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Abstract

Natural forcing from solar and volcanic activity contributes significantly to climate variability. The post-eruption cooling of

strong volcanic eruptions was hypothesized to have led to millennial-scale variability in the Glacial and to be weakened in

warmer climate states. The underlying question is whether the climatic response to natural forcing is state-dependent. Here,

we quantify the response to natural forcing under Last Glacial and Pre-Industrial conditions in an ensemble of climate model

simulations. We evaluate internal and forced variability on annual to multicentennial scales. The global temperature response

reveals no state dependency. Findings on the ability of models to simulate past variability could therefore translate to future

climates. Small local differences result mainly from state-dependent sea ice changes. Variability in forced simulations matches

paleoclimate reconstructions significantly better than in unforced scenarios. Considering natural forcing is therefore important

for model-data comparison and future projections.
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Key Points:10

• We present Glacial/Interglacial climate simulations and quantify effects of time-11

varying volcanic and solar forcing on climate variability12

• The mean global and local response to these forcings is similar in Glacial and In-13

terglacial climate, suggesting a weak state dependency14

• In both climate states, modeled temperature variance agrees better with palaeo-15

climate data when volcanic and solar forcing is included16
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Abstract17

Natural forcing from solar and volcanic activity contributes significantly to climate vari-18

ability. The post-eruption cooling of strong volcanic eruptions was hypothesized to have19

led to millennial-scale variability in the Glacial and to be weakened in warmer climate20

states. The underlying question is whether the climatic response to natural forcing is state-21

dependent. Here, we quantify the response to natural forcing under Last Glacial and Pre-22

Industrial conditions in an ensemble of climate model simulations. We evaluate inter-23

nal and forced variability on annual to multicentennial scales. The global temperature24

response reveals no state dependency. Findings on the ability of models to simulate past25

variability could therefore translate to future climates. Small local differences result mainly26

from state-dependent sea ice changes. Variability in forced simulations matches paleo-27

climate reconstructions significantly better than in unforced scenarios. Considering nat-28

ural forcing is therefore important for model-data comparison and future projections.29

Plain Language Summary30

Climate variability describes the spatial and temporal variations of Earth’s climate.31

It is a key factor influencing extreme weather events. Yet, it is unclear whether these vari-32

ations depend on the mean surface temperature of the Earth or not. Here, we investi-33

gate the effects of natural forcing from volcanic eruptions and solar activity changes on34

climate variability. We compare simulations of a past (cold) and present (warm) climate35

with and without volcanism and solar changes. We find that overall, the climate system36

responds similarly to natural forcing in the cold and warm state. Small local differences37

mainly occur where ice can form. To evaluate the simulated variability, we use data from38

paleoclimate archives, including trees, ice-cores, and marine sediments. Climate variabil-39

ity from forced simulations agrees better with the temperature variability obtained from40

data. Natural forcing is therefore critical for reliable simulation of variability in past and41

future climates.42

1 Introduction43

Climate variability, that is variations in the statistics of climate parameters, char-44

acterizes Earth’s dynamical system and is the primary influence on extreme events (Katz45

& Brown, 1992). Variability arises from unforced processes, internal to the climate sys-46

tem, and from forced processes, caused by external natural and anthropogenic drivers.47

Natural drivers include volcanic and solar forcing, contributing significantly to climate48

variability (Crowley, 2000). Due to anthropogenic activities, the recent trend of global49

mean surface temperature (GMST) and other variables has clearly emerged beyond the50

range of natural variability (Bindoff et al., 2013; Hasselmann, 1997; Marcott et al., 2013;51

Sippel et al., 2020).52

Global warming also affects climate variability (Bathiany et al., 2018; Olonscheck53

et al., 2021). The underlying mechanisms remain poorly understood. There is conflict-54

ing and incomplete evidence on the spatio-temporal patterns of change (Brown et al.,55

2017; Holmes et al., 2016; Rehfeld et al., 2020; Pendergrass et al., 2017; Huntingford et56

al., 2013). This is a major source of uncertainty for regional climate projections. The57

abilities of models to accurately simulate climate variability requires that they resolve58

internal variability and the response to natural forcing across scales and mean climate59

states (Rehfeld et al., 2018).60

Large explosive volcanic eruptions are suggested to have driven millennial-scale cli-61

mate variations during glacial periods (Baldini et al., 2015). The largest eruption was62

hypothesized to have caused a human population bottleneck (Ambrose, 1998). The ex-63

tent and impact of this event remains unclear (Timmreck et al., 2010; Svensson et al.,64

2013). Strong tropical volcanic eruptions have also been shown to influence daily tem-65
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perature and precipitation extremes (T. Wang et al., 2021). These eruptions are hypoth-66

esized to induce a somewhat weaker response in warmer climates (Hopcroft et al., 2018),67

but volcanism will continue to play an important role in future variability (Bethke et al.,68

2017). These studies, however, do not examine the dependency of forced variability on69

the mean climate because they rely on future projections or the responses to large erup-70

tions.71

The paleoclimate record is crucial to assess whether a colder planet is more sen-72

sitive to natural forcing than a warmer one. Yet, temperature variability shows a mis-73

match between paleoclimate simulations and proxy data on the decadal-to-multicentennial74

scale (Laepple & Huybers, 2014a; Ellerhoff & Rehfeld, 2021). Paleoclimate simulations75

for the Last Glacial Maximum (LGM) or Pre-Industrial (PI) have mostly been performed76

without high frequency solar and volcanic forcing (Braconnot et al., 2012; Kageyama et77

al., 2018). This lack could potentially explain the mismatch between reconstructed and78

simulated variability. Additional uncertainty remains about the mechanisms of local, long-79

term variability (Franzke et al., 2020; Huybers & Curry, 2006; Fredriksen & Rypdal, 2017).80

Separating internal and external variability has improved the understanding of cli-81

mate dynamics and its underlying mechanisms (Schurer et al., 2013; Haustein et al., 2019;82

Frankcombe et al., 2015; Mann et al., 2022). Such an approach could also allow to iden-83

tify drivers of local, decadal-to-multicentennial variability in cold and warm climates.84

This requires the comparison of unforced and forced climate simulations under Glacial85

and Interglacial conditions, and their validation against paleoclimate data over a wide86

range of timescales. There is also a need to study contributions to surface climate vari-87

ability of system components that bridge internal and external factors. Sea ice, for ex-88

ample, follows in extent the mean state. Natural forcing could, however, also drive the89

multidecadal variability of sea ice extent via modulation of the Atlantic Meridional Over-90

turning Circulation (AMOC) (Halloran et al., 2020). This highlights the need to study91

the contribution to variability from climate components and mechanisms that bridge in-92

trinsic and external factors.93

Here, we contrast unforced and naturally forced simulations under LGM and PI94

conditions in an ensemble using the Hadley Centre Coupled Model Version 3.4 (HadCM3;95

(Gordon et al., 2000; Pope et al., 2000; Stott et al., 2000; Reichler & Kim, 2008)). We96

examine the mean local response of the surface climate to volcanism in the two climate97

states (section 3.1). Spectral analysis (section 3.2) further quantifies the state- and timescale-98

dependent effects of natural forcing on local, zonal, and global scales. It confirms a ro-99

bust response to natural forcing across climate states, but a mean decline in local tem-100

perature variability with warming. To aid interpretation of the spectra, we investigate101

sea ice dynamics as it appears a main contributor to local, long-term variability. We val-102

idate simulated variances using proxy data (section 3.3) to confirm that the addition of103

natural forcing significantly reduces the model-data mismatch on multidecadal and longer104

timescales. Thus, the inclusion of natural forcing provides a more accurate representa-105

tion of climate variability, needed for climate simulations.106

2 Data and Methods107

2.1 Model Setup108

Our simulation ensemble consists of 12 unforced and forced runs using LGM or PI109

boundary conditions (Table S1, Figure S1 in Supporting Information S1). We performed110

the simulations using HadCM3, a three-dimensional, coupled atmosphere-ocean general111

circulation model (AOGCM) that has been widely used for paleoclimate study (Valdes112

et al., 2017; Tindall et al., 2009; Flato et al., 2014; Reichler & Kim, 2008; Collins et al.,113

2001; Armstrong et al., 2022; Bühler et al., 2021). Despite its comparatively low reso-114

lution, HadCM3’s simulated climate is comparable to other AOGCMs and observations115
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forcing dependence
rσ(LGM* / LGM) =1.66±0.09
rσ(PI* / PI) =1.64±0.03

state dependence
rσ(LGM* / PI*) =1.04±0.03
rσ(LGM / PI) =1.03±0.05

LGM*
LGM
PI*
PI

-1 -0.5 0 0.5
GMST anomaly [K]

0
1

2
3

4
D

en
si

ty

Figure 1. Distribution of simulated yearly GMST anomalies from all Pre-Industrial (PI) and

Last Glacial Maximum (LGM) runs. Forced scenarios are marked with a (*). The ratio of the

distributions’ standard deviations is given by rσ.

(Gordon et al., 2000; Jackson & Vellinga, 2013). The computational efficiency of HadCM3116

allows for longterm integrations and ensemble comparisons.117

The simulations are monthly resolved and of millennial length. The boundary con-118

ditions (orography, orbital parameters, greenhouse gas concentrations) define the mean119

state and are held constant over these runs. All runs start from the same LGM/PI spin-120

up simulation at consecutive years. Temperature, precipitation, sea level pressure, and121

wind fields are shown in Figure S2. The Last Glacial GMST is decidedly colder (9.5±122

1.4) °C and the global mean precipitation rate (GMPR) is lower (935 ± 20)mmyr−1,123

with a steeper equator-to-pole temperature gradient than the Pre-Industrial with (15.1±124

1.3) °C and (1048± 21)mmyr−1, respectively.125

To facilitate comparison between climate variability in the LGM and PI, we ap-126

ply the same transient volcanic and solar forcing (Figure S1), following the PMIP3 pro-127

tocol (Schmidt et al., 2012). The forcing is updated every ten days in the model sim-128

ulation. The time series prescribing the total solar irradiance consists of data from Steinhilber129

et al. (2009) and Y. Wang et al. (2005), with a superposed 11-year cycle (Schmidt et al.,130

2012). For volcanic forcing, we use the eruption reconstruction from Crowley and Un-131

terman (2013). We supply the Aerosol Optical Depth (AOD) time series defined at a wave-132

length of 0.55µm which is converted into an aerosol mass loading factor (Crowley & Un-133

terman, 2013; Schmidt et al., 2012). Three runs exist for each state and each forcing sce-134

nario (Table S2). Unless otherwise specified, our results represent average values of these135

sub-ensembles.136

Figure 1 shows the distribution of simulated global mean surface temperature anoma-137

lies for the Last Glacial and Pre-Industrial. Forced scenarios are marked with a star (*)138

and exhibit larger fluctuations. The GMST standard deviation is increased by a factor139

of approximately 1.65 compared to unforced runs. By contrast, there is no major dif-140

ference in the GMST distribution attributable to the mean climate.141

2.2 Observations and Paleoclimate Reconstructions142

We use observations and paleoclimate reconstructions to validate the variance from143

model simulation on interannual to multicentennial scales (2-5, 5-50, 50-200, and 200-144

500 years). We consider proxy records from Rehfeld et al. (2018), and the PAGES2k-145

Consortium (2017), and observations from the Met Office Hadley Centre’s sea surface146
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temperature dataset (HadISST downloaded 11/2019; (Rayner et al., 2003)). We focus147

on sea surface temperatures to facilitate comparison with proxy data, mainly stemming148

from ocean sites. We select records that (1) are published and calibrated to tempera-149

ture, (2) consist of more than 50 data points, (3) cover at least three times the largest150

period of interest, and (4) have a mean sampling frequency of twice the highest frequency151

considered (Ellerhoff & Rehfeld, 2021). We exclude proxy records with gaps larger than152

five times the required resolution. Ice core records are not considered on timescales be-153

low 50 years, where signal-to-noise ratios are low (Laepple et al., 2018; Casado et al., 2020).154

Our ensemble consists of 41 observations and 115 proxy records from six different archives.155

The separately uploaded dataset (supporting information S2) lists the considered data.156

Figures S10 and S11 display their power spectra.157

2.3 Effect Analysis158

We analyze the global and local state-dependent effects of natural forcing in time159

and spectral domain. Following Swingedouw et al. (2017), we quantify local climate ef-160

fects of moderate to large-magnitude volcanic eruptions using the mean standardized anomaly161

(MSA). The MSA is computed for 12-month means surrounding periods with high aerosol162

imprint (AOD > 0.13, corresponding to approx. -2.6 W/m2 (Forster et al., 2021)) as163

follows164

MSA =
1

j

∑
j

1
12

∑
i∈Tj

Xi − µ

σ
, (1)

with mean µ = E[X] and standard deviation σ =
√
E[(X − µ)2] of each gridbox time165

series X. The index i specifies the 12 months of the time series X corresponding to the166

set of periods Tj for run j of each climate state. The normalization to the local variabil-167

ity σ allows detecting forced variations caused by volcanic eruptions. We test for sta-168

tistical significance by bootstrapping using 400 block samples of X with a fixed length169

of 48 months.170

We quantify the timescale-dependent variance of surface air temperature using the171

power spectral density (PSD, denoted spectrum). We obtain the spectrum applying the172

multitaper method (Percival & Walden, 1993) with three windows and chi-square dis-173

tributed uncertainties. The required assumption of weak stationarity (Davies & Chat-174

field, 1990) is reasonably fulfilled, given that we linearly detrend all time series (Nilsen175

et al., 2016; Fredriksen & Rypdal, 2016; Laepple & Huybers, 2014b). We logarithmically176

smooth the spectra using a Gaussian kernel of 0.02 decibels. Following Huybers and Curry177

(2006), we compute mean spectra after interpolation to the lowest resolution and bin-178

ning into equally spaced log-frequency intervals.179

We use variance ratios, as in Laepple and Huybers (2014b), Rehfeld et al. (2018)180

and Ellerhoff and Rehfeld (2021), to compare the variance between model simulations181

and observational data. We first interpolate the observation and proxy data onto an equidis-182

tant time axis, using the same mean resolution as the raw signal. We compute the spec-183

trum and obtain the variance by integration over the considered timescale (2-5, 5-20, 50-184

200, 200-500 years). Finally, we calculate the variance ratio by dividing the simulated185

by the reconstructed variance. Confidence intervals are obtained from a F-distribution,186

based on the degrees of freedom of the variance estimates. For the longest timescale (200-187

500 years), the “lgm3” and “pi2” run (Table S2) are excluded due to their comparatively188

short coverage. The change in variance ratios between forced and unforced runs is quan-189

tified by the area-weighted mean of the improvement factor (Appendix A).190
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3 Results191

3.1 Mean Response to Volcanic Forcing192

Volcanic eruptions cause mean temperature decline at almost every location (Fig. 2193

(a) and (b)) as expected (Robock, 2000). The mean response, quantified by MSA, is weaker194

over the oceans than over land. Moreover, the response is stronger between 30◦N and195

30◦S than in high-latitude regions, largely following the mean AOD imprint (Fig. 2 (c)).196

The strongest cooling (up to three standard deviations) occurs over the Southeast Asian197

Archipelago (Fig. 2 (b)). These patterns are largely robust against changes in the mean198

climate. This also applies to precipitation, sea level pressure, and 500mbar wind speed199

(Figure S3).200
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Figure 2. a Mean standardized anomalies (MSA) of surface air temperature in the LGM* b

and the PI* state after volcanic eruptions. Dots indicate insignificant anomalies within the 99%

quantile range of local variability. Grey shaded crosses show land ice. Hatched areas indicate

areas with >50% yearly sea ice coverage. c Zonally averaged MSA and Aerosol Optical Depth

(AOD) (black dashed).

The zonally averaged MSA (Fig. 2 (c)) reveals small differences between the states201

during LGM* and PI* around the equator, 60◦S, 50◦N, and towards the North Pole. We202

identify corresponding differences in Southeast Asia, the Antarctic Ocean, over the North-203

ern Hemisphere (NH) ice sheets, and the Barents Sea (Fig. 2 (a) and (b)). In Southeast204

Asia, the enhanced PI* surface climate response could be linked to the high AOD im-205

print from strong tropical volcanic eruptions (Fasullo et al., 2017), such as the 1257 Samalas206

eruption. This region also features significant changes in the land-sea mask, which al-207

ter the local coupling between ocean and surface climate. In the Last Glacial, the cool-208

ing in response to volcanism is enhanced at the Antarctic sea ice edge and in the Bar-209

ents Sea. Both regions feature a much higher amount of sea ice cover during the Last210

Glacial. The variations in MSA extend towards the Arctic Ocean and Northern North211

Atlantic. Differences between the states could therefore be related to the potential for212

sea ice formation, likely amplifying the local response to volcanic eruptions (Timmreck,213

2012). Remaining small differences are found in regions with state-dependent changes214

of Northern Hemisphere (NH) ice sheets, with a tendency towards enhanced cooling over215

NH land masses in the Pre-Industrial.216

3.2 Spectral Response at the Global and Local Scale217

Examining power spectra for the global and local scale highlights the timescale-218

dependent impact of natural forcing. Global mean spectra of simulated temperatures (Fig. 3219
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(a)) are predominately determined by natural forcing. Including the forcing increases220

the power, and thus variance, on all timescales. At multidecadal scales, the forced GMST221

shows approximately five times more variance than unforced runs. State-dependent ef-222

fects of the forced response are not discernible in these spectra.223

Local mean spectra (Fig. 3 (a)) are characteristic for the mean state and less af-224

fected by natural forcing. They point to a greater temperature variance during the Last225

Glacial. Differences between the states are the strongest on interannual scales, where LGM(*)226

variance is increased by a factor of approximately two compared to PI(*). Zonal mean227

spectra (Fig. 3 (b) and (c)) reveal that the decrease in variability with warming is great-228

est at mid-, and especially high-latitudes, supporting a potential link to sea ice dynam-229

ics. The tropical variability widely agrees across states. Differences between forced and230

unforced local and zonal mean spectra are within uncertainties, but most pronounced231

for high-latitude, long-term variability.232

Local

Global

500 200 100 50 20 10 5 2
Period [years]

0.
01

0.
1

1
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 [K
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LGM*
LGM
PI*
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a
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forced
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10

10
0

PIc

Figure 3. a Local (top) and global (bottom) PSD for simulated temperature using HadCM3.

Global spectra are computed from the global mean surface temperature. Local refers to the area-

weighted average of all local spectra. b and c Area-weighted average of local spectra by climate

zone, given by the tropics (-23.5 to 23.5 ◦N), mid (23.5 to 66.5◦), and high latitudes (>66.5◦)

for LGM and PI. Lines show the logarithmically smoothed mean spectrum, with shaded 95%

confidence intervals.

3.3 Comparison of Observed and Modeled Variability233

We validate the simulated variability against observational and paleoclimate data234

and revisit the local, long-term variability mismatch (Laepple & Huybers, 2014a; Rehfeld235

et al., 2018; Ellerhoff & Rehfeld, 2021) using variance ratios. Figure 4 shows the model-236

data mismatch as variance ratios. The variance obtained from proxies is increasingly larger237

on longer timescales compared to that from simulated time series.238

There is no major difference in the variance ratios between unforced and naturally239

forced runs on short timescales (2-5 and 5-50 years) (Fig. 3 (a) and (b)). This can be240

explained by internal processes dominating simulated local variability at these scales. The241

PI simulation slightly overestimate interannual variability in the mid and high latitudes242

compared to sea surface temperature observations of the last century.243
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Beyond periods of 50 years (Fig. 3 (c)-(e)), the simulated local variance is consis-244

tently smaller than proxy-based reconstructions. Inclusion of natural forcing in simu-245

lations decreases the mismatch for the majority of proxy sample sites. On periods of 50246

to 200 years, the ratio bias is decreased by a factor (local mean improvement, Appendix247

A) of f=1.38 (1.12, 1.71, 90% confidence interval). The local mean improvement increases248

towards multicentennial scales, reducing the discrepancy. On periods of 200 to 500 years,249

the mismatch is reduced by a factor of 2.22 (1.75, 2.81) and 1.54 (1.27, 1.87) for the Last250

Glacial and Pre-Industrial, respectively. Although the inclusion of natural forcing is not251

sufficient to achieve consistency between modeled and proxy variance, it significantly re-252

duces the mismatch.253

naturally forced simulations
unforced simulations

Figure 4. Ratio r(sim./obs.) of simulated to observed variance over latitude for unforced

(black) and naturally forced (green) HadCM3 simulations. Model data is bilinearly interpolated

to the location of the observation. We show the ratio of simulated PI temperature to observa-

tions for periods of 2-5 years (a), and to proxies spanning the last 8000 years on interannual to

decadal (b), multidecadal (c), and multicentennial (d) timescales. Symbols indicate the variance

ratio and vertical lines their 90% confidence interval. Panel e is the same as d for proxies span-

ning the last 19000 to 27000 years. The local mean improvement f of the variance ratio is given

in the lower left of each panel, with confidence intervals in parentheses (Text Appendix A).

4 Discussion254

We confirm that including natural forcing promotes temperature variability in model255

simulations across a range of timescales. In contrast to some experiments in the liter-256

ature, we find that the modeled response of global mean surface temperature does not257

strongly depend on the mean climate (Fig. 1 and 3). Locally, weak state-dependent ef-258

fects occur (Fig. 2 and 3). Considering natural forcing significantly increases global mean259

temperature variability and reduces the model-data mismatch on local temperature vari-260

ability, in particular on multidecadal and multicentennial scales (Fig. 4).261

Previous studies suggested state-dependent effects of volcanic forcing on global and262

hemispheric climate (Berdahl & Robock, 2013; Muthers et al., 2015; Swingedouw et al.,263

2017; Zanchettin et al., 2016). These results were obtained using ensembles of large vol-264

canic eruptions. The dependency in these has been primarily linked to nonlinear pro-265

cesses, sensitive to the initial state (Zanchettin et al., 2013). We argue that the response266

to individual volcanic eruptions may well depend on the climate state. However, glob-267

ally averaged effects from changes in response mechanisms are small when considering268

more realistic forcing scenarios. A linear relation between GMST and external forcing269

has been found at various timescales (Geoffroy et al., 2013; MacMynowski et al., 2011;270
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Fredriksen & Rypdal, 2017). In our ensemble, the GMST response to the large-magnitude271

1257 Samalas eruption shows no difference between LGM* and PI* (Figure S8 (a)). Global272

precipitation and sea ice concentration is only slightly enhanced in the LGM* (Figure S8 (b)273

and (c)). The mean climate also predominately determines the AMOC variability (Fig-274

ure S9), which is smaller in the Last Glacial on multidecadal and multicentennial scales275

than in the PI (Jackson & Vellinga, 2013). However, under Last Glacial conditions, the276

AMOC strength and correlation length is increased by natural forcing (Figure S9). While277

the potential mechanisms of the intensification are still debated (Iwi et al., 2012; Mignot278

et al., 2011), they could lead to state-dependent modifications of long-term regional vari-279

ability through natural forcing.280

The question of state-dependent local variability has long motivated studies of past281

(Ditlevsen et al., 1996; Shao & Ditlevsen, 2016; Rehfeld et al., 2018) and future (Huntingford282

et al., 2013; Rehfeld et al., 2020; Olonscheck et al., 2021) climate. Our results reveal a283

decrease in mean local variability with warming (Fig. 3 (a)). Decreasing sea ice dynam-284

ics and a smaller meridional temperature gradient are suggested as major causes (Berdahl285

& Robock, 2013; Bethke et al., 2017; Bathiany et al., 2018; Olonscheck et al., 2021; Re-286

hfeld et al., 2018; Brown et al., 2017). In line with these studies, we find a clear zonal287

pattern, with greater reduction of variability in the mid and high latitudes (Fig. 3 (b)288

and (c)). This is corroborated by the small discrepancy between short-term variability289

from observations and simulations in the mid and high latitudes (Fig. 4(a)). In contrast290

to our PI simulations, the sea surface temperature observations are affected by the re-291

cent global warming trend and sea ice retreat, potentially leading to the observed de-292

crease in local, high-latitude variability.293

Consistent across our experiments, we find regions with varying sea ice extent, pri-294

marily the Southern Oceans and Barents Sea, to be most affected by the effects of nat-295

ural forcing. This is further supported by mean standardized anomalies of precipitation,296

sea level pressure, and wind speed over the North American ice sheet, the North Atlantic297

Ocean, Antarctica, and the Southern Oceans (Figure S3). Moreover, the variability of298

global sea ice concentration is higher in forced compared to unforced scenarios (Figure S5).299

A comparison to simulations with the two-dimensional energy balance model (TransEBM300

(Ziegler & Rehfeld, 2021)) (Figure S6) adds support to the role of sea ice in forced tem-301

perature variability. As TransEBM is a fairly linear model with no atmospheric and oceanic302

dynamics, it can be used to differentiate the contribution from deterministic forcing and303

sea ice to the variance. We modified TransEBM to incorporate sea ice changes follow-304

ing the HadCM3 output. Forming the ratio of the local mean TransEBM and HadCM3305

(Figure S7) reveals a strong sea ice contribution to interannual variability in line with306

Fig. 3 (a). The contribution remains significant on decadal and longer timescales, pro-307

moting sea ice variations as a key mechanism of local, long-term variability.308

Our results provide crucial insights into the discrepancy between modeled and re-309

constructed local, long-term variability (Laepple & Huybers, 2014a; Ellerhoff & Rehfeld,310

2021). While internal variability dominates the local temperature variance on annual to311

decadal scales (Goosse et al., 2005), we demonstrate contributions from natural forcing312

beyond decadal timescales (Fig. 3). This is supported by increased scaling coefficients313

(Figure S4) of forced temperatures on periods of 50 to 500 years, and implies an increase314

in variance on longer timescales. Including natural forcing in model simulations reveals315

a better model-data agreement of local variability on multidecadal and multicentennial316

scales (Fig. 4). This is perhaps surprising given that the forcing has no centennial scale317

variability (Ellerhoff & Rehfeld, 2021). There is no change in agreement from interan-318

nual to decadal timescales, implying that the gain from forcing on local temperatures319

is small on these short timescales. This suggests that not only the integrated response320

to strong (Timmreck, 2012) but also to weak natural forcing contributes to long-term321

variability. Time-varying forcing appears thus beneficial for reliable simulations of global322

mean (Fig. 3) and local, long-term variability. Consistent with previous arguments (Bethke323

–9–
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et al., 2017), our results challenge the common usage of external forcing that is either324

constant or shows no time-varying changes besides a global trend (O’Neill et al., 2016).325

We may miss feedback processes in our model simulations, that are relevant for lo-326

cal climate variability. This could explain the underestimation of local variability com-327

pared to proxy data (Fig. 4(a)). Sea ice dynamics, stratospheric and cloud-related feed-328

backs are key nonlinear mechanisms that can alter the response to volcanic forcing in329

a warmer climate (Hopcroft et al., 2018; Fasullo et al., 2017; Aubry et al., 2021). Pro-330

jections for tropical volcanism showed enhanced radiative forcing from strong eruptions331

and a damping of the response to moderate eruptions (Aubry et al., 2021). The cloud-332

related feedback, likely to be underestimated in HadCM3, is generally weaker than that333

from sea ice, but may be enhanced in warmer climates (Hopcroft et al., 2018). While our334

results suggest that sea ice indeed is critical, it also highlights the role of the cryosphere335

response in setting climate variability. Future work could therefore examine the response336

in simulations with models that show a higher equilibrium climate sensitivity (Wu et al.,337

2019; Tatebe et al., 2019; Voldoire et al., 2019; Gettelman et al., 2019) and show more338

sensitive sea ice changes (Guarino et al., 2020). The absence of sea ice and changes in339

vegetation cover may significantly alter the response in extreme warming scenarios. In340

our long transient simulations, only one possible realization of the forcing history was341

considered. Future studies could therefore apply probabilistic representations (Bethke342

et al., 2017) to replicate results in larger ensembles (Zanchettin et al., 2016). This will343

also aid understanding of the state-dependent response of multidecadal modes to nat-344

ural forcing (Swingedouw et al., 2017).345

5 Conclusion346

Presenting the first millennial-length, naturally forced simulation for the LGM, we347

investigated state-dependent effects of volcanic and solar forcing on global and local cli-348

mate variability. The modeled global temperature response shows no dependency on the349

mean climate. Weak local differences resulted primarily from sea ice dynamics, provid-350

ing a key mechanism of long-term variability. Including natural forcing in climate model351

simulations improved the agreement between modeled and observed variability and, thus,352

calls into question constant volcanic forcing in climate model simulations used for pro-353

jections and model-data comparison. The robust temperature response suggests that find-354

ings on the ability of models to simulate past variability should translate to future cli-355

mates; and can help constrain forced variability across spatial and temporal scales.356

Appendix A Variance Ratio Improvement357

We quantify the change in variance ratio r from unforced and naturally forced sim-358

ulations to proxy records using the logarithmic measure l(x) = |log10(x)|. Let r
(∗)
i =359

var(S
(∗)
i ) /var(S′

i) be the variance ratio obtained from the simulated S
(∗)
i and proxy spec-360

trum S′
i at the site i, with (∗) denoting the climate state. The distance li = l(r∗i )−l(ri)361

denotes the change of the variance ratio bias between the forced and unforced simula-362

tion. For a set of N sites, we quantify the mean change from ∆l = 1
N

∑N
i liwi with lo-363

cal area weights wi derived from the HadCM3 grid where
∑N

i wi = 1. We convert the364

logarithmic distance to the factor f = 10∆l, called the variance ratio improvement. Sim-365

ilarly, we estimate the confidence ranges using area-weighted mean of the error propa-366

gation367

δli =

√(
δr∗i

r∗i ln(10)

)2

+

(
δri

riln(10)

)2

. (A1)

We ensure a conservative coverage of the confidence intervals by using the upper limit368

on δr
(∗)
i from the F-distributed uncertainties of the variance ratio estimate.369
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Open Research370

The presented model simulations are available at Zenodo via 10.5281/zenodo.6074747371

with CC-BY-SA 4.0 license. They were carried out using version 3 of the Hadley Cen-372

ter Coupled Model, HadCM3, are described in Valdes et al. (2017) and Tindall et al. (2009).373

The HadCM3 simulation ensemble was created using the Archer UK National Supercom-374

puting Services. Paleoclimate and observation datasets for this research are included in375

Rehfeld et al. (2018); PAGES2k-Consortium (2017) and Rayner et al. (2003). Supple-376

mental analysis was conducted using the two-dimensional TransEBM model as described377

by Ziegler and Rehfeld (2021) which is based on Zhuang et al. (2017). Code and data378

to reproduce all figures is available at https://github.com/paleovar/StateDependency,379

this will be deposited on Zenodo after peer review.380
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S. (2013). Transient climate response in a two-layer energy-balance489

model. Part I: Analytical solution and parameter calibration using CMIP5490

AOGCM experiments. Journal of Climate, 26 (6), 1841–1857. doi:491

10.1175/JCLI-D-12-00195.1492

Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A., Dan-493

abasoglu, G., . . . others (2019). High climate sensitivity in the community494

earth system model version 2 (cesm2). Geophysical Research Letters, 46 (14),495

8329–8337.496

Goosse, H., Renssen, H., Timmermann, A., & Bradley, R. S. (2005). Internal and497

forced climate variability during the last millennium: A model-data compari-498

son using ensemble simulations. Quaternary Science Reviews, 24 , 1345-1360.499

doi: 10.1016/j.quascirev.2004.12.009500

Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C.,501

. . . Wood, R. A. (2000, 7). The simulation of sst, sea ice extents and ocean502

heat transports in a version of the hadley centre coupled model without flux503

adjustments. Climate Dynamics, 16 , 147-168. doi: 10.1007/s003820050010504
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Introduction This supporting material provides additional information on boundary

conditions, surface climate, and spectral properties of the HadCM3 simulation. We show
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the power spectra of all simulated and reconstructed time series, used for variance ratio

estimates. The separately uploaded dataset S1 contains detailed information about the

considered paleoclimate records from Rehfeld, Münch, Ho, and Laepple (2018), Rayner

et al. (2003), and the PAGES2k-Consortium (2017). We provide a supporting analysis on

the contribution of sea ice dynamics to variability using the two-dimensional TransEBM

model (Ziegler & Rehfeld, 2021).

Data Set S1. Key specification of proxy records used to estimate local temperature

variance ratios. The records were collected from Rehfeld et al. (2018), Rayner et al. (2003)

and the PAGES2k-Consortium (2017). The first six columns denote the reconstruction

name, assigned ID, location (Latitude, Longitude, Elevation), archive type, and proxy

used. The last column denotes the climate state (“LGM” or “PI”) for which the proxy

reconstruction was considered. Surface temperature observations were taken from the

location closest to the proxy location and specified by ”HadISST@...”.
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Figure S1. a Simulated PI* and LGM* global mean surface temperature (GMST) averaged

over all runs in a state, total solar irradiance (Steinhilber et al., 2009), and aerosol optical

depth (Crowley & Unterman, 2013). The solar forcing was kept constant the first 50 years due

to missing reconstructions. b LGM over LGM* GMST anomalies from HadCM3 after linear

detrending and subtracting the mean of the full time series. c As b, with PI* over LGM* GMST

anomalies.
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wind fields at 500mbar (j-l) as simulated by HadCM3 for the LGM* and PI*. Means over latitude

intervals are displayed in the right-hand panels. Global mean values and their standard deviation

are given above the maps.
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Figure S3. Mean standardized anomalies (MSA), as Figure 2 of the main manuscript, for

precipitation rate (a-c), sea level pressure (d-f), and wind fields at 500mbar (g-i) from HadCM3.

Dots indicate insignificant anomalies within the 99% quantile range of local variability. Grey

shaded crosses and lines show land and sea ice, respectively. Mean anomalies over latitude

intervals are displayed on the right-hand panels. The black dashed line shows the mean zonal

Aerosol Optical Depth (AOD) imprint.
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Figure S4. Scaling coefficient β of forced and unforced surface air temperature on the

multidecadal-to-multicentennial scale (50-500yrs) as simulated by HadCM3 for the Last Glacial

and Pre-Industrial. Surface air temperature variability was approximated by power-laws of the

spectrum S(τ) ∼ τβ with 50 ≤ τ ≤ 500 years and scaling coefficient β (Huybers & Curry,

2006; Fredriksen & Rypdal, 2017; Lovejoy & Varotsos, 2016). The area-weighted mean scaling

coefficient is denoted by β̂. Following Huybers and Curry (2006), we estimate β by linear

regression after log-binning to prevent low-frequency biases.
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Figure S5. Power spectral density (PSD) of naturally forced and unforced global mean

sea ice concentration as simulated by HadCM3 using Last Glacial and Pre-Industrial boundary

conditions. The global mean sea ice concentration is defined as the percentage of the globe

covered in sea ice.
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Figure S6. Global and local mean spectra of naturally forced surface air temperature as sim-

ulated by TransEBM with (solid lines) and without (dotted lines) time-varying sea ice dynamics

(SID). TransEBM is a two-dimensional energy balance model with T42 resolution, as described

by Ziegler and Rehfeld (2021) which draws on Zhuang et al. (2017). We run TransEBM with

the same boundary conditions and time-varying forcing time series as the HadCM3 simulations,

including the latitudinal-dependent volcanic forcing. Without loss of generality, we used the

same constant CO2 values as in HadCM3 and neglected minor impacts from other greenhouse

gases. The EBM is driven by yearly averaged solar and volcanic forcing. Dotted lines show the

global and local mean spectra of the simulated temperature when sea ice extent is fixed. To

mimic the sea ice dynamics in the two-dimensional model, we update the EBM’s land-sea mask

yearly based on the sea ice output from HadCM3 and repeat the simulations.
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Figure S7. Ratio of HadCM3 (Figure 3) to TransEBM (Figure S6) local mean spectra (PSD) of

naturally forced surface air temperature. LGM⋆ / LGM⋆ and PI⋆ / PI⋆ denote the ratios obtained

from dividing the local mean spectrum of the naturally forced HadCM3 temperature by the one

obtained from TransEBM with fixed sea ice. For the ratios of LGM⋆ / LGM⋆ (SID) and PI⋆

/ PI⋆ (SID), time-varying sea ice dynamics in TransEBM was prescribed using the HadCM3

output. Hence, forming the ratio largely removes the linear response to naturally forcing and, for

(SID), the contribution to variability from sea ice. The ratios therefore indicate the timescale-

dependency of local variance simulated by HadCM3 that can be mainly attributed to internal

dynamics excluding (solid lines) and including (dotted lines) sea ice dynamics. Shaded confidence

intervals are computed from the F-distribution, based on the degrees of freedom of the spectral

estimates.
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Figure S8. Superposed epoch analysis (see e.g., Sear et al. (1987); Brad Adams et al. (2003))

of globally averaged surface temperature (GMST, a), precipitation rate (GMPR, b), and sea

ice concentration (GMICE, c) as simulated by HadCM3 using the reconstructed 1257 Samalas

eruption. The lines represent the average value over all simulations in the LGM* and PI* state,

and the shaded areas their respective ranges. The volcanic forcing from the Samalas eruption is

shown in black. Anomalies are calculated against the three-year period before the eruption using

the deseasonalized, detrended HadCM3 model output.
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Figure S9. a Power spectral density (PSD) of the Atlantic Meridional Overturning Circu-

lation (AMOC) strength from control and forced LGM and PI simulations using HadCM3. b

Correlation length, defined as the lag at which the autocorrelation function first drops below 1/e

and its standard error. Following Danabasoglu et al. (2012), we compute the AMOC strength

as the maximum of the meridional ocean velocity field between 450 m and 2100 m depth and

20◦N to 62.5◦N at every timestep. Accordingly, the AMOC strength is given in Sv = 106 m3 s−1.

The correlation length is an average of 3000 randomly sampled 100 year time slices of each state

(1000 slices per run).
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Figure S10. Temperature spectra from observations and proxy records (orange), and from

HadCM3 simulations (grey) for the Pre-Industrial state, used for variance ratio estimates (Figure

4 of the main manuscript). The x-axis labels and background of each panel highlights the period

(2-5 and 5-50 years) considered for timescale-dependent variance estimates. The y-axis denotes

the power spectral density. Solid and dashed lines indicate forced and unforced runs. The title

denotes the IDs from the separately uploaded dataset S1.
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Figure S11. Same as Figure S10 but for multidecadal (50-200 years) and multicentennial

(200-500 years) timescales. HadCM3 simulations under Last Glacial boundary conditions are

shown in magenta.
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Table S1. Boundary conditions of the HadCM3 simulation ensemble. Orbital parameters

are internally calculated following (Berger, 1978) and Orography is taken from Singarayer and

Valdes (2010) for 21 ka BP and 1850 CE. Greenhouse gas concentrations are taken from the

protocols of the PMIP3 21ka and PI experiments (Schmidt et al., 2012). Vegetation is modeled

with a 30-year timestep (Cox, 2001). Forced runs are driven by time-varying volcanic and solar

(volc + sol) forcing as described in Table S2.

State Orography, Orb. Param. CO2, CH4, N2O Forcing #Runs

Last Glacial Maximum (LGM) 21 ka BP 185ppm, 350ppb, 200ppb – 3

Forced LGM (LGM*) 21 ka BP 185ppm, 350ppb, 200ppb volc + sol 3

Pre-Industrial (PI) 1850 CE 280ppm, 650ppb, 270ppb – 3

Forced PI (PI*) 1850 CE 280ppm, 650ppb, 270ppb volc + sol 3
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