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Abstract

The Super Dual Auroral Radar Network (SuperDARN) currently consists of more than thirty high-frequency (HF, 3–30 MHz)

radars covering mid-latitude to polar regions in both hemispheres. Their major task is to map ionospheric plasma circulation

which provides information about the interactions between the solar wind and the near-Earth’s space plasma environment. One

of the major factors defining radar data quality is the signal-to-noise ratio (SNR), which requires an accurate characterisation of

the HF noise. The standard SuperDARN data analysis software uses the SNR as part of a set of empirical procedures designed to

remove low-quality data from further analysis. In this study we found that the currently used empirical algorithm systematically

underestimates the noise level by up to 40%. Based on comparison of theoretical and observational noise statistics, we resolve

this issue by designing and validating a procedure for accurate background noise level estimation. We then propose a simple

SNR threshold to replace the existing criteria for excluding low-quality data. In addition, we show that several aspects of the

radar operational regime design, as well as short-lived anthropogenic radio interference, can adversely affect the quality of the

noise estimates at selected radar sites, and we propose ways to mitigate these problems.
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Abstract7

The Super Dual Auroral Radar Network (SuperDARN) currently consists of more than8

thirty high-frequency (HF, 3–30 MHz) radars covering mid-latitude to polar regions in9

both hemispheres. Their major task is to map ionospheric plasma circulation which pro-10

vides information about the interactions between the solar wind and the near-Earth’s11

space plasma environment. One of the major factors defining radar data quality is the12

signal-to-noise ratio (SNR), which requires an accurate characterisation of the HF noise.13

The standard SuperDARN data analysis software uses the SNR as part of a set of em-14

pirical procedures designed to remove low-quality data from further analysis. In this study15

we found that the currently used empirical algorithm systematically underestimates the16

noise level by up to 40%. Based on comparison of theoretical and observational noise statis-17

tics, we resolve this issue by designing and validating a procedure for accurate background18

noise level estimation. We then propose a simple SNR threshold to replace the existing19

criteria for excluding low-quality data. In addition, we show that several aspects of the20

radar operational regime design, as well as short-lived anthropogenic radio interference,21

can adversely affect the quality of the noise estimates at selected radar sites, and we pro-22

pose ways to mitigate these problems.23

1 Introduction24

The Super Dual Auroral Radar Network (SuperDARN) is a global network of more25

than thirty high-frequency (HF) radars operating in 8–20 MHz frequency band and de-26

signed for studying high-latitude ionospheric plasma circulation in the northern and south-27

ern hemispheres (Greenwald et al., 1995). The radars detect backscatter from decameter-28

scale electron density structures, which are used as tracers of the E×B ionospheric plasma29

drifts at the E- and F-region heights. The radars also routinely detect ground scatter30

echoes from the Earth’s surface illuminated by the radar signals refracted from the iono-31

sphere (André et al., 1998), and backscatter from meteor plasma trails at ∼90–100 km32

altitude (Hall et al., 1997). These three types of radar echoes provide important infor-33

mation about physical processes in the upper atmosphere that are driven by both so-34

lar activity and atmospheric dynamics, including the spatio-temporal structure of global35

plasma circulation at high latitudes, substorms, magnetohydrodynamic waves, and grav-36

ity waves (Chisham et al., 2007; Nishitani et al., 2019, and references therein).37
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As with any scientific instrument, SuperDARN data are affected by noise, and these38

effects need to be accurately quantified in order to evaluate the data quality and to ob-39

tain accurate estimates of the measurement errors. In the standard SuperDARN data40

analysis software, the Radar Software Toolkit (SuperDARN Data Analysis Working Group,41

2021), a package called FITACF performs these tasks in two stages consisting of (i) data42

pre-selection and (ii) error calculation. At the pre-selection stage, the package removes43

from further analysis the records which do not satisfy a set of empirical criteria for phys-44

ically meaningful data. Importantly, several pre-selection procedures utilize a calculated45

estimate of the noise level. At the following stage, the measurement errors are estimated46

for the data that passed the pre-selection. Furthermore, the noise estimate is also used47

to determine the signal-to-noise ratio (SNR), which is commonly used as a data qual-48

ity indicator.49

As the thermal noise level in the radar’s internal electronic circuitry is normally50

insignificant compared to that generated by the external sources, HF radio noise repre-51

sents one of the main factors restricting the quality of the SuperDARN data products.52

At SuperDARN operating frequencies, radio noise arises from both natural and anthro-53

pogenic sources (ITU-R P.372-8, 2019). The dominant natural noise source is atmospheric54

noise, which is produced by lightning activity at mid-to-low geographic latitudes and prop-55

agates around the planet via consecutive ‘reflections’ from the ionosphere and the ground56

surface. The atmospheric noise exhibits diurnal and seasonal variations controlled by the57

ionospheric propagation conditions and the global distribution of lightning activity, and58

these variations can be observed using SuperDARN radars (Ponomarenko et al., 2016;59

Bland et al., 2018). Anthropogenic noise in the SuperDARN frequency range includes60

signals from other radio installations as well as radio emissions generated by nearby elec-61

tronic and electrical equipment. Anthropogenic noise is therefore highly specific to radar62

site location, and it may represent the dominant noise source for SuperDARN radars lo-63

cated in populated areas.64

While atmospheric HF noise has a detrimental effect on the quality of the received65

backscatter, it also contains useful information about ionospheric conditions. For exam-66

ple, there has been recent development in utilizing background noise measurements from67

SuperDARN radars to monitor ionospheric radiowave attenuation triggered by space weather68

events (Bland et al., 2018, 2019; Berngardt et al., 2019; Chakraborty et al., 2019; Bern-69

gardt, 2020). To provide accurate estimates of the SuperDARN data quality and to sup-70
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port scientific applications of the SuperDARN noise measurements, it is important to71

examine in detail the method for estimating the noise level so that we can assess its re-72

liability. In this work we identify both network-wide and site-specific factors affecting73

the statistical validity of the noise estimation for SuperDARN data. Firstly, we review74

in detail how the noise level estimates are determined in FITACF, and show that the stan-75

dard technique systematically underestimates the noise level by sampling only the low-76

power tail of the noise probability density function (PDF). To mitigate this problem, we77

propose a procedure that compensates for this systematic error. We then propose a sim-78

ple and efficient data pre-selection procedure based on a single SNR threshold that can79

potentially replace the current set of the poorly-justified empirical selection criteria. Fi-80

nally, we show that several features of the radar operation regime design, as well as short-81

lived anthropogenic radio interference, can introduce significant errors into the noise level82

estimates for particular radars, and we discuss ways to mitigate their impacts.83

2 SuperDARN design and operation84

SuperDARN comprises frequency-agile phased-array radars that operate in the 8–85

20 MHz frequency range. Each radar is equipped with a linear array of sixteen log-periodic86

or twin-terminated folded dipole antennas, which are phased electronically to produce87

a main lobe that is relatively narrow in azimuth (3.5−4◦ at 50% power). For most of88

the radars, the main lobe is consecutively steered through 16 fixed azimuthal directions89

(beams) separated by 3.24◦, producing a total azimuthal field of view (FoV) of about90

52◦. Some newer radars operate with up to 24 beams and thus have broader FoVs. A91

map showing the fields of view of all SuperDARN radars is available in Nishitani et al.92

(2019, Fig. 1). Most SuperDARN radars are also equipped with a passive auxiliary in-93

terferometer antenna array consisting of only four elements, positioned about 100 m in94

front of or behind the main 16-element array. The phase offset between the signals re-95

ceived by the main and interferometer arrays is used for measuring the vertical angle of96

arrival of the received signals (Milan et al., 1997; Shepherd, 2017; Chisham et al., 2021).97

In the standard operational mode, the radars sample along each beam direction in98

45-km steps in group range starting from 180 km to about 3500–4000 km, forming 70–99

110 range cells (range gates) along the beam. To achieve both the range span and data100

sampling rate (maximum Doppler shift) required for mapping ionospheric plasma cir-101

culation, the radars transmit a sequence of seven or eight unevenly-spaced pulses to gen-102
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erate a continuous series of evenly-spaced time lags between 0 and 35-40 ms to form a103

complex-valued autocovariance function (ACF) for each range gate (Greenwald et al.,104

1985; Villain et al., 1996; Ponomarenko & Waters, 2006; Berngardt et al., 2015). To re-105

duce the magnitude of statistical fluctuations, the ACFs are averaged over a period of106

either '3.5 or '7 s per beam direction, so a full scan of the entire FoV is completed within107

either 1 or 2 minutes. Furthermore, crosscovariance functions (XCFs) between the main108

and interferometer arrays are calculated in the same way and stored in the same format.109

While these data can be processed using a number of techniques developed over the last110

three decades (e.g. Barthes et al., 1998; Greenwald et al., 2008; Ponomarenko et al., 2008;111

Ribeiro et al., 2013; Reimer et al., 2018), in this study we consider only the standard anal-112

ysis package, FITACF (e.g., see Appendix in Ponomarenko & Waters, 2006).113

The most important data product for this study is the ACF power p at zero time

lag conventionally referred to as the lag zero power. In panel (a) of Figure 1 we show a

typical example of lag zero power measurements from beam 7 of the Inuvik (INV) Su-

perDARN radar, plotted as a function of time and range gate. The power measurements

have arbitrary units (a.u.) originating from the radar’s analogue-to-digital (A/D) con-

verter. The color scale is saturated at the upper end in order to emphasize the detail in

the lower part of the power distribution near the actual noise level. Ionospheric and ground

scatter echoes can be identified visually in this plot as continuous patches of high-power

(∼ 104 − 106 a.u.) data spanning up to 15 range gates and lasting from several min-

utes to several hours. The ranges at which these echoes are observed depend on the iono-

spheric electron density distribution along the ray path and the presence of suitable scat-

tering targets. In the absence of the backscatter component, ACFs characterise the noise.

Range gates dominated by noise can be identified in Figure 1 as those with power be-

low about 103 a.u.. FITACF uses these noise-dominated range gates for calculating the

SNR (see Section 3 for details). Here we just want to mention that the SuperDARN radars

receive a mixture of the noise and the backscatter powers, psig+noi, and in order to cal-

culate SNR one needs first to subtract a noise power pnoi from the mixture to obtain the

signal power estimate and only then to divide the result by the noise power:

SNR =
psig+noi − pnoi

pnoi
. (1)
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Figure 1. (a) Range-time-intensity plot showing the lag zero power measurements from

beam 7 of the Inuvik (INV) SuperDARN radar on 4 April 2018. (b,c) Sample range-power de-

pendence at two different integration intervals. The red dashed lines in the bottom panels show

the noise level estimated from the full set of the noise-dominated range gates while the grey lines

correspond to that estimated from the subset of ten lowest power values from these range gates

(see text for details).
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3 Noise level estimation114

3.1 Noise level underestimate by standard SuperDARN method115

The original FITACF package was developed in the late 1980s, and the implemented116

procedures were described in some detail in (Baker et al., 1988). The noise level deter-117

mination was described as following; “An initial noise level is determined from the av-118

erage backscattered lag zero power from the 10 weakest ranges.”, but no further expla-119

nation or justification was provided. While FITACF has undergone significant modifi-120

cations since its inception, our analysis of the most recent default version, FITACF2.5121

(SuperDARN Data Analysis Working Group, 2021), revealed that indeed the mean noise122

level is currently estimated from the ten lowest values of the lag zero power observed dur-123

ing a given integration interval (beam-dwelling time). Based on the available informa-124

tion, we have deduced that this noise determination procedure was based on following125

assumptions:126

• Noise is stationary: the noise power statistics do not change significantly within127

the integration time.128

• Noise is uniform in group range: the noise power level is not related to the radar129

emission regime so that the mean and standard deviation are the same across all130

range gates.131

• Lowest-power signals represent noise: the ten range gates with the lowest lag zero132

power values contain negligible contributions from the backscatter returns, i.e.,133

their ACFs are fully defined by the noise.134

• Unbiased power estimates: the mean lag zero power from these ten range gates135

represents an accurate estimate of the noise power.136

While the first three assumptions seem to be reasonable, a detailed analysis reveals that137

the last assumption is problematic and leads to inaccurate noise estimates.138

Panels (b) and (c) of Figure 1 show the lag zero power dependence on range gates139

obtained for two different sampling intervals. In panel (b) (02:30:21 UT), there are two140

power peaks reaching ∼105–106 a.u. at gates 14–29 and 35–51, which are indicative of141

backscatter returns, while the remaining range gates are apparently dominated by the142

noise at ∼103 a.u. The second example (21:10:21 UT) contains no backscatter returns143

and is characterised by noise power fluctuating around '7−8·102 a.u.. The gray dashed144
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line in each plot shows the noise level determined from averaging the ten lowest lag zero145

power values. It is apparent from panel (c) that this estimate is noticeably biased to-146

wards lower values with respect to the mean calculated from all range gates, which is in-147

dicated by the red dashed line. A similar conclusion can also be derived from a close vi-148

sual analysis of the data in panel (b). In this case, the mean noise power was calculated149

using the lag zero power values in all range gates except 14–29 and 35–51.150

To clarify why the actual noise level is underestimated, let us first consider a case

in which all Ng range gates contain noise samples only (i.e., like the data in Figure 1c).

The correct way of calculating the mean value for a positively defined power p is by es-

timating a following integral between zero and infinity

µp =

∫ ∞
0

pw (p) dp, (2)

where w (p) represents noise PDF. However, averaging over the ten lowest power values

corresponds to the integration over the lower-power portion of the PDF,

µp10 =

∫ p10

0

pw (p) dp, (3)

where p10 is a percentile value corresponding to the ten range gates with lowest lag zero151

power values. This lowering of the upper integration limit creates a bias towards lower152

values in the mean estimates, hence noise power underestimation occurs.153

Now let us assume that some of the range gates also contain contributions from backscat-154

ter echoes. In this case the bias magnitude would decrease with decreasing the number155

of the noise-dominated range gates, Nnoi
g , and becomes zero if there are only ten of those.156

However, in practice Nnoi
g rarely goes below 30, as illustrated by Figure 1, so that the157

bias towards lower noise levels is practically always present in the data processed by FI-158

TACF2.5. A more detailed quantitative analysis of this effect is provided in section 3.4.159

3.2 Observed noise statistics and proposed correction technique160

To study the noise level underestimate by FITACF2.5 in more detail, we use data161

from a special receive-only mode that was run on the Saskatoon SuperDARN radar (SAS)162

from 15 April 2014 (12:00 UT) to 19 April 2014 (12:00 UT). For this mode, the trans-163

mitters did not emit any signal, but the receivers routinely sampled the antenna input164

to obtain noise-only ACFs. The receiver frequency alternated every minute between two165

different values, ' 10 MHz and ' 13 MHz, providing quasi-simultaneous noise mea-166
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surements at these two frequencies. A sample of the lag zero power measurements from167

this mode at the two different frequencies is shown in the top panels of Figure 2.168

The previous studies show that the average noise level may vary significantly with169

time of day and frequency (e.g. Bland et al., 2018; Ponomarenko et al., 2016). This is170

evident in the top panels of Figure 1 and Figure 2, which show noticeable variations in171

the background color across all range gates. To make the daily data statistically com-172

patible, we compensated for the noise power non-stationarity by normalizing the data173

from each ' 3 s integration interval by the mean power value for that interval so that174

the resulting mean is equal to one, µ̄ = 1. This ‘homogenisation’ procedure allowed us175

to use all observational noise data as a single statistically stationary ensemble to closely176

examine the noise PDFs.177

A conventional transmit-receive cycle for a single SuperDARN pulse sequence lasts178

for ' 0.1 s, so for a typical integration time of '3 s, the number of averages, Na, is close179

to 30. For example, the median number of averages for the data in Figure 2 was Na =180

32. To remove additional variations in PDF parameters caused by variations in Na, we181

considered only the scans with exactly 32 averages, which accounts for about 90% of the182

analyzed receive-only data. We also excluded the data from the farthest gate #74 (note183

that the conventional range gate indexing begins from 0), which showed significantly higher184

p values representing a hardware artifact.185

The lower panels of Figure 2 show histograms of these normalized noise power mea-186

surements, p̄, for the April 2014 SAS dataset obtained at two frequency ranges, 10.5-10.8 MHz187

and 13.0-13.3 MHz. The black curves represent the data normalized by the mean noise188

power µp estimated from all 74 range gates (gates 0–73). The gray-shaded area on the189

left side under the black curve corresponds to the portion of data used by the conven-190

tional method (10 gates with lowest lag zero power values). It is immediately clear from191

equation (3) that the respective mean µ̄10 cannot exceed the right margin of the gray192

shaded area p̄10 ' 0.77. As a result, the conventional noise level estimate is significantly193

lower than the actual mean value (in this case µ̄10 ' 0.6 as compared to µ̄ = 1). There-194

fore, normalizing the data by the conventional noise estimate µp10 (solid red curves in195

Figure 2) introduces a significant bias in the noise PDF location on the power axis when196

a majority of the noise data are shifted above the assumed mean noise level at µ̄ = 1197

(vertical dashed line).198

–9–
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An important observation that follows from examining these plots is that the ac-199

tual noise distribution (black line) is essentially restricted to power values below the dou-200

bled mean, 2µp. For the data in Figure 2 the probability to observe noise with power in201

excess of 2µp is less than 1%. From Equation 1, the power level of 2µp corresponds to202

SNR = 1. This observation provides a simple and statistically transparent criterion for203

data pre-selection: we should analyze only the data for which204

SNR > 1. (4)

There is an indication in the original FITACF code that this criterion may have

been the initial intention of FITACF creators. However, at that time the noise under-

estimation was apparently unrecognized by the package authors and forced them to ap-

ply additional empirical criteria based on ACF power shape in order to remove the ex-

cessive amount of noise-dominated data (for more detail see, e.g., Appendix 3 in Pono-

marenko & Waters, 2006). Indeed, the percentage of the noise data that exceeds the thresh-

old (4),

Pleak =

∫∞
2µ̄
w (p̄) dp̄∫∞

0
w (p̄) dp̄

· 100%, (5)

is significantly higher for the conventional FITACF2.5 method (solid red curves in Fig-205

ure 2) compared to the actual noise distribution (solid black curves). The respective por-206

tions of the noise PDFs are highlighted by the red shaded regions in Figure 2. For this207

dataset, Pleak at 10 MHz (13 MHz) increases from 0.4% (0.7%) for normalizing by µp208

to 4.5% (5.8%) for normalizing by µp10 . In practical terms, instead of approximately one209

noise ACF misidentified as a valid backscatter ACF over three integration intervals, we210

get three to four such ‘false positives’ during each integration interval.211

As the dataset used to analyze the noise PDF was limited to four days of data from212

a single radar, it is important to confirm that other radars observe similar noise char-213

acteristics. In Figure 3, the first and third rows show the range-time plots of the lag zero214

power measurements from beam 7 over a selection of mid-latitude (Fort Hays West, FHW,215

and Unwin, UNW), auroral (King Salmon, KSR, and Saskatoon, SAS) and polar cap (Clyde216

River, CLY, and McMurdo, MCM) SuperDARN radars in both hemispheres. The black217

boxes represent the time periods with no visually discernible contributions from iono-218

spheric or ground scatter. The second and fourth rows show respective normalized sta-219

tistical distributions calculated in the same way as those shown in Figure 2. All distri-220
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Figure 2. (Top panels) Sample lag zero power measurements from beam 7 of the Saskatoon

(SAS) radar at 10.5–10.8 MHz and 13.0–13.3 MHz during a receive-only experimental mode. The

time period shown is 16 April 2014, 00:00–12:00 UT. (Bottom panels) Noise power histograms at

10.5–10.8 MHz and 13.0–13.3 MHz for all beams of the SAS radar during the same receive-only

experiment for the period 15–19 April 2014. The black curves show the noise power for each scan

normalized by the mean calculated using power from all range gates, and the solid red curves

show the data normalized by the mean of the ten lowest power values in each integration period

(FITACF2.5 method). The gray shaded area represents the portion of the data used for estimat-

ing the mean noise level in the conventional software. The red shaded area represents the portion

of the noise data that exceed the SNR=1 (p=2µp) threshold. The red dashed curves show the

noise distribution from the FITACF2.5 method with a correction factor applied (see text for

details).
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bution graphs demonstrate a remarkable similarity to each other, suggesting the same221

statistical nature of the noise at all these locations.222

From the above analysis it follows that to compensate for the noise level underes-

timation by the conventional FITACF algorithm, a correction factor

Q =
µp
µp10

(6)

needs to be applied to the mean noise level estimated from the ten lowest lag zero power223

values µp10 . This procedure requires information about the noise PDF parameters that224

is not readily obtainable in the presence of a backscatter component. To address this de-225

ficiency, a suitable PDF model adequately describing the statistical properties of the noise226

data is required. This issue is addressed in the following subsection.227

3.3 Statistical noise model and comparison with observations228

In SuperDARN data, complex ACFs are built from real and imaginary parts of the

analytic signal

s̃(t) = s(t) + jH [s(t)] , (7)

where s(t) is the received signal, H [s(t)] its Hilbert transform, and j is the imaginary

unit. In this case the mean lag zero power is calculated as

p =

Na∑
i=1

(
s2
i + (H [si])

2
)

(8)

where si and H [si] represent individual samples obtained over the integration period.

As we are considering noise as a process arising from a large number of lightning strikes,

according to the Central Limit Theorem s(t) should represent a zero-centered Gaussian

processes. Due to the fact that the Hilbert transform only shifts the phase of each fre-

quency component by 90◦, s(t) and H [s(t)] represent uncorrelated Gaussian processes

with the same statistical parameters. Furthermore, consecutive samples in both processes

are also uncorrelated as they are taken at intervals of approximately 100 ms, which are

much larger than the noise autocorrelation time scale (not shown). As a result, equa-

tion (8) represents a sum of squares from 2Na independent Gaussian processes charac-

terized by zero mean and the same variance. In this case, the statistics for the noise power

p are governed by a Chi-Square distribution χ2
n(x) with n = 2Na degrees of freedom

and argument x = pn/µ̄ (e.g. Bendat & Piersol, 2010). The χ2 distribution is charac-

–12–
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Figure 3. Sample lag zero power measurements and their corresponding noise power distri-

butions from beam 7 for different SuperDARN radars. The analyzed noise datasets are indicated

by the black rectangles in the range gate–UT panels. The histograms are in the same format as

Figure 2. The red dashed lines show the data normalized by the standard FITACF2.5 method

with the correction factor applied.
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Figure 4. Normalized χ2 distribution functions calculated for different number of averages

Na. Argument x is normalized by the number of degrees of freedom n = 2Na.

terised by the mean

µχ2 = n, (9)

and the variance

σ2
χ2 = 2n. (10)

As we analyze noise power normalized by the mean, p/µp, the argument should be di-

vided by n giving following values for the mean

µ̄ =
µχ2

n
= 1, (11)

and for the standard deviation

σ̄ =
σχ2

n
=

√
2

n
=

1√
Na

(12)

In Figure 4 we show the theoretical PDFs w(p/µp) for different values of Na. The PDF229

magnitudes have been normalized by their maximum values to allow the shapes to be230

readily compared. The resulting curves illustrate the well-known fact that with increas-231

ing the number of degrees of freedom, χ2 asymptotically approaches the Gaussian shape.232

233

In Figure 5 we compare the normalized noise power histogram for the 13 MHz data234

from Saskatoon (black line, same data as in the right panel of Figure 2) with the the-235

oretical curves obtained for χ2 (blue) and Gaussian (red) distributions calculated for µ̄ =236
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Figure 5. Normalized noise power histogram for the observed data (black) and probability

density functions for χ2 (blue) and Gaussian (red) models with Na = 32 (see text for details).

The measurements were taken during 15–19 April 2014.

1 and Na = 32. Both theoretical distributions provide a reasonable match to the ob-237

servations. Furthermore, the red dashed lines in Figures 2 and 3 represent the results238

of applying the correction factor (6) calculated from the Gaussian model to the noise es-239

timated as a mean of the ten lowest lag zero power values (red solid lines). Visually these240

corrected distributions closely match the noise histograms estimated as a mean from all241

range gates. Importantly, very similar results were obtained for a selection of radar sites242

presented in Figure 3 which allows for the network-wide applicability of the described243

noise correction approach.244

3.4 Validation of correction technique245

So far we have considered only the case when the radar is not transmitting. For246

this special case, across all range gates the lag zero power contains only noise. When the247

radar is transmitting, the number of range gates containing only noise, Nnoi
g , is lower248

than the total number of range gates as some of them contain a significant backscatter249

component. In this case the ten lowest lag zero power values represent a proportionally250

greater fraction of the total noise distribution thus producing larger values of p10 and,251
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consequently, a smaller correction factor Q. The problem here is that there is no reli-252

able way to estimate Nnoi
g automatically when the radar is transmitting.253

A conservative way to address this issue is to apply the maximum possible value254

of the correction factor, Qall, which occurs when we assume that all range gates contain255

only noise. While application of Qall to the actual data containing backscatter leads to256

the noise level being overestimated, this overestimation is significantly smaller than the257

underestimation caused by averaging the ten lowest lag zero power values. To illustrate258

this, Figure 6 shows the dependence of Pleak (a) and the corrected sample mean µ10Qall259

(b) on Nnoi
g based on Chi-Square (blue) and Gaussian (red) models. Variable values of260

Nnoi
g were obtained using subsets of consecutive range gates in the SAS dataset from 15–261

19 April 2014, i.e., the first five, first 10, first 15, first 20, and so on. For reference we262

also show the uncorrected estimates from the ten range gates with lowest power values263

(solid black) and those obtained from all range gates (dashed black).264

Both models produce remarkably similar results. As expected, the maximum dif-265

ference between the corrected mean µ̄10Q and the mean estimated from all range gates266

µ̄ ('25–30% in this case) is observed for Nnoi
g = 10. In practice the proportion of range267

gates with backscatter echoes rarely exceeds 50%, i.e., Nnoi
g & 35−40. For this range268

of Nnoi
g , Pleak decreases from 3–5% in the uncorrected data to below 1% while the mean269

noise estimate error is restricted to within ±10–15% as compared to a positive 30–40%270

bias for the uncorrected data.271

Based on the results presented in Figure 6, we have concluded that using the max-272

imum value of the correction factor calculated from either the Chi-square or Gaussian273

model effectively mitigates the effects of the noise level underestimation by the conven-274

tional FITACF2.5 software. Based on this conclusion, we propose an improved two-stage275

noise level calculation procedure for SuperDARN data. At the first stage, the noise level276

is estimated from the mean of the ten lowest lag zero power values. At the second stage,277

a maximum value of the correction factor, Qall, is calculated based on the Gaussian model278

with a unit mean and standard deviation of 1/
√
Na and applied to the noise level de-279

termined at the first stage:280

µp ' µp10Qall. (13)
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Figure 6. Dependence of the ‘leakage’ percentage Pleak (a) and the normalized mean (b) on

the number of range gates with pure noise after applying the maximum possible correction fac-

tor Qall (13MHz, SAS, 15–19 April, 2014). The dashed black line corresponds to the noise data

obtained from all range gates, the solid black line shows estimates obtained from the ten range

gates containing the lowest lag zero power values, and the blue and red lines represent the same

ten-gate estimates after applying correction factors based on Chi-Square and Gaussian models,

respectively.
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(b) Corrected noise level, SNR > 1
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(c) FITACF 2.5 selection criteria
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Figure 7. Data pre-selection results for the INV radar on 4 April 2018. The color scale shows

the SNR calculated from the lag zero power values shown in Figure 1 and the estimated noise

level. (a) Data with SNR>1 determined from the uncorrected noise level. (b) Data with SNR>1

determined from the corrected noise level. (c) Data that satisfy the empirical pre-selection crite-

ria in FITACF2.5 (without the noise level correction). Black shading indicates range gates that

do not meet the criteria.
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To visualize the effect of the correction procedure on the proposed data pre-selection281

criterion (SNR>1, equation 4), in Figure 7 we show SNR values calculated for the raw282

INV dataset that was shown in Figure 1. In the first two panels of Figure 7 we applied283

the SNR>1 criterion using (a) the uncorrected noise level µp10 , and (b) the corrected noise284

level µp10Qall. The range-time cells with rejected data are shaded black. The key dif-285

ference between these two panels is the amount of low-SNR data points that are isolated286

in range and time, which are commonly associated with noise. In panel (a) they are highly287

visible throughout the whole interval, reflecting the excessive noise ‘leakage’ due to the288

noise level underestimate. In contrast, the application of the noise level correction (13)289

drastically decreases the amount of these ‘salt and pepper’ data in panel (b).290

As we mentioned before, the standard FITACF2.5 package applies a complex set291

of empirical filtering criteria to remove most of these noise-dominated data (Ponomarenko292

& Waters, 2006). We show the results of applying these criteria (without the noise level293

correction) in panel (c) of Figure 7. Prior to about 15:00 UT, both the FITACF2.5 cri-294

teria (Figure 7c) and the SNR>1 criterion applied to the data with the corrected noise295

level (Figure 7b) result in a similar amount of noise ‘leakage’. However, the spatial ex-296

tent of areas with the backscatter is noticeably smaller in Figure 7c as FITACF2.5 tends297

to ‘over-filter’ physically meaningful low-power data. This can be seen by comparing the298

amount of backscatter in the regions outlined by the blue rectangles in panels (b) and299

(c), for example (a 35% difference in this particular case). These results indicate that300

the combination of the proposed statistically-justified noise correction procedure (13) and301

the simple SNR threshold for data pre-selection (4) can replace the empirical criteria used302

by FITACF2.5 for filtering out the data dominated by the atmospheric noise while re-303

taining a larger amount of the valid data.304

After 15:00 UT, high-power, short-duration ‘streaks’ that extend over multiple range305

gates start to appear in Figure 7. The ‘streaks’ most likely represent short-duration in-306

terference from external HF transmitters, and FITACF2.5 criteria are apparently more307

effective in removing these signals. However, it is necessary to keep in mind that they308

also have a detrimental effect on the backscatter returns collected during the same in-309

tegration time. A simple removal of the affected data in the noise-dominated range gates310

effectively masks this problem thus preventing its actual resolution. This issue and pos-311

sible ways to address it will be discussed in more detail in Subsection 4.4.312
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4 Radar operation and interference effects313

So far we have presented datasets where the noise distributions are approximately314

Gaussian with standard deviation proportional to 1/
√
Na. For these datasets, the pro-315

posed noise level correction closely reproduces the actual noise distribution. However,316

it is important to recognize that the design of SuperDARN operational modes, as well317

as site-specific technical issues, can significantly alter the noise distribution shape and318

therefore affect the accuracy of the noise level estimate. In this section we focus on typ-319

ical operational and technical factors that affect the noise level estimate across substan-320

tial portions of the historical SuperDARN dataset.321

4.1 Number of averages322

One of the important assumptions underlying the noise estimate is that the noise323

power PDF is Gaussian-shaped with standard deviation ∝ 1/
√
Na. This assumption holds324

for Na & 20 and, therefore, works for the majority of SuperDARN data with a typi-325

cal Na ≥ 30. However, this is not always the case.326

In the first decade of SuperDARN operations, the radars normally operated with327

a two-minute scan duration, providing integration periods of approximately 7 s per beam328

and Na ' 70. However, around 2007 the standard scan duration was reduced to one329

minute to improve the sampling rate of the data products. The integration period has330

therefore been reduced to about 3.5 s for a 16-beam radar with only Na ' 30–35 pulse331

sequences available for averaging into a single ACF. Moreover, some radars are currently332

operating with up to 24 beams, further reducing the number of averages to .25. The333

model calculations in Figure 4 show that reducing Na should result in a wider noise PDF334

with a longer high-power ‘tail’.335

In Figure 8 we show that this indeed happens to the actual data. The figure shows336

experimental noise distributions for five different radars with Na ranging from 10 to 53.337

Each time interval shown in the Figure was identified by visually selecting range-time338

intervals with no discernible contribution from backscatter echoes, which is the same method339

used to produce experimental PDFs in Figure 3. In all five cases we excluded the data340

in the first 10 range gates and also the last 6 range gates to avoid the effects of meteor341

scatter and hardware artifacts respectively. These data generally support the theoret-342

ical predictions from Figure 4. For Na &20, the shapes of the noise histograms are ap-343
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proximately Gaussian, and, as expected, the width of the distribution increases and a344

high-power ’tail’ becomes more pronounced with decreasing Na. For the Goose Bay (GBR)345

and Wallops Island (WAL) data shown by the blue (Na = 17) and dark blue (Na =346

10) lines respectively, this ‘tail’ extends well beyond the SNR=1 threshold, which con-347

taminates the radar data products and reduces the accuracy of the noise level estima-348

tion. This issue can be addressed by replacing the Gaussian model approximation with349

the χ2 distribution when Na . 20. However, one needs to be cautious in doing this as,350

for example, the observed GBR and WAL distributions in Figure 8 are also noticeably351

wider than their theoretical counterparts (not shown), hinting that some other factors352

may be affecting the noise statistics for these radars. A potential cause of the observed353

discrepancy may be related to the fact that during the analyzed time intervals, these two354

radars were transmitting a customized pulse sequence called ‘tauscan’. It was designed355

to recover receiver samples that cannot be measured using the standard pulse sequences356

because they coincide with pulse transmissions (Greenwald et al., 2008). The sampling357

cycle for ‘tauscan’ takes approximately 200 ms, which is twice as long as the default one,358

so fewer sequences can be averaged together in the integration period. Importantly, the359

’tauscan’ ACFs are formed using median rather than mean, and the former produces a360

significantly higher standard deviation than the latter (e.g., Example 7 on page 257 in361

Mood, 1963).362

4.2 Group range span363

Another aspect of radar control program design that may affect the noise level de-364

termination is the number and the spatial extent of the range gates, which together de-365

termine the group range span sampled by the radar. In the top panel of Figure 9 we show366

lag zero power measurements by the Bruny Island SuperDARN radar from 1–2 January367

2009. During the first twelve hours of this time period, the radar was sampling 70 range368

gates with a relatively high line-of-sight spatial resolution of 15 km. This setup restricts369

the total group range sampled by the radar to just over 1000 km, rather than to the stan-370

dard span of ∼3000–4000 km. During the first few hours in this mode, the radar detected371

backscatter in almost all of the range gates. As a result, the ten lowest lag zero power372

values are not representative of the noise level, so the noise power is significantly over-373

estimated. This is evident in the lower panel of Figure 9, which shows that the noise power374

increases whenever the high-power returns fill most of the FoV (red braces). The over-375
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Figure 8. Probability density functions for different numbers of averages Na, determined from

time periods where the radars detected no discernible backscatter in any range gate (beam 7

only).

estimation of the noise power during this experiment would cause a number of ACFs con-376

taining coherent backscatter to be rejected as noise.377

At 00:00 UT, the radar switches to the standard 45-km range resolution with the378

same number of range gates, and the noise power shows a sharp decrease. This occurs379

because the relative number of range gates dominated by noise significantly increases at380

far ranges so that the noise level is now estimated correctly. These results demonstrate381

the importance of sampling over a large enough group range span to obtain more than382

10 range gates containing noise only. It is apparent from Figure 9 that the range extent383

of backscatter returns can be 1500 km or more. Therefore, high spatial resolution modes384

should be designed to sample a proportionally larger number of range gates. The poten-385

tial range extent of the physically-meaningful backscatter returns should also be consid-386

ered when selecting radar operating frequencies, since a combination of the multi-hop387

ionospheric and ground scatter may cover almost the entire FoV at relatively low oper-388

ating frequencies (i.e., near 10 MHz).389
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Figure 9. (Top panel) Lag zero power measurements from beam 7 of the Bruny Island Super-

DARN radar from 1–2 January 2009. The range gate separation is 15km for the first 12 hours

and 45km thereafter, with no change to the total number of range gates. (Bottom panel) Uncor-

rected noise measurements calculated from the ten lowest values of the lag zero power.

–23–



manuscript submitted to Radio Science

Hokkaido East (HOK) 2018/11/05
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Figure 10. (Top panel) Range-time-intensity plot showing lag zero power measurements from

beam 7 of the Hokkaido East radar on 5 November 2018. (Bottom panel) noise underestimation

due to the blanked lag zero power values in range gates 66 and 109. µp10 is the noise calculated

using the ten lowest lag zero power measurements (including gates 66 and 109), and µ′
p10 is

calculated the same way but with gates 66 and 109 excluded.
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4.3 Transmitter pulse overlap390

SuperDARN radars use the same antennas for transmission and reception of ra-391

dio signals. This means that samples from the receiver that coincide with pulse trans-392

missions contain no useful information because the receiver channels are ‘blanked’ to pre-393

vent damage to the receiver electronics from the transmitted signals. All FITACF ver-394

sions account for this ‘blanking’ procedure by excluding ACF time lags formed using re-395

ceiver samples measured during a pulse transmission. While this rejection reduces the396

number of analyzed data, the required echo characteristics such as line-of-sight veloc-397

ity or spectral width can still be retrieved by fitting model functions to the remaining398

non-zero lags. In contrast, the lag zero power requires special treatment in the radar op-399

erating software to ensure that reliable estimates can be obtained in all range gates. The400

lag zero power is normally calculated using the samples recorded between the first two401

pulses in the multi-pulse sequence. The first two pulses are separated by a large enough402

time delay to sample almost all of the range gates. Beyond the respective maximum range,403

Rmax, however, some range gates will also be affected by the ‘blanking’ procedure and404

hence contain unphysical lag zero power values. To mitigate this effect, for ranges fur-405

ther than Rmax, the software utilizes an alternative value of the lag zero power measured406

using the samples recorded after the last pulse in the sequence, rather than after the first407

pulse. The value of Rmax depends on the pulse sequence design, specifically the time lag408

to the first range gate and the time lag between the first and second pulses. For the stan-409

dard SuperDARN pulse sequences, this substitution starts at range gates Rmax = 66410

(8-pulse sequence) or 68 (7-pulse sequence). However, we have identified several instances411

when this substitution has not been correctly performed, which introduces systematic412

errors into the noise level estimate.413

To illustrate this effect, we show a range-time plot of the lag zero power from the414

Hokkaido East (HOK) radar in the top panel of Figure 10. In this example, the lag zero415

power values in range gates 66 and 109 are more than an order of magnitude below the416

nominal noise level of about 10 a.u.. This indicates that the radar receiver was blanked417

when the lag zero power was measured in these range gates but the alternative lag zero418

powers were not used. Since the lag zero power values calculated from the blanked re-419

ceiver samples are significantly below the nominal noise level, they are always among the420

ten lowest lag zero power values used for determining the noise level. In the lower panel421

of Figure 10 we have plotted the ratio µp10/µ
′
p10 , where µp10 is the mean of the ten weak-422
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est lag zero power values, and µ′p10 is determined using the same method with gates 66423

and 109 excluded. We see that the inclusion of gates 66 and 109 in the noise level cal-424

culation results in its ∼15–20% underestimation. Since the alternative lag zero power425

substitution is performed on-site by the radar operating software, the correct lag zero426

power measurements for gates 66 and 109 cannot be recovered in post-processing. In prin-427

ciple, this issue could be resolved by reprocessing the raw in-phase and quadrature (I&Q)428

samples, but for most SuperDARN radars these data are not currently recorded.429

4.4 Short-duration radio interference430

Before each integration period, most SuperDARN radars sample the radio spec-431

trum within a ∼100–500 kHz-wide band around a nominal operating frequency to iden-432

tify a sub-band that is least affected by noise or interference. While this ‘clear’ frequency433

search is effective at avoiding persistent interference from HF radio transmitters that use434

continuous wave modes, it is ineffective at avoiding short-duration radio emissions due435

to the relatively short sampling time of 30-50 ms. Examples of this type of interference436

are shown in the top panel of Figure 11, where it can be identified as the high-power ver-437

tical ‘streaks’ in the time-range domain. In this plot we also overlay the uncorrected noise438

µp10 shown by the white line (right axis). Most of the ‘streaks’ are accompanied by an439

increase in the noise level, indicating that the interference affects the lag zero power at440

all ranges.441

In the lower three panels of Figure 11 we show stackplots of the power, phase and442

frequency shift calculated from the receiver I&Q samples for the first ten pulse sequences443

in the integration period associated with the ‘streak’ detected at 08:47:43 UT (indicated444

by the black arrow in the top panel). This ‘streak’ is accompanied by a noticeable in-445

crease in the noise level. The interference consists of several waveforms characterized by446

a parabolic phase variation (center panel) and hence a linear frequency progression (right447

panel) which dominate the received samples in sequences 4–7. The lag zero power ‘streak’448

in the top panel of Figure 11 arises from the I&Q power enhancement during the first449

20 ms of sequence 6 (left panel).450

The effect of the short-duration interference could potentially be mitigated earlier451

in the data processing workflow by replacing the mean with the median when averag-452

ing ACF lags, since the median is much less sensitive to outliers. However, one has to453
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be cautious with applying the median to data unaffected by interference as it results in454

a significantly higher standard deviation than the mean (see the end of Subsection 4.1).455

5 Summary and conclusions456

In this study we have shown that the standard SuperDARN data analysis software457

(FITACF2.5) systematically underestimates the noise level by up to 40%. This under-458

estimation occurs because the software determines the noise level using only the low-power459

tail of the total noise distribution, and results in a significant increase in the amount of460

the noise data being misidentified as valid backscatter echoes. This contamination may461

impact the quality of the higher-level SuperDARN data products. For example, it has462

been shown that SuperDARN global plasma circulation (‘convection’) maps can be sig-463

nificantly distorted by velocity measurements that did not originate from the ionospheric464

F region backscatter (Chisham & Pinnock, 2002; Ponomarenko et al., 2008). The same465

is applicable to the noise-dominated data discussed here.466

We propose a procedure that provides an accurate estimate of the noise level by467

correcting the standard FITACF2.5 estimate using predicted noise statistics derived from468

the number of sampled range gates Ng and the number of averages Na. Based on the-469

oretical and observational data, we assume that the noise power is characterised by a Gaus-470

sian PDF with standard deviation ∝ 1/
√
Na. This correction procedure has been val-471

idated using noise data from several SuperDARN radars operating at frequencies between472

10.3 and 13.3 MHz. Furthermore, the more accurate noise estimates allowed us to pro-473

pose and to validate a simple data pre-selection criterion that can replace the empiri-474

cal procedures used in FITACF2.5. However, it is important to emphasize that the pro-475

posed threshold of SNR=1 is arbitrary, and it may be appropriate to raise or lower its476

value to suit the intended science application and/or the desired level of statistical sig-477

nificance. For example, one could consider using an Na-dependent SNR threshold that478

restricts the ‘leaked’ noise percentage to a pre-determined level.479

We have also identified other factors that impact the accuracy of the noise level de-480

termination that are related to the radar software, control program design and external481

radio interference, and have discussed ways to resolve these issues. Some effects, like those482

caused by the missing alternative lag zero power values, can be resolved by a simple ex-483

clusion of the affected range gates. However mitigating other effects might require a more484
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Figure 11. The top panel shows a time-range map for the raw lag zero power measurements

from beam 2 of the Prince George radar from 07:00–11:00 UT on 14 November 2014. The over-

laid solid white line shows the uncorrected noise measurements with scale shown on the right

axis. The three panels below are stackplots of the power, phase and frequency shift for the first

ten transmit-receive cycles associated with the lag zero power ‘streak’ indicated by the arrow at

08:47:43 UT.
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in-depth approach. For example, short-lived external interference can only be removed485

from the averaged ACF by re-processing the I&Q samples, and as the I&Q data are not486

recorded for the majority of the radars, a larger portion of the current SuperDARN dataset487

affected by these issues cannot readily be corrected by post-processing. The same can488

be said about ACFs with a low number of averages and about other situations when the489

noise PDF shape significantly differs from Gaussian. However, in this case the ‘leaked’490

noise/interference manifests itself as isolated pixels in the time-range domain, so most491

of this ‘salt-and-pepper’ contamination can be effectively removed by additional filter-492

ing based, e.g, on the number of valid returns (‘good neighbours’) in the surrounding time-493

range cells. It is important to recognize that impacts from these factors are site-specific,494

so the level of the noise contamination may vary significantly between radars. This presents495

challenges when combining data from multiple radars into a single data product (e.g.,496

in plasma circulation mapping). Furthermore, applying a consistent SNR threshold for497

all radars is especially important in studies that compare backscatter occurrence between498

different radars (e.g. Ghezelbash et al., 2014), since the SNR is frequently used to se-499

lect valid backscatter data.500

6 Open research501

Raw SuperDARN data used in this study together with the licensing information502

and data description are available from Federated Research Data Repository (FRDR),503

Canada, at (Super Dual Auroral Radar Network, 2021a, 2021b, 2021c, 2021d, 2021e, 2021f).504

The RAWACF data can be read using the Radar Software Toolkit (RST) written in C505

(SuperDARN Data Analysis Working Group, 2021).506

Acknowledgments507

PP is supported by GO Canada Grant G00024607 from the Canadian Space Agency. The508

work of EB was supported by a grant from the Canada Foundation for Innovation, and509

also by the Japan Society for the Promotion of Science (JSPS): Project Number: 16H06286.510

The work of NN was supported by Japan Society for the Promotion of Science (JSPS):511

Project Numbers: 16H06286, 18KK0099, 19K03949, 21H04518. The authors acknowl-512

edge the use of SuperDARN data. SuperDARN is a collection of radars funded by the513

national scientific funding agencies of Australia, Canada, China, France, Italy, Japan,514

Norway, South Africa, United Kingdom and United States of America. The authors thank515

–29–



manuscript submitted to Radio Science

K. Sterne (Virginia Tech) and M. Schmidt (University of Saskatchewan) for helpful dis-516

cussions and assistance with data access.517

References518
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