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Abstract

We use the framework of Physics-Informed Neural Network (PINN) to solve the inverse problem associated to the Fokker-Planck

equation for radiation belts’ electron transport, using four years of Van Allen Probes data. Traditionally, reduced models have

employed a diffusion equation based on the quasilinear approximation. We show that the dynamics of “killer electrons’ is

described more accurately by a drift-diffusion equation, and that drift is as important as diffusion for nearly-equatorially

trapped $\sim$1 MeV electrons in the inner part of the belt. Moreover, we present a recipe for gleaning physical insight from

solving the ill-posed inverse problem of inferring model coefficients from data using PINNs.

Furthermore, we derive a parameterization for the diffusion and drift coefficients as a function of $L$ only, which is both simpler

and more accurate than earlier models. Finally, we use the PINN technique to develop an automatic event identification method

that allows to identify times at which the radial transport assumption is inadequate to describe all the physics of interest.
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Abstract17

We use the framework of Physics-Informed Neural Network (PINN) to solve the inverse18

problem associated to the Fokker-Planck equation for radiation belts’ electron transport,19

using four years of Van Allen Probes data. Traditionally, reduced models have employed20

a diffusion equation based on the quasilinear approximation. We show that the dynam-21

ics of “killer electrons” is described more accurately by a drift-diffusion equation, and22

that drift is as important as diffusion for nearly-equatorially trapped ∼1 MeV electrons23

in the inner part of the belt. Moreover, we present a recipe for gleaning physical insight24

from solving the ill-posed inverse problem of inferring model coefficients from data us-25

ing PINNs. Furthermore, we derive a parameterization for the diffusion and drift coef-26

ficients as a function of L only, which is both simpler and more accurate than earlier mod-27

els. Finally, we use the PINN technique to develop an automatic event identification method28

that allows to identify times at which the radial transport assumption is inadequate to29

describe all the physics of interest.30

1 Introduction31

The mechanisms that regulate the acceleration, transport, and loss of energetic par-32

ticles in the Earth’s radiation belts have long been investigated, both from the stand-33

point of fundamental research, and for practical space weather applications (Horne et34

al., 2005). In this region, so-called “killer electrons” can be accelerated to relativistic en-35

ergies in just a few days, or even minutes, posing a dangerous threat to satellites (Horne,36

2007). The radiation belts are composed of a collisionless, tenuous plasma that obeys37

Maxwell’s equations and whose distribution can be described by the first-principle Vlasov38

equation. However, due to the massive temporal and spatial separation of the leading39

physical processes, the customary approach to study radiation belt electrons is to use40

a model reduction known as quasi-linear theory, introduced in the seminal paper (Kennel41

& Engelmann, 1966), and soon adopted in radiation belt physics (Lyons et al., 1972; Sum-42

mers et al., 1998). The motion of charged particles in a dipolar magnetic field can be43

decomposed into three quasi-periodic orbits and corresponding adiabatic invariants. In44

the quasi-linear procedure one can expand particle orbits around their unperturbed tra-45

jectories in the Vlasov-Maxwell equations, and derive a diffusion equation in adiabatic46

invariant space (Schulz & Lanzerotti, 2012). The scattering due to resonant wave-particle47

interactions violates the conservation of adiabatic invariants and it is responsible for most48
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of the particle dynamics (since collisions are absent in this tenuous plasma environment).49

These effects can be described by the diffusion coefficients, hence dramatically reducing50

the complexity of the model. Furthermore, given the different timescales associated to51

the three adiabatic invariants, one can decouple the diffusion in the radial direction from52

the one in energy and pitch angle, ending up with a one-dimensional diffusion equation,53

valid for particles at a constant value of the first and second adiabatic invariants. Al-54

ternatively, one can describe the time evolution of the particles’ Phase Space Density (PSD)55

as a stochastic process due to small random changes in the variables, which leads to the56

one-dimensional Fokker-Planck equation (Chandrasekhar, 1943):57

∂f(Φ, t)

∂t
=

1

2

∂2

∂Φ2
(DΦf(Φ, t))−

∂

∂Φ
(CΦf(Φ, t)) (1)58

where f is the particles’ PSD, Φ is the third adiabatic invariant (magnetic flux en-59

closed by a drift shell), t is time, and Eq.(1) is understood to be valid for constant val-60

ues of first and second adiabatic invariants. The drift and diffusion coefficients (CΦ and61

DΦ, respectively) have the physical meaning of mean displacement and mean square dis-62

placement per unit time. Typically, Eq.(1) is further simplified by assuming a simple re-63

lationship between CΦ and DΦ, which can be derived in the case of a dipole field (Fälthammar,64

1966) or in absence of source or sinks (Roederer & Zhang, 2016): CΦ = 1/2(∂DΦ/∂Φ)65

so that, upon transforming Φ to the normalized equatorial radial distance L we get the66

familiar expression:67

∂f(L, t)

∂t
= L2 ∂

∂L

(
DLL

L2

∂f(L, t)

∂L

)
. (2)68

Eq.(2) has constituted the backbone of a large part of radiation belt research for69

the past 60 years, and even though it is now understood that energy and pitch angle dif-70

fusion are crucial ingredients for an accurate description of electrons dynamics (Y. Y. Sh-71

prits et al., 2009; Thorne, 2010; Xiao et al., 2010; Tu et al., 2013), the relative impor-72

tance of radial diffusion is still vigorously debated (Lejosne & Kollmann, 2020). Although73

the radial diffusion coefficient DLL can be calculated from first-principles (Liu et al., 2016),74

as well as for event-specific cases (Tu et al., 2012; Ripoll et al., 2016; L.-F. Li et al., 2020)75

(keeping in mind the several assumptions built in the quasi-linear approximation (Camporeale,76

2015a)), its specification requires detailed knowledge about the power spectrum and dis-77

tribution of Ultra Low Frequency (ULF) waves that are resonant with electrons (Ozeke78
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et al., 2012; Dimitrakoudis et al., 2015). Hence, most of the research focus has been cen-79

tered on finding an efficient and accurate empirical parameterization of the diffusion co-80

efficient DLL, possibly as a function of quantities that are available in real-time. The pa-81

rameterizations most used in the literature use the geomagnetic index Kp as the main82

driver. The model by Brautigam and Albert (2000) (henceforth BA) is possibly the most83

widely used parameterization of DLL as a simple function of Kp and L. More recent works84

include Ozeke et al. (2014); Lejosne (2019); Ali et al. (2016); Drozdov et al. (2020); Wang85

et al. (2020). A Bayesian approach that accounts for possible source of uncertainties has86

been presented in Sarma et al. (2020).87

Here, we approach the problem of defining and parameterizing the coefficients of88

the radial diffusion equations from a pure data-driven standpoint and, for the first time,89

using machine learning techniques. Since Eq.(2) does not account for any injection or90

loss due to non-diffusive processes, it is customary to add a source/loss term in the form91

f/τ . When τ is a general function of L and t, that term is general enough to account92

for all processes that are not included in the diffusive term. In practice, because we want93

to be able to distinguish losses (for instance due to particles falling into the loss-cone)94

from sources (for instance due to scattering in energy and pitch angle) we split the loss/source95

term as:96

∂f(L, t)

∂t
= L2 ∂

∂L

(
DLL

L2

∂f(L, t)

∂L

)
− f(L, t)

τ
+

f(L, t)

S
(3)97

where both τ and S are defined positive, and have the units of time. Eq. (3), how-98

ever is not solvable as an inverse problem, being strongly ill-posed: there is no unique99

solution and, in fact, a trivial solution is one where DLL = 0 and all the rate of change100

in f is accounted for by the source/loss terms. A possible way to alleviate such ill-posedeness101

is to enforce a given parameterization to the coefficients. That approach has successfully102

been followed in Sarma et al. (2020); however, it inevitably restricts the functional form103

of the free parameters and it possibly misses more general and insightful solutions. Here,104

we follow a different strategy to alleviate the problem of ill-posedeness. We generalize105

Eq.(2) to an advection-diffusion Fokker-Planck equation of the form:106

∂f(L, t)

∂t
= L2 ∂

∂L

(
DLL

L2

∂f(L, t)

∂L

)
− ∂

∂L
(Cf(L, t)), (4)107
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with C(L, t) a positive-definite drift coefficient. The positiveness of C imposes a108

constraint on the solution, yet still allowing the drift term to effectively act as both a109

source or a loss term with respect to the diffusive term (i.e., it can be either positive or110

negative, depending on the sign of the derivative). In other words, we seek a solution of111

the Fokker-Planck equation in drift-diffusion form (Eq. 1), without assuming any rela-112

tionship between the drift and diffusion coefficients, since in general CΦ ̸= 1/2(∂DΦ/∂Φ)113

(Allanson et al., 2022; Lemons, 2012). The additional drift term is physically related114

to rapid particle injections into the inner magnetosphere which have often been observed115

by satellites, and which are not a result of a Fick’s law type inward diffusive flow, but116

of a rapid advective flow (see, e.g. (Bortnik et al., 2008a; Z. Li et al., 2021)).117

To solve this inverse problem, we use a Physics Informed Neural Network (Raissi118

et al., 2019) (PINN), that derives f , DLL, and C as general smooth functions of L and119

t, by enforcing both consistency with data and a small residual of the drift-diffusion equa-120

tion (4). We use three years of Van Allen Probes data (that we consider ’noiseless’) in121

the inverse-problem. The procedure approximates the phase space density f by means122

of a neural network (learning from the observed data), and learns DLL and C as the op-123

timal coefficients that solve Eq. (4) for the approximated f . We emphasize that all of124

the physics of interest and the particle dynamics are encoded in those coefficients, whose125

analysis then becomes extremely insightful.126

We compare our results with the following benchmarks: the BA model (Brautigam127

& Albert, 2000), the Ozeke et al. (2014), and the Ali et al. (2016) parameterizations for128

the diffusion coefficients. For each of these, we use the formula presented in Y. Shprits129

et al. (2005) for the electron lifetime τ (widely used in the literature (Drozdov et al., 2017)).130

The forward model is computationally very cheap and it is solved with the finite differ-131

ence method presented in Welling et al. (2012) (slightly adjusted by substituting the ad-132

vection term ∂(Cf)/∂L in lieu of the loss term f/τ).133

This work has several goals. First, we present the first ever application of the PINN134

framework to solve an inverse problem and deriving the optimal coefficients for the ra-135

dial transport problem using real space observations. Although PINN is gaining increas-136

ing attention in all fields of applied mathematics and engineering, its potential in space137

physics is still not fully realized (Bortnik & Camporeale, 2021). Second, we showcase some138

examples of data mining approaches that can deepen our physical understanding and139

possibly unveil new processes. We emphasize that all of the physics of interest and the140
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particle dynamics are encoded in the drift and diffusion coefficients, whose analysis is141

extremely insightful. We regard that as a fine example of data-driven knowledge discov-142

ery, which is one of the ultimate goals of using machine learning in physics (Camporeale,143

2019). Third, we perform data-driven discovery of the physics which is missing in the144

traditional quasi-linear diffusion equation, routinely used to study electrons in the ra-145

diation belts. We show that the drift term is often comparable with the diffusion one,146

and we analyze in detail their relative importance, with varying L, geomagnetic activ-147

ity, and phase space density values. Fourth, we derive what is possibly the simplest and148

most interpretable parameterization of drift and diffusion coefficients as functions of L149

only, that is still able to capture most of the dynamics. We show that this parameter-150

ization is competitive and often outperforms less interpretable parameterizations pre-151

sented in the literature. Eventually, we achieve one of the most important and long-standing152

goals of scientific machine learning: we use a general but opaque ML technique (PINN)153

to solve an inverse problem and we discover that the free parameters of our Fokker-Planck154

equation (diffusion and drift coefficients) can be well approximated by a simple, inter-155

pretable formula. That is, we perform data-driven, ML-aided model order reduction. Fi-156

nally, we use the PINN solution for an automatic event identification task, namely to iden-157

tify events for which the one-dimensional radial approximation does not hold, requiring158

other physical mechanisms, such as energy and pitch-angle resonant interactions.159

2 Methods160

2.1 Forward model161

Eq.(4) is solved by means of an unconditionally stable, second order accurate, Crank-162

Nicholson scheme discussed in Welling et al. (2012). For completeness, we report the nu-163

merical discretization here:164

165

fn+1
j − fn

j

∆t
=

L2
j

2∆L2

[
D

n+ 1
2

j+ 1
2

(fn
j+1 − fn

j + fn+1
j+1 − fn+1

j )166

−D
n+ 1

2

j− 1
2

(fn
j − fn

j−1 + fn+1
j − fn+1

j−1 )
]

167

− 1

4∆L

[
C

n+ 1
2

j+1 (fn+1
j+1 + fn

j+1)− C
n+ 1

2
j−1 (fn+1

j−1 + fn
j−1)

]
(5)168

169

where indexes n and j represent discretization in time and space, with time steps170

∆t and ∆L, and Dj = DLL,j/L
2
j , respectively. Eq. (5) is a linear equation that can be171
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written in matrix form with tri-diagonal matrices and is solved by a standard LU de-172

composition. For all the results presented, we use ∆t = 1 (hours) and ∆L = 0.05. Ob-173

servations at L = 2.0 and L = 5.5 are used as time-dependent boundary conditions,174

while initial conditions are interpolated from the data.175

2.2 Physics-Informed Neural Networks176

Physics-informed Neural Networks (PINN) are a framework for solving forward and177

inverse problems involving nonlinear partial differential equations (Raissi et al., 2019).178

The theoretical foundation of PINNs lies on the well-known universal approximation prop-179

erty of neural networks (Hornik et al., 1989) that essentially allows neural networks to180

accurately approximate a large class of continuous functions. The basic idea of PINNs181

is rather simple, and it exploits the fact that the output of a neural network is a con-182

tinuous and differentiable function (almost everywhere). Moreover, PINNs take advan-183

tage of the ability of modern neural network libraries to automatically calculate exact184

derivatives with respect to the input variables, by applying the chain rule of differenti-185

ation (this is known as autodiff in machine learning jargon (Géron, 2019)). Hence, each186

term in a partial differential equation (PDE) can be calculated exactly on a set of col-187

location points within the domain, and the PDE itself can be used as penalization term188

in the loss function minimized by the neural network. Upon convergence, a PINN out-189

puts a function that approximately solves the PDE and matches the given data on the190

points where it has been trained.191

An interesting feature of PINNs that we use in this work is their ability to solve192

inverse problems in a mesh-free fashion and with a minimal set of assumptions. How-193

ever, the possibility of finding general forms for the free parameters of a PDE has the194

potential drawback of the converged solution not being unique. We approach this issue195

by employing an ensemble method, namely by solving the inverse problem several times196

and averaging the top 5 solutions. Because the solution f spans several orders of mag-197

nitude in the L domain, we perform the transformation f = eg and solve for g:198

∂g

∂t
= L2 ∂

∂L

(
DLL

L2

∂g

∂L

)
+DLL

(
∂g

∂L

)2

− ∂C

∂L
− C

∂g

∂L
(6)199

The PINN is designed as a combination of three coupled neural networks, each tak-200

ing a point in (L, t) as input and outputting the value of f , DLL, and C at that point,201
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respectively. Those three outputs are then combined in the loss function, which is the202

sum of the mean square error with respect to the observations, and the residual of Eq.(6).203

Boundary conditions (at L = 2 and L = 5.5) are enforced by neglecting the residual204

term in the loss function on those points (that is, the function f is forced to converge205

to the boundary values). The neural network architectures are standard, and have been206

selected by progressively increasing their complexity and monitoring changes in the con-207

verged values of the loss function until a plateau was observed. Other hyper-parameters208

were not optimized. The networks use a tanh activation function in all the layers. The209

network that outputs the solution f uses 6 inner layers with [30, 20, 20, 20, 20, 20] neu-210

rons, while the two networks outputting the coefficients DLL and C have 3 inner layers211

with [30, 20, 10] layers. To perform the optimization we use a combination of the Adam212

optimizer (Kingma & Ba, 2014) and the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method213

(Zhu et al., 1997), both within the Tensorflow framework (Abadi et al., 2016).214

2.3 Data215

We use observations from the Magnetic Electron Ion Spectrometer (MagEIS) in-216

struments aboard the Van Allen Probes spacecraft (Blake et al., 2013). Van Allen Probes217

is a NASA twin satellite mission that was active for 7 years, since its launch on August218

30th, 2012. Its primary mission was to address how populations of high energy charged219

particles are created, lost and dynamically evolve within Earth’s magnetic trapping re-220

gion (Fox & Burch, 2014). Due to the unprecedented quality and quantity of data col-221

lected, Van Allen Probes have marked a golden era for radiation belt studies (W. Li &222

Hudson, 2019). Here, we limit our study to electrons with first adiabatic invariant µ =223

700 MeV/G and second adiabatic invariant K = 0.1 RE G0.5, which corresponds to ap-224

proximately 1 MeV electron energies in the heart of radiation belt. We used the TS05225

magnetic field model (Tsyganenko & Sitnov, 2005) to calculate the adiabatic invariants.226

The dataset is comprised of ∼570,000 data points spanning the time range 01-Nov-2013227

to 30-Sep-2017. The largest interval between consecutive data points is 2:45 hours, and228

the average interval is about 4.5 minutes.229

Figure 1 shows the PSD (log scale) of the whole dataset as a function of L. The230

vertical dashed line divides the dataset into training set (70% of the whole dataset, from231

01-Nov-2013 to 30-Oct-2016) and test set (30% of the whole dataset, from 01-Nov-2016232
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to 30-Sep-2017). One can notice that the dataset is sparse both in time and space, since233

it essentially follows from the highly elliptical trajectory of the satellites.234

2.4 Metrics and benchmarks235

Our quantity of interest, the phase space density f , changes by several orders of236

magnitude between L = 2 and L = 5.5. Hence, it is not straightforward to design a237

single metric for model performance. A through analysis of several metrics often used238

in radiation belt modeling, can be found in Morley et al. (2018); Liemohn et al. (2021).239

Here, we are interested in studying the model accuracy at given values of L, rather than240

averaged over the whole domain. We define and use three different errors. Following Morley241

et al. (2018), we characterize accuracy by defining the percentage symmetric accuracy242

ζ as:243

ζk = 100 · exp(Pk(| log(f/f̂)|)), (7)244

where f̂ and f are the ground-truth values taken by observations and the corre-245

sponding values produced by a model, respectively. Pk represents the k−th percentile246

(i.e. P50 is the median) calculated over all values at fixed L. This represents a general-247

ization of the median symmetric accuracy (Morley, 2016) for quantiles other than the248

median, that allows to estimates error bars (that is, ζk is monotonically increasing with249

increasing k). The second metric we employ characterizes bias and is called the symmet-250

ric signed percentage bias SSPB, again generalized from the definition in Morley et al.251

(2018):252

SSPB = 100 · sgn(P50(log(f/f̂)))(exp(|P50(log(f/f̂))|)− 1) (8)253

Note that, by taking the absolute value after calculating the percentile, SSPB is254

not ordered when considering different percentiles Pk (hence it does not allow to esti-255

mate error bars). Finally, we define the relative error ε as the median value at fixed L256

of the relative error of the logarithmic phase space density. That is:257

ε(L) = P50

(
log10 f − log10 f̂

log10 f̂

)
(9)258
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We benchmark our results against several parameterization for the diffusion coef-259

ficient: the BA model (Brautigam & Albert, 2000), the Ozeke et al. (2014), and the Ali260

et al. (2016), which are all functions of L and the geomagnetic index Kp only (Rostoker,261

1972). Their formula are:262

DBA
LL = L10 · 10(0.506Kp−9.325)

263

DOzeke
LL = 2.6 · L6 · 10(0.217L+0.461Kp−8)

264

+ 6.62 · L8 · 10(−0.0327L2+0.625L−0.0108Kp2+0.499Kp−13)
265

DAli
LL = exp(−16.951 + 0.181Kp · L+ 1.982L)266

+ exp(−16.253 + 0.224Kp · L+ L)267
268

The following definition of electron lifetime is employed (Drozdov et al., 2017) for

the BA and Ozeke et al. parameterizations:

τ = 10 for L ≤ Lpp

= 6/Kp for L > Lpp

where Lpp is the plasmapause location, empirically estimated with the formula in Carpenter269

and Anderson (1992). The Ali et al. parameterization does not use a loss term.270

2.5 Ensemble approach271

We have solved the PINN described above for 20 different random initializations272

of the underlying neural networks, each time training for 100,000 epochs (we note that273

some of the networks might have converged with a smaller number of iterations). The274

best 5 solutions in terms of the error ε(L), Eq. (9), computed on the training set are shown275

in Figure 2 as black lines. Blue, magenta and yellow lines denote the BA, Ozeke et al.276

and Ali et al. solutions, respectively. Not surprisingly, the PINN solutions consistently277

outperform those three benchmark solutions. However, it is interesting that the simple278

approach of averaging the best 5 diffusion and drift coefficients yields a result that also279

outperforms the benchmarks and indeed is very close to each of the 5 ensemble mem-280

bers. The error of the PINN ensemble mean is shown in Figure 2 as a red line. This is281

not a trivial result, because from Eq.(6) one can see that averaging the coefficients DLL282

and C does not yield a solution that is the average of the ensemble members solutions.283

–10–
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Figure 3 shows the best five realizations of the diffusion coefficient DLL (top panels) and284

the corresponding drift coefficient C (bottom panels) as heat maps in logarithmic scale285

and as a function of time (horizontal axis) and L (vertical axis). Figure 4 shows the en-286

semble mean (average of the best five) for DLL (left) and C (right).287

3 Results288

3.1 Statistical analysis of coefficients289

Here we perform a statistical analysis of the optimal coefficients derived with PINN290

on the training set. First, we show in Figure 5 the distribution of the PSD f as a func-291

tion of L. The heat map shows the counts in each bin, normalized to the largest num-292

ber for a constant value of L. The statistics are computed on about 25,000 times instances,293

spanning 3 years of data (01-Nov-2013 to 30-Oct-2016). One can notice that three regimes294

naturally appear: one for L ≲ 3.2 where f is approximately constant at levels of 10−10,295

one for 3.2 < L ≲ 4.5 where f rapidly increases and it has a large spread covering the296

range 10−10 < f < 10−4 and a third regime at larger L where the L−dependence is297

again flattened, even though the spread in values remains relatively large. Figure 6 (left298

panel) shows the distribution of the diffusion coefficient DLL as function of L. The gray299

area represents the interval between the 25th and 75th percentile (for a given L), and300

the orange line denotes the median. One can notice that the spread increases by mov-301

ing further away from the coordinate L ∼ 3.2. Also, the slope of the distribution un-302

dergoes several regimes. For reference, we overlay the curves L10 (yellow) and L20 (ma-303

genta). The former is adopted in the BA parameterization and is consistent with the dis-304

tribution of DLL for small L, while for large L the latter L−dependence seems more ap-305

propriate. A more detailed examination of this distribution is shown in the right panel306

of Figure 6. Here, we have ranked column-wise (i.e. for constant L) the number of counts307

in each bin (the bins are uniformly spaced in log10 DLL and L). The heat map shows308

the top 20 ranks, with black signifying the top rank (i.e. bins with the largest number309

of counts at constant L, and white the lowest rank (20 or above). In this way we are able310

to distinguish different trajectories for DLL, and in particular a bifurcation of values, par-311

ticularly at large L. The same bifurcation is even more prominent in the distribution of312

C, shown with the same format in Figure 7, where one can notice two different regimes313

being approximately separated at L ∼ 3.5. Interestingly, for L > 3.5, C can vary by314

one or two orders of magnitude.315
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The presence of (at least) two distinct regimes confirms that the physics of inter-316

est is different within and outside the plasmapause. Here we do not explicitly model the317

plasmapause location (see, e.g. (Malaspina et al., 2020; Guo et al., 2021; Chu et al., 2017)),318

hence the change in the distributions slopes between L=3 and L=3.5 should be attributed319

to a statistically averaged plasmapause location. The spread in the coefficients is harder320

to interpret physically, although certainly driven by variations in the boundary condi-321

tions at L = 2 and L = 5.5. We note that one of the important aspects of PINN-based322

insight discovery is identifying regions in parameter space that are poorly constrained323

or carry greater error, as specific areas that require better understanding and further in-324

vestigation. Finally, Figure 8 shows the ranked joint distribution of DLL (horizontal axis)325

and C (vertical axis). Both quantities are in logarithmic scale. While there seems to be326

an almost linear dependence between the two coefficients for relatively small values (≲327

10−2), several branches appear for large values, possibly indicating different physical regimes.328

3.2 Relative importance of drift and diffusion terms329

In order to understand the relative importance of the diffusion and drift terms in330

Eq. (4) we define their ratio as r =
∣∣∣ 1
L2

(
∂Cf
∂L

)/ [
∂
∂L

(
DLL

L2
∂f
∂L

)]∣∣∣. Figure 9 shows the331

distribution of r (in logarithmic scale, vertical axis) as a function of L (horizontal axis).332

The distribution is normalized to the maximum value of counts per L-value. The black333

solid line at log10 r = 0 indicates equal balance between drift and diffusion, and the re-334

gion below that line represents a stronger diffusion than drift. One can notice that in335

the inner magnetosphere (L ≲ 4) the two terms are approximately balanced, while dif-336

fusion plays a larger role with increasing L in the outer belt. Figure 9 can be interpreted337

in the sense of local versus global losses, where the former are captured by the drift term338

and the latter by the diffusion term. Typically, local diffusion at µ = 700 MeV/G is339

controlled by the hiss and chorus waves and radial diffusion becomes very low at lower340

L-shell. On the other hand, hiss waves will more likely be a cause of local losses at low341

L-shell, providing a steady decay time, shorter than the one due to radial diffusion. It342

is important to notice that this picture might change for lower µ values, which is some-343

thing that can be explored in the future using this technique.344

We further analyze the relative contribution of the drift and diffusion terms by study-345

ing the ratio r as a function of log10 f and L, and for different geomagnetic activity, rep-346

resented by the Auroral Electrojet index AE, in Figure 10 (left panel: AE < 100, mid-347
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dle panel: 100 ≤ AE < 300, right panel: AE >= 300). Interestingly, at low L drift is348

more dominant than diffusion for larger values of PSD. Also, the range of L in which dif-349

fusion is dominant slightly shifts to smaller L with increasing geomagnetic activity. This350

analysis unambiguously shows an unexpected relatively large contribution of non-diffusive351

drift in the time evolution of the phase space density.352

3.3 Effective electron lifetime and sources353

As explained above, in this approach electron losses and sources are not included354

explicitly, and the last two terms of Eq. (3) (f/τ and f/S) are replaced by a drift term.355

However, effective lifetimes associated to losses and sources can be derived at each point356

in time and space by calculating f/(∂Cf(L, t)/∂L) and defining this quantity as τ when357

it is positive, and −S when it is negative. Notice that both τ and S are positive and have358

the units of days. Their distribution is shown in Figure 11, as functions of L (logarith-359

mic vertical scale). Here, the different shades of gray denote the area covered by [1-99],360

[10-90], and [25-75] percentiles at a constant L value. Once again, a distinguishing fea-361

tures is the existence of two regimes: for small L both lifetimes are very large (i.e. the362

corresponding loss/source terms f/τ and f/S are negligible), but their value decreases363

substantially with increasing L until they plateau at large L. It is interesting that the364

range of values taken by τ (i.e. the gray area) also increases significantly with larger L,365

to the point that at L = 5, τ can range approximately 3 orders of magnitude. In the366

left panel of Figure 11, the black line denotes the parameterization by Y. Shprits et al.367

(2005) used in the BA and Ozeke et al. models. The underestimation of τ at small L might368

be the cause of the large errors for low L in those models (see Figure 2).369

Several mechanisms that locally enhance the phase space density have been inves-370

tigated in the literature (Boyd et al., 2018a; Hudson et al., 2020; Jaynes et al., 2015a).371

Figure 12 shows the source term S over the whole training set, in space (vertical axis)372

and time (horizontal axis). The interesting feature is that local injection of phase space373

density can sporadically extend to low values of L, down to L ∼ 3.5− 4. Although in374

the majority of cases the timescale associated with such injections are of the order of tens375

or hundreds of days, there are cases where S ∼ 1 day, hence comparable with the timescale376

of local diffusion and losses.377
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3.4 Feature selection378

The PINN method described above derives DLL and C as generic functions of time379

and space (t, L), spanning the whole training period. In order to understand the rela-380

tionship between the diffusion and drift coefficients and their physical drivers, here we381

perform a feature selection analysis. This analysis can be used, in later works, to inform382

machine learning models that seek to generate DLL and C as function of past known quan-383

tities, for space weather forecasting purposes. Feature selection is an extensive topic in384

the machine learning literature (see, e.g. (J. Li et al., 2018)). Here, we use the backward385

elimination technique based on generalized linear models, which we briefly describe in386

the following. First, we define a minimal set of features, based on our physical intuition:387

since the radiation belt is ultimately driven by the solar wind variability, we include so-388

lar wind quantities observed at the L1 (first Lagrangian point) and propagated in time389

to the magnetosphere bow-shock that are well known to be drivers of geomagnetic ac-390

tivity (Wing et al., 2016; Kilpua et al., 2015). Those solar wind quantities are taken from391

the NASA OMNI dataset. Table 1 lists the 12 features initially considered. A general-392

ized linear model is built using all combinations of those features up to a quadratic or-393

der (a total of 91 terms for C and 78 terms for DLL, including the intercept). The lin-394

ear model naturally provides the standardized coefficients (so-called t-Statistic or Z-score)395

for each term, defined as the ratio between the coefficient calculated for that term by396

solving a least-square problem, and its standard deviation. A large value of the standard-397

ized coefficient rejects the hypothesis that the coefficient is zero (null hypothesis). In the398

backward elimination procedure we iteratively eliminate the coefficient with smallest Z-399

score (in absolute value) and train a new model with all the terms remaining, until only400

one term is left. This provide us with a ranking, or selection of the features. Figure 13401

illustrates the top ten features for DLL and C, respectively, as a function of the coeffi-402

cient of determination R2. The features are ranked from left to right with decreasing im-403

portance, and the reported R2 is intended for a model that uses all features listed to the404

left (i.e., adding one at the time). The red dashed line represents the largest R2 achieved405

when all the features are included. In order to add robustness to the procedure, each model406

is trained on randomly selected 80% data in the training set. It is interesting to notice407

that the solar wind features have lower rankings than features that use PSD and bound-408

ary conditions. In other words, the solar wind information contained in the PSD and the409

boundary condition is more informative for DLL and C than using the solar wind directly.410
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A more comprehensive study of the most efficient time lag between solar wind and dif-411

fusion and drift coefficients, following the methodology of Wing et al. (2016) is under412

way.413

Feature Meaning

L Spatial coordinate in Eq.(2)

Kp Geomagnetic index

PSD log10 of the phase space density

Σ PSD Average of PSD along 10 prior hours

ΣL PSD Moving average of PSD along L (10 ∆L)

BCu PSD Upper boundary condition (L = 5.5)

BCl PSD Lower boundary condition (L = 2.0)

Bz z-component of the interplanetary magnetic field

V solar wind speed

V Bz product of V and Bz

Newell Newell coupling function (Newell et al., 2007)

DLL log10(DLL), used as a feature for C

Table 1. Features tested in the backward elimination algorithm, and their meaning.

3.5 Interpretable parameterization of drift and diffusion coefficients414

Eventually, in the grand scheme of scientific machine learning, one would like to415

use advanced but often opaque techniques (such as PINN) to extract physical insight from416

the data, with the final goal of exploiting such new insights to advance our knowledge417

and possibly derive new interpretable models. In a sense, that follows from Occam’s ra-418

zor argument that suggests that one should seek the most parsimonious yet accurate model.419

Here, we close the circle of our inquiry by deriving what is possibly the simplest param-420

eterization of DLL and C. The feature selection procedure (Figure 13) demonstrates that421

most of the variance in both DLL and C can be attributed to changes in L. In other words,422

L is the best unique predictor for the coefficients, and therefore we aim to describe them423

as a function of L only, by fitting the PINN-derived values of DLL and C with a cubic424

interpolator, shown with black lines in the left panels of Figures 6 and 7, respectively.425
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Not surprisingly, the cubic interpolator is a good approximation of the median values.426

The derived formulas for the cubic fit are the following:427

log10 DLL = −0.0593L3 + 0.7368L2 − 1.33L− 4.505

log10 C = 0.0777L3 − 1.2022L2 + 6.3177L− 12.6115

In order to assess the goodness of this approximation, we use it in a forward model428

solution (see section Methods) and we compare the results with two benchmarks: a so-429

lution derived with the BA diffusion coefficients (Brautigam & Albert, 2000), and an-430

other derived by using the diffusion coefficients proposed in Ozeke et al. (2014) (a com-431

parison against the Ali et al. model is not shown since it was found to yield too large432

errors (Drozdov et al., 2021)). For both cases we solve Eq. (2) with the addition of a loss433

term (−f/τ), parameterized as in Gu et al. (2012); Orlova et al. (2016), since the inclu-434

sion of such term is standard practice to account for wave-particle scattering due to hiss435

and chorus waves, and it is known to improve accuracy (see section Metrics and Bench-436

marks). In Figure 14 we show (left) the percentage symmetric accuracy ζ, Eq. 7 and437

(right) the symmetric signed percentage bias SSPB, Eq. 8 (see Methods) calculated over438

the whole test set (1 year of data), as a function of L. Blue, red, and black lines denote439

the results from the baselines by BA and Ozeke et al., and by using the PINN-derived440

cubic fit, respectively. In the left panel of Figure 14, the solid squares denote the me-441

dian values ζ50 and the error bars are calculated as the spread between ζ25 and ζ75. In442

the right panel, positive values are in solid and negative values in dashed lines. One can443

notice that the simple cubic approximation of Eqs. (10) yields results comparable or su-444

perior to the ones obtained with more sophisticated models (all errors are by definition445

going to zero at the boundary).446

Finally, we present in Figure 15 the PSD resulting from the forward models using447

the three different parameterizations (BA in red, Ozeke et al. in yellow and PINN-derived448

cubic fit in purple), compared against the Van Allen Probes data (blue), for the whole449

period covered in the test set. Top and bottom panels are for L = 5 and L = 4, re-450

spectively. In all cases, the simulations have initial and boundary conditions taken from451

the data. For L = 5, the PSD resulting from the new parameterization presented here452

is consistently more accurate than the two baseline models, which tend to underestimate453

the Phase Space Density. At L = 4 none of the three models is particularly accurate,454
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although the PINN is often orders of magnitude closer to the observations than the other455

two models. Note that logarithmic scales are used in vertical axis.456

3.6 Automatic event identification457

One of the by-products of the PINN approach outlined in this paper is the possi-458

bility of studying how well the observational data are consistent with the solution of the459

underlying PDE. As mentioned in the Introduction, the derivation of the radial diffu-460

sion Eq.(4) is based on several assumptions, one of which is the conservation of the first461

and second adiabatic invariant. Breaking those invariants can cause local diffusion in en-462

ergy and pitch-angle (Camporeale, 2015b; Tu et al., 2013). By investigating how small463

the residual of the PDE is on the domain, one can easily identify times when any of the464

quasi-linear assumptions do not hold and hence Eq.(4) cannot capture some of the phys-465

ical mechanisms that generate the data. Figure 16 shows the residual of Eq.(4) plotted466

as a heat map over the whole training period. For ease of visualization, it has been nor-467

malized to its maximum value, and the color scale is capped at a value of 0.3. The red468

dashed lines on the bottom of the figure represent times at which the residual contain469

values in the 99 percentile of its the distribution. The list of these ‘events’ is reported470

in Table 2. Most of these periods are associated to moderate or strong geomagnetic storms,471

dropout events, or flux enhancements, and have already been studied in the literature.472

When that is the case, some references that explicitly analyze data from that period are473

cited in the last column. For other events, we have not found previous studies in the lit-474

erature, and we encourage the community to analyze them.475

4 Conclusion476

The process of understanding the mechanisms underlying a physical process, and477

the ability of describing such mechanisms with the elegant and succinct formalism of par-478

tial differential equations (PDEs) lies at the core of scientific discovery. However, the way479

in which scientists extract information from experiments and observations (data) and480

encodes that information into PDEs has seen dramatic changes over the last decade, when481

methods originating in machine learning have started playing an increasingly important482

role. Currently, there is a rich literature on data-driven discovery of PDEs (see, e.g., (Long483

et al., 2018; Berg & Nyström, 2019; Raissi, 2018; Rudy et al., 2017; Xu et al., 2019; Zhang484

& Lin, 2018; Boullé et al., 2021; Udrescu & Tegmark, 2020)). The published methods485
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Table 2. List of events automatically generated. The last column indicates references in case

that event has been studied in the literature.

Start time End time Previously studied in the literature?

30-Dec-2013 04-Jan-2014 CIR-associated storm (Shen et al., 2017)

10-Feb-2014 10-Feb-2014

14-Feb-2014 20-Feb-2014 Geomagnetic storm due to multiple interacting ICMEs

(Kilpua et al., 2019; Vlasova et al., 2020)

25-Jul-2014 7-Aug-2014

08-Sep-2014 18-Sep-2014 Dropout event

(Ozeke et al., 2017; Alves et al., 2016; Jaynes et al., 2015b; Ma et al., 2020)

24-Dec-2014 24-Dec-2014

15-Mar-2015 20-Mar-2015 CME-associated storm

(Shen et al., 2017; Baker et al., 2016)

15-Apr-2015 17-Apr-2015

12-May-2015 14-May-2015 CIR-associated storm (Shen et al., 2017)

07-Jun-2015 28-Jun-2015 CIR and CME-associated storms(Shen et al., 2017; Baker et al., 2016);

Moderate event(Reeves et al., 2020);

Sudden Particle Enhancements at Low L Shells(Turner et al., 2017)

19-Jul-2015 23-Jul-2015 Sudden Particle Enhancements at Low L Shells (Turner et al., 2017)

17-Aug-2015 31-Aug-2015 Moderate event(Reeves et al., 2020)

05-Oct-2015 09-Oct-2015 Moderate event(Reeves et al., 2020)

03-Nov-2015 06-Nov-2015

08-Dec-2015 11-Dec-2015

14-Dec-2015 28-Dec-2015 Moderate and strong storms

(Boyd et al., 2018b; L.-F. Li et al., 2020; Sotnikov et al., 2019)

27-Jan-2016 07-Feb-2016 Dropout event (Wu et al., 2020)

15-Feb-2016 19-Feb-2016 Moderate event(Reeves et al., 2020); Fast magnetosonic waves(Yu et al., 2021)

01-May-2016 14-May-2016 Moderate event(Reeves et al., 2020; Moya et al., 2017)
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can be loosely divided in two classes. On one hand, one can create a large dictionary of486

terms that contain algebraic, differential and integral operators and search the space of487

all (or many) combinations of those terms for the optimal PDE that describes the data488

(i.e., the PDE whose solution is an acceptable approximation of the data). Two semi-489

nal examples of this approach are Rudy et al. (2017) (using sparse regression) and Udrescu490

and Tegmark (2020) (using symbolic regression). On the other hand, one can restrict491

the search for the optimal PDE to a specific class of functionals, thus setting up the prob-492

lem of PDE discovery as an inverse problem, where the time and space dependence of493

free parameters (such as, for instance, drift and diffusion coefficients) needs to be learned.494

Physics-Informed Neural Network, introduced in (Raissi et al., 2019), falls in this cat-495

egory, and it is the approach used in this paper. Here, we have presented a framework496

that solves the problem of finding the optimal coefficients for a Fokker-Planck equation497

(inverse problem) with a Physics-Informed Neural Network, applied to the study of en-498

ergetic radiation belt’s electrons, and using for the first time real space satellite obser-499

vations (Van Allen Probes). This approach opens several possible avenues for future in-500

vestigations. In this paper, we have showcased several of them.501

Specifically, we have investigated the possibility that the time evolution of the Phase502

Space Density of electrons in the Earth’s radiation belt could be described by the com-503

bination of (and the competition between) a diffusion and a drift term. It was found that504

the data is more consistent with the inclusion of a non-diffusive drift mechanism and it505

was discovered that the phase space distribution is an important parameter in determin-506

ing the coefficients. These findings challenge several decades of literature that have ex-507

clusively focused on diffusive processes.508

The data-driven approach enabled by PINN allows to unambiguously test such hy-509

pothesis, by determining the optimal drift and diffusion coefficients that, used in Eq. (4),510

result in the solution most consistent with observations. Interestingly, we have shown511

that, at least for the values of first and second adiabatic invariants considered here, drift512

and diffusion are competing for L ≃ 4, while diffusion becomes increasingly dominant513

for larger values of L. Obviously, as powerful as it is, the PINN method does not solve514

the issue of ill-posedness of the inverse problem. Namely, there is no guarantee about515

the uniqueness of the solution. Indeed, we have verified that different realizations of the516

coefficients are possible and equally valid. Interestingly enough, we have also verified that517

not only the best 5 coefficients used in this study yield solutions that have comparable518
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errors with respect to the data, but that the average of the coefficients (analyzed in de-519

tail in Figures 4-10) also yield a similar level of error.520

Furthermore, discovering the optimal diffusion and drift coefficients allows to data-521

mining them in order to learn their dependence on physical parameters and the statis-522

tical behaviour of their profile (Figures 3 - 8). Second, one can re-derive effective loss523

and source terms, and study their behaviour in space and time (Figures 11, 12). In this524

way, we have discovered fast sporadic injections of PSD at L ∼ 3.5−4 that might oc-525

cur on a ∼ 1 day timescale (Figure 12). The analysis has also highlighted a deficiency526

in modelling the loss term τ at low L in previous works (Figure 11). Third, we have used527

the PINN-discovered coefficients DLL and C and their learned dependence on L to build528

a simple and interpretable model that yields an excellent approximation (and forecast)529

of the PSD (Figure 14), with no free parameters, other than the boundary conditions.530

In our opinion, this step represents the pinnacle of scientific machine learning, where a531

simple, analytical, interpretable expression for physical parameters has been discovered532

by way of using a powerful, yet opaque, ML method such as PINN.533

Finally, we have shown a simple way of performing automatic event identification,534

that is to identify time intervals when the underlying diffusive approximation is not valid535

(Figure 16). This can be due to a number of physical effects, including non-resonant in-536

teractions (Camporeale, 2015a; Camporeale & Zimbardo, 2015), large-amplitude waves537

(Bortnik et al., 2008b), pitch-angle and energy scattering (Tu et al., 2013), and others.538

Interestingly, some of the identified events (reported in Table 2) have been well studied539

in the literature, while others were not and thus deserve further investigation.540

Future steps include extending the present study to a range of first and second adi-541

abatic invariants, and eventually to the less approximated diffusion equation in energy542

and pitch-angle (requiring the specification of a diffusion tensor that includes cross terms,543

thus increasing the dimensionality of the problem, see, e.g. (Albert & Young, 2005; Cam-544

poreale et al., 2013a, 2013b)), and the estimates of uncertainties associated either to the545

derived coefficients, or directly to PSD solution of the Fokker-Planck equation (Camporeale546

& Carè, 2021; Chen et al., 2020).547
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Figure 1. Phase Space Density of the whole dataset, in logarithmic scale, as function of L.

The vertical dashed line divides the dataset into training (to the left) and test (to the right) sets.
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Figure 2. Error ε as a function of L, computed over the whole training set. Blue, magenta

and yellow lines are for the baseline models BA, Ozeke et al., and Ali et al., respectively. Five

black lines denote the top five solutions from the ensemble run, and the red line represents the

solution obtained by using the mean of the top five diffusion and drift coefficients.

Figure 3. Top 5 diffusion coefficients (top) and corresponding drift coefficients (bottom), in

logarithmic scale.
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Figure 4. Diffusion (left) and drift (right) coefficients obtained by averaging the top 5 solu-

tions shown in Figure 3

Figure 5. Distribution of the Phase Space Density f as a function of L. The heat map shows

the counts in each bin, normalized to the largest number for a constant L. Here and in following

Figures, the statistics is computed on about 25,000 times instances, spanning 3 years of data

(01-Nov-2013 to 30-Oct-2016).
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Figure 6. Distribution (left) and rank distribution (right) of the diffusion coefficients DLL

as function of L-shell. Left: The gray area represents the interval between the 25th and 75th

percentile (for a given L-shell), and the orange line denotes the median. The yellow and magenta

lines are shown as a reference for L10 and L20, respectively. The black line is a cubic interpola-

tion fit. Right: Dark colors indicate top ranks, and white indicates a rank equal or larger than

20. The ranking is performed by sorting the number of counts in each bin, at a constant L.
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Figure 7. Distribution (left) and rank distribution (right) of the drift coefficient C as func-

tion of L. Left: The gray area represents the interval between the 25th and 75th percentile (for

a given L), and the orange line denotes the median. The black line is a cubic interpolation fit.

Right: dark colors indicate top ranks, and white indicates a rank equal or larger than 20. The

ranking is performed by sorting the number of counts in each bin, at a constant L.
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Figure 8. Ranked joint distribution of DLL and C. Dark colors indicate top ranks, and white

indicates a rank equal or larger than 20. The ranking is performed by sorting the number of

counts in each bin, at a constant L.
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Figure 9. Distribution of r (logarithmic scale) as a function of L. The number of counts is

normalized, for each value of L, to its maximum value. The black solid line denotes r = 1, that is

exact balance between the drift and diffusion terms.
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Figure 10. Distribution of r (logarithmic scale) as a function of L and log10(PSD) for

three geomagnetic levels (left panel: AE < 100, middle panel: 100 ≤ AE < 300, right panel:

AE >= 300)

Figure 11. Distribution of the loss term τ (left) and S (right) as a function of L. The gray

areas denote different percentiles range and the orange line represents the median value at a

given L. Vertical axis in logarithmic scale.
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Figure 12. Heat map of the effective source term log10 S in time and L over the whole train-

ing set. The colors are saturated at 103 and white areas denote regions where there is no source,

but a loss term.

Figure 13. Backward elimination results for DLL (left) and C (right). Each symbol denotes

the coefficient of determination R2 of a linear model that uses only the corresponding feature,

in addition to all features shown on its left. The dashed red line represents the upper limit, ob-

tained when all the features are taken into account in a generalized linear model (78 terms in

total for DLL and 98 for C). The meaning of each feature is explained in Table 1.
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Figure 14. Percentage symmetric accuracy ζ (Eq. 7) (left) and symmetric signed percentage

bias SSPB (Eq. 8)(right) calculated over the whole test set (1 year of data), as a function of L.

Blue and red lines denotes the BA and Ozeke et al. baseline models, respectively, while the cubic

parameterization in Eqs. (10) is shown in black. In the left panel, the solid squares denote the

median values ζ50 and the error bars are calculated as the spread between ζ25 and ζ75. In the

right panel, positive values are in solid and negative values in dashed lines.
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Figure 15. Phase Space Density (PSD) resulting from running the forward model with dif-

ferent coefficient parameterization, for the while test set. Red, yellow and purple lines denote the

BA, Ozeke et al. and PINN-derived cubic parameterizations, respectively. The Van Allen Probes

data is represented in blue. The vertical axis is in logarithmic scale.
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Figure 16. Heat map of the residual of Eq.(4), normalized on its maximum value, over the

training set. The red dashed lines denotes time at which the value of the residual is in the 99

percentile of its distribution.
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