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Abstract

Micromagnetic Tomography (MMT) is a technique that combines X-ray micro computed tomography and scanning magnetom-

etry data to obtain information about the magnetic potential of individual grains embedded in a sample. Recovering magnetic

signals of individual grains in natural and synthetic samples provides a new pathway to study the remanent magnetization that

carries information about the ancient geomagnetic field and is the basis of all paleomagnetic studies. MMT infers the magnetic

potential of individual grains by numerical inversion of surface magnetic measurements using spherical harmonic expansions.

The magnetic potential of individual particles in principle is uniquely determined by MMT, not only by the dipole approxima-

tion, but also more complex, higher order, multipole moments. Here we show that such complex magnetic information together

with particle shape and mineralogy severely constrains the internal magnetization structure of an individual grain. To this

end we apply a three dimensional micromagnetic model to predict the multipole signal from magnetization states of different

local energy minima. We show that for certain grains it is even possible to uniquely infer the magnetic configuration from

the inverted magnetic multipole moments. This result is crucial to discriminate single-domain particles from grains in more

complex configurations such as multi-domain or vortex states. As a consequence, our investigation proves that by MMT it is

feasible to select statistical ensembles of magnetic grains based on their magnetization states, which opens new possibilities to

identify and characterize stable paleomagnetic recorders in natural samples.

1



Supporting Information for ”Mapping magnetic1

signals of individual magnetite grains to their2

internal magnetic configurations using3

micromagnetic models”4

David Cortés-Ortuño1, Karl Fabian2, and Lennart V. De Groot15

1Paleomagnetic laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht6

University, Budapestlaan 17,, 3584 CD Utrecht, The Netherlands.7

2Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 15a, 70318

Trondheim, Norway9

February 16, 202210

1



S1 Magnetic signal of a single cuboid11

In the manuscript the magnetic signal from a grain simulated with the micromagnetic12

code was calculated by computing the dipole field of every magnetization vector in13

the grain model. This allowed to compute the total magnetic flux produced by14

the grain at a surface above it. To analyze the accuracy of this approximation a15

test model is defined using a cuboidal particle. The stray field of this grain can16

be calculated analytically and therefore the magnetic field it produces at a surface,17

which can be compared directly with the simulated grain.18

S1.1 Physical model19

For a uniformly magnetized cuboid grain (located at the origin), the demagnetizing20

field can be computed from the potential function that is defined over the boundary21

surfaces (faces) ∂Ω of the cuboid as22

φ(r) =
1

4π

∫
∂Ω

M · dS′

|r− r′|
. (1)

In equation 1, dS′ = n̂ · dS ′ is the surface element, with n̂ as the unit vector normal23

to the faces, M is the cuboid magnetization, r is the location of the reference point24

and the vectors r′ point to the locations of the magnetic sources, i.e. the cuboid faces25

infinitesimal elements. This model is illustrated in Fig. S1, where position vectors26

are defined with respect to an arbitrary origin O. The magnetic field is defined as27

B(r) = −µ0∇φ(r). (2)
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Scan grid

Cuboid 
centroid

Sensor

SUPP. FIG. S1: Model system for the calculation of the stray field of a uniformly
magnetized cuboid. Position vectors are defined with respect to an arbitrary origin
O. The scan grid is defined by a rectangular grid of sensor points in the xy-plane.
The cuboid center is specified by the vector ξ such that the positions of infinitesimal
cuboid face elements r′ are defined as r′ = ξ + r′′, with r′′ as the location of the
magnetic sources with respect to the cuboid center reference system.

For the case studied in the manuscript a single scan sensor is approximated as a28

physical point. Therefore, by defining γB = µ0/(4π), the field component normal to29

a sensor grid point defined in the xy-plane is calculated as30
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Bz (r) = −µ0
∂

∂z

(
1

4π

∫
∂Ω

M · dS′

|r− r′|

)
(3)

= −γB
∫
∂Ω

M · dS′ ∂
∂z

(
1

|r− r′|

)
(4)

= γB

∫
∂Ω

M · dS′ ∂
∂z′

(
1

|r− r′|

)
(5)

In equation 5 the derivative variable was changed, which is more convenient for two31

of the cuboid faces. The integral limits can be simplified if the integration variable is32

changed to the coordinate system of the cuboid center ξ by noticing that r′ = ξ+r′′,33

as shown in Fig. S1. In this case dS′ = dS′′ and ∂f
∂z′

= ∂f
∂z′′

for an arbitrary function34

f , hence the field can be expressed as35

Bz (r) = γB

∫
∂Ω

M · dS′′ ∂
∂z′′

(
1

|r− (ξ + r′′)|

)
(6)

= γB

∫
∂Ω

M · dS′′ ∂
∂z′′

(
1

|X− r′′|

)
(7)

with X = r− ξ. Alternatively, the field can also be written as36

Bz (r) = −γB
∂

∂z

∫
∂Ω

M · dS′′
(

1

|X− r′′|

)
(8)

To compute the integrals we refer to (Hubert & Schäfer 1998, p. 122) where37

integrations are carried out based on the source function F000(r) such that38
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r =
√
x2 + y2 + z2 (9)

Lx = arctanh
(x
r

)
(10)

Px = x arctan
(yz
xr

)
(11)

F000 =

(
1

r

)
(12)

F100 =

∫
F000 dx = Lx (13)

F110 =

∫
F100 dy = yLx + xLy − Pz (14)

F11−1 =
∂

∂z
F110 = − arctan

(xy
zr

)
(15)

Using equation 7 it is now possible to compute the field contribution of the cuboid39

face in the yz-plane, where x′′ = a and n̂ = +x̂, as40
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B[+x̂]
z (r) = γBMx

∫ y′′=+b

y′′=−b

∫ z′′=+c

z′′=−c
dy′′ dz′′

∂

∂z′′

(
1

|X− r′′|

) ∣∣∣∣∣
x′′=+a

(16)

= γBMx

∫ y′′=+b

y′′=−b
dy′′

(
1

|X− r′′|

) ∣∣∣∣∣
x′′=+a

∣∣∣∣∣
z′′=+c

z′′=−c

(17)

= γBMx

∫ y′′=+b

y′′=−b
dy′′ F000 (X− r′′)

∣∣∣∣∣
x′′=+a

∣∣∣∣∣
z′′=+c

z′′=−c

(18)

= −γBMxF010 (|X− r′′|)

∣∣∣∣∣
x′′=+a

∣∣∣∣∣
z′′=+c

z′′=−c

∣∣∣∣∣
y′′=+b

y′′=−b

(19)

= −γBMxF010 (r− [ξ + r′′])

∣∣∣∣∣
x′′=+a

∣∣∣∣∣
z′′=+c

z′′=−c

∣∣∣∣∣
y′′=+b

y′′=−b

(20)

= −γBMxF010 (x− ξ − a, y − η − y′′, z − ζ − z′′)

∣∣∣∣∣
x′′=+a

∣∣∣∣∣
z′′=+c

z′′=−c

∣∣∣∣∣
y′′=+b

y′′=−b

(21)

Similarly, for the opposite face with normal in the −x̂ direction the resulting field41

is42

B[−x̂]
z (r) = −γB (−Mx)F010 (r− [ξ + r′′])

∣∣∣∣∣
x′′=−a

∣∣∣∣∣
z′′=+c

z′′=−c

∣∣∣∣∣
y′′=+b

y′′=−b

, (22)

and for the faces in the xz-planes (normals in the ±ŷ directions) the field expressions43

are44

B[±ŷ]
z (r) = −γB (±My)F100 (r− [ξ + r′′])

∣∣∣∣∣
y′′=±b

∣∣∣∣∣
z′′=+c

z′′=−c

∣∣∣∣∣
x′′=+a

x′′=−a

. (23)

Finally, for the faces in the xy-planes (normals in the ±ẑ directions), the field is45
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SUPP. FIG. S2: Comparison of the stray field of the uniformly magnetized cuboid
model computed from both an analytical formulation and a micromagnetic simula-
tion. The cuboid is defined as a cube of 50 nm edge size with its center at z = −35 nm.
The stray field is calculated at a height of z = 500 nm.

computed using equation 8 to obtain46

B[±ẑ]
z (r) = −γB (±Mz)

∂

∂z

[∫ x′′=+a

x′′=−a

∫ y′′=+b

y′′=−b
dx′′ dy′′

(
1

|X− r′′|

)] ∣∣∣∣∣
z′′=±c

(24)

= −γB (±Mz)
∂

∂z

[
(−1)2F110 (r− [ξ + r′′])

] ∣∣∣∣∣
z′′=±c

∣∣∣∣∣
y′′=+b

y′′=−b

∣∣∣∣∣
x′′=+a

x′′=−a

(25)

= −γB (±Mz)F11−1 (r− [ξ + r′′])

∣∣∣∣∣
z′′=±c

∣∣∣∣∣
y′′=+b

y′′=−b

∣∣∣∣∣
x′′=+a

x′′=−a

(26)
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--------------------------------------------------

Order: Dipole

Magnetization : 479998.6572 A/m

Dipole moments (norm): (0.5774 0.5774 -0.5774)

|Bres|_F / |B|_F : 7.3496e-06

Largest residual : -0.0009 µT
Largest Bz : -58.3056 µT
--------------------------------------------------

Order: Quadrupole

Magnetization : 480003.7494 A/m

Dipole moments (norm): (0.5774 0.5774 -0.5774)

|Bres|_F / |B|_F : 5.2152e-06

Largest residual : -0.0006 µT
Largest Bz : -58.3056 µT
--------------------------------------------------

Order: Octupole

Magnetization : 480170.2555 A/m

Dipole moments (norm): (0.5778 0.5771 -0.5771)

|Bres|_F / |B|_F : 2.4465e-04

Largest residual : 0.0053 µT
Largest Bz : -58.3056 µT
--------------------------------------------------

SUPP. TABLE S1: Results of multipole inversions of different order applied to the
test cuboid system.

S1.2 Cuboid test model47

The theoretical results obtained for the stray field of a cuboid particle are compared48

to the results obtained from a micromagnetic simulation using the finite element code49

MERRILL (Ó Conbhúı et al. 2018). A cuboid of dimensions 50 nm× 50 nm× 50 nm50

is defined with its center at z = −35 nm. In addition, the particle’s magnetization is51

specified with a magnitude of |M| = 0.48 MA/m and orientation M/|M| = 0.577×52

(1, 1,−1). The z-component of the stray field for both the theoretical and simulation53

models are calculated on a scan grid of size 1.5µm× 1.5µm at a height position of54

z = 0.5 µm. A comparison of the stray field results is shown in Fig. S2. The55

relative error of the simulation with respect to the theoretical solution in this case is56
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estimated as Berr =
∥∥Bsim

z −Btheory
z

∥∥
F
/
∥∥Btheory

z

∥∥
F

= 2.7183×10−5. This small value57

confirms that the stray field approximation of the micromagnetic simulation, where58

the magnetization vectors at finite element nodes are treated as point dipoles, is in59

excellent agreement with the analytical formulation. Therefore the micromagnetic60

simulation can be used as a model to analyze the stray field signal of more complex61

magnetic structures.62

Numerical inversions of the micromagnetic model of the test cuboid system were63

performed using multipole expansions up to the octupole order. The results of these64

inversions are summarized in Table S1 where the small relative error of the residuals65

indicate that the inverted stray field is approximated with high accuracy, which is66

supported by the correct magnitudes of the inverted magnetization and the inverted67

dipole moments. In particular, a dipole order expansion is sufficient to reproduce68

the right values of the cuboid magnetization.69
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S2 Initial states for the magnetite sphere70

SUPP. FIG. S3: Visualization of the initial states used for the simulations of a
magnetite sphere using the MERRILL code. The selected uniform states are used to
obtain magnetic states oriented in the [101] direction. Arrows depict the normalized
magnetization vectors which are colored by their z-component. The titles indicate
the type of initial state used in the simulations. For the RANDOM configuration,
the Randomize All Moments command was used. For the UNIFORM configuration,
the Uniform Magnetization 1.00 0.00 1.00 command together with Randomize

Magnetization 10 were used. For the UNIFORM RANDOM state the random
component was specified with a value of 35 degrees. In the manuscript, the uniform
states are specified in 26 different directions in the Cartesian plane.
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S3 Surface reconstruction71

The generation of the finite element mesh for the grain 4 of Area 2 defined in the72

synthetic sample of (de Groot et al. 2018b) requires to reconstruct a surface that73

can be partitioned into tetrahedral units. This surface can be generated from an74

unstructured cloud of points which, in this case, is obtained from the the microCT75

data. Specifically, in (de Groot et al. 2018b) the voxel representation of the grains76

from the microCT data is transformed into a cuboid decomposition of the grains77

where voxels are grouped into cuboids of maximal available size that fit within the78

grain geometry with an efficient final representation of the grain shape. For the79

reconstruction of the grain surface, a cloud of points is specified by taking both the80

cuboid vertices and the center of every cuboid face, in order to produce more points81

for the reconstruction algorithm. This point data is publicly available in (de Groot82

et al. 2018a) for the synthetic sample of (de Groot et al. 2018b). In the case of83

grain 4, the cuboid decomposition together with the cuboid vertices and cuboid face84

centers are shown in Fig. S4. For this model the grain size was downscaled to 2% of85

the original grain size.86

Optimized algorithms using unstructured set of points are implemented in the87

Computational Geometry Algorithms Library (CGAL) (The CGAL Project 2021).88

For the model used in the manuscript, the Poisson Surface Reconstruction (PSR) (Al-89

liez et al. 2021) was applied, which requires a calculation of the normal vectors90

at every point. The calculation of the normals was achieved using the CGAL::91

jet_estimate_normals function and consequently the normals were oriented with92

the CGAL::mst_orient_normals function. To generate a surface with the PSR algo-93

11



SUPP. FIG. S4: Surface reconstruction and finite element mesh for the magnetic
grain 4 in the synthetic sample of (de Groot et al. 2018b). The decomposition of the
grain into cuboids (by grouping voxels from microCT data) is shown by transparent
structures with orange edges and was obtained from the grain data in (de Groot
et al. 2018a). Cuboid vertices and face centers are depicted as small spheres. The
surface was constructed via the Poisson Surface Reconstruction algorithm and the
volume was partitioned into tetrahedral units.

rithm the function CGAL::poisson_surface_reconstruction_delaunay was used.94

The resulting surface is depicted in Fig. S4, which shows that the algorithm approxi-95

mates grain geometry efficiently. An improved surface reconstruction can be achieved96

in the future by using the voxel representation of the grains from the microCT data97

12



directly.98

The final step to obtain a finite element mesh for the micromagnetic simula-99

tions is to partition the volume defined by the reconstructed surface into tetra-100

hedrons with edge lengths smaller than the exchange length of the material. As101

specified in the main manuscript, the CGAL library contains tetrahedralization al-102

gorithms. In particular, for the grain 4 model the Tetrahedral Isotropic Remeshing103

method (Tournois et al. 2021) was applied, which is based on the Multi-Material104

Adaptive Volume Remesher algorithm. The tetrahedralization of the grain 4 sur-105

face was achieved by firstly, generating a three dimensional volume mesh using106

the CGAL::make_mesh_3 function and consequently refining this mesh with the re-107

meshing function CGAL::tetrahedral_isotropic_remeshing. This last method108

produced more efficient results (more consistent edge length sizes) than refining the109

mesh with the CGAL::refine_mesh_3 function, and was implemented in one of the110

latest CGAL releases with version number 5.1.111

The CGAL code generates the mesh in .mesh format while the MERRILL code112

accepts both PATRAN .neu and Tecplot .tec mesh formats. Therefore, to con-113

vert the mesh for the grain model the meshio (Schlömer 2021) code is used with114

modifications from the authors of this work.115

S3.1 Energy minimization and mesh statistics116

Finding metastable magnetic configurations in a mesh with substantial number of117

nodes is a computationally cost calculation. In particular when the system is initial-118

ized with randomly oriented magnetization vectors because the algorithm requires119

13



SUPP. FIG. S5: Statistical data of the finite element mesh for the magnetite grain
model from a synthetic sample at room temperature. (a) Cumulative distribution
of the edge lengths of the mesh tetrahedra for both a coarsely and finely discretized
mesh. Vertical lines indicate the 50th and 99th percentiles. (b) Mesh quality of
tetrahedra, or cells, using the normalized shape ratio parameter (Field 1991) (see
discussion in text). Vertical lines indicate the 1st and 50th percentiles.

to find LEM states in a complex energy landscape by following different paths that120

minimize the micromagnetic energy. To speed up the process of energy minimization121

for the grain model of the synthetic sample, the strategy used in the paper is:122

• Define a coarsely discretized mesh, i.e. using tetrahedra with edge lengths123

14



larger than the material’s exchange length `ex.124

• Start the minimization and find a candidate for a LEM.125

• Define the physically correct mesh using tetrahedron’s edge lengths smaller126

than `ex.127

• Interpolate the magnetization field of the LEM found with the coarse mesh128

into the magnetization field of the refined mesh. This feature is implemented129

in the MERRILL code.130

• Minimize the energy of the refined mesh using a Conjugate Gradient method131

in Cartesian coordinates and find a LEM.132

Statistics of the FEM tetrahedra, or cells, for the mesh of the grain model of the133

synthetic sample (see Fig. S4) are detailed in Fig.S5. Plot (a) shows the cumulative134

distribution of edge lengths for both the coarse and fine meshes. In the case of the135

fine mesh, the 50th and 99th percentiles of the edge lengths are located at 5.90 nm136

and 8.12 nm, respectively, which are smaller than `exch = 9.59 nm of magnetite at137

room temperature. For the coarse mesh the 99th percentile is located at 20.37 nm.138

Furthermore, the number of tetrahedron edges for the fine mesh is an order of mag-139

nitude larger than that of the modeled coarse mesh and its distribution is narrower140

than that of the coarse mesh. Plot (b) depicts a quantification of the quality of the141

meshes by means of a normalized shape ratio (Field 1991). For every tetrahedron142

cell, which is a 3-simplex, this parameter is defined as the ratio of the radius of the143

sphere inscribed in the cell (inradius) divided by the radius of the sphere enclosing144

15



the cell (circumradius), multiplied by the circumradius to inradius ratio of the reg-145

ular k-simplex, or simply the cell dimension, which in this case is 3. Meshes with146

normalized shape ratios closer to 1 translates into a good mesh quality, since the cells147

are close to regular tetrahedra. Tetrahedrons with ratios closer to zero are poorly148

defined by having edges with large variations in size or are flat in shape, which can149

affect the convergence of the algorithm (Ó Conbhúı et al. 2018). For the fine mesh150

the 1st and 50th percentile are 0.58 and 0.87, respectively. For the coarse mesh the151

1st percentile is located at 0.51. These mesh statistics were computed using the152

Dolfin (Logg & Wells 2010) finite element code.153
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S4 Synthetic sample states154

SUPP. FIG. S6: Magnetic configurations obtained after energy minimization of the
grain 4 of Area 2 of the synthetic sample of (de Groot et al. 2018b), starting from
six different states where magnetization vectors are randomly oriented. In the main
manuscript, configurations 1, 5 and 6 were chosen to perform numerical inversions
of the stray field produced by them.
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