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Abstract

Understanding relationships between stream chemistry and watershed factors: land use/land cover, climate, and lithology are

crucial to improving our knowledge of critical zone processes that influence water quality. We compiled major ion data from

more than 100 monitoring stations collected over 60 years (1958-2018) across the Colorado River Watershed in Texas (103,000

km2). We paired this river chemistry data with complementary lithology, land use, climate and stream discharge information.

A combination of graphical geochemistry and machine learning techniques were used to produce new insights on controls of

stream water chemical behavior. Studies on stream flow and chemistry in the American west and globally have shown strong

relationships between major ion chemical composition and lithology, which hold true for the Colorado River basin in this study.

Reactive minerals, including carbonates and evaporites, dominate major ion chemistry across the upper watershed. Upstream

and central reaches of the Colorado River showed shifts from Na-Cl-SO4 dominated water from multiple sources including

dissolution of gypsum and halite in shallow groundwater, agricultural activities, and oil and gas development, to Ca-HCO3

water types controlled by carbonate dissolution. In the lower portion of the watershed multiple analyses demonstrate that

stream chemistry is more influenced by greater precipitation and the presence of relatively fewer reactive silicate minerals than

middle and upstream reaches. This study demonstrates the power of applying machine learning approaches to publicly available

long term water chemistry datasets to improve the understanding of water and nutrient cycling, salinity sources, and water use.
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Key Points (140 characters) 13 

• The distribution of reactive minerals (e.g., evaporites & carbonates) dictates the chemical 14 
behavior of the Colorado River 15 

• Climate factors act as a secondary control, with increasing precipitation leading to 16 
decreased overall concentrations and dilution behavior 17 

• Agriculture, urban development, reservoirs, and oil and gas wells lead to noise in 18 
chemical measurements and obscures natural signals 19 

Abstract (250 words) 20 

Understanding relationships between stream chemistry and watershed factors: land use/land 21 
cover, climate, and lithology are crucial to improving our knowledge of critical zone processes 22 
that influence water quality. We compiled major ion data from more than 100 monitoring 23 
stations collected over 60 years (1958-2018) across the Colorado River Watershed in Texas 24 
(103,000 km2). We paired this river chemistry data with complementary lithology, land use, 25 
climate and stream discharge information. A combination of graphical geochemistry and 26 
machine learning techniques were used to produce new insights on controls of stream water 27 
chemical behavior. Studies on stream flow and chemistry in the American west and globally 28 
have shown strong relationships between major ion chemical composition and lithology, which 29 
hold true for the Colorado River basin in this study. Reactive minerals, including carbonates and 30 
evaporites, dominate major ion chemistry across the upper watershed. Upstream and central 31 
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reaches of the Colorado River showed shifts from Na-Cl-SO4 dominated water from multiple 32 
sources including dissolution of gypsum and halite in shallow groundwater, agricultural 33 
activities, and oil and gas development, to Ca-HCO3 water types controlled by carbonate 34 
dissolution. In the lower portion of the watershed multiple analyses demonstrate that stream 35 
chemistry is more influenced by greater precipitation and the presence of relatively fewer 36 
reactive silicate minerals than middle and upstream reaches. This study demonstrates the power 37 
of applying machine learning approaches to publicly available long term water chemistry 38 
datasets to improve the understanding of water and nutrient cycling, salinity sources, and water 39 
use.   40 

Plain Language Summary (200 words) 41 

Across the United States public and private users rely on large rivers for access to potable water, 42 
making water quality of crucial concern. Water quality measurements are widely available but 43 
require intensive pre-treatment due to their irregular collection across space and time. Here, 44 
public water quality measurements from the Colorado River basin were used to understand the 45 
influence of different land use, geologic, and climate factors on water quality. The Colorado 46 
River runs across a range of rock types, land uses, and precipitation regimes and therefore 47 
displays complex interactions with the land surface that produce changes in water quality. We 48 
found that the upper Colorado River is dominated by Na+, Cl-, and SO42- which are derived from 49 
multiple sources including agriculture, oil and gas activity, and rock salt dissolution in shallow 50 
groundwater. The middle reaches of the Colorado are dominated by Ca2+ and HCO3- which are 51 
mainly contributed by the large areas of limestone bedrock. Downstream reaches of the river 52 
show more inputs from precipitation as well as potential seawater mixing in coastal areas. 53 
Overall, these techniques were effective in demonstrating large scale trends across this watershed 54 
and could be improved with more detailed datasets. 55 

Keywords: critical zone, machine learning, historical data, water quality, regional hydrology 56 

 57 

1. Introduction 58 

River chemical composition and behavior reflects geochemical, hydrological, and 59 
anthropogenic factors of its upstream contributing areas (Ameli et al., 2017; Gaillardet et al., 60 
1999; Godsey et al., 2009). Understanding how spatially varying watershed factors influence 61 
stream chemistry at large scales is crucial for illuminating how hydrologic processes influence 62 
global biogeochemical cycles. Particularly, synthetic analyses of coexisting river chemistry 63 
datasets with other datasets such as discharge, bedrock, soil types, and land uses are needed to 64 
improve understanding of how spatial heterogeneity in lithology, climate, and land use/land 65 
cover (LULC) impacts overall chemical behavior and transport of materials within large 66 
watersheds (i.e., critical zone function).  67 

Water flow paths, residence times, and water-rock interactions within the critical zone 68 
govern weathering reactions, the rate of solute transport, and stream water chemical composition 69 
and behavior (Ameli et al., 2017; Baronas et al., 2017; Bouchez et al., 2017; Chen et al., 2014; 70 
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Chorover et al., 2017; Dupré et al., 2003; Gaillardet et al., 1999; Stewart et al., 2022; Torres et 71 
al., 2017). Flow paths and residence times are controlled by a combination of topography, 72 
lithology, climate, and anthropogenic factors. The degree of influence of each of these factors 73 
varies both spatially and temporally. Thus, predicting stream chemistry at any one point within a 74 
watershed is challenging. Many studies have attempted to capture the degree of influence of 75 
different watershed factors through concentration-discharge (C-Q) analysis at both event, and 76 
watershed scales (Abbott et al., 2018; Ameli et al., 2017; Evans & Davies, 1998; Godsey et al., 77 
2009; Herndon et al., 2015; F. Liu et al., 2017; Minaudo et al., 2019; Torres et al., 2017). 78 
Significant research has also been conducted focusing on multivariate analyses that capture 79 
landscape influences of stream chemistry at a range of scales (Kaushal et al., 2013; X. Liu et al., 80 
2021; Park & Lee, 2020; Sliva & Williams, 2001; Tiwari et al., 2017; Xu et al., 2021).  More 81 
recently, machine learning techniques, such as random forest algorithms, have been employed to 82 
understand the degree to which topography, lithology, and climate govern stream discharge 83 
behavior (Addor et al., 2018; Hammond et al., 2021; Konapala & Mishra, 2020; Kratzert, Klotz, 84 
Herrnegger, et al., 2019; Kratzert, Klotz, Shalev, et al., 2019; Oppel & Schumann, 2020; Rice et 85 
al., 2016), but to the best of our knowledge their use in explaining stream water chemistry has 86 
been limited (Nearing et al., 2021). Indeed, machine learning techniques offer a promising and 87 
flexible approach to quantify and represent relationships in complex systems and to identify 88 
important drivers across a range of environments. 89 

Arising from many studies is the consensus that lithology is one of the most influential 90 
watershed factors controlling the composition and behavior of geogenic solutes in streams 91 
(Dupré et al., 2003; Gaillardet et al., 1999). Widespread homogeneity and availability of reactive 92 
minerals, in combination with long transit times relative to dissolution rates, have been proposed 93 
to account for chemostatic behavior across watersheds, meaning concentrations are relatively 94 
constant across a wide range of flows (Chorover et al., 2017; Godsey et al., 2009; Kirchner, 95 
2003; Knapp et al., 2020; Maher, 2011). For example, studies in the Andes-Amazon basin have 96 
shown that in large river basins, longer residence times are associated with more chemostatic 97 
behavior, and that relationships between solute concentrations and flow change in response to 98 
spatial variations in watershed factors as well as contributions from major tributaries (Baronas et 99 
al., 2017; Bouchez et al., 2017; Torres et al., 2017). Chemical composition of river waters also 100 
generally reflects subsurface characteristics including lithology and geological structures 101 
(Stewart et al., 2022). However, large river systems have complex spatiotemporal interactions 102 
within the critical zone which makes quantitative models of direct lithologic (or structural) 103 
influence on stream chemical composition and behavior difficult to develop.   104 

A second highly influential factor for stream solute behavior is climate (Shen et al., 2021; 105 
White & Blum, 1997). Precipitation and evapotranspiration (or the difference of the two, i.e., 106 
effective precipitation) dictate water availability and residence time in river channels and the 107 
shallow subsurface and hence control the depth distribution of reactive mineral fronts over long 108 
time periods (Ameli et al., 2017; Bouchez et al., 2017; Brantley & Lebedeva, 2020; Maher, 109 
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2011; Torres et al., 2017). Effective precipitation (defined as [precipitation – evapotranspiration] 110 
/ precipitation) represents the fraction of precipitation that remains as available water. Negative 111 
values indicate actual evapotranspiration exceeds precipitation while positive values indicate that 112 
precipitation exceeds actual evapotranspiration and will infiltrate or run-off. Increased available 113 
precipitation leads to decreased water residence times, increased solute dilution behavior, and 114 
decreased coupling of river chemical behavior with lithologic influences (Maher, 2011; Torres et 115 
al., 2017). Hence, under low effective precipitation lithology and land use are more prominent 116 
factors influencing stream water chemistry compared to areas of high effective precipitation.  117 

Finally, anthropogenic factors influence riverine chemistry and behavior through 118 
processes such as agricultural runoff, waste water discharge, regulation of flows by reservoirs, 119 
extraction of stream water, and alterations to hydrologic function via land use changes (Kaushal 120 
et al., 2013; Liu et al., 2021). Anthropogenic factors encompass myriad potential effects as they 121 
are broad and varied. For example, stream chemistry and discharge can be significantly different 122 
from natural conditions where urban and agricultural land represent a large fraction of 123 
watershed’s area due to inputs of fertilizers, industrial additions, agricultural withdrawals, 124 
industrial and municipal withdrawals, regulation via reservoirs (Aitkenhead-Peterson et al., 125 
2011; Chen et al., 2014; Musolff et al., 2015). Outside of direct impacts to flow regimes, studies 126 
have shown that special C-Q behaviors can occur in anthropogenically modified systems. 127 
Specifically, addition behavior (increase in concentration over large increase in discharge) has 128 
been observed for some nutrient-based solutes, including NO3-N and PO4 (Musolff et al., 2015). 129 
At a sub-watershed scale, agricultural areas have been shown to influence surface and shallow 130 
groundwater quality (Liu et al., 2021; Park & Lee, 2020). Understanding the magnitude of 131 
human impacts on chemical behavior in large watersheds that cross many land use classes 132 
remains elusive. 133 

To improve our understanding of how spatially heterogenous catchment characteristics, 134 
including lithology, climate, and anthropogenic (e.g., LULC ) factors, influence general stream 135 
chemical behavior at a regional scale, the objective of this research is to address our main 136 
research question: What are the most influential watershed factors governing variations in stream 137 
water chemistry in large rivers that cross a range of lithology, climate, and LULC types? More 138 
specifically, we apply a top-down approach to test the following three hypotheses through 139 
examination of coexisting water chemistry, discharge, lithology, climate, and LULC datasets in 140 
the Colorado River watershed, Texas:  141 

Hypothesis 1: Lithology is the strongest control on stream chemistry where there is an abundance 142 
of reactive minerals in the near-surface. This setting leads to high concentrations of 143 
geogenic solutes, and chemostatic behavior. 144 

Hypothesis 2: Climatic condition, measured as effective precipitation, governs flow paths, water 145 
residence times, and solute generation. In areas of high effective precipitation (P>>ET), 146 
low topographic relief, and/or high permeability, reactive mineral weathering fronts occur 147 
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at greater depths, water residence times are shorter, and systems are source limited and 148 
exhibit more dilution behavior.  149 

Hypothesis 3: Anthropogenic influences obscure natural controls on stream water chemistry but 150 
the intensity and spatial spread of influence depends on the type and degree of 151 
development or contamination.  152 

To test these hypotheses, we analyzed a 60 year-long (1958-2018), publicly available major ion 153 
chemical and discharge dataset using graphical techniques (Piper and Gibb’s diagrams), C-Q 154 
relationships, geochemical modeling, and machine learning methods. We analyzed these data 155 
with spatially explicit land cover, climate, and lithology data from various public sources. We 156 
then used random forest algorithms to assess the importance of these factors in explaining the 157 
stream water chemistry. Overall, the data suggested that lithology was the first order control of 158 
stream water chemistry at regional scales, while climate exerted a secondary influence. 159 
Anthropogenic factors (particularly agricultural activities and oil and gas development) were 160 
found to be important for some geogenic species but their influence was difficult to separate 161 
from lithologic sources using only major ion chemical data. 162 
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2 Materials and Methods 163 

2.1 Study area: Contrasting lithologic and land use patterns across the Colorado River 164 
Basin, Texas 165 

We focus on the Colorado River of New Mexico and Texas because climate, LULC, and 166 
lithology changes across the watershed set the stage for spatially contrasting chemical behaviors. 167 
The river is approximately 1,288 km long, with 5 major tributaries and a watershed area that 168 
covers 15% of Texas (Colorado River Alliance, 2021, Texas Natural Resource Conservation 169 
Commission, 1999). It is also a crucial municipal water source for large and small communities 170 
in the state. Lithologic units across the watershed are roughly oriented NE to SW, perpendicular 171 
to flow in the main stem (Figure 1a). This systematic change in lithology and thus mineralogy 172 
across the watershed may control solute contributions to the Colorado River. Quaternary 173 
sedimentary deposits (conglomerates, sandstones, and mudstones), Cretaceous sedimentary 174 
carbonates, and gypsum and halite units are common rock types across the Colorado River basin 175 
(Clark et al., 2020). Karst features are common and host several large and productive aquifers 176 

Figure 1 Study area: Colorado River a. simplified lithology, b. distribution of LULC classes with the Austin metropolitan area 
shown in red underlying sampling point 8 c. distribution of effective precipitation, and d. location of water chemistry sampling 
points on tributaries (blue) and main stem (red) with 15 flow sampling sites labelled (1-15) and faults shown in light red 
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that intersect the Colorado River watershed near the Gulf Coast. The major structural feature 177 
affecting the Colorado River is the inactive late Oligocene to early Miocene Balcones fault zone, 178 
which is a network of NW-striking high-angle normal faults (Figure 1d) that predominantly dip 179 
southeast (Clark et al., 2020). The upper Colorado River is dominated by carbonate outcrops 180 
with gypsum inclusions (Leifeste & Lansford, 1968; Richter et al., 1991). The lower portions of 181 
the watershed are dominated by sedimentary deposits of varying lithologies. Overall, the 182 
lithologic shifts lead to general trends from more (evaporite and carbonates) to less (silicate 183 
minerals) reactive mineralogy moving downstream in the watershed. Thus, we expect that the 184 
upstream reaches of the Colorado River will be strongly influenced by the abundance of reactive 185 
mineral assemblages including evaporites and carbonates, the middle reaches will be influenced 186 
by a combination of reactive mineralogy (carbonates) and increased agricultural and urban 187 
influences, and the outlet of the river will be influenced dominantly by other factors as the 188 
lithology (silicate sediments) is more resistant to chemical weathering. 189 

Spatial changes in climate across the Colorado River watershed strongly influence the 190 
hydrodynamics of the system, and thus can exert control on the chemical composition of the 191 
river. Similar to lithologic shifts perpendicular to the river course across the watershed, 192 
precipitation increases from NW to SE with the semi-arid western portion receiving an average 193 
of 250 mm of rain per year, and the sub-humid east receiving more than 1,500 mm (Harwell et 194 
al., 2020; Texas Natural Resource Conservation Commission, 1999; Texas Water Development 195 
Board, 2012). Across this area, the annual average temperature changes but not as significantly 196 
as the precipitation. Average annual evapotranspiration also increases in accordance with the 197 
increase in available water (NW to SE), except in human-modified areas where management of 198 
reservoirs and irrigated agriculture occur. A survey of trends in mean annual precipitation, air 199 
temperature, and streamflow shows moderate increases in precipitation in the eastern portion of 200 
the state and increases in air temperature of 0.6 oC per 50 years across the state leading to 201 
increased potential evapotranspiration (Harwell et al., 2020). Overall, the combination of 202 
precipitation and evapotranspiration leads to a spatial trend of increasing effective precipitation 203 
(-4.4 to 0.56), likely decreasing water residence times from northwest to southeast across the 204 
watershed (Figure 1c).  205 

Anthropogenic influences are variable in distribution and impact across the watershed 206 
and encompass oil and gas development activities in the northwest and southeast, agriculture in 207 
the center and southeast, reservoir construction in the upper and middle reaches, and intensive 208 
urban development in the southeast, each of which can have distinctive controls on streamsolute 209 
load and behavior. The northwestern portions of the watershed are generally dominated by 210 
shrubs, grassland, and cultivated crops with the presence of diffuse, moderately developed areas. 211 
Evergreen and deciduous forest, high intensity development, pasture and hay roughly follow 212 
lithologic trends and appear near the Balcones fault zone (Figure 1b and d). Population gradients 213 
are present with many major cities centered in the southeast portion of the watershed including 214 
the Austin metropolitan area (population of 2.3 million) (US Census Bureau, 2019) which is 215 
shown in red around flow sampling site 8 (Figure 1c). Population growth over the next 50 years 216 
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is also projected at a much higher rate in the eastern half of the watershed than the western half 217 
(Scanlon et al., 2005; Texas Water Development Board, 2017). Agricultural production is central 218 
to the state and irrigation made up about 25.8% of total water use in the state in 2010 totaling 219 
20.78 million m3 per day (Dieter et al., 2018). Many dams are present in the watershed with six 220 
major reservoirs on the main stem of the Colorado River including E.V. Spence, O.H. Ivie, and 221 
J.B. Thomas. These reservoirs are dominantly for flood control, municipal, and agricultural 222 
water use. Trace metal concentrations along the river are also higher in areas of increased 223 
development (Chen et al., 2014). It is projected that over the next 50 years the population of the 224 
state will increase by 70% while the demand for water will increase by 17% and available water 225 
resources will decrease by 11% (Texas Water Development Board, 2017). These changes are 226 
likely to impact not only available water and flow regimes, but also the chemical composition of 227 
waters across the state. 228 
2.2 Data collection and processing 229 

2.2.1 Temporal Data 230 

Daily flow measurements were extracted from the USGS NWIS database using R 231 
package dataRetrieval for the earliest recorded date to the current date (or the full period of 232 
record) whenever available (De Cicco et al., 2018). The Colorado River has 15 USGS-233 
maintained flow measurement sites (Sites 1-15 on Figure 1), 14 of which (Sites 1-14) have daily 234 
flow measurements on the river main stem. In total, 360,670 flow measurements are available 235 
across the 14 sites between 1916 and 2020.  236 
All water chemistry data were obtained using the water quality portal (WQP) R tool 237 
dataRetrieval (De Cicco et al., 2018). In the Colorado River basin, which includes the main stem 238 
and several major tributaries, we used a total of 108 sites with water chemistry data ranging from 239 
1958 to 2018 for our analysis. The data were spatially and temporally irregular with, on average, 240 
at least one and at maximum 39 samples collected at each site per year. Here water chemistry 241 
measurements of interest included: alkalinity as HCO3-, K+, Na+, Mg2+, P, SO42-, Ca2+, Cl-, Si, 242 
NO3-, pH, and water temperature. The 108 chemical parameter sampling sites (Figure 1d) were 243 
grouped by proximity to the 15 USGS-flow sampling sites and labelled zones 1-15 (upstream to 244 
downstream) for further referencing continuity (Figure 1a-d). Measurements were filtered to 245 
include sites where all solutes were measured on the same date. Samples included in analysis 246 
were assumed to be representative of major constituents and free of significant analytical error if 247 
they had a low charge balance error (≤10%; Godsey et al., 2009; Güler et al., 2002) 248 

2.2.2 Spatial data 249 

Sub-watersheds were delineated using the NASA Advanced Spaceborne Thermal 250 
Emission and Reflection Radiometer (ASTER) digital elevation model (30 m resolution) 251 
accessed using the EarthData Portal. Watershed delineation was conducted using ArcGIS Pro 2.9 252 
functions. Flow directions were generated using the D8 method in which flow is routed to one of 253 
8 neighboring cells selected by calculating downhill steepness (Qin et al., 2007). Next, flow 254 
accumulation was calculated based on the flow direction raster with zones of high accumulation 255 
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representing stream channels. Water chemistry sampling points were used as pour points and 256 
were snapped to nearest zones of flow accumulation. Contributing areas for each sampling point 257 
were then delineated using the watershed tool. Next, each watershed factor dataset (lithology, 258 
LULC, and effective precipitation) was clipped to reflect the upstream contributing area for each 259 
of the sampling sites. A variety of spatial datasets were employed to examine factors influencing 260 
stream chemistry at each point within the watershed. Lithologic data is from the USGS via the 261 
Texas Water Development Board (TWDB) spatial data services portal. Rock types were merged 262 
to convey major classes (i.e., carbonates, sandstone, mudstone, etc.). Comprehensive land use 263 
data are from the National Land Cover Database (NLCD) for the most recent year released 264 
(2016). Annual evapotranspiration (2000-2013) at 800 m resolution is estimated using an 265 
empirical regression equation for long-term water balance ET data at 679 gaged watersheds as a 266 
function of land cover, precipitation, and daily temperature (Reitz et al., 2017). Both 267 
evapotranspiration and precipitation data (1971-2000) as annual average values (Crawford et al., 268 
2006) were included to represent climate variations across the watershed. Lithology and land use 269 
classes were expressed as percent cover for each sub-basin.  An areal weighted average of 270 
effective precipitation was calculated for the upstream contributing area of each sampling point.  271 

 272 
2.3 Data Analyses  273 

2.3.1 Piper diagrams and geochemical modeling of the chemical composition of the Colorado 274 
River 275 

Piper diagrams were used to compare spatial trends in sample chemical composition to 276 
underlying lithology, land use, and climate metrics. Piper diagrams show the distribution of the 277 
relative proportion of major cations and anions in two trilinear diagrams, and one quadrilinear 278 
diagram which shows overall chemical composition (Piper, 1944). 279 

To further understand the potential lithologic controls on stream solute concentrations, R 280 
package phreeqc (which interfaces the PHREEQC modeling code of Parkhurst & Appelo, 2013) 281 
was used to determine saturation indices (SI) of possible expected minerals comprised of major 282 
ions (gypsum, halite, aragonite, and chalcedony) for each charge balanced sample. pH 283 
measurements were also included and temperature was assumed to be constant at 25oC as actual 284 
stream temperature measurements were limited to 73% of observations (see S1). A sample was 285 
considered to be undersaturated when SI is < 0 (dissolution is likely), saturated when SI = 0 286 
(showing that the system is at equilibrium), and supersaturated when SI > 0 (mineral 287 
precipitation is likely) (Drever, 1982). This analysis gives an idea of the degree of mineral 288 
dissolution contributing to stream chemical composition across lithologic and climate gradients. 289 
It also illustrates mineral presence not captured at the scale of USGS lithologic datasets, such as 290 
gypsum and halite. Further analysis using a larger number of measured solutes could increase 291 
our understanding of silicate dissolution in particular, as aluminosilicate minerals are likely the 292 
main contributors of silica rather than chalcedony. However, this dataset includes very limited 293 
measurements of Fe and Al to calculate the SI values of aluminosilicate minerals. 294 
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2.3.2 Concentration-discharge analysis 295 

Concentration-discharge (C-Q) relationships were employed to examine spatial patterns 296 
in the behavior of individual solutes. Concentration discharge relationships can be related to 297 
watershed characteristics and commonly follow power-law relationships, as shown in equation 1 298 
(Abbott et al., 2018; Baronas et al., 2017; Bouchez et al., 2017; Chorover et al., 2017; Godsey et 299 
al., 2009; Herndon et al., 2015; Moatar et al., 2017; Musolff et al., 2015; Sullivan et al., 2019):  300 
 C = aQ!      

 
( 1 ) 

where C is the concentration of a given constituent, Q is the discharge, and a and b are 301 
model parameters. When the measurements are log-transformed they can therefore be described 302 
by a linear model where a slope (b) of 0 indicates chemostatic behavior, a positive slope 303 
indicates addition behavior, and a slope of -1 indicates simple dilution behavior. Dilution occurs 304 
when the concentration of the stream decreases with increased flow, which occurs at sites where 305 
the baseflow of a river carries higher concentrations of each solute. Chemostatic behavior occurs 306 
where concentrations are invariant across a large range of flow values. The addition behavior 307 
occurs when concentrations increase systematically with increased flow. Concentration 308 
measurements from charge balanced samples were matched to flow measurements taken at the 309 
same site and date and converted to mmol/L for all solutes. Flow measurements were converted 310 
to L/s and the logarithm (base 10) of both concentration and discharge was calculated. The 311 
measurements were grouped by site and solute. Of 108 sites with charge balanced chemical 312 
measurements, 88 included flow measurements and 51 had at least 5 observations. Only sites 313 
with at least 5 measurements were included in this analysis. The mean number of observations 314 
per site was 73 and the maximum was 442. A linear model was fit for each site and solute using 315 
the “stats” package in R with the slope describing the concentration-discharge (C-Q) behavior (R 316 
Core Team, 2021).  317 
 318 
2.3.3 Principal Components Analysis (PCA) of compositional stream chemical data 319 

Multivariate techniques were implemented to expand on observations of individual 320 
solutes and to further refine sample groupings and relative influence of watershed factors. 321 
Specifically, PCA was used to group samples that were biogeochemically similar and to examine 322 
sample distribution relative to trends in lithology, LULC, and climate. To accomplish this goal, 323 
data from charge balanced samples were analyzed as compositional measurements. 324 
Compositional measurements represent the contribution of each solute to the overall 325 
concentration of the sample in mmol/L. Compositional measurements show change in solute 326 
concentrations relative to each other rather than outside factors, including dilution (Filzmoser et 327 
al., 2009; Filzmoser & Hron, 2008; Shelton et al., 2018). This means that further transformations 328 
must be applied to convert the variables into an unconstrained space. PCA weights eigenvectors 329 
by the square root of the corresponding eigenvalue to transform a large number of variables into 330 
orthogonal components that represent as much variation in the dataset as possible 331 
(Christophersen & Hooper, 1992; Jolliffe, 2002; Burke, 1997; Walter et al., 2019). In our PCA, 332 
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matrix Z was comprised of all compositional data Loadings of each variable on the retained PCs 333 
was tested for significance using the student’s t-test, and the original data was reprojected using 334 
the PCs. The PCs were converted from isometric to centered log ratio format to improve 335 
interpretability. The latter log-ratio provides a one-to-one correspondence between input 336 
variables and log-ratios but produces a singular covariance matrix, which limits its use in PCA. 337 
PCs explaining up to 80% of cumulative variance in the dataset were considered significant for 338 
interpretation. 339 

 340 
2.4 Machine learning for determination of watershed factor influence on stream chemistry 341 

Multivariate models including spatial data were also employed to quantify the behavior 342 
of individual solutes in relation to changing watershed factors at a sub-watershed scale. This 343 
process allows for improved understanding of differences in behavior across solute groups in 344 
response to variation in lithologic, LULC, and climate distribution. A random forest approach 345 
was used to predict the proportion of each watershed factor using sample chemical composition 346 
as an input, and to quantify the strength of the relationship between these variables. Stream 347 
chemical data was chosen as an input variable rather than a predictive output variable in this 348 
investigation because of the greater variety in measurement values as compared to the 349 
summarized watershed factor data (multiple water samples were collected from each site).  350 

Random forests are a supervised machine learning algorithm consisting of ensembles of 351 
decision trees generated using bootstrapped subsamples of the dataset. Random forests are a 352 
flexible multivariate technique that is appropriate for analyzing multiple predictor variables and 353 
nonlinear relationships (Addor et al., 2018). R package randomForest (R Core Team, 2021) was 354 
used for algorithm generation on 80% of the data and tested using the remaining 20% (Liaw & 355 
Wiener, 2002). The strength of the relationship between each solute and watershed factor was 356 
quantified using the percent increase in mean squared error (%IncMSE) if the predictor variable 357 
(solute) was removed from consideration. A high %IncMSE value indicates a stronger 358 
relationship between the two variables. This gives a relative metric for comparison of the 359 
influence of each factor (lithology, LULC, and climate) on the behavior of solutes across the 360 
watershed (Addor et al., 2018; Hammond et al., 2021; Konapala & Mishra, 2020; Oppel & 361 
Schumann, 2020). Relationships between all variables were also represented using the 362 
Spearman’s rank correlation coefficient. 363 



manuscript submitted to Water Resources Research 

 

3 Results 364 

3.1 Piper diagrams show shift from upstream Na-Cl dominated to downstream Ca-HCO3 365 
dominated samples. 366 

Surface water chemistry shifts from Na-Cl dominated to Ca-HCO3 dominated from 367 
northwest to southeast across the watershed (Figure 2). From zone 2 to zone 6, relative 368 

concentration of Na++K+ and Cl- are very high. Additionally, the relative concentration of SO42- 369 
is highly variable. Relative proportions of Ca2+ and Mg2+, increase from zones 2 to 6 as Cl- 370 
decreases corresponding to an increase in HCO3-. Measurements from zones 7-14 generally show 371 
the highest relative proportion of Ca2+ and HCO3-. However, after zone 8 there is a slight 372 
decrease in Ca2+ and a corresponding increase in Na++K+ and Cl- (Figure 2). 373 

3.2 Geochemical modeling to refine conceptual model of landscape factor influences 374 

   375 

Figure 2 Piper diagram showing spatial distribution of stream chemical measurements (n=4,482), Colored diamond represent 
the 14 zones along the Colorado river (inset map upper left). Darker blue are sites located upstream while lighter yellow 
indicate sites located near the coast.   

Zone 
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Saturation indices of aragonite (CaCO3), chalcedony (SiO2 used here to evaluate silicate minerals 376 
as SI of aluminosilicates was not available), gypsum (CaSO4), and halite (NaCl) were calculated 377 
using PHREEQC software with major ion chemistry and pH measurements at a standard 378 
temperature of 25oC (Figure 3; see S1 for a subset of the data where field temperatures are 379 
available, overall trends remain consistent). Carbonate and silicate species are near saturated or 380 
slightly oversaturated while sulfate and evaporite species are dominantly undersaturated. 381 
Saturation indices for aragonite and chalcedony are relatively consistent from upstream to 382 
downstream zones. In contrast, gypsum and halite saturation indices are highest in the upstream 383 
portions of the river and decrease until zone 9 then remain relatively constant.  384 

3.3 Concentration-Discharge relationships reveal overarching spatial trends 385 

Slopes (parameter b) of the linear regression of log(concentration) vs log(discharge) were 386 
calculated for each site with at least 4 observations and are generally within error but still 387 
demonstrate trends in space (Figure 4). In summary, the Colorado River demonstrates 4 trends in 388 
slope of the C-Q relationships. The first trend includes HCO3- and Ca2+ which have slopes close 389 

Figure 3 Box plots of the calculated saturation index across the 14  river zones for Aragonite (red), Chalcedony (orange), 
Gypsum (green), and Halite (blue). Box plots illustrating the median and inter quartile range as well as outlying points for 
calculated SI in each zone. A saturation index >0 indicates the potential for mineral precipitation, while a value <0 indicates the 
potential for mineral dissolution.  
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to 0 (chemostatic behavior) for zones 1-6 followed by increasing dilution behavior (slopes close 390 
to -0.5) from zones 7-14. Trend 2 represents the majority of the geogenic solutes Cl-, Mg2+, SO42- 391 
and Na+ have negative slopes (~-0.5; dilution behavior) in the northwest zones, with slopes 392 
trending towards 0 in zones 6-7 and returning to dilution behavior for zones 8-14 (slopes <-0.5). 393 
Of these solutes Ca2+ is more chemostatic than the others in zone 2 with slopes between 0 and -394 
0.25. Trend 3 includes K+ and Si which are very close to chemostatic across all zones. Trend 4 395 
shows NO3- and P which are more highly variable than other solutes and have fewer 396 

measurements included for analysis. NO3- shows some addition behavior in zones 4-6 with one 397 
outlying site in zone 8 showing significant addition behavior with a slope of almost +0.5.  398 

 399 

3.4 Compositional PCA mirrors piper diagram trends from Na-Cl to Ca-HCO3 400 

PCA was conducted on all chemical measurements collected within the Colorado River 401 
Watershed for a total of 4,863 points. The first two principal components explain 88.7% of the 402 
variation in the dataset (PC1 = 76.4% and PC2 = 12.3 %) and the third explains an additional 403 
9.76%.  The primary loadings of interest for the first principal component are Na+, Cl-, and SO42- 404 

Figure 4 Slope of linear regression of log (C) versus log(Q) across the Colorado River Basin. Each point represents the slope 
calculated for measurements at a single site which are organized from upstream to downstream (left to right). Point shape 
indicates wether the model coefficient is significantly different from 0 at alpha=0.05. Point color indicates the R2 of the 
regression. Black lines indicate the smoothed conditional mean slope to illustrate overall trends for each solute. Title color 
indicates trends 1-4 with trend 1 in blue, trend 2 in red, trend 3 in green, and trend 4 in purple. 
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which are negative, and HCO3-,and Si which are positive (Table 1). The primary loadings of 405 
interest for the second principal component are K+ (positive) and Mg2+ (negative).  406 

 PC1 PC2 PC3 
Bicarbonate 0.448  -0.176 0.485  

Calcium 0.146 -0.262 0.208 
Chloride  -0.461  0.142 -0.168 

Potassium 0.149 0.668  0.338 
Magnesium -0.015 -0.537  -0.116 

Sodium -0.442  0.222 0.039 
Sulfate -0.319 -0.247 -0.038 
Silica 0.496  0.190 -0.750  

 

Examination of the first 2 principal components reveals a pattern which orders the 407 
samples from upstream (left) to downstream (right and down) across PC1. Corresponding 408 
changes in the ions are also shown, indicating evolution from a Na-Cl dominated composition to 409 
a Ca-HCO3 dominated one (Figure 5). Higher relative abundance of Si on the centered log ratio 410 
biplots (Figure 5) generally indicates lower salinity composition due to the dilution of the other 411 
elements relative to Si, whose concentration is relatively constant (Engle et al., 2011). Sites 6-8 412 
are widely distributed and include many tributary measurements. Sites 9-15 include fewer 413 
measurements from each zone, are dominantly collected on the main stem, and are more closely 414 
clustered. The outlying cluster of 30 points on PC2 is from 2 USGS sites 08120700 and 415 
08121000 charge balanced samples collected in 1966 and 1967 and represents anomalously high 416 
values for K+. A total of 274 observations from site 08120700 collected from 1965-2002, and 298 417 
measurements collected from site 08121000 from 1963-2003 are included and measurements 418 
from other years are not outliers. Analysis of the spread of points in each zone based on season 419 

Table 1 Loadings from compositional PCA for all measurements (n=4,863) in the Colorado River Watershed. 
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and tributary position revealed no significant trends supporting the idea that this long-term 420 
dataset is more reflective of spatial variations than temporal trends (S1).  421 

 422 

3.5 Random forest analysis gives insight for LULC influences on stream water 423 
composition 424 

The random forest regression algorithms were used to assess relationships between 425 
solutes and watershed factors through comparison of percent increase in mean squared error 426 
(%IncMSE) for each solute/watershed factor combination (Figure 6). Here we focused on three 427 
groups of watershed factors: lithology, LULC, and climate. Of all LULC classes, cultivated 428 
crops were the strongest predictor across all solutes, while sedimentary deposits and evaporites 429 
had the strongest relationships to solute behavior in terms of lithology classes. Specifically, the 430 
results show a strong relationship between cultivated crops and K+, Mg2+, and SO42- and to a 431 
lesser degree Cl-, Ca2+, and HCO3-. Cultivated crops are also positively correlated with Na+ and 432 
Cl- but negatively correlated with Mg2+, Ca2+, and HCO3-. There are large areas covered by 433 
cultivated crops in the upper portions of the Colorado River Watershed and smaller stretches 434 
covered by pasture near zones 9-14. Additionally, there appears to be a strong relationship 435 
between open areas (including barren, grass, and shrubland) with Na+, Mg2+, Ca2+, and to a lesser 436 

Figure 5 Colorado river water chemistry projected onto first two principal components shows spatial variations, points are 
colored by proximity to sampling sites 2-14. 
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extent Cl- and HCO3-. Open areas are also most prevalent in zones 2-7. Correlation coefficients 437 
are smaller than for agriculture but are positive for Mg2+, Ca2+, and HCO3- and negative for Na+ 438 
and Cl- (opposite to agriculture). Forest and developed areas were both shown to have generally 439 
smaller %incMSE with most of the solutes.  440 

Lithologic influences are strongest for sedimentary deposits, including the conglomerate, 441 
sandstone, carbonate, and evaporite classes. Sedimentary deposits and carbonates show the 442 
highest correlation coefficients. Sedimentary deposits have the highest %IncMSE for Ca2+ and 443 
Mg2+ with additional high %IncMSE for HCO3-, Na+, and Cl-. Conglomerate has the highest 444 
%IncMSE for Na+ and Mg2+ with additional large values for HCO3- and Cl-.  445 

 446 

4 Discussion 447 

Long term river chemistry data sets, especially in combination with spatial data, have been 448 
used at a range of scales to reveal underlying processes that control chemical behavior (Godsey 449 
et al., 2009; Park & Lee, 2020; Tiwari et al., 2017; Torres et al., 2017). Yet, the use of publicly 450 
available historical stream chemical measurements has been limited because of temporal and 451 
spatial irregularity. Here, we used PCA, C-Q relationships, geochemical modeling, and 452 
supervised machine learning (random forest) analyses to investigate the influence of watershed 453 
factors in the Texas Colorado River Basin. Our analyses reveal three main regions of behavior: 454 
the upper (zones 2-4), middle (5-8), and lower (9-15) Colorado River. From this analysis we find 455 
that abundant reactive mineralogy, saline shallow groundwater, agricultural and oilfield activities 456 
dominate chemical signatures in low-development, low-precipitation, and low-flow reaches of 457 
the upstream Colorado River watershed. Conversely, the downstream reaches are increasingly 458 

Figure 6 Plot of solutes versus lithology and LULC factors with point size showing %incMSE and color indicating the 
spearman's correlation coefficient, numeric labels show %incMSE value for top 80th percentile %incMSE scores 
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controlled by climate factors rather than lithology or anthropogenic signatures. Below these 459 
inferences are described in detail. 460 

4.1 Evaporites and brines exert a strong influence on river chemistry in the upper reaches 461 
(zones 2-4) of the Colorado River while carbonates dominate middle reaches (zones 5-8) 462 

Several lines of evidence show that most of the spatiotemporal variation of solute 463 
chemistry in the upper Colorado basin is controlled by the presence of easily weatherable 464 
evaporite and carbonate minerals with shifts downstream from zone 2 to 8 in water chemistry 465 
related to changes in this lithologic distribution. First, the spread and separation of measurements 466 
across piper diagrams (from Na-Cl and Ca–SO4 to Ca-HCO3 water types; Figure 2) and PCA 467 
(loadings of -6 to 0 across PC1 where Na+, Cl-, and HCO3

- loaded significantly; Figure 5, Table 468 
1) illustrates the control of evaporites (gypsum and halite) and brines across this upstream 469 
portion of the Colorado River. Spatially, the proportion of evaporites is high in zones 2-5 as 470 
compared to downstream zones while carbonates are ubiquitous across zones 2-8 (Figure 1a), 471 
which contributes to the shift from Na-Cl and Ca-SO4 to Ca-HCO3 water types shown by piper 472 
diagrams and PCA. Geochemical modeling of the saturation state of the stream water also 473 
suggests water is near equilibrium with carbonate minerals throughout the upper extent of the 474 
Colorado but is consistently undersaturated with respect to evaporite minerals. SI values for 475 
evaporite minerals are highest in zones 2-3 and consistently decrease until zone 7 (Figure 3). One 476 
interpretation of the decline in SI values for halite and gypsum is that evaporite mineral 477 
dissolution acts as a solute source while these minerals consistently decline in proportion moving 478 
downstream.  479 

This strong lithologic control on stream water chemistry is echoed by other analyses of 480 
historic water chemistry in the upper portions of the Colorado River (Scanlon et al., 2005; Slade 481 
& Buszka, 1994; Slade et al., 2002), which show that a combination of anthropogenic and 482 
natural factors leads to increased salinity in the upstream reaches of the Colorado River. 483 
Particularly, abundance of near-surface evaporites and upwelling of brines in this region have 484 
been shown to influence shallow groundwater composition and discharge which occurs laterally 485 
and through salt-springs to the Colorado River. Analysis of water types using piper diagrams, 486 
major ion ratios, and stable isotope analysis of surface and shallow groundwater samples all 487 
support these conclusions (Dutton et al., 1989; Leifeste & Lansford, 1968; Reed, 1961). Gibbs 488 
diagrams show extremely high TDS, Na+, and Cl-, particularly in the upstream reaches of the 489 
Colorado River (zones 2-5), which suggest evaporation dominated systems (including 490 
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agricultural influences), brines, and halite/gypsum dissolution, but do not allow for distinction 491 
between these mechanisms (Figure 7). 492 

Along with lithologic controls in this area, a combination of potential leakage from oil 493 
and gas development sites, naturally upwelling brines, and enrichment of solutes in shallow 494 
groundwater contribute to high overall concentrations of Na+, Cl-, and SO42-, dilution behavior of 495 
evaporite related solutes, and undersaturated conditions with respect to halite and gypsum 496 
(Dutton et al., 1989; Leifeste & Lansford, 1968; Paine et al., 1999; Richter et al., 1991; Slade & 497 
Buszka, 1994). Particularly, analysis of shallow groundwater and river water major ion and 498 
isotopic chemistry as compared to brines in local formations has shown significant similarity in 499 
composition between surface waters and brines, with other areas showing more direct influence 500 
from evaporite dissolution (Richter & Kreitler, 1986).  501 

Concentration discharge behavior analyses also provide evidence of a strong lithologic 502 
control on solute behavior but suggest important differences in the spatial heterogeneity of the 503 
lithology. Specifically, dilution behavior occurs in zones 2-4 for in Na+, Cl-, and SO4

2- (slopes of 504 
-0.5 to -0.1), while HCO3

- and Ca2+ exhibit chemostatic behavior across these zones (Figure 4). 505 
This difference in C-Q behaviors across the upper Colorado River suggests that evaporites in 506 
zones 2-4 are distributed more heterogeneously in space, limiting solute sources and leading to 507 
the observed dilution behavior while the abundance of carbonates supports chemostatic behavior. 508 
Previous studies have shown that heterogeneity in lithologic distribution in combination with 509 
hydrologic factors (activation of different flow pathways and water sources during precipitation) 510 
can lead to non-chemostatic behavior due to mixing of different source waters (Baronas et al., 511 
2017; Torres et al., 2017). 512 

Figure 7 Gibb's diagrams showing the distribution of calculated total dissolved solids compared to Cl, Na, Ca, and HCO3 concentrations across 
the Colorado River. Evaporation dominated areas are characterized by high TDS, Cl, and Na. Rock weathering dominated areas are 
characterized by moderate TDS (100-1,000 mg/L) and low Cl and Na. 
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Hydrogeologic conditions in the semi-arid upper Colorado basin are conducive to 513 
dominant lithologic influences on stream chemistry. Low precipitation and high potential 514 
evapotranspiration can reduce pore flushing and lead to a greater degree of water-rock 515 
interaction and elevated concentrations of geogenic solutes in subsurface water (Brantley & 516 
Lebedeva, 2020; Stewart et al., 2022; White & Blum, 1997). Additionally, this region’s shallow 517 
groundwater bodies are subject to elevated solute concentrations as a result of evapotranspiration 518 
(Dutton et al., 1989; Paine et al., 1999; Richter et al., 1991). Finally, the depth to reactive 519 
minerals may be shallower in areas where effective precipitation is lower (Ameli et al., 2017; 520 
Kim et al., 2017). 521 

4.2 Lower reaches (zones 9-14) of the Colorado River are more dominated by 522 
climate and sedimentary deposits 523 

As effective precipitation increases downstream along the Colorado River watershed, 524 
studies suggest the increase in available water will yield faster transit times (shorter residence 525 
time) that support more dilution behavior (Brantley et al., 2017; Chorover et al., 2017; Maher, 526 
2011). All geogenic solutes (such as HCO3-, Ca2+, Cl-, Na+, SO42-, and Mg2+) included here 527 
reflect this climatic shift with increasing dilution behavior (decreasing slope b values towards -1) 528 
beginning in zone 8 and continuing until the river outlet (zone 15). In the upper Colorado River 529 
watershed HCO3- was highly chemostatic until zones 7 and 8 where the slopes declined showing 530 
increased dilution. Evaporite and brine related solutes (such as Cl-, Na+, and SO42- ) show the 531 
same trends toward dilution in these zones. In zone 8 the river flow increases markedly, the local 532 
watershed receives more precipitation, and the Colorado river passes the last of the major 533 
reservoirs. Here, long-term weathering resulting from greater precipitation may have led to 534 
deepening of reactive mineral fronts (Brantley et al., 2017; Brantley & Lebedeva, 2020). This, 535 
along with increased contributions of meteoric water, directly via precipitation, and indirectly 536 
through shallow groundwater contributions to streamflow and decreased water residence time in 537 
the shallow subsurface lead to slightly increased dilution behavior. This is consistent with 538 
previously developed C-Q and reactive transport conceptual models which show strong 539 
dependence on thermodynamic and hydrologic controls by stream chemical behavior (Brantley 540 
& Lebedeva, 2020; Maher, 2011; Wlostowski et al., 2021). 541 

As the watershed moves through areas of increased effective precipitation, chemical 542 
weathering occurs at a faster rate leading to clustering of points on PC1 and in the Piper diagram, 543 
changes in calculated SI for evaporites, and increased chemostatic behavior of Na+, Cl-, and SO4

2- 544 
(Figures 2-5). Variations in C-Q relationships and PCA results are consistent with previous 545 
findings which suggest that thermodynamic (reaction rates of underlying lithology) and 546 
hydrologic (flow and climatic) controls exert strong influence on stream chemical composition 547 
and behavior except where this influence is obscured by contributions of different source waters, 548 
climate factors, and anthropogenic influences which all increase moving downstream in this 549 
watershed (Baronas et al., 2017; Bouchez et al., 2017; Knapp et al., 2020; Maher, 2011; Torres et 550 
al., 2017). These findings show that, for evaporite and carbonate related solutes in this 551 



manuscript submitted to Water Resources Research 

 

watershed, lithology is the dominant influencing factor until increased contributions from 552 
precipitation and urban development (zone 8) shift river chemistry away from lithologic signals. 553 

4.3 Possible anthropogenic inputs in the upper Colorado watershed 554 

While lithology and climate dominantly control river chemical composition across the 555 
Colorado River, anthropogenic factors, particularly agricultural activities and oil and gas 556 
development, are also influential in both the upstream and central reaches of the watershed. Oil 557 
and gas development has been posited to increase surface water salinity via a variety of 558 
mechanisms. Orphaned and improperly abandoned oil and gas wells and poorly managed 559 
disposal of produced waters allows for inputs of brines in the shallow subsurface (Dutton et al., 560 
1989). Additionally, salts accumulate below historic brine disposal pits and are leached into 561 
shallow groundwater or laterally moved into surface waters (Dutton et al., 1989; Richter et al., 562 
1991). While it is possible that this occurs on the Colorado River it is difficult to distinguish 563 
between the impacts of oil and gas activities (either historical or recent) versus natural 564 
contributions like evaporite dissolution, concentrated shallow groundwater, natural upwelling of 565 
deep brines, or other human activities including agriculture. Gibb’s diagrams and analysis of 566 
major ion ratios give some support to brine influence (Figure 7) but further analyses (such as U, 567 
Sr, and B isotope tracers) need to be conducted using a greater number of chemical metrics to 568 
determine the degree and extent of oil and gas versus other salinity sources across this region 569 
(Engle et al., 2011; Osborn et al., 2011).  570 

Agricultural land (cultivated crops) is most abundant in zones 2-6 of the Colorado River 571 
basin and may contribute to increased salinity due to agricultural amendments and increased 572 
groundwater use. Groundwater use for irrigation is particularly common in this region. The 573 
strong relationship between Na+ and agricultural land is shown by the random forest analysis 574 
(Figure 6) where there is a large %IncMSE for Na+, K+, Cl-, and Mg2+ all components of 575 
subsurface brines and agricultural amendments. A potential mechanism for this is the ET-based 576 
accumulation and following dissolution and percolation of naturally occurring salts accumulated 577 
under agricultural irrigation areas (Kondash et al., 2020; Yurtseven et al., 2018). Further, 578 
agricultural irrigation may lead to increased soil salinity over time due to the use of saline 579 
groundwater.  580 

Urban areas, including the developed region around the city of Austin, impact  both flow 581 
and water quality (Aitkenhead-Peterson et al., 2011). Urban regulation of discharge and 582 
influence of water chemistry in combination with increased precipitation obscures the underlying 583 
lithologic influences and cause clustering of measurements on principal component 1 (Chen et 584 
al., 2014; Kaushal et al., 2013; Raymond et al., 2008). Particularly in large cities (i.e., Austin) 585 
significant municipal water needs require importing water from multiple sources. Discharges of 586 
this water for various uses (irrigation, treated wastewater, road runoff) may be of entirely 587 
different composition than the naturally occurring water sources (Aitkenhead-Peterson et al., 588 
2011). However, these impacts are not always well-captured through analysis of major ion 589 
chemistry. Analyses including stable isotope ratios (H, O, and B) and/or nutrients that are 590 
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common indicators of anthropogenic activity (e.g., NO3-, NH4+, PO43-) could better capture the 591 
influence of urban development on stream chemical composition (Lyon et al., 2008; Raymond et 592 
al., 2008). While reservoirs are likely impacting the system, they do not appear to be 593 
significantly impacting the major ion composition. Reservoir storage has also been shown to be a 594 
weak predictor of flow metrics across varying environments (Hammond et al., 2021). 595 
Differing LULC types including oil and gas acreage, urban areas, and reservoirs alter natural 596 
signals along the Colorado River. The influence of brines associated with oil and gas production 597 
activities was discussed earlier (see 4.1 and 4.3) as their chemical signature with the available 598 
data is hard to distinguish from evaporite dissolution or naturally upwelling brines (Leifeste & 599 
Lansford, 1968). Land use and intensive urban development are the next most influential factors, 600 
as illustrated by the shift in data distribution occurring after zone 8 in the PCA biplot, 601 
contributing to the spread of measurements occurring in the downstream zones of the Colorado 602 
River. From zone 8 (Austin area) to the river outlet the position of measurements on the PCA 603 
biplot displays a scattered rather than linear trend. This again suggests that intensive 604 
development, while it does not display a dominant signature in major ion chemical composition 605 
of surface waters, tends to add variability in other hydrologic signals. 606 

Along the central reaches of the Colorado River, influences from tributaries, reservoirs, 607 
and differing LULC become increasingly dominant, shifting C-Q behavior away from dilution 608 
and towards chemostatic and leading to data clustering on the PCA biplot. Some elements may 609 
even display addition behavior such as P and NO3- that can be linked to LULC and human 610 
impacts. Major tributaries dilute elements transported from upstream and contribute deep 611 
groundwater derived carbonates drawn from underlying lithology on both the main stem and 612 
tributaries of the Colorado River in connection with the nearby Llano uplift (Bruun et al., 2016; 613 
Leifeste & Lansford, 1968; Slade et al., 2002). This is shown through increases in relative 614 
concentration of HCO3- and chemostatic behavior of C-Q slopes for all solutes in zones 5-8. In 615 
the Amazon basin, contributions from relatively homogeneous water sources from major 616 
tributaries were also shown to produce chemostatic behavior of major ions (Baronas et al., 2017; 617 
Torres et al., 2017). Similar to the behavior of HCO3- and Ca2+ in the upstream zones of the 618 
Colorado River, the influence of geologic features (including the Llano uplift) near major 619 
tributaries serves to increase the availability of reactive carbonate minerals through connections 620 
to deep groundwater and increases chemostatic behavior and homogeneity of chemical 621 
composition. 622 

 623 
4.4 Broader applications and limitations due to reliance on major ion concentrations 624 

The analyses presented here rely on publicly available major ion chemical data collected 625 
from over 100 sites in the Colorado River watershed, collected at irregular spatial and temporal 626 
intervals. This valuable resource allows for analysis of many influences of stream water quality 627 
across lithology, LULC, and climate gradients but does not provide sufficient information to 628 
distinguish among some of these influences with great detail. With additional major, trace 629 
element, and isotope data (e.g., d18O, dD, d11B, 87Sr/86Sr and 234U/238U), other relationships 630 
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could be examined and more details could be distinguished concerning existing processes and 631 
influences. Salinity in the Colorado River watershed encompasses much of the overall chemical 632 
composition and is derived from multiple sources including deep brines, shallow groundwater, 633 
evaporite dissolution, and agricultural influences (Leifeste & Lansford, 1968; Paine et al., 1999; 634 
Richter et al., 1991). Further measurements of stable isotopes, age-dating methods, and bromide 635 
could be used in zones 2-4 of the Colorado river to better define the degree of each of these 636 
influences and their variation in space. 637 
  638 
 The simplified lithology classes analyzed here provided valuable information about the 639 
degree of influence of various reactive minerals on stream chemistry. Strong relationships were 640 
evident in the upper Colorado River watershed between evaporites (halite, gypsum), carbonates 641 
(aragonite, dolomite), and stream water chemistry. Further studies could leverage the information 642 
and analytical techniques presented here and include additional measurements of trace metals 643 
(e.g., Fe, Al, etc.) with more detailed lithology maps to better understand the distribution of 644 
different lithologies, mineralogic influences on stream chemistry, and sources of solutes across 645 
the watershed. These analyses can also focus on the potential structural controls of stream 646 
chemistry from possible groundwater inputs from the Balcones fault zone, which crosses the 647 
Colorado River at zone 8. Finally, the application of random forest algorithms provided useful 648 
insight to watershed factor influences on stream chemical composition and behavior in this 649 
catchment. Future work could include larger-scale public datasets in combination with a variety 650 
of non-linear data analysis techniques to refine and generalize understanding of influences of 651 
stream water chemistry across diverse environments. 652 

5 Conclusions 653 

Over 5,280 publicly available water quality observations were paired with daily discharge 654 
measurements and high resolution geospatial (e.g., lithology and land cover) data from the 655 
Colorado River (103,000 km2) over a 60 year period (1958-2018) to determine the degree of 656 
influence of key watershed factors on stream chemical behavior.  Comparison of trends in 657 
chemical composition using Piper and Gibb’s diagrams and compositional PCA set a baseline for 658 
interpretation of changing contributions of evaporite and carbonates vs. silicate minerals across 659 
the watershed. Further analyses including C-Q relationships and their changes in space showed 660 
that not all solutes behaved similarly at the watershed scale and C-Q behavior changes could be 661 
attributed to watershed processes such as shallow groundwater contributions, long term 662 
precipitation influences, and the distribution of reactive mineralogy. Finally, random forest 663 
analysis provided a metric for interpretation of the relative influence of watershed factors on 664 
each solute and showed strong relationships between sedimentary units, contribution of 665 
carbonates, and Na+, Cl-, Ca2+, Mg2+, and SO42-. Further, human factors such as LULC types 666 
including cultivated crops, grass, and shrublands were shown to have strong relationships with 667 
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various solutes across the watershed while developed areas and forestland did not appear to have 668 
a similarly strong relationship in this watershed.  669 

 Overall, this research highlighted the importance of reactive mineral abundance and 670 
dissolution, the effect of climate (precipitation), and the impacts of multiple sources of salinity in 671 
the Colorado River watershed. Broader implications are that regional, historical major ion 672 
chemical datasets at the watershed scale can be leveraged to improve understanding of lithologic 673 
and climate impacts on stream water chemistry at relatively large spatial and temporal scales. 674 
Further analyses should be employed to better-determine the processes occurring at key locations 675 
with shorter time scales (“hotspots and hot moments”) using a broader and combined set of 676 
chemical, climate, lithologic, and land use parameters. Additionally, these techniques could be 677 
applied to examine processes controlling water chemical composition and behavior at larger 678 
scales leveraging national databases. 679 
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Text S1 

Site selection and Data 

Data for all WQP sites within the Colorado River basin (defined as HUC codes "120800", 

"120901", "120902", "120903", "120904") was downloaded and included 490 sites and 27,7433 

observations. Charge balance was calculated and only sites with a charge balance error of less 

than 10% were retained. This included 155 sites, and 8,066 observations with a mean absolute 

charge balance error of 1.32%. These observations were used for concentration-discharge 

analysis as measurements were assumed to be relatively representative and it was not necessary 

to include observations of every solute at each site. 

 

Samples were further subset to include dates and locations where Ca2+, Cl-, K+, Na+, HCO3
-, 

SO4
2-, Si, and Mg2+ were all measured (termed complete cases). This subset included 117 sites 

and 4,686 observations. These observations were used for piper diagrams, PCA, and random 

forest analysis because it was necessary to include observations for each variable at every site 

and date. 

 

Analysis of seasonal, tributary, and temperature variations 

 



 2 

 Temperature measurements are available for 73% of all complete, charge balanced samples. The 

mean measured temperature is 19.27oC. Trends in calculated SI by zone for the four minerals of 

interest are extremely similar when using a subset of observations with temperature 

measurements as compared to a constant temperature of 25oC. 

Figure S1 Box plots of the calculated saturation index across the 14 river zones for Aragonite (red), Chalcedony (green), 
Gypsum (blue), and Halite (purple). Box plots illustrating the median and inter quartile range as well as outlying points for 
calculated SI in each zone for observations with temperature measurements. A saturation index >0 indicates the potential for 
mineral precipitation, while a value <0 indicates the potential for mineral dissolution. 
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Figure S2 Piper diagram from the Colorado River showing observations based on river zone (2-14) and watershed position 
(tributary or main stem) 

Distinguishing between tributary and non-tributary observations on the piper diagram (Figure 

S2) shows that overall variations are controlled by watershed position (zone) while some 

localized variations are influenced by tributary position. For example, samples collected on 

tributaries in zones 3 and 4 are somewhat higher in Mg2+ than samples collected from the main 

stem in these locations. Additionally, samples collected in tributaries within zone 8 are generally 

higher in Ca2+ and Cl- than those collected from the main stem. 
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Figure S3 Piper diagram from the Colorado River showing observations colored by season (F=Fall (September, October, 
November), SP=Spring (March, April, May), SU=Summer (June, July, August), W=Winter (December, January, February)) 

The composition of stream water across seasons (Figure S3) did not show overarching variations 

in composition by season which suggests that variations are dominantly dictated by watershed 

position. 
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The compositional PCA analysis also shows that stream type (tributary vs main stem) does not 

play a dominant role on the distribution of variance observed across PC1 and PC2 (Figure S4). 

The area where most variation between main stem and tributary points occurs is in zone 8 which 

is dominated by measurements collected on tributaries near the main stem of the Colorado River. 

Figure S4 PCA Biplot for the Colorado River showing distribution of observations across PC1 and PC2 colored by river zone (2-12) 
and watershed position (tributary or main stem) 
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Figure S5 PCA biplot for the Colorado River showing distribution of observations across PC1 and PC2 colored by season (F=Fall 
(September, October, November), SP=Spring (March, April, May), SU=Summer (June, July, August), W=Winter (December, 
January, February)) 

There is not a strong seasonal trend across PC1 which explains 76% of the variation. The 

distribution of points across PC2 shows some division between measurements collected in 

summer vs winter indicating that seasonal influence may contribute a very small proportion of 

the overall variance in the dataset.  

 

Random Forest and Verification 

Lithology, LULC (Land use/land cover, and stream chemical data was split into training (80%) 

and testing (20%) subsets. Individual random forest models were constructed using the training 

dataset for each watershed factor compared to all solutes using the randomForest package in R 

(Liaw & Wiener, 2002). The strength of the relationship between each solute and land use factor 

was assessed using the percent increase in mean square error (%incMSE) if that solute was 

removed from consideration. A larger %IncMSE indicates a stronger relationship between the 

two variables Each model was constructed with 500 trees and a minimum terminal node size of 

5.  
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For the upstream zones (2-5 only) no igneous-metamorphic rocks are present in this region and 

evaporites are most abundant as compared to the rest of the watershed. Additionally, cultivated 

crops are common and several small towns represent the largest developed areas. The random 

forest revealed (Figure S6) that lithologic relationships to stream water chemistry are mostly as-

expected with evaporites having strong relationships with Na+, Ca2+, Mg2+, and SO4
2-.  

Correlations are low between evaporites and all solutes with the highest correlation between 

evaporites and sulfate. Sedimentary deposits have the strongest relationships of all lithology 

classes with %incMSE of 17 for both Na+ and Mg2+. Sedimentary deposits also have high 

positive correlations to Na+ and Cl- and negative correlations to Ca2+ and HCO3
- . 

When we examine all sites (Figure S7) the developed areas and pasture/hay are the most strongly 

related to all solutes for LULC classes but have weak correlations. Cultivated crops are more 

Figure S6 Random forest output for upstream zones (2-5) of the Colorado River including 25 total sites and 2,951 observations. X 
axis shows lithology and LULC classes and y axis shows solutes. Point size represents magnitude of %IncMSE and point color 
represents correlation between the two variables. Points with the top 85th percentile and above of %IncMSE are labelled 
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highly correlated to Na+, Cl-, Ca2+ and HCO3
- but were not shown to have strong relationships 

via this analysis.  

Analysis of sites on the main stem of the Colorado river shows disproportionate influence of 

Barren areas on many solutes including Na+, K+, Mg2+, Ca2+, and HCO3
-
 even though 

correlations are low. Cultivated crops represent a second stand out LULC class with high 

%incMSE for Mg2+, Ca2+, and HCO3
-
 and high correlations for Na+, Cl-, Ca2+, and HCO3

-
. A 

variety of lithologic classes have strong relationships for a few solutes. Sedimentary deposits 

show high %incMSE for Ca2+ and Mg2+ and high correlations with Na+, Cl-, Ca2+ and HCO3
-. 

Conglomerate shows high %incMSE for Mg, K, and SO4. With low to moderate correlations and 

higher correlations to Na+. Carbonates have high %incMSE for SO4
2-

, Mg2+, and Ca2+ and have 

high correlations for Na+, Cl-, Ca2+, and HCO3
-
. Evaporites have weaker correlations but high 

%incMSE for SO4
2-, Na+, and HCO3

-
.  

Figure S7 Random forest output for main stem sites on the Colorado River including 36 total sites and 2,686 observations. X axis 
shows lithology and LULC classes and y axis shows solutes. Point size represents magnitude of %IncMSE and point color 
represents correlation between the two variables. Points with the top 85th percentile and above of %IncMSE are labelled 
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Figure S8 Random forest output for tributary sites on the Colorado River including 44 total sites and 1,766 observations. X axis 
shows lithology and LULC classes and y axis shows solutes. Point size represents magnitude of %IncMSE and point color 
represents 

It was expected that tributary measurements might have stronger relationships to the underlying 

watershed factors due to limited mixing and upstream influences as compared to measurements 

collected from the main stem. The output of the random forest models (Figure S8) shows that 

some relationships are stronger for tributary sites to a small degree, but the difference is not 

large. This suggests that water chemical composition between tributaries and the main stem is 

relatively homogeneous. This is supported by observations using piper diagrams and 

compositional PCA. 

 


