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Abstract

Changes in precipitation extremes remain a key uncertainty as the climate warms. Improved understanding of their evolution

is crucial for effective water management. A number of studies have demonstrated various scaling relationships between

precipitation extremes and several different environmental variables. In this chapter, we review recent important advances in

two of these relationships primarily based on observations: The scaling of precipitation extremes with surface temperature (both

air temperature and dew point temperature) and convective available potential energy (CAPE). Two up-to-date global daily

datasets are also used to provide a further check on the generality of earlier findings. Known scaling relationships are used to

quantify the impacts of these two factors on precipitation extremes. Results show that both of them play important roles, but

their impacts vary over different regions on various time scales, highlighting the challenges of constructing global relationships

to explain the changing nature of precipitation extremes.
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Abstract 

Changes in precipitation extremes remain a key uncertainty as the climate warms. Improved 

understanding of their evolution is crucial for effective water management. A number of studies have 

demonstrated various scaling relationships between precipitation extremes and several different 

environmental variables. In this chapter, we review recent important advances in two of these 

relationships primarily based on observations: The scaling of precipitation extremes with surface 

temperature (both air temperature and dew point temperature) and convective available potential 

energy (CAPE). Two up-to-date global daily datasets are also used to provide a further check on the 

generality of earlier findings. Known scaling relationships are used to quantify the impacts of these 

two factors on precipitation extremes. Results show that both of them play important roles, but their 

impacts vary over different regions on various time scales, highlighting the challenges of constructing 

global relationships to explain the changing nature of precipitation extremes.  

 

1. Introduction 

Precipitation extremes, referred to in particular as large precipitation events in terms of 

intensity or accumulation in this study, have substantial impact on human activity, agriculture, and 

water resources. These extreme events also play a major role in many hydrological catastrophes (Ahern 

et al., 2005; Easterling et al., 2000; Hallegatte et al., 2013; Knapp et al., 2008; Wasko and Sharma, 

2017; Westra et al., 2014; Yin et al., 2018). For instance, flooding induced by precipitation extremes 

is among the top-ranking destructive natural hazards in terms of economic losses worldwide, resulting 

in substantial damages to infrastructure, ecosystems, and loss of life. Given the practical significance 

of these extreme events, a great deal of effort has been made by multiple scientific communities to 

assess whether and to what extent they are changing in frequency and intensity (O’Gorman and 

Schneider, 2009a; Trenberth, 2011; Westra et al., 2013). Many regions around the world have 

experienced an increase in precipitation extremes on various time scales in the past several decades 

(Donat et al. 2016; Min et al. 2011). The increasing tendency, although of varying magnitudes in 

different geographical locations, is expected to continue as temperature increases (Alexander et al., 

2006; Allan and Soden, 2008; Bao et al., 2017; Berg et al., 2013; Fischer and Knutti, 2014; Groisman 
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et al., 2005; Kao and Ganguly, 2011; Kharin et al. 2007; Meehl et al., 2000; O’Gorman, 2014; 

O’Gorman and Schneider, 2009a; Pall et al. 2007). 

Benefitting from extensive researches using theoretical studies, station observations, and 

model simulations [including idealized cloud-resolving models (CRMs) and global/regional climate 

models (GCMs/RCMs)], significant advances in our understanding of the response of precipitation 

extremes to a warming climate have been achieved (Muller and Takayabu, 2020, and references 

therein). Several scaling relationships have been established between precipitation extremes and 

various measures of temperature, including surface air temperature, surface dew point temperature, 

tropospheric air temperature, and atmospheric dew point temperature (Ali & Mishra, 2017; Allen and 

Ingram, 2002; Bui et al., 2019; Lenderink and Van Meijgaard, 2010; Martinkova and Kysely, 2020; 

Mishra et al., 2012; Roderick et al., 2020), and other environmental properties, such as precipitation 

efficiency, convective available potential energy (CAPE), vertical wind velocity, wind shear, etc. 

(Muller et al., 2011; O’Gorman, 2015; Pfahl et al., 2017). CAPE is an energy-based measure of 

atmospheric potential instability, which estimates the theoretical maximum velocity that a positive 

buoyant air parcel could acquire through adiabatic ascent (DeMott and Randall, 2004; North and 

Erukhimova, 2009).   

In this chapter, we focus on the scaling relationship of precipitation extremes with surface 

temperature, including air temperature (P_e–Ta) and dew point temperature (P_e–Td), as well as 

convective available potential energy (P_e–CAPE) based on observational records. We do not attempt 

to summarize all the existing literature on these topics since similar works have been carried out over 

different regions. Instead, we focus more on works which have come up with different results and 

reasonable interpretations. A large number of studies have demonstrated a close relationship between 

precipitation extremes and surface temperature linked to moisture availability (Allen and Ingram, 2002; 

Held and Soden, 2006; Kharin et al., 2007; Lenderink et al., 2011; Lenderink and Van Meijgaard, 2008; 

2010; O'Gorman and Schneider, 2009b; Pall et al., 2007). While CAPE is often used to estimate the 

vertical velocity of convective updrafts. An increase in CAPE indicates enhanced atmospheric 

instability or the positive buoyancy that would be experienced by a lifted air parcel, which could 

complicate the moisture-driven intensification of precipitation extremes (DeMott and Randall, 2004; 
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Lepore et al., 2015; Muller and Takayabu, 2020; O’Gorman, 2015; Seeley and Romps, 2015; Singh 

and O'Gorman, 2013). Exploring these relationships would be an important step to understand the 

evolution of precipitation extremes and to constrain its future changes. For each relationship, results 

from pioneering studies are compared and summarized. Considering that most of the previous 

observational studies are carried out on a regional or local scale, we complement it by analyzing two 

up-to-date global sets of daily station records (see section 3) to provide a further check on the 

universality of earlier findings. The paper is structured as follows: we commence by the definition of 

precipitation extremes and scaling methodology in section 2, followed by a brief description of the 

data used in this study. We then review the scaling relationship of P_e–Ta and P_e–Td in section 4 

and P_e–CAPE in section 5, respectively. Discussion and summary are presented in Section 6.  

 

2. Definition of precipitation extremes and scaling methodology  

How to define precipitation extremes is not a trivial thing. It can introduce considerable 

complexity and influence the results significantly (Pendergrass et al., 2017). Usually, a definition of 

precipitation extremes need to take three aspects into consideration: a metric (a threshold based on an 

absolute value, a certain percentile, a return period, etc.), a timescale (the length of precipitation 

accumulation), and a spatial scale (station records, domain-average, contiguous rain area, etc.). 

Different combinations of these aspects correspond to different types of weather systems across a wide 

range of spatial and temporal scales, characterized by different impacts. For instance, flash floods are 

typically associated with short but high-intensity rainstorms at small spatial scales while riverine 

floods are generally caused by a long-lasting rainfall system over a larger area. As a result, various 

extreme precipitation definitions are in use, which complicates the direct comparison and 

interpretation of previous results. Most commonly, a higher percentile, such as 99th or 99.9th 

percentile (i.e., the top 1% or 0.1% events), is chosen at a specific location to emphasize the extreme 

characteristics of the precipitation events (see examples in Table 1). In addition, as suggested by 

previous studies, including non-precipitating events or snowfall records could affect the results 

significantly (Schleiss, 2018). Large uncertainties were found in snowfall observation, and the 

response of snowfall to warming is different from that of rainfall (Lute et al., 2015; O’Gorman, 2014; 
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2015). On account of these impacts, for the dataset used in this study, a precipitation event is defined 

conventionally with daily accumulated precipitation larger than 0.1 mm. Precipitation extremes are 

identified using the 99th percentile (hereafter called P99) of all the precipitation events after removing 

snowfall records.  

A binning method based on a single predictor variable is often used to calculate the P_e-related 

scaling. Take P_e–Ta scaling as an example, the precipitation events are binned into either equal width 

or equal sample size according to surface air temperature (Guo et al., 2020; Hardwick Jones et al., 

2010; Lenderink and Van Meijgaard, 2008; Lepore et al., 2015). Extreme precipitation percentiles are 

calculated for each bin and are then used to determine the scaling rate (α). Other methods, like the 

quantile regression approach, are also used in the literature (Ali and Mishra, 2017; Pumo and Noto, 

2021; Wasko and Sharma, 2014). Unlike regular linear regression which uses the least squares to 

calculate the conditional mean of a response variable, quantile regression can calculate any quantile of 

the response variable. It is an extension of linear regression and is found to be unbiased with sample 

size. A comparison of different scaling methodology based on the Global Summary of the Day (GSOD) 

dataset can be found in Ali et al. (2018). Scaling relationships of precipitation extremes with multiple 

variables have also been explored before (e.g., Lepore et al., 2015; Lepore et al., 2016), but they are 

not considered here. In this chapter, the P_e-related scaling is determined using a least-squares linear 

relationship based on the binning approach with 20 equal sample sizes according to the predictor 

variables. A minimum of 100 samples is required in each bin (i.e., at least 2,000 effective pairs of data 

in total) to optimize statistical robustness by balancing the competing needs to reduce noise and to 

retain enough samples. The main conclusions presented here are qualitatively insensitive to the number 

of bins (i.e., 10 or 30 bins).  

To conclude, for each station analyzed in this study, the precipitation extreme (P_e) is 

identified using the 99th percentile of all the precipitating days (daily precipitation larger than 0.1 mm) 

after removing snowfall records. While the P_e–Ta scaling is determined using a least-squares linear 

relationship based on the binning approach with 20 equal sample sizes of surface air temperature. Only 

stations with more than 2,000 pairs of observations are analyzed. Similar analyses are performed for 

the dew point temperature (P_e–Td scaling) and the CAPE (P_e–CAPE scaling).  
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3. Observational dataset  

Many efforts have been made to compile precipitation products on various time scales from 

global weather stations, which are the principal source providing direct measures of precipitation. 

Products like the Global Sub-Daily Rainfall (GSDR) dataset (Lewis et al. 2019), the GSOD dataset, 

and the Global Historical Climatology Network (GHCN) datasets (Menne et al., 2012) have been 

widely used. In this chapter, we utilize daily precipitation and surface air temperature from the GHCN-

Daily dataset, which is collected at over 100,000 stations in 180 countries and territories (Menne et al., 

2012). The record length and period of record vary largely but, on average, have a span of decades or 

more. The daily surface temperature in the GHCN dataset is represented by the average of daily 

maximum and minimum values. As a supplementary, we also utilize daily precipitation, surface air 

temperature, and dew point temperature from the GSOD dataset, which is available for 13110 stations 

global wide. The daily GSOD dataset is derived from the hourly observations archived in the Integrated 

Surface Hourly (ISH) dataset. The availability of dew point temperature in the GSOD dataset enables 

us to explore the P_e–Td scaling relationship. CAPE values are taken from version 2 of the Integrated 

Global Radiosonde Archive (IGRA), which contains over 2,700 globally distributed radiosonde 

stations (Durre et al., 2006; Durre et al., 2009). CAPE is calculated from radiosonde profiles as the 

vertical integral of the positive portion of the parcel buoyancy between the level of free convection 

and the level of neutral buoyancy. Bi-daily CAPE values (00 and 12 UTC), when available, are 

averaged to daily means for the subsequent analysis to reduce diurnal sampling biases.  

Data from the GHCN, GSOD, and IGRA during 1950–2019 are first used to identify stations 

reporting data for more than 10 years. Since our aim is to establish the statistical relationship between 

precipitation extremes and surface temperature (Ta or Td) or CAPE, the continuity of these variables 

is not required. For the P_e–Ta and P_e–Td scaling relationships, we make use of the GSOD dataset 

considering the consistency in source data among the three variables and the fact that daily temperature 

variables calculated from hourly records could be more representative compared to the GHCN dataset, 

which is merely the average of two records, i.e., the maximum and minimum daily temperature. 

Following the quality check procedure in Ali et al. (2018), for each GSOD station, we remove days 
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with the daily precipitation record covered less than 24 hours. There are 7491 stations available for the 

subsequent analysis. A similar P_e–Ta scaling relationship is obtained based on the GHCN dataset 

(figures not shown). While for the P_e–CAPE scaling relationship, we pair each radiosonde station 

with its nearest neighbor among GHCN stations. Though similar results are achieved if we pair the 

radiosonde station with the GSOD dataset (figures not shown), the GHCN dataset is chosen here 

because it shows more effective pairs of stations compared to the GSOD dataset. Any station pair with 

a distance larger than 1-km is excluded from the analysis. The 1-km criterion is justified as one can 

associate the recorded precipitation amount and temperature with the reported CAPE from IGRA 

sounding. The pairing procedure translates to 712 pairs of stations global wide. As shown in Fig. 1, 

these stations, either from the GSOD dataset or the GHCN dataset, are reasonably well distributed 

over different continents, enabling a global analysis. On average, larger precipitation amounts and 

CAPE values are distributed over the deep tropical and coastal regions while surface air temperature 

distribution shows a strong dependence on latitude regulated by the solar insolation (Fig. 1). The dew 

point temperature has a similar distribution as surface air temperature, but it shows relatively larger 

values over the coastal region, which is indicative of the impacts of moisture from the surrounding 

oceans. Note the available number of stations is slightly different among these variables.  

 

Figure 1. Climatological distributions of precipitation (upper-left), surface air temperature (upper-right), dew point 

temperature (lower-left), and CAPE (lower-right). The first three variables are based on the GSOD dataset while the last 

one is based on the IGRA dataset after matching with the GHCN dataset. 
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4. Scaling of precipitation extremes with surface temperature  

We focus on the scaling relationship between precipitation extremes and surface temperature 

(P_e–Ta and P_e–Td) in this section. According to the Clausius-Clapeyron (CC) equation, the 

response of precipitation to temperature is linked to changes in the atmosphere’s moisture-holding 

capacity (Allen and Ingram, 2002; Lenderink et al., 2011; Lenderink and Van Meijgaard, 2008; 2010; 

O'Gorman and Schneider, 2009a; Moustakis et al., 2020). Under the assumption of constant relative 

humidity, CC relationship implies an increase in specific humidity at the rate of ~7 % per degree of 

warming, a prediction roughly borne out by plenty of observational and modeling studies (Allen and 

Ingram, 2002; Held and Soden, 2006; Kharin et al., 2007; Muller et al., 2011; Pall et al., 2007; Romps, 

2011; Sherwood et al., 2010). One may expect precipitation to increase at a similar rate as the water 

vapor. However, global mean precipitation is found to increase with warming at a rate of 2–3 % °C –1 

across multiple observations and climate model simulations, much slower than the CC scaling (Allen 

and Ingram, 2002; Attema et al., 2014; Emori and Brown, 2005; Held and Soden, 2006; Norris et al., 

2019; Panthou et al., 2014; Pfahl et al., 2017; Utsumi et al., 2011). Unlike the mean precipitation, 

precipitation extremes show a much larger increasing rate with warming, albeit with significant 

variations across different geographic locations (Barbero et al., 2017; Chan et al., 2016; Drobinski et 

al., 2018; Guerreiro et al., 2018; Lenderink and Attema, 2015; Lenderink et al., 2011; Prein et al., 

2017). Table 1 lists part of the previous studies investigating the P_e–Ta scaling rate (α) over different 

regions. Most of these studies are evaluated in Europe and Australia, with a few recent studies in North 

America, East Asia, and South Asia. Generally, the P_e–Ta scaling can be classified into three 

categories: a monotonic increasing scaling, a monotonic decreasing scaling, and a peak-like structure 

where P99 first increases with Ta until reaching a maximum at a threshold temperature and then 

declines with a further increase in Ta (Berg et al., 2009; Hardwick Jones et al., 2010). The third 

category is also known as a hook shape or a parabolic shape of the scaling, in which two regimes 

emerge: one at low temperatures with the scaling rate approach CC or super-CC (i.e., scaling rate 

larger than 7% °C–1) rates while the other one at higher temperatures with sub-CC rates (i.e., scaling 

rate smaller than 7 % °C–1) or even negative rates. The temperature threshold, usually called peak-

point temperature (TPeak), is defined as the temperature at which the fitted curve maximizes. We 
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calculate TPeak by applying a locally weighted regression (LOWESS) smoothing method (Chan et al., 

2016; Utsumi et al., 2011). 

 

Table 1. Summary of selected previous studies of the P_e–Ta scaling and the P_e–Td scaling in a chronological order. 

The references are included in the first column. P, T, and Td stands for precipitation, surface air temperature, and 

surface dewpoint temperature. Tpeak is defined as the temperature at which the fitted scaling curve maximizes.  

Region[ref] Temporal resolution 
P_e definition 

(percentile) 
Super-CC 

Peak-like 

structure 
TPeak 

Netherlands [61] 
Hourly/daily P 

& Daily T 
99&99.9th  YES NO NA 

Europe [15] Daily P & T 99&99.9th  NO YES 15~20°C 

Netherlands, Belgium, and 

Switzerland [62] 

Hourly/daily P 

& Daily T 
99&99.9th  YES NO NA 

Australia [49] Hourly P & Daily T 99th  YES YES 20~26°C 

Hong Kong and the 

Netherland [60] 
Hourly P & T 99&99.9th  YES YES 24°C 

United States [105] Hourly T & P 99&99.9th  YES NO NA 

Japan [117] 10-min P & T 99th  NO YES 24°C 

United States [76] Hourly P & Daily T 99th  YES YES 28°C  

Germany [16] 5-min P & Daily T 99th  YES YES 22°C 

Canada [91] Hourly P & Daily T 95th  YES YES 20°C 

United Kingdom [17] Hourly P & Daily T 99th  YES NO NA 

India [3] Daily P & T/Td 95th YES NA NA 

Australia [10] Daily P & T 99th YES NA NA 

South Korea [92] Hourly P & Daily T 99th  YES YES 24°C  

Global [4] Daily P & T/Td 95th YES NA NA 

Mediterranean [33] 3-hour P & T 99th  NO YES 15~18°C 

Europe [12] Hourly P & Daily T 99th YES NA NA 

United States [103] Sub-hourly P & T/Td 99th YES YES 20~25°C 

Mediterranean [98] Hourly P & Daily T 99th YES YES 22°C 

Global [130] Daily P & T/Td 99th YES NA NA 

China [46] Hourly P & T 99th  YES YES 24°C 

Six macro-regions [77] Hourly P & Daily T 99th YES YES Wide range 
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Tibetan Plateau [129] Daily P & T 90-99.9th YES NA NA 

Six macro-regions [6] Hourly P & Daily Td 99th YES NA NA 

Global [41] Sub-daily P & T 99&99.9th YES YES NA 

United States [127] Hourly P & Daily Td 99th YES NA NA 

 

In the following analysis, we re-examine the P_e–Ta scaling for each station using the up-to-

date GSOD dataset. The requirement of an effective sample size of 2,000 reduces the available number 

of stations to 5227. As shown in Fig. 2, more than 96% of the available stations report a value of α less 

than 7% °C–1. Only a few stations (<5%) have α greater than the CC rate. Positive α is observed within 

mid-to-high latitudes over 81% of the total stations while negative values (19%) are mainly observed 

in the tropics. This finding is consistent with previous studies on regional or local scales over tropical 

regions (Ali et al., 2018; Hardwick Jones et al., 2010; Maeda et al., 2012; Utsumi et al., 2011) as well 

as mid-latitudes (Berg and Haerter, 2013; Berg et al., 2013; Lenderink et al., 2011; Lenderink and Van 

Meijgaard, 2008; 2010; Shaw et al., 2011). But obviously, latitude cannot solely explain the nature of 

this dependence, small scale differences are noted over many regions. The negative scaling 

relationship over the tropics has been attributed to different processes. Most precipitation extremes in 

the tropics result from synoptic systems, which are usually accompanied by drops in temperature 

caused by colder air masses intrusion or evaporative cooling. While for higher temperature bins, 

moisture availability becomes the dominant limiting factor, the drier condition usually leads to fewer 

and less intense precipitation (Bao et al., 2017; Barbero et al., 2018; Lenderink et al., 2011, 2017; 

Lenderink and Meijgaard, 2011; Park and Min, 2017). When taken together, these two factors result 

in a negative scaling. Ali et al. (2018) pointed out the relatively smaller seasonality of surface air 

temperature in tropics also contributes to the observed negative scaling. After removing the 

temperature seasonality, they found that most locations show a positive scaling with surface air 

temperature.  

In addition, there are 1713 out of 5227 stations (~33%) showing a peak-like structure. Among 

these stations, high-latitude stations or stations over mountainous regions generally have lower TPeak, 

supporting the idea that TPeak might be related to the local temperatures. On average, the observed TPeak 

is within the range of 18–26 °C for North America, East Asia, and Australia while a relatively smaller 
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TPeak of about 10–18 °C is noted over Europe, which is in agreement with previous studies (Drobinski 

et al., 2016; Guo et al., 2020; Lenderink et al., 2011; Lepore et al., 2015; Mishra et al., 2012; Panthou 

et al., 2014; Park and Min, 2017; Wasko and Sharma, 2014). A number of arguments have been 

proposed to explain this peak-like structure. The decrease in precipitation intensity (Berg et al., 2009; 

Hardwick Jones et al., 2010) and precipitation duration (Haerter and Berg, 2009; O’Gorman, 2012; 

2015; Utsumi et al., 2011; Wasko et al., 2015; Wei et al., 2013) at higher temperatures are argued to 

be possible reasons, which is realized through the impact of humidity as discussed above. Several 

studies have found that relative humidity flattens or decreases for surface temperature above ~25°C 

(Hardwick Jones et al., 2010; Lenderink et al., 2011; Singh et al., 2019; Utsumi et al., 2011; Wasko et 

al., 2018).  

To overcome moisture limitations at higher temperatures, the dew point temperature has been 

advocated to be used to calculate rainfall-temperature sensitivities (Ali et al., 2018; Barbero et al., 

2017; Lenderink and Van Meijgaard, 2010; Wasko et al., 2018; Zhang et al., 2019). Using dew point 

temperature instead of surface temperature in the assessment has been found to increase the 

consistency in scaling relationship across different temperature regimes (Ali et al., 2018; Barbero et 

al., 2018; Lenderink et al., 2018; Panthou et al., 2014; Wasko et al., 2015). This is evident in Fig. 3 as 

one can find that there is a significant difference in scaling relationship with Ta and Td, especially in 

the tropics where for the majority of stations, positive rather than negative scaling rates closer to CC 

relationship are obtained when surface dew point temperature is used. More specifically, the number 

of stations with negative scaling rates has been halved from 19% to 9%. These contrasting results of 

scaling rate for Ta and Td are consistent with the previous studies analyzed at the regional and global 

scale (Ali and Mishra, 2017; Ali et al., 2018; Lenderink and Van Meijigaard, 2010; Lenderink et al., 

2011; Wasko et al., 2018; Barbero et al., 2018). But similar to Ali et al. (2018), negative scaling rates 

of P_e–Td can still be observed in the deep tropical stations (Fig. 3). And the peak-like structure is 

also evident in the P_e–Td scaling but with fewer stations (~17%) when compared to the P_e–Ta 

scaling. The value of Tpeak based on the dew point temperature is close to that of surface air temperature 

in some of the tropical stations. This may indicate a limited role of moisture in the formation of this 

peak-like structure in these tropical stations. Instead, it could be partly related to the argument that the 
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temperature measured during the occurrence of a rainfall event may not be the most relevant to 

calculate the scaling rate. The temperature may be affected by the rainfall event via evaporative cooling 

or cold air advection associated with the synoptic systems (Bao et al., 2017). Some studies found 

negative scaling rates could turn to positive ones in some tropical stations when the temperatures three 

days prior to rainfall events are used (Ali and Mishra, 2017; Visser et al., 2020; Zhang et al., 2017).  

Other factors, like larger-scale dynamics and orography could also affect the P_e–Ta scaling 

(Mounstakis et al., 2020). 

 

Figure 2. Global distribution of mean P_e–Ta scaling rate (upper-left), peak-point temperatures (upper-right), P_e–Ta 

scaling rate prior to the peak-point temperature (lower-left), and P_e–Ta scaling rate after the peak-point temperature 

(lower-right). For each station, the P_e–Ta scaling rate is determined using a least-squares linear relationship based on the 

binning approach with 20 equal sample sizes of air temperature. The peak-like temperature is calculated by applying a 

locally weighted regression (LOWESS) smoothing method. The scaling rate prior to and after the peak-like temperature 

are calculated similarly as the P_e–Ta scaling rate but over different temperature ranges. Crosses in the P_e–Ta scaling 

rate distribution maps denote the least-squares linear relationships that are not statistically significant (P>0.05). 

 

Another distinct feature of P_e–Ta/P_e–Td relationship is the reported super-CC scaling. 

Several studies from Europe, North America, Australia, and Hong Kong have found a super-CC 

scaling at low to moderate temperature, followed by negative rates at moderate to high temperatures 

(Berg and Haerter, 2013; Berg et al., 2013; Blenkinsop et al., 2015; Drobinski et al., 2016; Lenderink 
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et al., 2017; Lenderink and Van Meijgaard, 2008; 2010; Panthou et al., 2014; Wasko et al., 2015; 

Westra et al., 2014). Similar results can be seen over many stations with the temperature prior to the 

TPeak based on the daily precipitation extremes as shown in Figs. 2 and 3. This type of super-CC scaling 

is part of the peak-like structure as discussed above, which is commonly valid over certain temperature 

ranges. In addition, the existence of super-CC scaling was also found in higher-frequency precipitation 

dataset (see Table 1). An example can be found in Fowler et al. (2021; their Fig. 2), based on a same 

dataset over the Netherlands, the scaling relationship can change from CC rates for daily precipitation 

extremes to a 2CC rate (~14% °C–1) for 10-min precipitation extremes. There has been debate about 

the reason for the reported super-CC relationship. A positive feedback could exist in which excessive 

latent heat release increases upward motions in clouds and enhances moisture convergences (Berg et 

al., 2013; Catto et al., 2013; Fowler et al., 2021; Lenderink et al., 2017; Lenderink and Van Meijgaard, 

2008; 2010; Trenberth et al., 2003). But their exact role is uncertain because of the very small cloud-

scale dynamics involved. A shift in the circulation may lead to either enhancement or suppression of 

rainfall over different regions, which could make the local assessment of changes in extremes difficult. 

In addition, the super-CC relationship was also found to be linked to changes in weather regimes with 

temperature, such as a change in rainfall type from lower intensity stratiform (large scale frontal 

precipitation) to higher intensity convective precipitation (Fowler et al., 2021; Haerter and Berg, 2009). 

This argument suggests that super-CC scaling may be most prevalent in regions where both convective 

and large-scale rainfall events coexist. Other viewpoints, like the mixing of large-scale flow conditions 

varying substantially between seasons (Berg et al., 2009; Zhang et al., 2017) may also influence the 

scaling. Readers are recommended to Fowler et al. (2021), O’Gorman (2015), and Westra et al. (2014) 

for detailed reviews about these arguments.  
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Figure 3. Similar as Fig. 2, but for the P_e–Td scaling relationship. 

 

5. Scaling of precipitation extremes with CAPE  

This section focuses on the scaling relationship between precipitation extremes and CAPE 

(P_e–CAPE). Compared to the large volume of research on P_e–Ta scaling, observational studies on 

scaling between precipitation extremes and CAPE are relatively sparse. The calculation of CAPE 

requires reliable temperature profiles, which are more difficult to obtain than those of surface variables. 

Early studies made use of reanalysis products to probe the P_e–CAPE scaling. Lepore et al. (2015) 

interpolated the 12-h predicted CAPE field from ERA-Interim (Dee et al., 2011) to investigate its 

relationship with precipitation extremes. A few follow-up studies used radiosonde observation to 

calculate CAPE (Dong et al., 2019; Guo et al., 2020), while others tried to retrieve it from satellite 

observation (Gartzke et al., 2017; Murali Krishna et al., 2019). The ERA-Interim reanalysis product 

was found to substantially underestimate the sounding-based measurements of CAPE across Europe 

(Taszarek et al., 2018). But some studies found that rainfall intensity was better correlated with CAPE 

from ERA-Interim reanalysis than those computed from atmospheric soundings (Barbero et al., 2018; 

Lepore et al., 2015). They argued that ERA-Interim reanalysis is more proximal to the rainfall 

measurement given its simultaneity with these station observations than the available nearby sounding-

based measurements. Nevertheless, results based on these studies differ.  



Confidential manuscript submitted to Geophysical Monography Series 

 

 15 

 

Figure 4. Similar as Fig. 2, but for the dependence of natural logarithms of precipitation on natural logarithms of CAPE. 

The upper right panel shows the CAPE values when a peak-like structure is detected.  β is the regression coefficient between 

the natural logarithm of precipitation and CAPE. 

 

Given that precipitation is linked to the cloud-scale vertical velocity (W) in updrafts and CAPE 

provides an upper bound for ½ W2 (Lepore et al., 2015; Muller et al., 2011; Muller and Takayabu, 

2020), one may expect precipitation extremes scale with the square root of the CAPE (CAPE½). This 

relationship is based on the assumption that the conversion of CAPE to kinetic energy is strong in the 

lower part of the clouds since there is not much condensation left in the upper part of the clouds. 

However, the real fraction of CAPE converted to upward velocity varies largely by locations and 

seasons (Dong et al., 2019; Guo et al., 2020; Lepore et al., 2015; Lepore et al., 2016). Following these 

studies, we first calculate the natural logarithm of the precipitation and CAPE and then use the 

following equation 𝑙𝑛 𝑃~𝛽𝑙𝑛 𝐶𝐴𝑃𝐸 to examine their relationship. The advantage of this form is that 

β could directly reflect the fraction of CAPE converted to upward velocity. A larger β indicates more 

CAPE is converted to the kinetic energy of a rising air parcel and a theoretical value of 0.5 is the upper 

bound when all the CAPE is acquired by the air parcel based on the idealized parcel theory (Lepore et 

al., 2015; North and Erukhimova, 2009). 

We re-examine the relationship between precipitation extremes and CAPE using the up-to-date 

global dataset. The number of available stations is further reduced to 263, which is mainly caused by 
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the intermittent instrument failures of radiosonde. Different from the P_e–Ta/ P_e–Td relationship, 

there are no clear regional-scale differences in the P_e–CAPE relationship (Fig. 4). But it shares the 

similarity of the three major patterns of the P_e–Ta scaling relationship. Most of the value of β falls 

in the range of –0.2 to 0.2, with larger positive values located over eastern North America, Europe, 

East Asia, and Australia. The distribution is consistent with previous studies analyzed over North 

America (Lepore et al., 2015; Lepore et al., 2016) and East Asia (Dong et al., 2019; Guo et al., 2020). 

Negative values are observed over coastal stations or stations over the oceanic island. The deviation 

from the theoretical value of 0.5 (assume all the CAPE is converted to kinetic energy) may arise from 

a combination of different influential factors. The value of β was found to depend on the environmental 

humidity of the entrained air, vertical wind shear, and other factors (Derbyshire et al., 2004; Lepore et 

al., 2015), which varies substantially between different geographical locations. In terms of the negative 

P_e–CAPE scaling, some studies argued that convective inhibition (CIN) should be taken into 

consideration (Meredith et al., 2019). CIN is a measure of the energy barrier inhibiting an air parcel 

from rising from the surface to the level of free convection, which can undermine the relationship 

between precipitation extremes and CAPE (Barbero et al., 2018; Chen et al., 2020; Dong et al., 2019; 

Kirkpatrick et al., 2011). If CIN is small, even a modest amount of CAPE can produce updrafts strong 

enough for precipitation particles to coalesce effectively. Conversely, large values of CIN can suppress 

the occurrence of updrafts even in the presence of large values of CAPE. Rasmussen et al. (2020) 

pointed out that over North America if the CIN<–200 J kg–1, the strength of the capping inversion is 

often too much to overcome and convection is suppressed. Additionally, higher CAPE with strong 

vertical wind shear or strong steering flow can lead to fast-moving deep convective systems, which 

may result in less local precipitation accumulation (Barbero et al., 2019). Moreover, the daily data 

used here may not be able to represent the phase relationship between CAPE and precipitation 

(Subrahmanyam et al., 2015). The most relevant values of CAPE for a given precipitation event are 

those prior to the event. The daily averaged data may weaken the implied relationship between 

precipitation and CAPE (Berg et al., 2009; Haerter and Berg, 2009). This has been found by Guo et al. 

(2020) over East Asia, higher values of β are found when radiosonde derived CAPE values more 

relevant to the occurrence of precipitation extremes instead of the daily means are used.  
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In addition to a simple P_e–CAPE scaling observed over North America (Lepore et al., 2015), 

a non-monotonic dependence of precipitation extremes on CAPE was noted over East Asia (Dong et 

al., 2019; Guo et al., 2020), and several sub-regions around the globe (Barbero et al. 2019). In total, 

there are 67 out of 263 stations showing a parabolic shape with the peak CAPE value ranging from a 

few hundred J kg–1 in mid-to-high latitudes to more than 2,000 J kg–1 in the tropics. But note that 

values of β over many stations prior to or after the peak-like CAPE threshold are not significant, calling 

the robustness of this structure into question. And little is known about the tendency that the P_e–

CAPE scaling levels off beyond a certain CAPE threshold. CAPE is affected by many physical 

processes that alter the vertical thermodynamic structure. Williams and Renno (1993) have disclosed 

a linear relationship between CAPE and surface wet-bulb potential temperature using tropical 

radiosonde data, indicating the dependence of CAPE on surface temperature and/or moisture 

availability may be influential factors for this peak-like structure.   

 

Figure 5. Schematic plot for the different types of P_e–TS scaling (TS represents both the surface air temperature and the 

dew point temperature) reported in pioneer studies based on daily records, including positive scaling rate (upper-left), 

negative scaling rate (upper-right), peak-like structure (lower-left) and super-CC (lower-right) based on two precipitation 

regimes. Red dot in lower-left panel denotes Tpeak while red arrows in lower-left and lower-right panels denote the 

temperature ranges during which super-CC scaling are observed.  
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6. Concluding remarks 

This paper has attempted to survey observational studies investigating the changing nature of 

precipitation extremes from the perspective of surface temperature (both air temperature and dew point 

temperature) and CAPE. Contributions from both factors have been found to be important for changes 

in precipitation extremes. Given that previous studies are analyzed separately over different regions, 

we re-evaluate these relationships by utilizing two up-to-date global datasets to provide a 

complementary test on the generality of earlier findings. Following the known scaling equations, 

precipitation extremes are found to respond differently to these two factors, some generalities are 

reasonably clear: 

(1) The P_e–Ta/P_e–Td scaling is much more complex than suggested by the CC relationship. 

Different scaling relationships are observed across the globe, which can be generally classified into 

three categories: a monotonic increasing scaling, a monotonic decreasing scaling, and a peak-like 

structure where precipitation extremes first increase with surface temperature until reaching a 

maximum at a threshold temperature and then decline with a further increase in surface temperature. 

A schematic plot illustrating several common relationships is provided in Fig. 5. Most of the stations 

examined here show an intensification of daily precipitation extremes with increasing temperatures, 

especially over the mid- to high-latitude regions, while tropical stations show a negative scaling 

relationship even when dew point temperatures are used. But the number of stations characterized by 

negative scaling rates has been reduced from 19% based on the surface air temperature to 9% when 

the dew point temperature is used to calculate the scaling rates. Several factors are found to contribute 

to this negative scaling. Limited moisture availability at higher temperatures is one of the major 

reasons. Another important factor would be that precipitation extremes associated with synoptic 

systems are usually accompanied by drops in temperature caused by colder air mass intrusion or 

evaporative cooling. Besides, super-CC scaling is also noted over some stations, but this scaling is 

particularly prominent for high-frequency data and when analyzed over a certain temperature range. 

As shown in Fig. 5, super-CC scaling is often found over a temperature range prior to the Tpeak as part 

of the peak-like structure. While in other cases, it is also noted over a temperature range between two 

different precipitation regimes with small stratiform precipitation at low temperatures and large 
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convective precipitation at high temperatures. Many factors are found to contribute to these departures 

from the CC scaling and direct comparison between previous works is difficult due to the adoption of 

different definitions of precipitation extreme, different time periods, various temporal and spatial 

resolutions, the mixture of different precipitation types, local versus remote moisture availability, etc. 

Consequently, there is still debate in the literature as to which type of scaling is expected to be 

dominant in a warming climate. 

 (2) Though the P_e–CAPE scaling is comparatively weaker than the P_e–Ta/P_e–Td scaling, 

similar scaling patterns are identified based on the daily dataset. The schematic plot in Fig. 5 may also 

apply to P_e–CAPE scaling. Positive P_e–CAPE scaling is observed over North America, Europe, 

Australia, and East Asia. Negative values are observed over some coastal regions, suggesting that 

larger CAPE does not necessarily lead to larger precipitation. There are many unknowns and 

uncertainties associated with this scaling relationship. The CAPE prior to the precipitation extremes is 

more relevant and representative and should be considered in the future works. Moreover, the 

dependence of CAPE on surface temperature and/or moisture availability is worth further investigation.  

We are aware that the depth of our understanding of the changes in precipitation extremes relies 

on the quality of available observations. Gauge-based datasets, like the GHCN, GSOD, and IGRA 

analyzed here, often suffer from systematic measurement errors and sampling issues associated with 

limited spatial coverage and time-varying number of weather stations. These variables, such as 

precipitation, CAPE, air temperature, and dew point temperature are observed merely over the land 

gauge, which only reflect the statistics at the sampled location. But precipitation extremes do not 

necessarily scale with the local land temperature considering moisture can be advected from 

surrounding or even remote water bodies. Alternatively, satellite-based products offer more complete 

spatial coverage than station records despite the overall short period of availability, their ability to 

reproduce the extreme precipitation is sensitive to the retrieval algorithms (Timmermans et al. 2019). 

While climate models may be useful to characterize precipitation globally on a longer time scale, they 

have limited ability to simulate small-scale convective processes associated with short-duration 

precipitation extremes, especially in the tropics where they largely rely on convective 

parameterizations to represent deep convection dynamics (Kharin et al., 2013; Kharin et al., 2007; 



Confidential manuscript submitted to Geophysical Monography Series 

 

 20 

Meehl et al., 2000). Even when convective dynamics is resolved at convection-permitting resolutions, 

precipitation extremes at short durations are sensitive to the parameterization of cloud and precipitation 

microphysics (Bryan et al., 2003; Dwyer and O’Gorman, 2017; Lin et al., 2012). Further research is 

needed to quantify the relevance of these processes to the simulation of precipitation extremes. In 

addition, growing evidence has indicated that the intensity of sub-daily (hourly or even higher-

frequency) extreme rainfall is more sensitive to climate change (Fowler et al., 2021 and references 

therein). These higher-frequency precipitation extremes are more relevant for flash floods and risk 

assessment. These events may be more suitable for examining precipitation extremes as they provide 

a better picture of the intermittent nature of precipitation. We therefore encourage more extensive 

observational and modeling studies to investigate the dominant processes that might cause 

precipitation extremes, especially those of short-duration, to changes in a warming climate.  

In addition to the two scaling relationships summarized here, there are several other 

contributors playing important roles in the evolution of precipitation extremes. We want to underline 

another two important factors: precipitation efficiency and large-scale circulation. The impact of 

precipitation efficiency on precipitation extreme involves several key microphysical processes, among 

which the convective organization and its sensitivity to warming is one of active current research. 

Convective aggregation can affect the thermodynamic environment for precipitation formation. 

Observational studies have shown that changes in tropical precipitation were largely associated with 

changes in the frequency of organized convection (Dong et al., 2020a; Dong et al., 2021; Muller, 2013; 

Pendergrass, 2020; Tan et al., 2015). The capability of the climate model in representing these systems 

would provide an opportunity to achieve accurate rainfall projections in a warming climate. A detailed 

review of precipitation efficiency and climate sensitivity can be found in Chapter 13. 

In terms of large-scale circulation impacts, considerable studies have shown that precipitation 

extremes are often associated with distinct synoptic and large-scale circulation patterns over different 

regions (Ali et al., 2021; Catto and Pfahl, 2013; Dong et al., 2018; Dong et al., 2020b; Field and Wood, 

2007; Lau et al., 2008; Liu et al., 2019; Loriaux et al., 2017; Pfahl and Wernli, 2012; Sudharsan et al., 

2020; Utsumi et al., 2017). Precipitation extremes are often forced by local and mesoscale factors, 

with the larger environment providing a favorable condition for triggering or maintaining these 
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smaller-scale processes. The observed relationships between the strength of large-scale circulation 

patterns and the occurrence of precipitation extremes are diverse. Various types of systems (tropical 

cyclones, extratropical cyclones, mesoscale convective systems, trough-ridge couplets, low-pressure 

systems, etc.) and mechanisms (fronts, atmospheric rivers, orographic ascent, etc.) have been shown 

to be important for precipitation extremes. Sometimes, two or more systems (e.g., extratropical 

cyclones and fronts) may be associated with a single precipitation extreme, with one of them acting as 

a trigger while the other one providing a favorable environment to sustain its development. Even the 

same category of a certain type of system can have multiple sub-types, which might have important 

regional differences. For instance, different types of mesoscale convective systems are found to be 

characterized with various structures, dynamical processes, and large-scale circulation patterns (Houze, 

2004), leading to different impacts on the associated precipitation. Therefore, it is clear that large-scale 

circulation patterns are crucial for the occurrence of precipitation extremes, but detailed and process-

oriented analyses are limited to regional or case studies. More analysis on these links could be a focus 

area for future studies. A better understanding of how different large-scale circulation patterns relate 

to precipitation extremes, and how these relationships vary by season and region would help to 

interpret any possible future changes.  

Although many advances have been made in understanding changes of precipitation extremes, 

new challenges are emerging for both observational efforts and model development. More accurate 

observations for larger areas are needed to provide a coherent picture of precipitation extreme changes 

in response to warming. Future studies should be performed using consistent methodologies to 

facilitate direct comparison. Continued efforts are recommended for model development to resolve 

mesoscale and small-scale convective dynamics with advanced cloud and precipitation microphysics 

and to better simulate short-duration precipitation extremes. Intermodel comparison, including those 

CRM simulations with the same resolution and forcing, would be very helpful to examine whether the 

changes in scaling rate depend on the underlying model dynamics and physics or the imposed forcing.  
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