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Abstract

Most viscous-plastic sea ice models use the elliptical yield curve. This yield curve has the fundamental flaw that it excludes

acute angles between deformation features at high resolution. Conceptually, the teardrop and parabolic lens yield curves offer

an attractive alternative. These yield curves feature a non-symmetrical shape, a Coulombic behavior for the low-medium

compressive stress, and a continuous transition to the ridging-dominant mode. We show that the current formulation of the

teardrop and parabolic lens viscous-plastic yield curves with normal flow rules results in negative or zero bulk and shear

viscosities and consequently poor numerical convergence and representation of stress states on or within the yield curve. These

issues are mainly linked to the assumption that the constitutive equation applicable for the elliptical yield curve also applies to

non-symmetrical yield curves and yield curves with tensile strength. We present a new constitutive relation for the teardrop

and parabolic lens yield curves that solves the numerical convergence issues naturally. Results from simple uni-axial loading

experiments show that we can reduce the residual norm of the numerical solver with a smaller number of total solver iterations,

resulting in significant improvements in numerical efficiency and representation of the stress and deformation field.
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Key Points:8

• The teardrop and parabolic lens yield curves are alternatives to solve the short-9

comings of the elliptical yield curve to model sea ice.10

• Using the constitutive equation of the elliptical yield curve does not apply to yield11

curves with other shapes, such as the teardrop.12

• We propose new constitutive equations that solves this problem and show improved13

numerical convergence and stress fields.14
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Abstract15

Most viscous-plastic sea ice models use the elliptical yield curve. This yield curve has16

the fundamental flaw that it excludes acute angles between deformation feature at high17

resolution. Conceptually, the teardrop and parabolic lens yield curves offer an attrac-18

tive alternative. These yield curves feature a non-symmetrical shape, a Coulombic be-19

havior for the low-medium compressive stress, and a continuous transition to the ridging-20

dominant mode. We show that the current formulation of the teardrop and parabolic21

lens viscous-plastic yield curves with normal flow rules results in negative or zero bulk22

and shear viscosities and consequently poor numerical convergence and representation23

of stress states on or within the yield curve. These issues are mainly linked to the as-24

sumption that the constitutive equation applicable for the elliptical yield curve also ap-25

plies to non-symmetrical yield curves and yield curves with tensile strength. We present26

a new constitutive relation for the teardrop and parabolic lens yield curves that solves27

the numerical convergence issues naturally. Results from simple uni-axial loading exper-28

iments show that we can reduce the residual norm of the numerical solver with a smaller29

number of total solver iterations, resulting in significant improvements in numerical ef-30

ficiency and representation of the stress and deformation field.31

Plain Language Summary32

Most sea ice models simulate sea ice as a viscous-plastic material. The stress parametriza-33

tion in viscous-plastic models commonly uses an elliptical yield curve that delimits be-34

tween the fast plastic deformations and the slow viscous creep. To overcome some short-35

comings of the elliptical yield curve, other shapes of yield curves can be used, like the36

teardrop and parabolic lens yield curves. In this work, we analyze the current formula-37

tion of these two yield curves and show that three problems in these formulations lead38

to bad numerical convergences and nonphysical behaviors. We propose solutions to each39

of these problems and we use a simple experiment to show that our proposed formula-40

tion leads to significant improvements in the computing time and the representation of41

stresses and deformation.42

1 Introduction43

Sea ice dynamical models are an integral part of the CMIP6 models (Notz & Com-44

munity, 2020). Following the increase of computation power, the models’ resolution was45
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increased and can now represent Linear Kinematic Features or LKFs in the sea ice de-46

formation (N. Hutter et al., 2019; Hutchings et al., 2005). LKFs are narrow bands where47

most of the sea ice deformation takes place (Kwok, 2001). Many of the LKFs are leads48

with open water or thin ice where the bulk of the heat and matter transfer between at-49

mosphere and ocean takes place (Maykut, 1978), so that it important to represent LKFs50

adequately in sea ice models. The capacity of a sea ice dynamical model to represent LKFs51

explicitly depends mainly to its resolution and its rheological model (Bouchat et al., 2021;52

N. C. Hutter et al., 2021).53

Sea ice deformation is simulated using a rheological model that parameterizes sea54

ice physical properties and relates stresses and strain rates. Sea ice rheological models55

can use different material properties to represent sea ice: Elastic-Plastic (EP, Coon et56

al., 1974), Viscous-Plastic (VP, Hibler, 1977), Elastic-Anisotropic-Plastic (EAP, Tsama-57

dos et al., 2013), or Maxwell-Elasto-Brittle (MEB, Dansereau et al., 2016). Still today,58

sea ice models most commonly use the VP model because in spite of critique they per-59

form well compared to observations and other rheologies, especially at high resolution60

(N. C. Hutter et al., 2021).61

The VP rheological model requires the definition of a yield curve and a flow rule.62

First, the yield curve sets the stress limit at which sea ice deforms plastically. Several63

yield curve shapes have been used: elliptical (Hibler, 1979), triangular or Mohr–Coulomb64

(Ip et al., 1991; Hibler & Schulson, 2000), and teardrop or parabolic lens (Zhang & Rothrock,65

2005). Second, the flow rule sets the relative amount of shear and divergence or conver-66

gence of the ice for a given stress state. The flow rule can be normal (Hibler, 1979; Zhang67

& Rothrock, 2005) or non-normal (Ip et al., 1991; Ringeisen et al., 2021) to the yield curve.68

In this terminology, a rheology is defined by a specific yield curve shape and a flow rule.69

Rothrock (1975) proposed two yield curves shapes: the teardrop and parabolic lens70

yield curves. These two yield curves satisfy Drucker’s convexity postulate for stability71

(Palmer et al., 1967; Drucker, 1950) and represent both divergence and convergence, in72

contrast to a Mohr–Coulomb yield curve with a normal flow rule. These two yield curve73

shapes have not been used until Zhang and Rothrock (2005) proposed VP constitutive74

equations of these yield curves with normal flow rules. These sea ice VP rheologies are75

implemented in the PIOMAS model (Zhang, 2020) but, to our knowledge, have not been76

used much elsewhere.77
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Sea ice models require expensive solvers because of the non-linear equations of the78

rheology (Lemieux & Tremblay, 2009; Losch & Danilov, 2012; Koldunov et al., 2019).79

For useful climate modeling, sea ice models need to be stable and efficient, while giving80

an accurate prediction of sea ice motion. The stability of the sea ice model can be ex-81

pressed by system energy considerations (Dukowicz, 1997; Schulkes, 1996; Pritchard, 2005).82

For example, a negative bulk viscosity would make the rheology act as a spurious en-83

ergy source that leads to model instabilities. Instabilities lead to poor numerical con-84

vergence and inefficiency as the numerical convergence is more difficult to obtain.85

In this paper, we document three issues in the formulation of the Teardrop (TD)86

and Parabolic Lens (PL) yield curves with normal flow rules, as they are described in87

Zhang and Rothrock (2005). First and second, regions of the yield curve where the non-88

linear viscosity coefficients are negative or zero and become sources of energy instead of89

sinks, and third, an inconsistency in the capping of the viscosities for the viscous regime90

prevents the stresses from remaining on or within the yield curve. We then propose so-91

lutions to these issues that ensure numerical convergence for high-resolution sea ice mod-92

els. We test these solutions in an idealized experiment and show that they lead to im-93

proved numerical convergence and efficiency.94

The paper is structured as follows: Section 2 reviews the original TD and PL viscous-95

plastic rheologies (Zhang & Rothrock, 2005). Section 3 discusses the problems and so-96

lutions in detail. Section 4 describes an idealized experiment used to compare the new97

and original rheology. Section 5 compares the numerical convergence of the original and98

new formulations. Conclusions follow in Section 6.99

2 Sea ice model100

2.1 The sea ice viscous-plastic rheological model101

Following general practice, we simulate sea ice as a (vertically integrated) 2D viscous-

plastic material. The ice velocities are calculated from the sea ice momentum equations:

ρ h
∂~u

∂t
= −ρ h f ~k × ~u+ ~τa + ~τo − ρ h∇Φs +∇ · σ, (1)

where ρ is the ice density, h is the mean sea ice thickness, ~u is the ice drift velocity field,102

f is the Coriolis parameter, ~k is the vertical unit vector, ~τa is the surface air stress, ~τo103

is the ocean drag, ∇Φs is the acceleration due to the gradient of geopotential (i.e., sea104
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surface) height, and σ is the vertically integrated internal ice stress tensor defined by105

the sea ice VP constitutive equations.106

We use the constitutive equation for the elliptical yield curve (Hibler, 1979, 1977):

σij = 2ηε̇ij + (ζ − η) ε̇kkδij −
P

2
δij , (2)

where ζ and η are the bulk and shear viscosities, and ε̇ij are the strain rates defined as107

ε̇ij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. Different rheologies have different non-linear relationships between108

the viscosities and the strain rates.109

The local ice strength P is defined as a function of the mean ice thickness h and

concentration A, as

P = P ? h e−C
?(1−A), (3)

where P ? is the compressive strength of 1 m thick ice and C? is a model parameter defin-110

ing the ice strength dependence on ice concentration.111

Equation (2) can also be written in stress invariant form as112

σI = 2ζε̇I −
P

2
, (4)

σII = 2ηε̇II, (5)

where the stress invariants are

σI =
1

2
(σ11 + σ22) and σII =

1

2

√
(σ11 − σ22)2 + 4σ2

12, (6)

and the strain rates invariants are

ε̇I =
1

2
(ε̇11 + ε̇22) and ε̇II =

1

2

√
(ε̇11 − ε̇22)2 + 4ε̇212. (7)

With the factor 1
2 for ε̇I and ε̇II, we follow the definition of the strain rate invariants given113

in Zhang and Rothrock (2005).114

2.2 Original formulations115

Following Zhang and Rothrock (2005), the equation of the teardrop (TD) and the116

parabolic lens (PL) yield curves can be written as117

σII
P

= −
(
σI

P − kt
) (

1 + σI

P

)q
, (8)

where q = 1
2 for the TD and q = 1 for the PL yield curve. P is the local isotropic com-118

pressive strength and kt (= T/P ) is the tensile factor such that T is the local isotropic119
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σI

σII

−P
2

ε̇I

ε̇II

T−P

Figure 1. Representation of the teardrop and parabolic yield curves with a normal flow rule

in invariant stress space (σI, σII) with kt = 0.1. Regions of the yield curve where bulk viscosities

are negative are shown as a thick red (see Sec. 3.1). The angles at the tips show the range of flow

rule grouped at this point.

ice tensile strength (König Beatty & Holland, 2010). Equation (8) can be rewritten as120

F = y + (x− kt)(1 + x)
1
2 = 0, for the TD, (9)

F = y + (x− kt)(1 + x) = 0, for the PL, (10)

where

x =
σI
P
, y =

σII
P
. (11)

Equations (9) or (10), together with the associated flow rule conditions,

ε̇I = λ
∂F

∂x

∂x

∂σI
=
λ

P

∂F

∂x
, ε̇II = λ

∂F

∂y

∂y

∂σII
=
λ

P

∂F

∂x
, (12)

constitute systems of three equations and three unknowns (σI, σII, λ) or (u, y, λ). The

solution of these systems can be written as

xTD =
σI
P

=
−[6− 3kt − 2l2] + 2l

√
l2 + 3(1 + kt)

9
,

yTD =
σII
P

= −(xTD − kt)(1 + xTD)
1
2 ,

λ = P ε̇II,


for the TD,

(13)

(14)

(15)

and

xPL =
σI
P

=
1

2
(l − 1 + kt),

yPL =
σII
P

= −(xPL − kt)(1 + xPL),

λ = P ε̇II,


for the PL,

(16)

(17)

(18)

where l = ε̇I
ε̇II

. Note that a second root for xTD is discarded because it leads to flow rules

pointing inward of the yield curve (not shown). The bulk and shear viscosities ζ and η

–6–
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can be calculated from the above constitutive equations (Eqs. 4 – 5) as,

ζTD =
σI + P/2

2ε̇I
=
xTD + 1/2

2ε̇I
P,

ηTD =
σII
2ε̇II

=
y

2ε̇II
P =

−(xTD − kt)(1 + xTD)
1
2

2ε̇II
P,

 for the TD,

(19)

(20)

and

ζPL =
σI + P/2

2ε̇I
=
xPL + 1/2

2ε̇I
P,

ηPL =
σII
2ε̇II

=
y

2ε̇II
P =

−(xPL − kt)(1 + xPL)

2ε̇II
P,

 for the PL.

(21)

(22)

In the limit where deformations tend to zero, the viscous coefficients η and ζ be-121

come infinite. To avoid this, ζ is capped with a maximum value, ζmax. In contrast to the122

elliptical yield curve in the standard VP model, η is not a function of ζ and is also capped123

at a maximum value ηmax (= ζmax, J. Zhang, personal communication).124

In Zhang and Rothrock (2005), the following conditions are used for the narrow125

tip of the TD and PL yield curves:126

σI = ktP for l > 1, for the TD and PL, (23)

σI = −P for l < −1, for the PL. (24)

The number l is the link to the orientation of the flow rule, as it is the ratio of divergence127

and shear. The reason why stress states with the flow rule oriented such as |l| ≥ 1 are128

not allowed is unclear. In addition, the conditions (23, 24) are not required for the math-129

ematical derivation of Eqs. (13) and (16). In fact, they lead to a discontinuity of the yield130

curve, where no stress condition is defined, and shear viscosities that are equal to zero.131

This has consequences for the numerical convergence of the momentum equations (See132

Sect. 3.2). Note that for stress states with |l| > 1 no LKFs form in the sea ice VP model133

(see Appendix B, Ringeisen et al., 2019). On the one hand, this may have been the rea-134

son that Zhang and Rothrock (2005) introduced the conditions (23, 24). On the other135

hand, the elliptical yield curve, which serves as our reference for VP sea ice models, al-136

lows stress states with |l| > 1.137

3 Problems and solutions138

The formulation (13), (19), (20) — and (16), (21), (22) — of the constitutive equa-139

tions, as defined in Zhang and Rothrock (2005), leads to three problems.140

–7–
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3.1 Negative bulk viscosity141

In Eq. (19) and Eq. (21), the bulk viscosity ζ is negative when the numerator and142

denominator have different signs, i.e., for:143

− (2− kt)P
3

< σI < −P
2
, for the TD, (25)

−P
2

< σI < − (1− kt)P
2

, for the PL. (26)

These regions are marked in red on Fig. 1. In Zhang and Rothrock (2005), the negative144

ζ are capped at zero (ζmin = 0, J. Zhang, personal communication). This leads to stress145

states outside of the yield curve near its apex (see region [1] on Figure 2a).146

Negative bulk viscosities appear because the constitutive relation Eq. (2) (or Eqs.147

4–5) is derived for a yield curve that is symmetric around σI = P
2 with zero tensile strength148

(kt = 0) but does not apply to the non-symmetrical teardrop or symmetrical parabolic149

lens yield curves with normal flow rules but non-zero tensile strength. Rewriting Eqs.150

(13) and (16) as a linear function of the divergence ε̇I and a strain-rate independent part151

(the pressure term), we obtain,152

σI = 2
P

9ε̇II

 ε̇I
ε̇II

+

√(
ε̇I
ε̇II

)2

+ 3(1 + kt)


︸ ︷︷ ︸

ζTD

ε̇I −
2− kt

3
P for the TD, (27)

σI = 2
P

4ε̇II︸︷︷︸
ζPL

ε̇I −
1− kt

2
P for the PL. (28)

By comparing this formulation to Eq (4), new definitions for ζTD and ζPL emerge:153

ζTD =
P

9ε̇II

 ε̇I
ε̇II

+

√(
ε̇I
ε̇II

)2

+ 3(1 + kt)

 (29)

ζPL =
P

4ε̇II
. (30)

and the pressure term in its original form
(
P
2

)
becomes

(
2−kt
3 P

)
and

(
1−kt
2 P

)
. These154

new formulations for ζTD, ζPL, and σI solve the problem of negative ζ without the need155

of capping at zero, compared to Eqs. (19) and (21). In this formulation, we let the con-156

stitutive equations for σI and the definition of ζTD and ζPL emerge naturally from the157

system of equations defined by the yield curve and the normal flow rule, without the need158

to use the constitutive equation of the elliptical yield curve without tensile strength Eq (4).159

Note that, for the PL, the pressure term is the same as for the elliptical yield curve with160

tensile strength (König Beatty & Holland, 2010). The σII constitutive equation and the161

–8–
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shear viscosity η is still computed with Eqs. (5), (20) for the TD, and Eqs. (5), (22) for162

the PL.163

3.2 Zero shear viscosity164

The conditions (23 and 24) for l = ε̇I
ε̇II

are not necessary for the derivation of the165

constitutive equations. A consequence of these conditions is a discontinuity on the yield166

curve with undefined stress, a void (region [2] on Fig. 2a). We can replace these condi-167

tions by new ones that force the stress states to stay on the pointy tips of the yield curves168

and avoid σII < 0:169

σI = min(σI, T ), for the TD and PL (31)

σI = max(σI,−P ), for the PL. (32)

However, when σI is capped like this, the shear viscosity η is identically zero, with σI =170

−P and σI = ktP = T (Eqs. 20 and 22), and consequently σII = 0. A zero shear vis-171

cosity η, while not an energy source as for the negative bulk viscosity, still means less172

dissipation and may lead to numerical instabilities. Note that even small shear viscosi-173

ties are sufficient to stabilize the model during large deformations.174

The following regularizing conditions on x ensure that the TD and PL yield curves175

are continuous and that η > 0:176

σI = min(σI, αT ) for the TD and PL (33)

σI = max(σI,−P + αT ) for the PL, (34)

where α (. 1, e.g., α = 0.95) ensures that η is never equal to zero; i.e., σI 6= T or −P .177

However, these new conditions truncate the pointy tips of the TD and PL, making them178

square. With α ' 1, this truncation is barely noticeable and but it improves the nu-179

merical convergence significantly.180

3.3 Mixed modes of viscous and plastic deformation181

When using the teardrop and parabolic lens yield curve with a normal flow rule,182

viscous creep and plastic deformation are allowed to occur independently from one an-183

other. For instance, plastic shear deformation is allowed while there is creep in conver-184

gence. Practically, this means that viscosities ζ and η are capped to ζmax and ηmax in-185

dependently, in contrast to the elliptical yield curve where η is function of ζ and both186

–9–
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are capped simultaneously. While this behavior is not physically inconsistent, it leads187

to stresses outside of the yield curve, and stress states that are inside the yield curve that188

are plastic in one mode or the other. This makes numerical convergence more difficult189

for a general yield curve.190

To overcome this issue, we impose limits of ζ and η as191

ζ = min

(
ζ, ζmax min

(
1,
ζ

η

))
, (35)

η = min

(
η, ηmax min

(
1,
η

ζ

))
, (36)

where ζmax = ηmax are model parameters corresponding to ζmax for the elliptical yield192

curve (Hibler, 1979). With this new relation, we ensure that all stress states inside the193

yield curve represent viscous deformations and that all stress on the yield curve repre-194

sent plastic deformation. This new formulation has the disadvantage that it leads to dif-195

ferent maximum viscosity depending on where the viscous stress state is relative to the196

yield curve.197

3.4 Comparison of the original and new formulation198

Figure 2a shows plastic and stress states with the original and new formulation of199

the teardrop yield curve. To create these stress states, we create a random field of de-200

formation rates ε̇ij which contains all combinations of shear, compression, and tension.201

We then apply the constitutive equation to compute the stresses σij . Note that the stress202

states of both formulation are therefore computed with the same strain rates. The mag-203

nitude of the random strain rates is set to ensure both viscous and plastic states.204

With the original simulation, the stress states for which ζ = 0 are outside of the205

yield curve and gather along the σI = P
2 line — region [1] — and there are no stress206

states on the yield curve close to the tip — region [2]. These two features do not appear207

in our modified formulation of the yield curve. The same comparison can be made with208

the parabolic lens yield curve (not shown).209

Figure 2b shows the viscous capping process. Before viscous capping, the stresses210

are all on the yield curve (green). When ζ, or η, are capped independently the stresses211

move horizontally, or vertically, or towards the center if both viscosities are large enough212

to be capped (orange lines). When the viscosities are capped together following Eqs. (35–213

–10–
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36), the stresses move towards the center of the teardrop (blue lines)
(
σI = − 2−kt

3

)
. Note214

that for Fig. 2b, we already use our solutions for η and ζ from Sect. 3.1 and 3.2.

Figure 2. (a) Stress states with the original (orange, lower half plane) and the proposed

(blue, upper half plane) formulation of the teardrop yield curve for a random distribution of

strain rates. The tensile factor kt = 0.1 and the parameter α = 0.95 (see Sect. 3.2). The red

boxes [1] and [2] illustrate the issues described in Sect. 3.1 and 3.2. In box [1], the three colors in-

dicate three behaviors: Stress states marked in red exceed the yield curve because of the viscous

capping in ζ, these stresses are displaced horizontally toward the P
2

line. In green, some stress

states are outside of the yield curve as the bulk viscosity is capped at zero. And in blue, stress

states with ζ = 0 move inside the ellipse along the P
2

line as η is capped for viscous deformation.

(b) The lines show the trajectories of the stresses from before viscous capping to after viscous

capping in the original (orange, lower half plane) and new formulation (blue, upper half plane)

of the viscous capping process (Sect. 3.3). When bulk and shear viscosities are capped indepen-

dently, the stresses move horizontally or vertically. By capping the viscosities together following

Eqs. (35–36), we ensure that the stresses move towards the center of the TD yield curve
(
2−kt

3

)
.

215

4 Experimental setup216

We use a uniaxial loading experiment in the MIT general circulation model (MITgcm,217

Campin et al., 2021). A piece of sea ice of 60 km by 250 km is embedded in an 100 km218

by 260 km domain with a constant grid spacing of 1 km (see Fig. 3). The sea ice is h =219

1 m thick and at A = 100% concentration. The rectangle of ice is in contact with the220
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southern border and centered in the domain laterally. Hence, there is 20 km of open wa-221

ter on the East and West, and 10 km of open water in the North. We impose a uniform222

southward surface stress of 0.15 N m−2. We use a no-slip boundary condition for the south-223

ern boundary (u = 0 and v ≥ 0). The other boundaries use periodic boundary condi-224

tion. Since there is open water to the east, west and north side of the domain, the sim-225

ulation results are robust with respect to the exact choice of boundary conditions on those226

boundaries. The timestep is 10 s and the experiment total length is 18 000 s = 5 h. In all227

simulations below, we use a tensile factor kt = 0.05, unless specified otherwise.

Closed boundary

no slip

Sea ice

Open water

Figure 3. Experimental setup of the idealized experiment. The orange arrows represent the

uniform surface stress directed towards the closed boundary in red.

228

We use a Picard solver with 10 outer-loop iterations (or pseudo-timesteps) (Zhang229

& Hibler, 1997), unless otherwise specified. For each of the solver outer-loop iterations,230

we use an LSR solver to solve the linearized problem until the solution reaches a 10−6 m s−1
231

accuracy or 500 iterations, which ever comes first. These conditions are realistic for pan-232

arctic sea ice simulations with 1-2 km resolution (see for example N. Hutter & Losch, 2020).233
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5 Results and discussion234

Figure 4a shows the L2-norm residual and the number of linear (LSR) iterations235

for each non-linear loop with the TD yield curve in the idealized experiment described236

in Sect. 4. The different colors show the residuals with and without the modifications237

described in Sect. 3, and with the standard elliptical yield curve VP rheology for refer-238

ence. In the original formulation, the model does not converge; i.e. the residual norm239

increases and stays high. With the new formulation, the model converges and reaches240

a residual norm similar to the one of the elliptical yield curve with normal flow rule. The241

modifications improve the convergence by more than one order of magnitude whilst de-242

creasing the total number of linear iterations (thus the total simulation time) by nearly243

two orders of magnitude (Fig.4a). With the new formulation, the stress states are mostly

Figure 4. (a) L2-norm of the residual and number of linear LSR iterations for each non-linear

iterations in each timestep with the teardrop yield curve without (orange) and with (blue) mod-

ifications, and with the elliptical yield curve for reference. The number in the legend indicates

the total number of linear iterations used the simulation. We use here realistic solver settings for

a 1 km resolution simulation: 10 outer-loops and 10−6 or 500 iterations for the LSR. (b) Same

as (a), but only the 10 first timesteps when the number of non-linear iterations is increased to

15 000 and the LSR condition for convergence is changed to 10−9 m s−1 or 15 000 iterations.

244

on or within the yield curve, and the linear structures along σI = −P/2 and σII = 0245

disappear (Fig. 5).246

–13–



manuscript submitted to JGR: Oceans

Figure 5. Stress states corresponding to the last timestep of the simulations shown on

Fig. 4a. For the new formulation, the stresses form a line following the σII = −σI axis, as ex-

pected for uniaxial compression (Ringeisen et al., 2019).

Figure 4b shows the ten first time steps of the same experiments but with stricter247

numerical convergence requirements (the solver’s details are listed in the figure caption).248

Even with a large number of non-linear iterations, the original formulation does not con-249

verge and keeps a residual around 101. The modified teardrop yield curve can reach a250

residual of almost 10−4 and continues to decrease. However The rate of decrease is slower251

than for the elliptical yield curve (Lemieux & Tremblay, 2009). The reasons for the slower252

convergence with the TD are unclear but may be caused by varying viscosity inside the253

yield curve.254

For the elliptical yield curve with P = const, the stress states within the yield curve255

always have the same viscosities (ζ = ζmax and η = ζmax

e2 ). With the TD and PL yield256

curves, the viscosities are defined independently and the transition from plastic to vis-257

cous deformations also has to be treated independently (see Sect. 3.3). For small stresses258

(i.e., σI and σII ' 0), this leads to unphysical gradients of shear viscosity. These gra-259

dients lead to spatial variations in stresses, thus small scale variations in the viscous de-260

formations. These variations in deformations make the numerical convergence more dif-261

ficult for the TD compared to the elliptical yield curve. This behavior leads to the cloud262

of points close to σI = 0 on Fig. 5.263
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With only two outer-loops (Zhang & Hibler, 1997; Zhang, 2020), the numerical con-264

vergence of both the original and new formulation is almost the same and the residual265

stays around Res ' 101, but the number of linear iterations of the new formulation is266

reduced (not shown).267

6 Conclusions268

A new formulation of the teardrop (TD) and parabolic lens (PL) yield curves with269

normal flow rule addresses three problems in its original formulation (Zhang & Rothrock,270

2005). Two of these problems have a common cause: zero bulk or shear viscosity. The271

zero bulk viscosity ζ is a consequence of the assumption that the constitutive equation272

Eq. (2) presented in Hibler (1979) is valid for all yield curves, including asymmetrical273

ones with respect to a average internal pressure P
2 and with non-zero tensile strength.274

When letting the constitutive equation emerge naturally from the yield curve equation275

and the normal flow rule conditions, a similar relation is found, except for the pressure276

term with a new scaling factor different from 1
2 that is a function of kt. With this mod-277

ification negative bulk viscosities of in the original formulation no longer appear and ad-278

ditional limiting from below is unnecessary. The zero shear viscosity η is a consequence279

the condition that keeps stress at the pointy tips (at σI = T or −P ) of the yield curves.280

These conditions of the original formulation are independent of kt, leading to a discon-281

tinuity on the yield curve. The identically zero shear viscosity leads to instabilities. This282

problem can be fixed by cutting the tip before it reaches the σI axis, ensuring a contin-283

uous yield curve and non-zero viscosities.284

The third problem, of a lesser importance, is linked to the capping of the viscosi-285

ties for the transition from plastic to viscous states. We reformulate the maximum limit286

on the bulk and shear viscosities to ensure that both are capped consistently and not287

independently. By doing so, we avoid stress states that represent half-viscous and half-288

plastic deformation. The direct consequence of theses changes is an improved numeri-289

cal convergence and stress states that are on or within the yield curve. The most impor-290

tant was to avoid negative and zero viscosities.291

These problems seem to have gone unnoticed because of the generally small num-292

ber of solver outer-loops used in sea ice models. Sea ice models that use these yield curves293

generally use a very limited number of non-linear iterations (2 pseudo-timesteps, Zhang294
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& Hibler, 1997). In this case, issues in the model’s formulation remain hidden behind295

the unconverged solution. By investigating the formulations of sea ice models in ideal-296

ized simulations where numerical convergence can be attempted, problems can be iden-297

tified, investigated, and solved.298

The shape of the teardrop yield curve resembles the shape of the Mohr–Coulomb299

yield curve, and eliminates non-differentiable points when compared with yield curves300

in other models (Ip et al., 1991; Tremblay & Mysak, 1997; Hibler & Schulson, 2000; Dansereau301

et al., 2016; Rampal et al., 2019). This makes the teardrop yield curve an interesting al-302

ternative for general use in the community. The question whether the teardrop yield curve303

is an interesting alternative to solve the overestimation of intersection angles in sea ice304

models (N. C. Hutter et al., 2021, in review) is left for future work.305
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