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Abstract

Natural rocks belong to the polymineral composite material with complex microstructures. Such a strong heterogeneity of rocks

makes it difficult to estimate the effective moduli by traditional models in theory. In the present study, a Mori-Tanaka (MT)

model considering the shape and orientation of inclusion minerals obtained by the micro-CT is established, and then it is applied

to evaluate the anisotropic parameters of shales. In the MT model, the principal radii and Eulerian angles of the ellipsoidal

inclusion are obtained by solving its inertia matrix through the micro-CT. According to these inclusion information, we make

statistics on the ratio of average principal radii and the distribution of Eulerian angles of inclusions with different minerals. In

what follows, the effective elastic stiffness matrix of shale samples is predicted by the MT model, and the corresponding digital

core is input for finite element method (FEM) analysis to verify the accuracy of the theoretical results. It is shown that the

anisotropy of the elastic stiffness matrix predicted by the MT model and FEM is consistent under two sizes of representative

volume elements. These findings are potential for applications in rock mechanics, civil engineering and oil exploitation, etc.
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Abstract 

Natural rocks belong to the polymineral composite material with complex microstructures. 

Such a strong heterogeneity of rocks makes it difficult to estimate the effective moduli by 

traditional models in theory. In the present study, a Mori-Tanaka (MT) model considering the 

shape and orientation of inclusion minerals obtained by the micro-CT is established, and then 

it is applied to evaluate the anisotropic parameters of shales. In the MT model, the principal 

radii and Eulerian angles of the ellipsoidal inclusion are obtained by solving its inertia matrix 

through the micro-CT. According to these inclusion information, we make statistics on the ratio 

of average principal radii and the distribution of Eulerian angles of inclusions with different 

minerals. In what follows, the effective elastic stiffness matrix of shale samples is predicted by 

the MT model, and the corresponding digital core is input for finite element method (FEM) 

analysis to verify the accuracy of the theoretical results. It is shown that the anisotropy of the 

elastic stiffness matrix predicted by the MT model and FEM is consistent under two sizes of 

representative volume elements. These findings are potential for applications in rock 

mechanics, civil engineering and oil exploitation, etc. 

Plain Language Summary 

The elastic properties and anisotropy of reservoir rock is of great significance for reservoir 

exploration and drilling, which are associated with complex micro-structures and strong 

heterogeneity. The rock physics model especially effective medium is of great significance for 

the prediction of rock elastic. Mori-Tanaka (MT) model is one of the most widely used method 

to evaluate the elastic properties of material with complex shape and orientation inclusions. In 

order to make the MT model more practical, the information of different inclusions in shale 



3 

 

 

sample are obtained by micro-CT and digital core. And the ellipsoidal inclusions required in 

the MT model are approximated by calculating the moment of inertia of irregular inclusions. 

Therefore, in this study, the elastic stiffness matrix of shale containing kinds of inclusions that 

can reflect the anisotropy of elastic properties are predicted by the MT model considering the 

shape and orientation of representative ellipsoidal inclusions. Finally, we found that the 

effective modulus of shale is anisotropic by the MT model, and verified the anisotropy law 

predicted by the MT model and the finite element method. The anisotropy in shale is mainly 

caused by the non-random arrangement of pores, TOC and clay.  

Keywords: Mori-Tanaka model; digital core; numerical simulation; effective modulus; 

anisotropy 

1 Introduction 

The unconventional reservoir rocks, such as the tight sandstone and shale, are 

characteristic of multi-mineral compositions and complex microstructures. The resulting strong 

heterogeneity and complex mechanical properties challenge the evaluation to predict the 

overall elastic properties of reservoir rocks (Prasad & Pal-Bathijia, 2009; Jian et al., 2020). 

Particularly, the directionally distributed pores or other minerals in tight sandstones or shales 

from deep reservoirs as deviatoric stress fields often make reservoir rocks be anisotropic, and 

this fact significantly increases the difficulty to estimate effective moduli by conventional 

models in theory (Shapiro & Kaselow, 2005; Gui et al., 2018; Zhang et al., 2020). 

To consider the anisotropy of reservoir rocks, many models have been proposed (Vernik 

& Nur, 1992; Hudson, 1986; Cheng, 1993), but the consideration of the shape and orientation 

of minerals is missing. In practice, the theory of mesomechanics starting from the Eshelby 
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tensor (Eshelby, 1957) has been extensively applied in composite materials (Berryman, 1995; 

Raju et al., 2018), among which the Mori-Tanaka (MT) model (Mori & Tanaka, 1974) is one 

of the most representative methods (Park et al., 2020) and it has been applied in many 

fields00(Shen and Wang, 2012; Wang et al., 2017). Zimmerman & David (1991, 2011a, 2011b) 

has systematically analyzed many effective medium models including the MT model, and 

deduced the pore’s compressibility and shear compliance, which has greatly promoted the 

application of MT model in rock physics. In succession, Deng et al. (2015) use the MT model 

to calculate the effective moduli of a dry sandstone containing randomly distributed spherical 

inclusions. Goodarzi et al. (2016) compared the applicability of MT, self-consistent and 

generalized self-consistent models in evaluating the effective moduli of shale, and they found 

the MT and generalized self-consistent models can accurately predict the bulk modulus. 

Similarly, Zhao et al. (2018) compared the shale moduli predicted by the MT and self-

consistent models based on the micro indentation results, and it was claimed that the MT model 

can better predict the anisotropy of shales.  

Although the MT model has been introduced into the evaluation of the elastic properties 

of shales, the shape and orientation of inclusions in the MT model are assumed theoretically in 

previous studies. With the development of micro-computed tomography (micro-CT) and digital 

core technologies (2019), it is now possible to introduce the real information of inclusions in 

shales into the MT and other theoretical models. The micro-CT has been widely used to predict 

the effective moduli of composites (Sahimi & Tahmasebi, 2021), and the digital core technique 

is effectively used to describe the porous media in the analysis of rock conductivity, heat 

conduction and seepage (Zhao et al., 2020). In terms of elastic properties of rocks, the finite 

element method (FEM) is a most conventional tool to analyze the digital core, which is accurate 

but time-consuming. However, there are few investigations on the application of digital core 
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to effective medium models including the MT model to evaluate the elastic properties of shales. 

For combination of the MT model and the digital core technique, the key point is how to 

extract the geometric parameters of inclusions required in the Eshelby tensor. Drach et al. (2011, 

2013) developed a method to extract individual pore inclusions from the micro-CT data, and 

classified the irregular characteristic groups by using the moment of inertia of any irregularly 

shaped pores. Park et al. (2020) obtained the distribution laws of pore shape and orientation in 

AE cement by the pore’s inertia matrix, and predicted the effective moduli of anisotropic AE 

cement by the MT model. Considering that the inclusions with small stiffness such as pores 

and clay in the shale have similar laws, Giraud et al. (2007) proposed a theoretical model to 

describe the orientation distribution of inclusions. However, there are few studies on applying 

the inclusion’s inertia matrix obtained by the micro-CT to the evaluation of shale’s elastic 

properties.  

The direct goal of this study is to obtain the inertia matrix of inclusions in the shale through 

the micro-CT, in order to analyze the shape and orientation laws of different kind of inclusions. 

This information on the inclusions is combined with the Mori-Tanaka model to evaluate the 

anisotropic properties of shale sample and the contribution of different kinds of inclusions. The 

outline of this article is organized as follows. In section 2, the principle of MT model to predict 

the anisotropy of shale’s elastic properties is introduced, which the definition and introduction 

of Eulerian angles are formulated. In section 3, through the reconstruction of CT images of the 

shale sample in Longmaxi formation, the shape and orientation information of inclusions with 

different components are obtained and analyzed. In section 4, the elastic stiffness matrix of the 

shale sample is quantified by the MT model, and the effect of different kinds of inclusions to 

the shale’s anisotropy is discussed. Moreover, a comparison of the results by the MT model 

and FEM analysis is presented to verify the accuracy of the MT model in predicting the 



6 

 

 

anisotropic properties of shales. 

 

2 Fundamentals of the MT model considering the inclusion’s orientation 

We first give the illustration of the Mori–Tanaka model, which is one of the most widely 

used methods to predict the effective properties of composite materials in various fields. The 

interaction among inclusions can be considered by distinguishing the far-field strain and the 

matrix strain in the MT model, so it is suitable for the analysis of representative volume element 

(RVE) including large volume fraction inclusions. For the shale with multiple and 

morphological inclusions, the prediction formulas of the effective modulus can be expressed 

as (Shen et al., 2013) 

 
1 1

1 1

0 0 0 0

1

= +
N

r r r

r

f f
 

 



  
 C C C C S C , (1)  

where C  is the effective elastic stiffness tensor, C0 represents the elastic stiffness of matrix, 

and N is the number of components in the shale including the matrix and (N–1) kinds of 

inclusions. The subscript r is the component number, where 0 corresponds to the matrix. The 

parameter fr is the volume fraction of each component, satisfying 
1

=0

=1
N

r

r

f


 . The quantity Cr is 

the elastic stiffness tensor of the r-th component, and Sr is the Eshelby tensor of the r-th 

component, satisfying Sr = PrC0. The expression of the Hill tensor Pr of general ellipsoidal 

inclusions is listed in Appendix A. 

In the prediction of effective modulus using the MT model, each inclusion can be regarded 

as an ellipsoid, and the three principal radii of an ellipsoidal inclusion satisfy a1>a2>a3, i.e. the 

principal inertia of the ellipsoid satisfies M11< M22< M33. The orientation of the ellipsoid with 
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principal axes O-x1x2x3 with respect to a set of axes O-XYZ fixed in the shale may be specified 

by the three Eulerian angles ψ, θ and φ. The process is that the principal coordinate O-x1x2x3 of 

any orientation in space can be obtained by three rotations of the axes O-XYZ and the specific 

process is schematized in Figure 1. 

 

Figure 1. Schematic transformation of the Eulerian angles 

 

Therefore, for any fourth-order tensor expressed as 'A  in the axes O-x1x2x3, its form A 

in the axes O-XYZ can be derived by the transformation equation, which is 

1= '
A T A T , (2)  

where T is a fourth order transformation tensor, and its corresponding 6×6 matrix form is 

  1 2

3 4

2
=
 
 
 

T T
T

T T
, 

 

2 2 2

11 21 31

2 2 2

1 12 22 32

2 2 2

13 23 33

=

R R R

R R R

R R R

 
 
 
 
 

T , 

 
21 31 31 11 11 21

2 22 32 32 12 12 22

23 33 33 13 13 23

=

R R R R R R

R R R R R R

R R R R R R

 
 
 
  

T , 

(3)  
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 
12 13 22 23 32 33

3 13 11 23 21 33 31

11 12 21 22 31 32

=

R R R R R R

R R R R R R

R R R R R R

 
 
 
  

T , 

 
22 33 23 32 32 13 33 12 12 23 13 22

4 23 31 21 33 33 11 31 13 13 21 11 23

21 32 22 31 31 12 32 11 11 22 12 21

+ + +

= + + +

+ + +

R R R R R R R R R R R R

R R R R R R R R R R R R

R R R R R R R R R R R R

 
 
 
  

T . 

 

The symbol Rkl represents the component of a second-order tensor R in its 3×3 matrix form, 

which reads 

 
11 12 13

21 22 23

31 32 33

=

R R R

R R R

R R R

  

 
      
  

R R R R , 

 

(4)  

where Rψ, Rθ and Rφ correspond to the second-order tensors of ψ, θ and φ to transform the 

vector from axes O-x1x2x3 to axes O-XYZ, which are written as 

cos sin 0

= sin cos 0

0 0 1



 

 

 
     
  

R ,  

 

cos 0 sin

= 0 1 0

sin 0 cos



 

 

 
 
 
  

R , 

1 0 0

= 0 cos sin

0 sin cos

  

 

 
      
  

R . 

(5)  

Then, the matrix form of R is 
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 

cos cos cos sin sin sin cos cos cos sin sin cos

= cos cos sin sin cos sin cos sin cos cos sin sin

cos sin sin sin cos

           

           

    

   
 

  
 
  

R . (6)  

When considering the orientation of inclusions, Equation (1) can be recast as  

 
1 1

11 1

0 , , , 0 0 , 0 ,

1 1

= +
rnN

r i r i r i r i r i

r i

f f
 

 

 

       
C C T C C S C T , (7)  

where nr represents the total number of inclusions of the r-th component, the subscript i is the 

inclusion number, the subscript (r,i) represents the i-th inclusion in the r-th component, and Tr,i, 

Cr,i and Sr,i are the corresponding transformation tensor, elastic stiffness tensor and Eshelby 

tensor, respectively. 

On the premise that geometric parameters are obtained, the effective elastic stiffness 

tensor of the shale can be predicted by MT model according to Equation (7). The shape and 

orientation parameters of all inclusions will be detemined in Section 3. 

3 Image processing and component information statistics 

3.1 Digital core of the Longmaxi formation shale 

Next, the core sample of the Longmaxi formation shale with a diameter of about 4 mm is 

used to generate the so-called digital core. The core is tomographed by Shanghai Synchrotron 

Radiation CT Facility from Shanghai Institute of Applied Physics, Chinese Academy of 

Sciences. Based on the different absorption capacity of different substances to light, a set of 

1397 high-resolution core slice images are obtained, which represent different components by 

different gray levels. Figure 2 shows that the first and last horizontal slice images of this core, 

and each image contains 2000×1400 pixels. Different components of the shale can be clearly 

distinguished according to different gray levels of the image, such as pores and TOC (the 
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darkest part, shown in yellow circles), pyrite (shown in white and red circles), clay, quartz, 

feldspar and other minerals (gray black to gray white, shown in blue and green boxes). It can 

be seen that the shale of Longmaxi demonstrates a very strong heterogeneity, which has a major 

impact on the elastic properties and anisotropy of the rock. Specifically, the directional 

arrangement of pores and clays in the shale may lead to the obvious anisotropy (Sayers, 1994). 

 

Figure 2. Horizontal slices of the Longmaxi formation shale’s digital core images, where (a) 

is the first horizontal slice image; (b) the last (1397th) horizontal slice image. 

 

For the subsequent analysis of the shale’s effective modulus, it is necessary to batch 

preprocess the images and divide the core into six components according to the gray level, 

which are (1) pore, (2) TOC, (3) clay, (4) quartz, (5) feldspar, calcite, and (6) pyrite, siderite 

(Jian et al. 2020). The preprocessed image is divided into six relatively fixed gray values, and 

the first and last preprocessed images are shown in Figure 3. It is more clearly to distinguish 

the different components, and the difficulty of 3D reconstruction is reduced.   
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Figure 3. Horizontal slices after multi threshold segmentation, where (a) is the first 

horizontal slice image and (b) is the last (1397th) horizontal slice image. 

 

Then, all the slice images are imported for 3D reconstruction. Based on the results of 

computed tomography, we determine that the sizes of a pixel are 2.841 μm, 2.841 μm and 1.665 

μm along X, Y and Z-axes, respectively. The reconstructed core of the scanning section is shown 

in Figure 4 (a). However, the cylindrical core cannot meet the boundary symmetry conditions 

required for the RVE analysis, so the cuboid containing 900×900×1200 pixels is intercepted 

from the core center and marked as RVEtotal, as shown in Figure 4 (b). 

 

Figure 4. 3-D reconstruction of shale digital core in the Longmaxi formation, where (a) 

sample of scanning section; (b) RVEtotal for analysis. 
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3.2 Geometric information of each component 

Binarization is carried out to obtain the corresponding components in RVEtotal by setting 

different thresholds, and the binarization results of pores are shown in Figure 5 (a). In fact, the 

RVEtotal in Figure 5 (a) contains more than 105 individual pore inclusions, which is a huge task 

for mesh generation. In addition, we take a single pore inclusion from the RVEtotal, which is 

displayed in Figures 5 (b) to (d). It can be found that the pores obtained only by threshold 

segmentation has the irregular and sharp boundaries in Figures 5 (c) and (d). These defects and 

bulges have little effect on the anisotropy of the shale caused by pores, but they will greatly 

affect the calculation efficiency of the MT model and FEM. Therefore, we have carried out the 

digital image processing on the core, and the process includes removing small holes, 

segmentation, closing, opening, and removing small spots and median filtering. The processed 

results of pores in the RVE are demonstrated in Figures 5 (e) to (h). It can be seen from Figure 

5 (e) that the small volume pores are deleted and the number of pores decreases significantly. 

On the premise of maintaining the overall characteristics of pores, the opening and closing 

operation can reduce the defects and bulges of pores, which can be obtained by comparing 

Figures 5 (c), (d) and (g), (h). 
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Figure 5 Comparison between pores inclusions before and after image processing, where (a), 

(b), (c) and (d) are the figures before the image processing, and (e), (f), (g) and (h) are the 

figures after the image processing, respectively. Figures (a) and (e) are the pore inclusions in 

the RVE; (b) and (f) are the horizontal slice images of pore inclusions; (c) and (g) show a 

horizontal slice of an isolated pore; (d) and (h) are the corresponding 3-D reconstructed pores. 

 

By adjusting the relevant parameters in the image processing, the volume fraction of each 

component before and after processing is maintained at a similar value. The volume fraction 

of each component after processing is shown in Table 1. It can be seen from Table 1 that the 

component with the largest volume fraction in the RVE is quartz, which exceeds 50%, so it 

should be used as the matrix phase when using the MT model. Accordingly, other components 

are considered as inclusions. In addition, the bulk and shear moduli of each component are 

listed in Table 1.  
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Table 1 Elastic paramaters and volume fractions of different mineral components (Mavko et 

al., 1998) 

Number 

Mineral 

phase 

Bulk 

modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

Volume 

fraction 

0 Quartz 37 44 0.5411 

1 Pores 2.25 0.001 0.0328 

2 TOC 2.9 2.7 0.0481 

3 Clay 20.9 6.85 0.2873 

4 Feldspar 71.998 34.978 0.0759 

5 Pyrite 134.685 102.704 0.0148 

3.3 Ellipsoidal approximation of inclusions 

Inclusions of different components in the shale usually have irregular shapes. For example, 

the pores in Figure 5 (h) show a kind of shape similar to a flat ellipsoid. However, the ellipsoid 

is usually adopted as a representative shape to characterize the contribution of inclusion to the 

RVE’s mechanical properties in mesomechanics (Drach et al., 2011), and so is the MT model. 

In a previous study, Drach et al. used the moment of inertia of the pore to classify the irregular 

pores of carbon/carbon composites, and it was verified that the inertia matrix of the inclusion 

can significantly affect the anisotropy of the RVE (Drach et al., 2013). As a consequence, the 

principal radius and principal direction of the approximate ellipsoidal inclusion used in the MT 

model are obtained through the inertia matrix of the irregular inclusion.  



15 

 

 

The inertia matrix of an irregular shaped inclusion in the coordinate system O-XYZ is 

 
2 2 2 2

2 2 2 2

2 2 2 2

= =

XX XY XZ Y Z XY XZ

YX YY YZ XY X Z YZ

ZX ZY ZZ XZ YZ X Y

I I I M M M M

I I I m M M M M

I I I M M M M

     
   

  
   
        

I , (8)  

where I is the inertia tensor of the irregular shaped inclusion, [I] is the corresponding inertia 

matrix, IXX, IYY, IZZ are the moments of inertia of the inclusion along X, Y, and Z directions, 

respectively, and IXY, IYZ, IZX are the inertia products of the inclusion in the X-Y, Y-Z, and Z-X 

planes, respectively, m is the mass of the inclusion, and M2X、M2Y、M2Z、M2XY、M2YZ、M2ZX 

is detailed in Appendix B. 

After establishing the inertia matrix of the inclusion, the principal moment of inertia and 

the direction of the principal axes can be obtained. Then, the principal radii of the approximate 

ellipsoidal inclusions can be obtained according to Equation (8) and the Eulerian angles 

corresponding to the principal axes of each inclusion can be obtained by using the dcm2angle 

function in MATLAB via the relations  

 1 2 3 1

5
=

2
a I I I  ,  2 1 3 2

5
=

2
a I I I  ,  3 1 2 3

5
=

2
a I I I  , (9)  

where I1, I2, I3 are the first, second and third principal moments of inertia of the inclusion 

respectively. 

 

3.3 Statistics of shape and orientation information of inclusions 

Previous results show that the shape and orientation of inclusions will significantly affect 

the elastic properties and anisotropy of the shale. Generally, when the effective medium model 



16 

 

 

is used for calculation, the inclusion is considered as a rotating ellipsoid, that is, a1 = a2 or a2 

= a3. The aspect ratio α is used to describe the shape of rotating ellipsoidal inclusion. Since the 

size relationship between the three principal radii is defined in this study, there are two cases 

for the value of α: (1) when a1 = a2, α = a3/a1 < 1; (2) when a2 = a3, α = a1/a3 > 1. Previous 

studies have mostly discussed the influence of the aspect ratio of the inclusion on the elastic 

properties of the rock, but the selection of the aspect ratio of the inclusion is mostly assumed 

in advance. Therefore, extracting the shape information of components in the shale by the 

digital core technology and making reasonable ellipsoid approximation are of a certain 

significance for the selection of aspect ratio.  

The average principal radii of all inclusions in different components are counted to 

determine the representative shapes of inclusions in different components, which can be 

obtained by 

1,

1,

1

rn
i i

r

i r

a V
a

V

 , 
2,

2,

1

rn
i i

r

i r

a V
a

V

 , 
3,

3,

1

rn
i i

r

i r

a V
a

V

 , (10)  

where 1,ra , 2,ra  and 3,ra  are the first, second and third average principal radii of the r-th 

component, respectively, a1,i, a2,i and a3,i are the first, second and third principal radii of the i-

th inclusion, Vi is the volume of the i-th inclusion, and Vr is the total volume of the component 

r. 

Since the Hill tensor of an ellipsoidal inclusion is only related to the ratio between the 

principal radii and is independent of its size, the two ratios ( 2 1/a a   and 3 1/a a  ) of each 

inclusion are the shape parameters affecting the calculation results of the MT model. The values 

2 1/a a  and 3 1/a a  of five components are shown in Figure 6. The two ratios of inclusions can 
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be divided into four cases: (1) When 2 1/a a  , 3 1/ 1a a   , the inclusions tend to take the 

spherical shape; (2) When 2 1/ 1a a  , 3 1/ 1a a , the inclusions tend to take the disk shape; 

(3) When 2 1/a a  , 3 1/ 1a a  , the inclusions tend to take the needle shape; (4) When 

2 1 3 10 / / 1a a a a  , the inclusions are the general ellipsoids without obvious 

characteristics. It can be seen from Figure 6 that, in the shale samples, the clay, feldspar and 

pyrite tend to be the needle shape, while the pores and TOC show general ellipsoids without 

obvious characteristics.  

0.0
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PyriteFeldspar

0.193

0.315

TOC

0.2000.287

 a2/a1

 a3/a1

ClayPores  

Figure 6 Ratio of average principal radii of inclusions with different components 

 

Similarly, the Eulerian angles of inclusions with different components are statistically 

analyzed, where we take the pores as an example. The Eulerian angle distributions of the pore 

inclusions are shown in Figure 7. As can be seen from Figure 7, there is a large pore with the 

volume of 1.315×108 μm3 in the digital core, which accounts for 30.661% of the total pore’s 

volume. If the influence of the maximum pore on the law is ignored, it can be seen from the 

orientation distribution that ψ, θ and φ tend to the maximum at 0 degrees. From the orientation 

distribution of the three Eulerian angles, ψ has obvious symmetry, while the distributions of θ 
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and φ are not regular.  
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Figure 7 Euler angle distribution of pores inclusions in RVEtotal 

 

It is very interesting that the distribution law of ψ is similar to the theoretical model given 

by Giraud, et al. (2007) to describe the orientation distribution function of inclusions in rocks, 

which can be expressed as  

 
 cosh cos

sinh
W

  



 , (11)  

where W(ψ) is the orientation distribution function of ψ, σ is the parameter for the degree of 

the preferred alignment.  

There are two typical distribution orientation cases: (1) When 0  , the distribution of 

ψ of inclusions is uniform; (2) When   , the inclusions of the r-th component have the 

same ψ. In other words, the effect of inclusions on the anisotropy of materials increases with 

the increase of σ. Therefore, the parameter σ can be used to describe the degree of anisotropy 

of orientation distribution. The orientation distribution functions of the five kinds of 

components can be fitted by Equation (8), and the fitting results are shown in Figure 8. The 

value of σ of five components inclusions in the sample core are TOC, clay, pore, pyrite and 

feldspar from large to small. This means that, when just considering the orientation distribution, 

the TOC, clay and pores have more obvious effects on the anisotropy of the sample core, 
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followed by the pyrite, and the feldspar has no contribution to the anisotropy of the sample 

core due to its σ = 0. 
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Figure 8 Orientation distribution function of inclusions with different components, where (a) 

pores, (b) TOC, (c) clay, (d) feldspar and (e) pyrite. 

 

4 Results comparison of the MT model and FEM 

4.1 Effective moduli of the shale sample predicted by the MT model 

In this section, the anisotropic effective moduli of the shale sample (RVEtotal) is predicted 

by using Equation (7) and the inclusion information in section 3.3. The volume fraction of each 

component inclusion (fr) is taken in Table 1, and the volume fraction of matrix/quartz (f0) is 

1

0

1

1
N

r

r

f f




   . When analyzing the effect of each component to anisotropy of RVEtotal, the 

RVEtotal is considered as a two-phase material, and thus f0 =1 – fr.  

The components of the effective elastic stiffness matrix of RVE predicted by the MT 
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model are shown in Table 2. From the prediction results of C11, C22 and C33, it can be seen that 

the pores, TOC and clay contribute greater to the anisotropy of the shale sample than the 

feldspar and pyrite. Moreover, the results of the pores, TOC and clay on the anisotropy is same, 

that is, C11>C22>C33 and C44<C55<C66, and their differences between C11 and C33 are 2.466 GPa, 

2.860 GPa and 2.844GPa, respectively. However, the results of the feldspar and pyrite are 

C22>C11>C33, C44<C66<C55 and C11>C33>C22, C44<C66<C55, and their differences between C11 

and C33 are only 0.014 GPa and 0.069 GPa, respectively.  

Actually, different components with different moduli will take different distribution forms 

under the action of in-situ stress, which directly reflects their contributions to the anisotropy of 

the shale. For example, the moduli of pores, TOC and clay are generally smaller than that of 

the quartz/matrix, so their contributions are similar. The moduli of the feldspar are similar to 

that of the quartz/matrix, and the moduli of the pyrite are significantly larger than that of the 

quartz/matrix, so their contributions are different.  

The components of the elastic stiffness matrix of RVEtotal containing five kinds of 

inclusions predicted by the MT model are shown in Table 2. The anisotropy laws of this RVEtotal 

are C11>C22>C33 and C44<C55<C66, which are mainly affected by the internal pores, TOC and 

clay. The difference between C11 and C33 is 3.299 GPa, and the Thomsen anisotropy coefficients 

(Thomsen, 1986) ε and γ are 0.0259 and 0.0175, respectively, which shows that the anisotropy 

of this sample is still relatively small. However, as a preliminary attempt, it is of significance 

to analyze the rationality of the MT model in the prediction of the shale’s effective moduli. 

Table 2 Effective elastic stiffness matrix of RVEtotal predicted by MT model (GPa) 

 Quartz matrix 

Inclusion 

type 

Pores TOC Clay Feldspar Pyrite 

All type of 

inclusions 
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C11 90.645 89.169 71.320 96.631 97.210 66.911 

C12 7.491 7.460 12.139 10.167 8.042 14.210 

C13 7.534 7.598 12.623 10.124 8.064 14.525 

C22 89.666 88.547 70.166 96.671 97.016 65.581 

C23 7.541 7.615 12.952 10.152 8.033 14.696 

C33 88.179 86.309 68.476 96.617 97.141 63.612 

C44 81.642 80.027 56.796 86.489 89.049 50.170 

C55 81.958 80.177 57.109 86.495 89.105 50.536 

C66 82.720 81.389 58.497 86.490 89.048 51.930 

 

4.2 Validation by FEM 

Although the influence of the shape and orientation of inclusions on the effective modulus 

of materials is considered in the MT model, there are still two following reasons which may 

cause the prediction errors. The first is that, the shape of the inclusion is simplified as an 

ellipsoid, which may cause the variation of the matrix’s stress distribution around the inclusion 

and affect the prediction results. The other is that, in the effective medium models including 

the MT model, the location of inclusions in the RVE cannot be considered, and the inclusions 

with an obvious regular arrangement may also effect the anisotropy of materials. As a result, 

the accuracy of the MT model in predicting the effective moduli and anisotropy of RVE is 

verified by FEM using ABAQUS. 

It should be noted that the geometry of the RVE obtained in Section 3.2 needs to be 
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meshed, which means the amount of calculation using FEM is much greater than that using the 

MT model. There are tens of thousands of inclusions in the RVEtotal and it is unrealistic to 

analyze directly by FEM. Therefore, the RVEtotal is divided into 36 RVEs containing 

300×300×300 pixels and numbered as RVE1 to RVE36 for subsequent analyses.  

In order to facilitate comparison, the analysis object is taken as the quartz-pore material. 

The moduli of the quartz and saturated pores are shown in Table 1. The deformation of the 

generated quartz/matrix mesh is consistent with that of the pore/inclusion mesh, that is, the 

boundaries of the two kinds of meshes are the consistent pair. In addition, both the 

quartz/matrix and pores/inclusions are reconstructed by tetrahedral grids. By adding the 

Micromechanics Plug-ins modulus into ABAQUS, the following strains known as the 

Lagrangian strains (Moon et al., 2015), are applied to the RVE: 

1

1 0 0

= 0 0 0

0 0 0



 
 
 
  

, 2
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= 0 1 0

0 0 0



 
 
 
  

, 3

0 0 0

 = 0 0 0

0 0 1



 
 
 
  

, 

4

0 0 0
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0 0.5 0



 
 
 
  

, 5

0 0 0.5

 = 0 0 0

0.5 0 0



 
 
 
  

, 6

0 0.5 0

= 0.5 0 0

0 0 0



 
 
 
  

. 

(12)  

According to the obtained stress field results, the average stress is calculated, and the effective 

stiffness matrix is inversely calculated. 

In order to verify the rationality of ellipsoidal approximation without considering the 

influence caused by the second reason mentioned above, an RVEsm containing only three pores 

is intercepted in the RVE1 for analysis. The three models on the RVEsm with different grid sizes 

are shown in Figure 9. 
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Figure 9 Mesh division of the RVEsm, where (a) low mesh quality, (b) middle mesh quality 

and (c) high mesh quality. 

 

Table 3 lists the components of the elastic stiffness matrix predicted by FEM and the MT 

model. It can be seen that the prediction results of FEM and the MT model are very similar, 

and there are the relations C33>C11>C22 and C66<C44, C55. The difference on the prediction 

results between the MT model and FEM decreases with the increase of the grid density. 

Table 3 Comparison of the effective stiffness matrix of the RVEsmall predicted by the MT 

model and FEM (GPa) 

 C11 C12 C13 C22 C23 C33 C44 C55 C66 

(a) 91.286 7.405 7.393 90.592 7.423 92.013 83.888 84.240 83.440 

(b) 90.951 7.472 7.403 90.678 7.486 91.755 83.734 83.929 83.199 

(c) 90.677 7.502 7.411 90.427 7.514 91.488 83.422 83.620 82.865 

MT 89.942 7.164 7.538 89.918 7.468 90.724 82.607 82.529 81.287 

 

Figure 10 shows the Mises stress of the RVEsm under ε1 (tension along X-axis), where half 

of the length on the RVEsm along the X-axis is truncated to observe the stress distribution around 
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the pores. It can be seen from Figure 10 that, the stress in the pore is obviously less than that 

in the matrix, and there is a stress disturbance caused by the pores in the matrix around the pore. 

It can be seen from the local figures that, this stress disturbance becomes obvious with the 

increase of the grid density and tends to be more practical. With the improvement of the grid 

quality, the prediction results of effective moduli becomes smaller, which shows that the 

variation range of the low stress area of matrix is higher than that of the high stress area. In the 

MT model, this disturbance is averaged to the whole matrix region, so the effective moduli 

predicted by the MT model is more suitable for the case of inclusions with large volume 

fraction than the sparse model or the Kuster-Toksöz model. By comprising the results between 

the MT model and FEM in Table 3, it can be seen that the averaging treatment of stress 

disturbance in the MT model is reasonable in predicting the effective moduli. 

 

Figure 10 Mises stress of the RVEsm under tension along X-axis 

 

Further, the three kinds of RVE1 with different grid densities are analyzed by FEM, of 

which the grid division is shown in Figures 11 (a), (b) and (c). There are 8599, 49565, 585803 

elements representing the matrix and 3855, 9686, 37346 elements representing the pores in the 
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three models, respectively. Figures 11 (d), (e) and (f) shows that the Mises stress of RVE1 under 

ε1 (tension along X-axis), where we cut the half of RVE1 to observe the stress distribution. 

Similar to the analysis results of RVEsm, the stress disturbance area of the matrix around the 

pores gradually increases with the densification of the grid, and the effective moduli of RVE1 

generally decreases slightly with the densification of the grid, which can be seen from Table 4. 

It can be seen that the anisotropy laws of RVE1 predicted by FEM is in agreement with that by 

the MT model, i.e., C11 > C22 > C33 and C44 < C55 < C66. Therefore, in the RVE1, the secondd 

reason mentioned above has little effect on the anisotropy. 

 

Figure 11 Mesh division and Mises stress of the RVE, where (a), (b) and (c) are the low, 

middle and high mesh quality, and (d), (e) and (f) are the corresponding Mises stress under 

tension along X-axis. 

 

However, comparing the results between Table 3 and 4, it can be found that the difference 

between the results of RVE1 predicted by FEM and the MT model is larger than that of the 

RVEsm. The main reason is that the volume ratio between the pore and element in RVE1 is 
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smaller than that in RVEsm, and there are relatively large errors on the matrix stress disturbance 

near the pores. However, further refinement of the grid will greatly affect the computational 

efficiency of FEM and put forward high requirements for the running memory of the computer.  

Table 4 Comparison of the effective stiffness matrix of RVE1 predicted by the MT model and 

FEM (GPa) 

 C11 C12 C13 C22 C23 C33 C44 C55 C66 

(a) 90.595 7.269 7.207 90.077 7.195 89.005 82.224 82.503 83.040 

(b) 88.974 7.187 7.097 88.209 7.096 86.450 79.989 80.448 81.348 

(c) 87.941 7.184 7.079 86.974 7.105 84.701 78.353 78.978 80.170 

MT 86.973 7.342 7.309 85.606 7.468 83.137 77.613 77.706 78.940 

4.3 Effect of the volume fraction of inclusions 

In what follows, the effective moduli of the RVE1 to RVE36 containing the quartz/matrix 

and pores/inclusions are predicted by the MT model and FEM for analyzing the effect of 

inclusion’s volume fraction. One of the reasons that the MT model can be widely used is that, 

it can be applied to the case dealing with a large volume fraction of inclusions (Raju et al., 

2018). The effective moduli of the RVE1 to RVE36 predicted by the MT model and FEM are 

shown in Figure 12 and the average values are shown in Table 5.  
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Figure 12 Relationship between components of effective elastic stiffness matrix and volume 

fraction of pores.  

Table 5 Average effective stiffness matrix of RVE1 to RVE36 predicted by the MT model and 

FEM (GPa) 

 C11 C12 C13 C22 C23 C33 C44 C55 C66 

MT 89.675 7.444 7.483 88.533 7.502 87.228 40.385 82.503 83.040 

FEM 90.215 7.337 7.269 89.354 7.281 88.378 40.701 80.448 81.348 

 

 The prediction results of the two methods are close, and the laws of anisotropy are same, 

which are C11 > C22 > C33 and C44 < C55 < C66. Moreover, the effective moduli predicted by the 

two methods decrease linearly with the increase of volume fraction of inclusions. In fact, it can 

be seen from previous studies that, when the shape of the inclusions is not a disk shape 

( 2 1/ 1a a  , 3 1/ 1a a ), the relationship between the effective moduli preidcted by the MT 

model and volume fraction of the inclusions basically changes linearly (Wang et al., 2021). It 
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is very interesting that the results predicted by the MT model is more discrete than that of FEM, 

especially when the inclusion volume fraction is large, which indicates that the MT model may 

overestimate the influence of inclusion’s orientation on the anisotropy of the RVE. However, 

when using the digital core for modeling, in FEM we have to calculate a large number of 

elements and its efficiency is relatively low. Therefore, the combination of the MT model and 

digital core proves a practical and efficient method to predict the anisotropy of shales and other 

kinds of rock. 

5 Discussion 

The combination of MT model and digital core technology has guiding significance for 

the development of effective medium model. For the traditional effecitve medium models 

based on the Eshelby tensor, such as KT model (Kuster & Toksöz, 1974), self consistent model 

(Hill, 1965) and different effective medium model (Xu & White, 1995), the aspect ratio α of 

rotating ellipsoid inclusions, or the shape of ellipsoid, plays a key role in the evaluation of 

effective moduli. The α is assumed in the previous theoretical analyses, and it seems to be 

considered that can be reflect the shape of inclusions. However, it can be seen from Figure 6 

that the shape of inclusions in shale sample is more like general ellipsoid than rotating ellipsoid 

from the average pricipal radii of inclusions extracted by micro-CT and moment of inertia. 

Therefore, in order to obtain more accurate elastic properties, the Eshelby tensor of general 

ellipsoid should be used for evaluation. In addition, we confirmed the similar laws in previous 

studies (Sayers, 1994; Vernik and Landis, 1996; Giraud et al., 2007) that the the orientation of 

inclusions in shale is regular, which can be seem in Figures 7 and 8. 
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The elastic stiffness matrix of shale samples is predicted by MT model in Tab 2 and it can 

be found that there is still some anisotropy in shale with micro scale. For verify the accurancy 

of MT model when predicting the anisotropy of shale, a series of squartz-pore mateirals are 

analyzed by MT model and finite element method (FEM). It can be obviously observed the 

stress disturbance of the inclusion to matrix assumed in MT model (Mori and Tanaka, 1974) 

from the stress nephogram of FEM in Figures 10 and 11. And the results of the anisotrpy good 

agreement between the MT model and FEM which are shown in Tabs 3 to 5. Therefore, micro-

CT provide proper information regarding non-randomly oriented inclusions in shale, and 

thereby aids in the utilization of the MT model.  

6 Conclusions 

In the present study, we establish and verify a prediction method for anisotropic effective 

moduli of Longmaxi formation shales based on the digital core, the Mori-Tanaka (MT) model 

and the finite element method (FEM). We find that the moment of inertia of incluisons in shales 

can be used to obtain the principal radius and Eulerian angles of its representative ellipsoid. By 

analyzing the shale components extracted by digital core, it is found that the orientation 

distribution of different components in the shale is similar to the theoretical function given by 

Giraud. (1) The orientation distribution of pores, TOC and clay has a strong anisotropy by 

fitting the orientation distribution function. The geometry of pores is close to that of TOC, 

while that of clay, feldspar and pyrite is close. (2) The effective elastic stiffness matrix of 

representative volume element (RVE) of shale samples is obtained by the MT model 

considering the shape and orientation of inclusions. Through the five groups of two-phase 
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material models, it is determined that pores, TOC and clay contribute greatly to the anisotropy 

of shale, and feldspar and pyrite hardly affect the anisotropy of shale samples. (3) The effective 

ealstic stiffness matrixs of multiple groups of quartz-pore RVE obtained by the digital core are 

predicted by the MT model and FEM, and the anisotropy of RVE predicted by the two methods 

is consistent. The effective moduli changes linearly with the inclusion volume fraction, and the 

discrete prediction result of MT is greater than that of FEM. These findings are potential for 

the applications in rock mechanics, civil engineering and oil exploitation, etc. 

 

Acknowledgements  

The authors greatly appreciate the financial support of the Strategic Priority Research 

Program of the Chinese Academy of Sciences (XDA14010303), the National Natural Science 

Foundation of China (11972375, 11911530691), and Key R & D Program in Shandong 

Province (ZR202011050038, 2017GGX20117). 

 

Data Availability Statement 

The supporting information involved in this study is available within this article. 

Appendix A 

The three most typical components of the Hill tensor P on the general ellipsoid in the local 

coordinate system O-x1x2x3 can be expressed as 
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and the other components can be obtained by the corner mark rotation, such as  
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In addition, the tensor of P has the symmetry of Pijkl = Pjikl = Pijlk = Pklij. In Equations (A1) 

and (A2), there are  
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where 
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The symbols F ( , ) and E ( , ) are the elliptic integrals of type I and type II, respectively, 

which are 
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where  
2

3 1=arcsin 1 /a a   and    2 2 2 2
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Appendix B 

The coordinates of the geometric center of the inclusion domain Ω in the coordinate 

system O-XYZ are 

1
d d dXM X X Y Z

V 


  , 
1

d d dYM Y X Y Z
V 


  , 
1

d d dZM Z X Y Z
V 


  , (B1)  

where MX, MY, MZ are the coordinate values of the geometric center of inclusion domain Ω in 

O-XYZ, and VΩ is the volume of inclusion domain. Then, the components of the inertia matrix 

of the inclusion domain are 
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 
2

2

1
d d dX XM X M X Y Z

V 


  ,  

 
2

2

1
d d dY YM Y M X Y Z

V 


  , 

 
2

2

1
d d dZ ZM Z M X Y Z

V 


  , 

  2

1
d d dXY X YM X M Y M X Y Z

V 


   , 

  2

1
d d dYZ Y ZM Y M Z M X Y Z

V 


   , 

  2

1
d d dZX Z XM Z M X M X Y Z

V 


   . 

(B2)  
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