the 317 

derived PID fields from the HCR/HSRL combined (Figure 2g) and HCR stand-alone algorithms 318 

(Figure 2h). The vertical distribution of the identified hydrometeors is physically consistent, as 319 

liquid particles are observed in the warm regions and frozen particles above the melting layer. As 320 

expected, regions with large values in the size defining fields DBZ and VEL were assigned to the 321 

large particle categories rain, SC rain, large frozen, and precipitation. 322 
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 323 

Figure 2. HCR fields: (a) DBZ, (b) VEL, (c) LDR, (d) WIDTH, (e) TEMP, (f) ICING, 324 

(g) PID combined, and (h) PID HCR stand-alone. 325 

A relatively narrow band around the melting layer altitude (Figure 2f) shows the highest 326 

values of LDR (Figure 2c), especially in regions with large particles above and below. High 327 

LDR values are associated with hydrometeor melting (Romatschke, 2021), which is consistent 328 

with the melting classification in the PID field. Above the melting layer, particle phase was 329 

assigned in regions where either LDR, LLDR, or both were measured, or DBZ≤-30 dBZ. Liquid 330 

particles were observed in regions with low LDR and LLDR, but high BACKSCAT. 331 

Comparing the HCR/HSRL combined PID (Figure 2g) with the HCR stand-alone PID 332 

generally shows good agreement, although the combined algorithm shows enlarged drizzle 333 

regions (e.g. 04:25 to 04:26). The combined algorithm could retrieve particle phase in low 334 
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reflectivity regions because of the availability of LLDR (Figure 2g) where the HCR stand-alone 335 

algorithm only provided the cloud or precipitation categories (Figure 2h). The expanded areas 336 

with phase classification demonstrate the benefit of a combined deployment of HCR and HSRL 337 

for unambiguous detection of particle phase in low reflectivity regions. 338 

4.2 Validation of hydrometeor phase 339 

To assess the performance of the HCR-HSRL combined, and HCR stand-alone 340 

algorithms, PID classifications were validated quantitatively by comparing them with in-situ 341 

data. The UWILD in-situ cloud probe algorithm (Section 2.2) uses a machine learning approach 342 

to classify each particle in 2D-S cloud probe images as either liquid or ice phase, and records its 343 

size (Atlas et al., 2021; Mohrmann et al., 2021). It also provides a 1 Hz aggregated product, 344 

which separates all particles, time-stamped within one second, into liquid and ice phase, and then 345 

sorts them into 50 logarithmically spaced size bins. The 1 Hz product was used to validate the 346 

results of the PID scheme. 347 

In the first part of our validation, we focuse on the phases detected by the PID scheme 348 

and compare them to the phases provided by UWILD. It is important to note that HCR 349 

measurements are dominated by the largest particles present in a sampling volume in the 350 

Rayleigh scattering regime. For a W-band radar, particles up to a diameter of 0.3 mm are in the 351 

Rayleigh region while particles larger than 0.3 mm are in the Mie region (Ellis & Vivekanandan, 352 

2011; Zhang, 2019). For example, a few large snowflakes in a volume that is otherwise 353 

dominated by a large concentration of small liquid drops will result in a classification of large 354 

frozen, as return power is proportional to the 6th power of the particle sizes. HSRL variables are 355 

not dominated by the largest particles. However, in the combined algorithm the HCR input fields 356 

were assigned combined weights of 54% whereas the HSRL variables were assigned 30% 357 

(Section 3.2). The results are therefore dominated by the HCR variables and to compare UWILD 358 

data with PID results, the analysis focuses on the largest particles detected by UWILD. In the 1 359 

Hz aggregated UWILD product, from the large end of the size bin spectrum, the total number of 360 

particles in each size bin were cumulatively added until a minimum of 20 particles was reached. 361 

We call the aggregated size bins with these largest particles the UWILD bucket. We then 362 

calculated the liquid fraction for the UWILD bucket by dividing the number of liquid particles 363 

by the total number of particles at each 1 s time step (similar to the liquid fraction used by Atlas 364 
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et al., 2021). The average size of the UWILD bucket was recorded and used for size validation 365 

(Section 4.2.2). Since HSRL measurements are not sensitive to the largest particles, all UWILD 366 

particles were used to calculate statistics for the LLDR regions (see below). 367 

 368 

Figure 3. (a) HCR DBZ and (b) PID (color shading) and aircraft altitude (black line). (c) 369 

Simplified PID (color shading) and UWILD liquid fraction (colored line at aircraft altitude). 370 

The UWILD liquid fraction was visually compared to the PID categories during the 371 

tuning phase (Section 3.2). To aid this comparison, we simplified to only three PID categories, 372 

frozen, liquid, and melting, by combining the different liquid and frozen categories accordingly. 373 

The simplified PID categories were plotted and the UWILD liquid fraction was added to the 374 

plots as a line at flight altitude. All SOCRATES data was plotted after the final tuning, to detect 375 

strengths and weaknesses of both datasets. The main conclusions drawn from this visual 376 

comparison of PID and UWILD phase detections are illustrated in an example (Figure 3), which 377 

shows both nadir and zenith pointing data collected on January 26, 2018, from 02:14 to 02:38 378 

UTC. 379 

Overall the comparison shows good agreement between the UWILD and the PID phases. 380 

UWILD liquid fractions tend to be high where the PID scheme detects liquid particles and low in 381 

areas of frozen particles (Figure 3c). Liquid fractions of around 0.5 are observed in transition 382 
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areas between frozen and liquid particles (e.g., between 02:20 and 02:21). Regions with 383 

disagreement between the UWILD and PID phases are sometimes observed below the melting 384 

layer where UWILD shows some frozen particles (e.g., from 02:30 to 02:31). These occasional 385 

discrepancies are explained with the findings of Atlas et al. (2021) who point out that the 386 

UWILD algorithm sometimes misclassifies large liquid drops as frozen particles. Since our 387 

analysis focuses on the large end of the size spectrum, this known problem affects the 388 

comparison. Another observation is that HCR and HSRL are often able to detect hydrometeors in 389 

areas where UWILD does not detect anything (e.g. between 02:22 and 02:24). We speculate, that 390 

owing to the larger sample volume, the remote sensing instruments are more sensitive to the 391 

presence of very small particles, as UWILD does not classify particles with area equivalent 392 

diameters of less than 0.056 mm (Atlas et al., 2021), and in sparsely populated regions. 393 

To facilitate a statistical comparison between the UWILD and PID phases for the times 394 

not included in the tuning data (which we call the validation data) liquid fractions were 395 

computed from the simplified PID classification. For the comparison with the UWILD liquid 396 

fraction, we were interested in the remote sensing observations closest to the aircraft to minimize 397 

spatial separation between the remote and in-situ data. For each second in the UWILD dataset, 398 

we collect the PID results between two seconds before and two seconds after the UWILD 399 

timestamp, and from the first six valid HCR-HSRL range gates, which correspond to ranges of 400 

~107 to 203 m from the aircraft. This sample volume is referred to as a PID bucket. The PID 401 

bucket consists of 54 pixels: nine pixels along-track (i.e., in time) and six range pixels. It is 402 

important to note that the vertical offset between the UWILD data, which was collected on the 403 

aircraft, and the remote sensing measurements, can affect the comparison results (Section 4.4). A 404 

liquid fraction for the PID bucket was estimated by dividing the number of liquid pixels by the 405 

total number of non-empty pixels, provided the total number of non-empty pixels was larger than 406 

14 (~25% of the total 54 pixels). Melting pixels in the simplified PID bucket were equally 407 

distributed between the liquid and frozen phases. Also, the dominant (i.e., most frequently 408 

occurring) PID category for each PID bucket was recorded. 409 

The PID liquid fraction and the UWILD liquid fraction represent different temporal and 410 

spatial domains. The UWILD bucket corresponds to 1 second of data while the PID bucket 411 

corresponds to 4.5 seconds and the PID bucket volume is therefore significantly larger than that 412 

of the UWILD bucket. The difference in volume is unavoidable because of the vertical offset. 413 
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However, it can compensate for some of the effects of the offset, as explained in the following. If 414 

the aircraft is flying in a horizontally and vertically homogeneous region with particles of only 415 

frozen (e.g. 02:22:20 UTC, Figure 3c) or only liquid phase (e.g. 02:26:00, Figure 3c), the liquid 416 

fraction calculated from both the UWILD and the PID buckets will be close to 0 or 1, 417 

respectively, and the different volumes have no effect on the comparison. This was the most 418 

frequent case. The volume difference comes into play in transition areas where both frozen and 419 

liquid particles exist (02:21:10 UTC, Figure 3c). Because these transition areas are rarely 420 

vertically aligned, they will likely be observed at slightly different times in the two datasets 421 

because of the vertical offset between the measurement locations. By spreading the PID bucket 422 

in time, the likelihood of including grid points of both phases increases and the liquid fraction 423 

will therefore have more resemblance to the liquid fraction from the UWILD bucket. Therefore, 424 

we argue that the liquid fractions, although derived in very different ways, are still reasonably 425 

comparable. 426 

 427 

Figure 4. Heat map of PID (x-axis) vs UWILD (y-axis) liquid fractions. Shown are 428 

percentages of total data points (color scale). The number of points is shown in the panel titles. 429 

The overall correlation coefficient between the two liquid fractions in the validation data 430 

is 0.75. However, given the sampling volume differences in the calculation of the two liquid 431 

fractions, the correlation coefficient needs to be approached with caution. We therefore 432 

conducted a heatmap comparison between the PID and UWILD liquid fractions (Figure 4), 433 

which shows good overall agreement between the UWILD and combined PID datasets. If the 434 

datasets were in perfect agreement, fractional values would align along the diagonal from the 435 

bottom left to the top right. The lower-left corner represents particles identified as frozen by both 436 
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methods (liquid fraction equals zero) and the upper right corner represents particles identified as 437 

liquid by both methods (liquid fraction equals one). Values near the upper left and bottom right 438 

corners represent disagreement in particle phase identification. Both datasets favor a binary 439 

distribution of classifications as either frozen (close to zero) or liquid (close to one). The values 440 

in between, which indicate mixed conditions, are sparsely populated. (This is the reason we 441 

chose a heat map display over a scatter plot.) 442 

Table 1. Comparison between UWILD and PID liquid fractions: hit rate, and number of 443 

samples. 444 

 
Hit rate (%) Samples 

Combined all 72 12447 

Combined rain 22 236 

Combined SC rain 44 84 

Combined drizzle 57 651 

Combined SC drizzle 68 798 

Combined cloud liquid 88 1751 

Combined SC cloud liquid 71 2049 

Combined melting 
 

88 

Combined large frozen 95 1931 

Combined small frozen 72 3301 

HCR stand-alone 77 11665 

LLDR regions 61 8200 

LDR LLDR overlap regions 77 11310 

About 36.0% of particles were classified as frozen (Figure 4j) and 35.5% were classified 445 

as liquid by both algorithms. The remaining particles were evenly distributed over the other bins, 446 

none of which exceeded 10%. This even distribution of the remaining particles indicates that 447 

there is no overall systematic bias. We calculated a hit rate by adding up the percentages that lie 448 

on the aforementioned diagonal. For all particles combined, the hit rate is 72% (Table 1). 449 

Analyzing the particle categories individually, it is apparent that most of the SOCRATES 450 

flight tracks in the verification dataset occurred above the melting layer and less than 1,000 451 
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verification data points were collected in the rain, drizzle, and melting categories, respectively. 452 

The SC rain category is also sparsely populated (84), reflecting the fact that SOCRATES 453 

occurred in an environment not conducive to strong convection, which is a prerequisite for rain 454 

particles being lifted above the melting layer. The only warm particle category with a significant 455 

number of samples (1751) is cloud liquid. For both large and small frozen particles both methods 456 

identified a large proportion of particles as frozen and the hit rates of 95% and 72% underline the 457 

good agreement between the UWILD and PID results. For the liquid categories, cloud liquid and 458 

SC cloud liquid also have high hit rates of 88% and 71% respectively. SC drizzle has a hit rate of 459 

68%, which is lower than the hit rate of cloud liquid. Rain, SC rain, and drizzle have hit rates of 460 

22%, 44% and 57% respectively, which are low due to the small number of samples, especially 461 

in the first two of these categories. The melting category cannot be verified with the UWILD 462 

dataset since the latter does not identify melting particles. 463 

To validate the performance of the phase-defining fields from HCR (LDR) and HSRL 464 

(combination of LLDR and BACKSCAT) separately, we first applied the above-described 465 

validation method to the HCR stand-alone results. The correlation coefficient between the liquid 466 

fraction from the HCR stand-alone PID results and the UWILD liquid fraction is 0.79, slightly 467 

higher than the correlation coefficient of the combined PID. The hit rate is 77%. We then applied 468 

the validation scheme to regions where LDR is not observed, but LLDR is, to validate the 469 

performance of the LLDR-BACKSCAT combination. Note that all sizes of the UWILD dataset 470 

were used for this comparison instead of just the largest ones. The resulting correlation 471 

coefficient of 0.44 is relatively low. However, the hit rate of 61% still indicates significant skill. 472 

The best comparison results are obtained in regions where all three phase-defining fields are 473 

measured: the correlation coefficient is 0.82 and the hit rate is 77%. 474 

It is encouraging that results from regions where not all phase-defining fields are 475 

measured still show positive skill. The results from the HCR stand-alone algorithm promise 476 

robust particle identification for field campaigns in which HSRL is not deployed. However, the 477 

excellent results from regions with all three phase-defining fields, and the expanded data regions 478 

with phase classification resulting from the addition of LLDR, highlight the benefit of deploying 479 

HCR and HSRL together. It is also worth mentioning that during the visual inspection of the PID 480 

results we rarely found non-realistic boundaries of PID categories where regions with all phase 481 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

defining fields bordered regions with fewer phase defining fields. In most cases particle phase 482 

did not change at such boundaries, which again points to the skill of the phase defining fields. 483 

4.3 Cloud liquid in regions of low DBZ 484 

In earlier versions of the PID algorithm (not published) we did not include the post-485 

processing step which classifies DBZ≤-30 dBZ as cloud liquid (Section 3.3). However, during 486 

our work on the PID scheme, we noticed that regions above the melting layer with very low 487 

reflectivities were mostly classified as cloud liquid in regions where LDR, LLDR, or both were 488 

observed. We analyzed the frequency of occurrence of the particle classes in regions of DBZ≤-489 

30 dBZ (Figure 5). It is evident that the vast majority of particles are in the SC cloud liquid and 490 

cloud liquid categories (67% combined) while only 29% of particles were in the frozen 491 

categories (the remaining 4% were classified as melting). When we restricted the classification to 492 

regions with LDR but no LLDR, the liquid percentage even increased to 97%. Based on these 493 

inferences, we assigned low reflectivity areas with the SC cloud liquid classification. The 494 

threshold of -30 dBZ was chosen empirically after conducting sensitivity studies where we 495 

varied this threshold over a certain range. At threshold values below ~-26 dBZ the liquid 496 

percentage stabilized to just below 70%. Therefore, a threshold of -30 dBZ is a conservative 497 

choice that ascertains that a possible overestimate of liquid stays below 30%. 498 

 499 

Figure 5. Particle categories of data points with DBZ≤-30 dBZ where LDR, LLDR, or 500 

both were observed. 501 
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The finding that low reflectivities are mostly observed in liquid regions is interesting and 502 

somewhat surprising. Future studies will investigate whether this phenomenon is temperature-503 

dependent. 504 

4.4 Caveats for the phase classification 505 

Overall, the high correlation coefficients and hit rates from an independent dataset 506 

validate the quality of the PID results. This section presents limiting factors that may account for 507 

the discrepancies in the results and circumstances where caution in the interpretation of the PID 508 

results is warranted. 509 

Occasional misclassifications of liquid drops below the melting layer as frozen in the 510 

UWILD dataset (Atlas et al., 2021) is likely reflected in some of the results where PID classifies 511 

liquid but UWILD classifies frozen particles. 512 

The most significant limiting factor to the comparison between PID and UWILD data is 513 

the spatial offset of about 100 to 200 m between the 2D-S probe and the remote sensing 514 

observations (Section 3.3). Comparisons of phase classifications of the two datasets are likely 515 

less affected by this offset in areas of convection, where we expect more homogeneity in the 516 

vertical. In regions of stratiform clouds, which dominated in SOCRATES, the effect can be 517 

significant. It will be particularly strong in cases where the aircraft was flying at the upper or 518 

lower edge of a cloud. It has been previously observed that a liquid hull often surrounds ice-519 

dominated clouds at their outer boundaries (Korolev & Isaac, 2003). PID results strongly 520 

confirm this observation. If the aircraft flies at the top edge of a cloud within this liquid hull, 521 

UWILD will report a high liquid fraction, while PID from the nadir pointing instruments, which 522 

measure the ice inside the cloud, will report frozen particles. 523 

The current version of the PID scheme does not include a mixed-phase category that 524 

could identify regions where both liquid and frozen particles co-exist within the same sample 525 

volume. The PID will therefore miss mixed phase regions below the sampling grid resolution. It 526 

can identify mixed-phase regions if the dominant phase changes in consecutive grid points. 527 

The classification of low reflectivity regions as cloud liquid likely somewhat 528 

overestimates the presence of liquid (Section 4.3). While we considered flagging these regions as 529 

mixed phase we ultimately decided against this idea, to keep the PID classes simple. Considering 530 
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that small liquid drops are associated with aircraft icing conditions and pose a significant risk for 531 

aviation, we decided to err on the side of overestimating liquid. 532 

4.5 Hydrometeor size 533 

In addition to phase discrimination, the PID scheme provides information about the sizes 534 

of the particles by classifying them as large and small for the frozen categories and rain sized, 535 

drizzle sized, and cloud droplet sized for the liquid categories. To verify that the actual size 536 

distribution of these categories follows the implied distribution, and to assign quantitative size 537 

estimates to these qualitative category names, we used the same PID bucket that was used to 538 

calculate the PID liquid fraction and recorded the dominant (i.e. most frequent) PID category at 539 

each UWILD time step (Section 4.2). Then, for each PID category, we found the associated 540 

times in the UWILD dataset and averaged the mean size of the particles in the UWILD bucket 541 

that were recorded during the UWILD processing (Section 4.2). This procedure was carried out 542 

for the whole dataset which included both the tuning and verification times. The results show 543 

that the PID categories indeed follow the expected size distribution (Figure 6). 544 

 545 

Figure 6. Mean particle diameter for each PID category (colored dots). The black 546 

brackets show one standard deviation. 547 

With a mean diameter of 0.51 mm, rain has the largest average size of the liquid 548 

categories followed by SC rain with 0.44 mm. The mean drop size of rain is on the low end of 549 
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the size spectrum usually attributed to rain (Houze, 2014). The small raindrop size can likely at 550 

least partially be attributed to the fact that larger particles are more likely to be partially truncated 551 

by the image buffer of the 2D-S probe (Atlas et al., 2021). Also, in an extratropical region such 552 

as the Southern Ocean it is reasonable to expect smaller raindrop sizes. The small number of 553 

samples in the rain and SC rain categories (Table 1) may also play a role. The mean diameters of 554 

SC drizzle (0.26 mm), and drizzle (0.24 mm) are smaller than those of the rain categories, and 555 

fall well within the size ranges generally associated with drizzle drops (Houze, 2014). 556 

The cloud liquid (0.12 mm), SC cloud liquid (0.13 mm), and cloud (0.16 mm) categories 557 

have the smallest diameters, as expected. However, the average diameters are larger than those 558 

usually attributed to cloud droplets (Houze, 2014). The inflated size of the cloud liquid 559 

categories is likely caused by the lower detection boundary of UWILD of 0.056 mm. In fact, 560 

UWILD mostly does not detect any particles when PID detects cloud droplets and the actual 561 

mean particle size of the cloud liquid categories is therefore likely significantly smaller. 562 

Particles in the melting category, which are mostly observed close to the melting layer, 563 

have an average diameter of 0.34 mm, which is between the rain and drizzle particles and smaller 564 

than the frozen particles. 565 

Even though large frozen particles are the largest, with an average diameter of 0.85 mm, 566 

they are still significantly smaller than expected for a category that includes snowflakes. 567 

However, the limitations of the 2D-S probe in measuring large particles likely underestimated 568 

the large frozen particle size. The actual diameters of the large frozen particles will extend to 569 

larger sizes than are reflected here. The mean diameter of the small frozen particles is reasonable 570 

at 0.42 mm with a large standard deviation. Interestingly, there is almost no overlap between the 571 

size ranges of the large and small frozen categories, with a separation boundary at 0.6 mm. 572 

The precipitation category has an average particle diameter of 0.21 mm which may seem 573 

small at a first glance. However, we need to keep in mind that the precipitation category is only 574 

assigned in regions where neither LDR nor LLDR are observed. These regions have generally 575 

low backscattered powers and the precipitation in this category is therefore expected to be on the 576 

low end of the precipitating categories. The precipitation category also has a large standard 577 

deviation. 578 
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From Figure 6 and the previous discussion, we attribute the approximate size ranges 579 

listed in Table 2 to the PID categories. 580 

Table 2. Approximate PID category particle diameter ranges. 581 

PID category Lower bound (mm) Upper bound (mm) 

Rain 0.3 
 

SC rain 0.1 
 

Drizzle 0.1 0.4 

SC drizzle 0.1 0.4 

Cloud liquid 
 

0.2 

SC cloud liquid 
 

0.2 

Melting 0.1 0.5 

Large frozen 0.6 
 

Small frozen 0.2 0.6 

Precip 
 

0.4 

Cloud 
 

0.3 

5 Conclusions 582 

Remote sensing observations from the airborne HIAPER Cloud Radar (HCR) and High 583 

Spectral Resolution Lidar (HSRL) collected in 15 research flights during the SOCRATES field 584 

campaign over the Southern Ocean were used for the development of a PID scheme. It 585 

discriminates between liquid and frozen cloud and precipitation particles of different sizes, and 586 

classifies them into eleven particle categories. The fuzzy logic based PID method results in 587 

smooth transitions between particle types instead of fixed borders and combines several different 588 

input fields into a robust PID classification. The mathematical steps are simple, linear, algebraic 589 

operations, hence the PID technique can be implemented for real-time applications. A trimmed-590 

down version of the algorithm can be used for HCR data alone. 591 

In-situ measurements collected onboard the HIAPER aircraft by a 2D-S cloud probe, 592 

which had previously been processed with machine learning methods, were used to tune the 593 

algorithm and verify the PID results. A comparison between the phases derived from the HCR 594 

and 2D-S cloud probe measurements shows over 70% agreement, which is encouraging given 595 
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the comparison's limitations, such as a spatial offset between in-situ and remote measurements. 596 

The sizes of the PID particle categories derived from the 2D-S size distributions fall within the 597 

expected ranges. 598 

Adding particle identification capabilities to HCR, and HCR and HSRL in combination, 599 

significantly increases the cloud and precipitation particle information available to the research 600 

community. The PID field adds a two-dimensional (time-range) dataset that provides vertical 601 

slices through clouds and precipitation systems, to the one-dimensional (time) cloud probe data, 602 

which are only available at the flight level. Also, the combination of the large sample volume 603 

and the sensitivity of the remote sensing instruments provides hydrometeor phase and size 604 

information in areas where cloud probe data is limited. PID is available for all past HCR and 605 

HCR/HSRL combined field campaigns and will be provided in the standard datasets of future 606 

campaigns. 607 

The spatial distribution of both hydrometeor phase and size, derived from remote sensing 608 

observations in the PID scheme, can constrain microphysical parameterization in weather and 609 

climate models and improve the representation of cloud radiation effects. Quantification of 610 

precipitation amounts can be improved by modifying the techniques used for their estimation 611 

based on particle type. 612 
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