Multiscale fusion of digital rock images based on deep generative
adversarial networks

Mingliang Liu! and Tapan Mukerji!

!Stanford University

November 23, 2022

Abstract

Computation of petrophysical properties on digital rock images is becoming important in geoscience. However, it is usually
complicated for natural heterogeneous porous media due to the presence of multiscale pore structures. To capture the hetero-
geneity of rocks, we develop a method based on deep generative adversarial networks to assimilate multiscale imaging data for
the generation of synthetic high-resolution digital rocks having a large field of view. The reconstructed images not only honor
the geometric structures of 3-D micro-CT images but also recover fine details existing at the scale of 2-D scanning electron
microscopy images. Furthermore, the consistency between the real and synthetically generated images in terms of porosity,
specific surface area, two-point correlation and effective permeability reveals the validity of our proposed method. It provides
an effective way to fuse multiscale digital rock images for better characterization of heterogeneous porous media and better

prediction of pore-scale flow and petrophysical properties.
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Key Points:

e Style-based generative adversarial network (GAN) is effective for augmenting sparse high-resolution
SEM images.

e Cycle-consistent GAN is successfully applied to integrate unpaired multi-resolution digital rock images.

e The method shows promise in the reconstruction of high-resolution digital rocks that accurately capture
micro-structures at multi-scales.

ABSTRACT

Computation of petrophysical properties on digital rock images is becoming important in geoscience. How-
ever, it is usually complicated for natural heterogeneous porous media due to the presence of multiscale pore
structures. To capture the heterogeneity of rocks, we develop a method based on deep generative adver-
sarial networks to assimilate multiscale imaging data for the generation of synthetic high-resolution digital
rocks having a large field of view. The reconstructed images not only honor the geometric structures of 3-D
micro-CT images but also recover fine details existing at the scale of 2-D scanning electron microscopy im-
ages. Furthermore, the consistency between the real and synthetically generated images in terms of porosity,
specific surface area, two-point correlation and effective permeability reveals the validity of our proposed
method. It provides an effective way to fuse multiscale digital rock images for better characterization of
heterogeneous porous media and better prediction of pore-scale flow and petrophysical properties.



Plain Language Summary

Digital rock physics is an effective approach to characterize pore microstructures and predict effective physical
properties of porous medium. However, there is an inherent trade-off between imaging resolution and field
of view (FoV) due to the limitations of different imaging techniques: high-resolution data can resolve pore
structures up to nano scale but the FoV is not large enough to capture a representative volume element;
low-resolution data have larger FoV but cannot capture the fine features. To overcome the trade-off, it is
necessary to develop a workflow of multiscale data fusion for the reconstruction of digital rocks with both
high-resolution and large FoV. The major challenges are (1) that the high-resolution images are usually
limited in number and (2) that the imaging data are typically acquired at different locations of the rock
sample, which means that the training samples are unpaired. To address such challenges, we use a style-based
generative adversarial network (GAN) to augment the limited high-resolution data and then use a cycle-
consistent GAN to integrate the unpaired digital rock data from multiple sources. The proposed method
performs well at reconstructing high-resolution rock models that allows more accurate fluid flow simulation
at pore-scale and prediction of effective properties.

Introduction

Having a deep understanding of pore-scale processes in porous media is of critical importance for various
subsurface applications, such as water resources, oil and gas recovery and carbon dioxide sequestration.
The conventional method that takes the physical experiments on core plugs are typically time-consuming
and limited by the lab environment. As an alternative approach, digital rock physics (DRP) performs
numerical simulations of pore-scale processes of interest directly on digital scans of porous rocks (Keehm et
al., 2001 and 2004; Andri et al., 2013a and 2013b; Blunt et al., 2013; Saxena et al., 2017). It provides a non-
destructive means of repeatedly carrying out numerical simulations under different scenarios on the same rock
sample. The simulations at pore-scale can then be interpretated to derive macroscopic reservoir properties
(e.g., permeability, formation factor, elastic moduli, etc.) and used for sensitivity analysis. A representative
elementary volume (REV) of the rock sample with high resolution is an important prerequisite for accurate
digital rock physics results. However, in practice, there is an inherent trade-off between field of view (FoV)
and image resolution due to the limitation of imaging techniques (Wildenschild et al., 2002; Wildenschild
and Sheppard, 2013). Low-resolution imaging cannot resolve micro pores, which often makes the estimated
rock properties to be underestimated or overestimated with regards to experimental measurements. On the
other hand, the high-resolution image may not capture a REV due to the small FoV.

One way to overcome the trade-off is to integrate imaging data from multiple sources, such as 3-D micro-CT
images at the micron scale and 2-D SEM images at the nano scale. Traditional solutions to this challen-
ging problem are mainly stochastic methods based on the spatial statistical information (e.g., two-point
correlation functions and multiple-point statistics). Jiao et al. (2007) modeled heterogeneous materials from
two-point correlation functions using simulated annealing. Okabe and Blunt (2007) reconstructed 3-D pore
space structure by integrating micro-CT images at the micron-scale that resolve large pores with statisti-
cally simulated high-resolution images from 2-D thin sections that provides finer-scale features. Mohebi et
al. (2009) proposed a statistical method to fuse low-resolution measurements with a high-resolution prior
model. Tahmasebi et al. (2015) proposed a multiscale and multiresolution reconstruction method to generate
3-D models of shales using 2-D images.

In recent years, deep learning methods have been developed to alleviate the trade-off between resolution
and FoV. Wang et al. (2019) and Da Wang et al. (2019) applied convolutional neural networks (CNN) for
micro-CT image enhancement. Da Wang et al. (2020) proposed a generative adversarial network (GAN) to
increase the micro-CT image resolution. The above works are based on supervised learning methods that
require a large number of paired training data of corresponding low- and high-resolution images. However,
in practice, the paired training data are often not available because the sample locations of imaging data are
often different. To circumvent this limitation, Niu et al., (2020) proposed a cycle-in-cycle GAN to deal with
the unpaired training data for boosting lateral resolution of micro-CT images. You et al. (2021) developed
a progressive growing GAN to increase the vertical resolution by combination with the technique of GAN



inversion. The deep learning methods are powerful for resolution enhancement of micro-CT images and have
high perceptive accuracy compared to traditional interpolation algorithms (e.g., nearest neighborhood and
bicubic interpolation). However, previous works mainly focused on the super-resolution problem aiming to
increase the resolution of micro-CT images by two or four times. They are useful to make the micro-CT
images sharper but cannot resolve pore structures at multiscale or integrate data from different imaging
modalities such as micro-CT and SEM images.

The major challenges in multiscale digital rock data fusion are (1) that the high-resolution images are usually
limited in number, which would make the model to be easily overfitted and (2) that the digital rock images
from multiple sources are typically acquired at different locations of the rock sample, which means that the
training samples are unpaired and therefore, supervised methods of machine learning are not applicable. In
this letter we propose an innovative method to solve this problem based on deep neural networks. It uses a
style-based GAN (Karras et al., 2019; Karras et al., 2020a and 2020b) to augment the limited high-resolution
images and then fuses unpaired data at different resolutions by a cycle-consistent GAN (CycleGAN) (Zhu et
al., 2017). The disentanglement representation learning of the style-based GAN allows us to generate images
with different styles by sampling in different regions of the latent space. With such an advantage, we can
train multiple CycleGAN models by feeding training samples with different styles and thus generate multiple
high-resolution realizations of the rock that are consistent with the input of low-resolution micro-CT.

Methodology and Data

The proposed workflow of multiscale digital rock data fusion is illustrated in Figure 1. In this study, we
have five carbonate samples, most of which exhibit high heterogeneity and anisotropy. Each sample has one
high-resolution 2-D SEM image with a size of about 7500x4500 pixels and two or three low-resolution 3-D
micro-CT volumes with a size of about 600x600x900 voxels. The resolutions of the micro-CT images range
from 1.0 to 2.0 ym, while the resolutions of all SEM images are 0.1 um. A Style-based GAN is first trained
to augment the limited number of SEM images and then a CycleGAN is used to reconstruct high-resolution
images from low-resolution micro-CT data.
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Figure 1. The overall workflow of multiscale digital rock data fusion based on deep generative adversarial
networks: Ggg is the generator of StyleGAN2 that takes the style latent vector and random noise as input
to simulate SEM images; Dygr is the discriminator of StyleGAN2 that aims to distinguish between real



SEM samples and fake samples generated by Gugr; Gropand Gpop, are two generators of CycleGAN that
predicts high-resolution image from low-resolution micro-CT data and recovers low-resolution data from
high-resolution data, respectively; Dy, and Dy are two discriminators corresponding to Grog and Ggor,
respectively.

2.1 SEM Data Augmentation by StyleGAN2-ADA

GANSs are a class of generative network models typically consisting of two competing players: a generator
network G and a discriminator network D (Goodfellow et al., 2014). The generator G tries to synthesize fake
samples G(z) from the input random noisez ~ p,(z) to fool D by mimicking real samplesz ~ pgata (), while
D conversely aims to distinguish between real samples & ~ pqata(2) and fake samples G(z). The notation
y ~ p(y) indicates that the random variable y is distributed according to the probability distributionp(y).
The two networks G and D are trained in an adversarial manner, which is equivalent to playing a minimax
game with a loss function Lgan (D, G) given by

Loan(D; G) = Eprpyaa(a) 108 D (2)] + Ezp. (2) [log (1 = D (G (2)))]- (1)

With such an adversarial training scheme, GANs have the ability of producing high quality sharp images,
outperforming approaches based on pixel-wise mean square error (MSE) loss (Goodfellow et al., 2014).

Karras et al. (2018, 2019) developed StyleGAN and StyleGAN2, two variants of GANs, which are powerful
in high-resolution images generation. They can control not only the style (global features) of the image
at different scales but also stochastic details (local features). Since StyleGANs are unsupervised, they are
well-suited for datasets without conditional labels, which are often common in real applications. To address
the long-standing challenge in GANs of training with small dataset, (in which case the discriminator will
quickly be overfit to the training samples resulting in divergence of the training), Karras et al. (2020)
improved StyleGAN2 by introducing an adaptive discriminator augmentation (ADA) mechanism, which is
called StyleGAN2-ADA. With such an augmentation mechanism, the style-based GANs perform well with
several thousand or even only several hundred training samples. A detailed description of ADA can be found
in the Supporting Information S1.

StyleGAN2 consist of two components: a mapping network and a synthesis network. The goal of the
mapping network is to encode the input random noise z€ Z into a set of intermediate vectorsw €W using
fully connected layers. Each intermediate vector w is further transformed to produce a style scalar s by an
affine transformation A. The major benefit of the mapping network is that it is helpful to disentangle the
latent representation and therefore makes our model easier to be interpreted. Then, the synthesis network
incorporates the styles svia a weight demodulation operation to generate the artificial images starting from
low resolution (4x4) and continuing to higher resolution (8x8, 16x16, ..., 1024x1024) by convolutional
layers. The shallower the layer in which the style s is incorporated, the coarser the level of details is affected.
For example, the first few styles affect the coarse level of details (4x4), while the last few styles affect the fine
level of details (1024x1024). This architecture enables the StyleGAN?2 to control the global features of images
at different scales. To control stochastic variations of generated images at different levels of details, random
noise after another affine transformationB is injected to the feature maps of the convolutional blocks. It
allows the generator to only change the local features, leaving the overall styles and high-level details intact.
A detailed network architecture of StyleGAN2 can be found in the Supporting Information Figure S2.

2.2 Multiscale Digital Rock Images Fusion by CycleGAN

Another challenge in fusing multiscale digital rock images is that the images are acquired at different loca-
tions of the rock sample, which means that the training samples are unpaired. For this reason, we adopt a
CycleGAN, which is an unsupervised method designed for image cross-domain transfer (Zhu et al., 2017).
Specifically, in this study, we aim to transfer the micro-CT images from the low-resolution domainLR to the
high-resolution domain HR by integrating the information from SEM data.



CycleGAN consists of four networks: (1) a generator Gy mapping the images from domain LR to domain
HR, (2) a generator G oy, mapping the images from domain HR to domain LR, (3) a discriminator Dy
aiming to encourageG oy to transfer LR into outputs indistinguishable from domain HR and (4) a similar
discriminator Dy, forGpor,. The major difference of CycleGAN from traditional GANs is that it includes
two generators to constrain each other. It ensures thatGpromy outputs the high-resolution image that is
conditional to the input low-resolution image and vice versa for Gpay. To achieve this goal, apart from the
adversarial loss (Eq. 1), we need to add a regularization term to the loss function of the generators, namely
the cycle-consistent loss given by

Love (Gren, Guar) = Evnpin(e) 1Ga2L (Gran (7)) — 2l||] + Eypuny) 1Grem (Grar (v)) —ylli] (2).

The first term in Eq. 2 aims that for each image x from domainLLR, the image transfer cycle can transform
x back to the original input, i.e., Ggar (Grag (x)) = z. Similarly, for each image y from domain HR,
the second term in Eq. 2 ensures backward cycle consistency:Grap (Grar (y)) = y. A detailed network
architecture of CycleGAN can be found in the Supporting Information Figure S3.

2.3 Data Preparation and Training

The training samples consist of two datasets: (1) low-resolution sub-images of micro-CT with a size of
64x64 and (2) high-resolution sub-images of SEM with a size of 1024x1024. Considering that there are only
a limited number of real SEM images, we extract the high-resolution sub-images with a 70% overlap between
sequential sub-images (with a sliding stride of 500 pixels) to increase the number of training samples. In total,
there are 371 high-resolution samples of SEM. The micro-CT data are sufficient in number, so we randomly
extract the low-resolution sub-images without any overlap. In total, there are 200,000 low-resolution samples
of micro-CT images.

The training of the networks includes two steps. We start with the StyleGAN2-ADA training for SEM data
augmentation. It aims to learn the underlying probability distribution (or manifold) where the real SEM sub-
images lie. The StyleGAN2-ADA is trained in parallel with four Nvidia A100 GPUs each with 40 GB memory.
It takes approximately 24 hours to converge. After training, we use the generator of the StyleGAN2-ADA to
simulate 200,000 high-resolution sub-images to keep the number comparable with the low-resolution images.
Such data augmentation would be helpful for the training of the following CycleGAN to avoid overfitting.
After training the CycleGAN, we can use the generatorGry to transfer the low-resolution images with a
size of 64x64 to the high-resolution domain with a size of 1024x1024. The training of CycleGAN takes
approximately 24 hours with one Nvidia A100 GPU.

Results

Figures 2a and 2b show the high-resolution images extracted from the real SEM data and those simulated
by the trained StyleGAN2-ADA with different global styles but constant noise as input, respectively. The
simulated images capture the fine details of microstructures in the SEM data and are visually indistinguisha-
ble from the real samples. Moreover, most pore types, i.e., inter- and intra-granular pore and microfracture
from the nano to micron scale, are accurately recovered. It indicates that undesirable mode collapse does
not occur in the training and the trained StyleGAN2-ADA can guarantee the diversity of image generation.
To quantitively evaluate the quality of the generated images, we compute the porosity, specific surface area
and two-point correlation of both the real and simulated images. As shown in Figure 3, the distributions
of the synthetic and real samples are consistent. It also indicates that the microstructural details of the
SEM data are well captured by the StyleGAN2-ADA. The correlation curves shown in Figure 3c are close to
the exponential model defined as R (h) = e~"/*where h is the lag distance and X is the correlation length.
The correlation length A of each sample in Figure 3d is obtained by fitting the exponential model R (h) to
the two-point correlation curve. As can be seen from the histograms of correlation lengths, the synthetic
samples, while broadly consistent with the true samples, do tend to have slightly longer correlation lengths,
indicating that some of the generated synthetic samples may be smoother than the true images. Figure S4
in the Supporting Information shows the synthetic images generated with fixed styles but different noise.
The generated samples look similar in global features but different in local features and they are very close



in terms of the porosity, specific surface area and two-point correlation (Figure S5 in the Supporting Infor-
mation). The above different behaviors with constant and changing global style vectors indicate that the
style-based GAN has a good ability of separating the global and local styles underlying the training images.
Thanks to the disentangled representation of the latent space, we can generate new images by interpolati-
on in the latent style space. As shown in Figure S6 in the Support Information, the generated images are
smoothly transformed from one end-member to another with progressive interpolation between the latent
space end-members.

(b)

Figure 2. (a) real SEM images; (b) synthetic images generated by the trained StyleGAN2-ADA with
different global styles and constant noise. The image size is 1024x1024 and the resolution is 0.1 pym.
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Figure 3. Microstructure analyses for the real and synthetic SEM samples: (a) porosity; (b) specific surface
area; (c) two-point correlation function; (d) two-point correlation length.

Figure 4a and 4b shows the predicted high-resolution images from micro-CT data using the trained Cycle-
GAN. With the generator G rogof the trained CycleGAN, the low-resolution micro-CT image with a size of
64x64 can be increased by 16 times to the high-resolution domain with a size of 1024 x1024. We can see that
the reconstructed images not only keep the geometric structures of the input micro-CT images but also reco-
ver the fine details present in the SEM data. The recovered fine microstructural details would be helpful to
accurately predict pore-scale fluid flow and effective petrophysical properties. Thanks to the disentanglement
of the latent style space learned by the StyleGAN2, we can control the styles of the synthetic SEM images
by sampling in different regions of the latent space. As illustrated in the Supporting Information Figure S7,
we can train multiple CycleGAN models by feeding training samples with different styles and thus genera-
te multiple high-resolution realizations of the rock that all are consistent with the input of low-resolution
micro-CT.

Then, we use the CycleGAN to down-scale the entire 3-D micro-CT volumes. The prediction is performed
slice by slice and each slice is divided into patches with a size of 64x64. The vertical resolution of micro-CT
is first increased by 16 times by bicubic interpolation to make the reconstructed rock models have same
resolution along all three directions. To mitigate the artifacts at boundaries, there is an overlap of 8 pixels
between patches. One predicted slice with a larger size of 3584 x3584 is shown in the Supporting Information
Figure S8. The predicted high-resolution images are close to the true SEM image from the same rock
sample in terms of porosity, specific surface area and two-point correlation as illustrated in the Supporting
Information Figure S9. Figure 4c and 4d show the pore-scale Stokes flow (the slow, incompressible, viscous
steady flow) (Allen, 2021) simulated by the LIR solver of the GeoDict software (Linden et al., 2015) over a
sub-cube of micro-CT with a size of 64x64x64 and the reconstructed high-resolution rock, respectively. We
can observe more details from the reconstructed high-resolution model and thus have deeper understanding
of physical procedures at pore-scale. Figure 4f shows one 3-D realization with a size of 1792x1792x2688
from the micro-CT data with a size of 112x112x168 (Figure 4e). More realizations can be found in the
Supporting Information Figure S10. As shown in Table 1, the predicted permeabilities of the reconstructed
high-resolution models are more consistent with the permeability from the laboratory core measurement
than the prediction from micro-CT data.
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Figure 4. (a) micro-CT images (64x64; dx=1.6 pm) and (b) prediction of CycleGAN (1024x1024; dx=0.1
pm); (c) velocity field of fluid flow simulation on the micro-CT sub-cube (64x64); (d) velocity field of the
fluid flow simulation on the reconstructed model at the SEM scale (64x64); (e) input micro-CT volume
(112x112x168); (f) reconstructed high-resolution model (1792x1792x2688).

Table 1. Porosity and permeability of the low-resolution micro-CT and reconstructed high-resolution reali-
zations (M1-M7) as well as the lab measurement.



Lab micro-CT M1 M2 M3 M4 M5 M6 M7

Porosity 0.19 0.19 0.17 0.16 0.15 0.13 0.23 0.10 0.14
Permeability (mD) 4.0  132.75 1.79 398 192 4.05 870 1.06 2.50

Discussionln recent years, attempts have been made to overcome the trade-off between resolution and FoV
for digital rock data using deep learning methods (e.g., CNNs and GANs). However, previous works focused
on the super-resolution problem aiming to increase the resolution of micro-CT images by two or four times.
They are useful to make the micro-CT images sharper but cannot resolve pore structures at multiscale. Our
proposed method provides an effective means to reconstruct rock models that accurately capture multiscale
pore structures obtained by different imaging methods (e.g., micro-CT and SEM). Due to the limitation
of GPU memory and non-availability of 3-D SEM data, the output high-resolution image is only in 2D
and with a size of 1024x1024 and therefore, we need to perform the prediction patch-by-patch by dividing
the micro-CT slice into sub-images. The straightforward solution to increase the image size is to use more
GPUs, but a more efficient way is to decrease the number of network parameters by model compression
(e.g., depthwise separable convolutions, network pruning and knowledge distillation). The potential solution
to 3-D simulation is to develop a GAN with the generator in 3-D while the discriminator in 2-D which takes
the slices sampled from generated synthetic 3-D images and real SEM data. Those are the research directions
that we will investigate in future.

Conclusion

We presented an innovative approach for fusion of multiscale digital rock images, i.e., low-resolution micro-
CT and high-resolution SEM data, using StyleGAN2-ADA and CycleGAN. The StyleGAN2-ADA network
is effective to overcome the issue of overfitting due to limited number of SEM images, while the CycleGAN
network allows for leveraging unpaired training samples of micro-CT and SEM, which is a common challenge
in practice. The application to a carbonate dataset reveals that the proposed methodology is a valid and
powerful approach for integrating multiscale digital rock data. The reconstructed rock models accurately
capture the micro-structures from both low-resolution micro-CT and high-resolution SEM images. Moreover,
the computed effective permeabilities are more accurate than the prediction directly from micro-CT data by
comparison with the laboratory measurement. We conclude that the proposed method provides an efficient
means to reconstruct high-resolution digital rocks with large FoV, which is of great significance for the
accurate pore-scale flow simulation and petrophysical properties prediction.

Data Availability Statement

The code is freely available on the GitHub repository (https://github.com/theanswer003/ MultiscaleDRP-
Net).
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Key Points:

o Style-based generative adversarial network (GAN) is effective for augment-
ing sparse high-resolution SEM images.

¢ Cycle-consistent GAN is successfully applied to integrate unpaired multi-
resolution digital rock images.

e The method shows promise in the reconstruction of high-resolution digital
rocks that accurately capture micro-structures at multi-scales.

ABSTRACT

Computation of petrophysical properties on digital rock images is becoming
important in geoscience. However, it is usually complicated for natural hetero-
geneous porous media due to the presence of multiscale pore structures. To cap-
ture the heterogeneity of rocks, we develop a method based on deep generative
adversarial networks to assimilate multiscale imaging data for the generation
of synthetic high-resolution digital rocks having a large field of view. The re-
constructed images not only honor the geometric structures of 3-D micro-CT
images but also recover fine details existing at the scale of 2-D scanning elec-
tron microscopy images. Furthermore, the consistency between the real and
synthetically generated images in terms of porosity, specific surface area, two-
point correlation and effective permeability reveals the validity of our proposed
method. It provides an effective way to fuse multiscale digital rock images for
better characterization of heterogeneous porous media and better prediction of
pore-scale flow and petrophysical properties.

Plain Language Summary

Digital rock physics is an effective approach to characterize pore microstructures
and predict effective physical properties of porous medium. However, there is
an inherent trade-off between imaging resolution and field of view (FoV) due to
the limitations of different imaging techniques: high-resolution data can resolve
pore structures up to nano scale but the FoV is not large enough to capture a
representative volume element; low-resolution data have larger FoV but cannot
capture the fine features. To overcome the trade-off, it is necessary to develop
a workflow of multiscale data fusion for the reconstruction of digital rocks with
both high-resolution and large FoV. The major challenges are (1) that the high-
resolution images are usually limited in number and (2) that the imaging data
are typically acquired at different locations of the rock sample, which means
that the training samples are unpaired. To address such challenges, we use a
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style-based generative adversarial network (GAN) to augment the limited high-
resolution data and then use a cycle-consistent GAN to integrate the unpaired
digital rock data from multiple sources. The proposed method performs well at
reconstructing high-resolution rock models that allows more accurate fluid flow
simulation at pore-scale and prediction of effective properties.

1. Introduction

Having a deep understanding of pore-scale processes in porous media is of criti-
cal importance for various subsurface applications, such as water resources, oil
and gas recovery and carbon dioxide sequestration. The conventional method
that takes the physical experiments on core plugs are typically time-consuming
and limited by the lab environment. As an alternative approach, digital rock
physics (DRP) performs numerical simulations of pore-scale processes of interest
directly on digital scans of porous rocks (Keehm et al., 2001 and 2004; Andrd
et al., 2013a and 2013b; Blunt et al., 2013; Saxena et al., 2017). It provides a
non-destructive means of repeatedly carrying out numerical simulations under
different scenarios on the same rock sample. The simulations at pore-scale can
then be interpretated to derive macroscopic reservoir properties (e.g., perme-
ability, formation factor, elastic moduli, etc.) and used for sensitivity analysis.
A representative elementary volume (REV) of the rock sample with high res-
olution is an important prerequisite for accurate digital rock physics results.
However, in practice, there is an inherent trade-off between field of view (FoV)
and image resolution due to the limitation of imaging techniques (Wildenschild
et al., 2002; Wildenschild and Sheppard, 2013). Low-resolution imaging cannot
resolve micro pores, which often makes the estimated rock properties to be un-
derestimated or overestimated with regards to experimental measurements. On
the other hand, the high-resolution image may not capture a REV due to the
small FoV.

One way to overcome the trade-off is to integrate imaging data from multiple
sources, such as 3-D micro-CT images at the micron scale and 2-D SEM images
at the nano scale. Traditional solutions to this challenging problem are mainly
stochastic methods based on the spatial statistical information (e.g., two-point
correlation functions and multiple-point statistics). Jiao et al. (2007) modeled
heterogeneous materials from two-point correlation functions using simulated
annealing. Okabe and Blunt (2007) reconstructed 3-D pore space structure by
integrating micro-CT images at the micron-scale that resolve large pores with
statistically simulated high-resolution images from 2-D thin sections that pro-
vides finer-scale features. Mohebi et al. (2009) proposed a statistical method
to fuse low-resolution measurements with a high-resolution prior model. Tah-
masebi et al. (2015) proposed a multiscale and multiresolution reconstruction
method to generate 3-D models of shales using 2-D images.

In recent years, deep learning methods have been developed to alleviate the
trade-off between resolution and FoV. Wang et al. (2019) and Da Wang et
al. (2019) applied convolutional neural networks (CNN) for micro-CT image
enhancement. Da Wang et al. (2020) proposed a generative adversarial network



(GAN) to increase the micro-CT image resolution. The above works are based
on supervised learning methods that require a large number of paired training
data of corresponding low- and high-resolution images. However, in practice,
the paired training data are often not available because the sample locations
of imaging data are often different. To circumvent this limitation, Niu et al.,
(2020) proposed a cycle-in-cycle GAN to deal with the unpaired training data for
boosting lateral resolution of micro-CT images. You et al. (2021) developed a
progressive growing GAN to increase the vertical resolution by combination with
the technique of GAN inversion. The deep learning methods are powerful for
resolution enhancement of micro-CT images and have high perceptive accuracy
compared to traditional interpolation algorithms (e.g., nearest neighborhood
and bicubic interpolation). However, previous works mainly focused on the
super-resolution problem aiming to increase the resolution of micro-CT images
by two or four times. They are useful to make the micro-CT images sharper
but cannot resolve pore structures at multiscale or integrate data from different
imaging modalities such as micro-CT and SEM images.

The major challenges in multiscale digital rock data fusion are (1) that the high-
resolution images are usually limited in number, which would make the model
to be easily overfitted and (2) that the digital rock images from multiple sources
are typically acquired at different locations of the rock sample, which means that
the training samples are unpaired and therefore, supervised methods of machine
learning are not applicable. In this letter we propose an innovative method to
solve this problem based on deep neural networks. It uses a style-based GAN
(Karras et al., 2019; Karras et al., 2020a and 2020b) to augment the limited
high-resolution images and then fuses unpaired data at different resolutions by
a cycle-consistent GAN (CycleGAN) (Zhu et al., 2017). The disentanglement
representation learning of the style-based GAN allows us to generate images with
different styles by sampling in different regions of the latent space. With such an
advantage, we can train multiple CycleGAN models by feeding training samples
with different styles and thus generate multiple high-resolution realizations of
the rock that are consistent with the input of low-resolution micro-CT.

1. Methodology and Data

The proposed workflow of multiscale digital rock data fusion is illustrated in Fig-
ure 1. In this study, we have five carbonate samples, most of which exhibit high
heterogeneity and anisotropy. Each sample has one high-resolution 2-D SEM
image with a size of about 7500x4500 pixels and two or three low-resolution 3-D
micro-CT volumes with a size of about 600x600x900 voxels. The resolutions
of the micro-CT images range from 1.0 to 2.0 m, while the resolutions of all
SEM images are 0.1 m. A Style-based GAN is first trained to augment the
limited number of SEM images and then a CycleGAN is used to reconstruct
high-resolution images from low-resolution micro-CT data.
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Figure 1. The overall workflow of multiscale digital rock data fusion based on
deep generative adversarial networks: Gyg is the generator of StyleGAN2 that
takes the style latent vector and random noise as input to simulate SEM images;
Dyg is the discriminator of StyleGAN2 that aims to distinguish between real
SEM samples and fake samples generated by Gyg; Gion and Gygp, are two gen-
erators of CycleGAN that predicts high-resolution image from low-resolution
micro-CT data and recovers low-resolution data from high-resolution data, re-
spectively; D;, and Dy are two discriminators corresponding to Gy and Gygr,,
respectively.

2.1 SEM Data Augmentation by StyleGAN2-ADA

GANSs are a class of generative network models typically consisting of two com-
peting players: a generator network G and a discriminator network D (Goodfel-
low et al., 2014). The generator G tries to synthesize fake samples G(z) from the
input random noise z ~ p,(z) to fool D by mimicking real samples & ~ pq,.. (%),
while D conversely aims to distinguish between real samples z ~ py,,(z) and
fake samples G(z). The notation y ~ p(y) indicates that the random variable y
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is distributed according to the probability distribution p(y). The two networks
G and D are trained in an adversarial manner, which is equivalent to playing a
minimax game with a loss function £ n(D, G) given by

mén mgx ’CGAN(Dﬂ G) = Erfvpdata(z) [log D(‘T)]—’_EZsz(z) [10g (1 -D (G(Z))>] . (1)

With such an adversarial training scheme, GANs have the ability of producing
high quality sharp images, outperforming approaches based on pixel-wise mean
square error (MSE) loss (Goodfellow et al., 2014).

Karras et al. (2018, 2019) developed StyleGAN and StyleGAN2, two variants
of GANSs, which are powerful in high-resolution images generation. They can
control not only the style (global features) of the image at different scales but
also stochastic details (local features). Since StyleGANs are unsupervised, they
are well-suited for datasets without conditional labels, which are often common
in real applications. To address the long-standing challenge in GANSs of training
with small dataset, (in which case the discriminator will quickly be overfit to the
training samples resulting in divergence of the training), Karras et al. (2020)
improved StyleGAN2 by introducing an adaptive discriminator augmentation
(ADA) mechanism, which is called StyleGAN2-ADA. With such an augmenta-
tion mechanism, the style-based GANs perform well with several thousand or
even only several hundred training samples. A detailed description of ADA can
be found in the Supporting Information S1.

StyleGAN2 consist of two components: a mapping network and a synthesis
network. The goal of the mapping network is to encode the input random noise
z € 7 into a set of intermediate vectors w €W using fully connected layers. Each
intermediate vector w is further transformed to produce a style scalar s by an
affine transformation A. The major benefit of the mapping network is that it is
helpful to disentangle the latent representation and therefore makes our model
easier to be interpreted. Then, the synthesis network incorporates the styles s
via a weight demodulation operation to generate the artificial images starting
from low resolution (4x4) and continuing to higher resolution (8x8, 16x16,
., 1024x1024) by convolutional layers. The shallower the layer in which the
style s is incorporated, the coarser the level of details is affected. For example,
the first few styles affect the coarse level of details (4x4), while the last few
styles affect the fine level of details (1024x1024). This architecture enables
the StyleGAN2 to control the global features of images at different scales. To
control stochastic variations of generated images at different levels of details,
random noise after another affine transformation B is injected to the feature
maps of the convolutional blocks. It allows the generator to only change the
local features, leaving the overall styles and high-level details intact. A detailed
network architecture of StyleGAN2 can be found in the Supporting Information
Figure S2.

2.2 Multiscale Digital Rock Images Fusion by CycleGAN



Another challenge in fusing multiscale digital rock images is that the images
are acquired at different locations of the rock sample, which means that the
training samples are unpaired. For this reason, we adopt a CycleGAN, which is
an unsupervised method designed for image cross-domain transfer (Zhu et al.,
2017). Specifically, in this study, we aim to transfer the micro-CT images from
the low-resolution domain LR to the high-resolution domain HR by integrating
the information from SEM data.

CycleGAN consists of four networks: (1) a generator Gy mapping the images
from domain LR to domain HR, (2) a generator Gp,; mapping the images
from domain HR to domain LR, (3) a discriminator D aiming to encourage
G oy to transfer LR into outputs indistinguishable from domain HR and (4)
a similar discriminator D for Gy4;. The major difference of CycleGAN from
traditional GANSs is that it includes two generators to constrain each other. It
ensures that G,y outputs the high-resolution image that is conditional to the
input low-resolution image and vice versa for Gf;4;. To achieve this goal, apart
from the adversarial loss (Eq. 1), we need to add a regularization term to the
loss function of the generators, namely the cycle-consistent loss given by

Loye (Groms Gpar) = Ea,prR(m) [||GH2L (Gran(®)) — x”1]+Ey~pHR(y) [HGLQH (Grar(y)) — yHl] (2).

The first term in Eq. 2 aims that for each image z from domain LR,
the image transfer cycle can transform z back to the original input, i.e.,
Gor (Grop(x)) = x. Similarly, for each image y from domain HR, the second
term in Eq. 2 ensures backward cycle consistency: Grop (Grar(y)) =~ y. A
detailed network architecture of CycleGAN can be found in the Supporting
Information Figure S3.

2.3 Data Preparation and Training

The training samples consist of two datasets: (1) low-resolution sub-images of
micro-CT with a size of 64x64 and (2) high-resolution sub-images of SEM with
a size of 1024x1024. Considering that there are only a limited number of real
SEM images, we extract the high-resolution sub-images with a 70% overlap
between sequential sub-images (with a sliding stride of 500 pixels) to increase
the number of training samples. In total, there are 371 high-resolution samples
of SEM. The micro-CT data are sufficient in number, so we randomly extract
the low-resolution sub-images without any overlap. In total, there are 200,000
low-resolution samples of micro-CT images.

The training of the networks includes two steps. We start with the StyleGAN2-
ADA training for SEM data augmentation. It aims to learn the underlying
probability distribution (or manifold) where the real SEM sub-images lie. The
StyleGAN2-ADA is trained in parallel with four Nvidia A100 GPUs each with
40 GB memory. It takes approximately 24 hours to converge. After training, we
use the generator of the StyleGAN2-ADA to simulate 200,000 high-resolution
sub-images to keep the number comparable with the low-resolution images. Such
data augmentation would be helpful for the training of the following CycleGAN
to avoid overfitting. After training the CycleGAN, we can use the generator



Grp to transfer the low-resolution images with a size of 64x64 to the high-
resolution domain with a size of 1024x1024. The training of CycleGAN takes
approximately 24 hours with one Nvidia A100 GPU.

1. Results

Figures 2a and 2b show the high-resolution images extracted from the real SEM
data and those simulated by the trained StyleGAN2-ADA with different global
styles but constant noise as input, respectively. The simulated images capture
the fine details of microstructures in the SEM data and are visually indistin-
guishable from the real samples. Moreover, most pore types, i.e., inter- and
intra-granular pore and microfracture from the nano to micron scale, are accu-
rately recovered. It indicates that undesirable mode collapse does not occur in
the training and the trained StyleGAN2-ADA can guarantee the diversity of
image generation. To quantitively evaluate the quality of the generated images,
we compute the porosity, specific surface area and two-point correlation of both
the real and simulated images. As shown in Figure 3, the distributions of the
synthetic and real samples are consistent. It also indicates that the microstruc-
tural details of the SEM data are well captured by the StyleGAN2-ADA. The
correlation curves shown in Figure 3c are close to the exponential model defined
as R(h) = e ™ where h is the lag distance and ) is the correlation length. The
correlation length A of each sample in Figure 3d is obtained by fitting the expo-
nential model R(h) to the two-point correlation curve. As can be seen from the
histograms of correlation lengths, the synthetic samples, while broadly consis-
tent with the true samples, do tend to have slightly longer correlation lengths,
indicating that some of the generated synthetic samples may be smoother than
the true images. Figure S4 in the Supporting Information shows the synthetic
images generated with fixed styles but different noise. The generated samples
look similar in global features but different in local features and they are very
close in terms of the porosity, specific surface area and two-point correlation
(Figure S5 in the Supporting Information). The above different behaviors with
constant and changing global style vectors indicate that the style-based GAN
has a good ability of separating the global and local styles underlying the train-
ing images. Thanks to the disentangled representation of the latent space, we
can generate new images by interpolation in the latent style space. As shown in
Figure S6 in the Support Information, the generated images are smoothly trans-
formed from one end-member to another with progressive interpolation between
the latent space end-members.






Figure 2. (a) real SEM images; (b) synthetic images generated by the trained
StyleGAN2-ADA with different global styles and constant noise. The image size
is 1024x 1024 and the resolution is 0.1 m.
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Figure 3. Microstructure analyses for the real and synthetic SEM samples:
(a) porosity; (b) specific surface area; (c¢) two-point correlation function; (d)
two-point correlation length.

Figure 4a and 4b shows the predicted high-resolution images from micro-CT
data using the trained CycleGAN. With the generator G,y of the trained
CycleGAN, the low-resolution micro-CT image with a size of 64x64 can be
increased by 16 times to the high-resolution domain with a size of 1024x1024.
We can see that the reconstructed images not only keep the geometric structures
of the input micro-CT images but also recover the fine details present in the SEM
data. The recovered fine microstructural details would be helpful to accurately
predict pore-scale fluid flow and effective petrophysical properties. Thanks to
the disentanglement of the latent style space learned by the StyleGAN2, we can
control the styles of the synthetic SEM images by sampling in different regions
of the latent space. As illustrated in the Supporting Information Figure S7, we
can train multiple CycleGAN models by feeding training samples with different
styles and thus generate multiple high-resolution realizations of the rock that

(d)

250 300



all are consistent with the input of low-resolution micro-CT.

Then, we use the CycleGAN to down-scale the entire 3-D micro-CT volumes.
The prediction is performed slice by slice and each slice is divided into patches
with a size of 64x64. The vertical resolution of micro-CT is first increased by
16 times by bicubic interpolation to make the reconstructed rock models have
same resolution along all three directions. To mitigate the artifacts at bound-
aries, there is an overlap of 8 pixels between patches. One predicted slice with
a larger size of 3584x3584 is shown in the Supporting Information Figure S8.
The predicted high-resolution images are close to the true SEM image from the
same rock sample in terms of porosity, specific surface area and two-point corre-
lation as illustrated in the Supporting Information Figure S9. Figure 4c and 4d
show the pore-scale Stokes flow (the slow, incompressible, viscous steady flow)
(Allen, 2021) simulated by the LIR solver of the GeoDict software (Linden et
al., 2015) over a sub-cube of micro-CT with a size of 64x64x64 and the recon-
structed high-resolution rock, respectively. We can observe more details from
the reconstructed high-resolution model and thus have deeper understanding of
physical procedures at pore-scale. Figure 4f shows one 3-D realization with a
size of 1792x1792x2688 from the micro-CT data with a size of 112x112x168
(Figure 4e). More realizations can be found in the Supporting Information Fig-
ure S10. As shown in Table 1, the predicted permeabilities of the reconstructed
high-resolution models are more consistent with the permeability from the lab-
oratory core measurement than the prediction from micro-CT data.
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Figure 4. (a) micro-CT images (64x64; dx=1.6 m) and (b) prediction of
CycleGAN (1024 x1024; dx=0.1 m); (c) velocity field of fluid flow simulation on
the micro-CT sub-cube (64x64); (d) velocity field of the fluid flow simulation on
the reconstructed model at the SEM scale (64x64); (e) input micro-CT volume
(112x112x168); (f) reconstructed high-resolution model (1792x1792x2688).

Table 1. Porosity and permeability of the low-resolution micro-CT and recon-
structed high-resolution realizations (M1-M7) as well as the lab measurement.

Lab micro-CT M1 M2 M3 M4 M5 M6

M7

Porosity 0.19 0.19 0.17 0.16 0.15 0.13 0.23 0.10
Permeability (mD) 4.0  132.75 1.79 398 192 4.05 870 1.06

0.14
2.50

1. Discussion

In recent years, attempts have been made to overcome the trade-off between res-
olution and FoV for digital rock data using deep learning methods (e.g., CNNs
and GANs). However, previous works focused on the super-resolution prob-
lem aiming to increase the resolution of micro-CT images by two or four times.
They are useful to make the micro-CT images sharper but cannot resolve pore
structures at multiscale. Our proposed method provides an effective means to
reconstruct rock models that accurately capture multiscale pore structures ob-
tained by different imaging methods (e.g., micro-CT and SEM). Due to the
limitation of GPU memory and non-availability of 3-D SEM data, the output
high-resolution image is only in 2D and with a size of 1024x1024 and therefore,
we need to perform the prediction patch-by-patch by dividing the micro-CT
slice into sub-images. The straightforward solution to increase the image size is
to use more GPUs, but a more efficient way is to decrease the number of net-
work parameters by model compression (e.g., depthwise separable convolutions,
network pruning and knowledge distillation). The potential solution to 3-D sim-
ulation is to develop a GAN with the generator in 3-D while the discriminator
in 2-D which takes the slices sampled from generated synthetic 3-D images and
real SEM data. Those are the research directions that we will investigate in
future.

1. Conclusion

We presented an innovative approach for fusion of multiscale digital rock images,
i.e., low-resolution micro-CT and high-resolution SEM data, using StyleGAN2-
ADA and CycleGAN. The StyleGAN2-ADA network is effective to overcome
the issue of overfitting due to limited number of SEM images, while the Cycle-
GAN network allows for leveraging unpaired training samples of micro-CT and
SEM, which is a common challenge in practice. The application to a carbonate
dataset reveals that the proposed methodology is a valid and powerful approach
for integrating multiscale digital rock data. The reconstructed rock models ac-
curately capture the micro-structures from both low-resolution micro-CT and
high-resolution SEM images. Moreover, the computed effective permeabilities
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are more accurate than the prediction directly from micro-CT data by compar-
ison with the laboratory measurement. We conclude that the proposed method
provides an efficient means to reconstruct high-resolution digital rocks with large
FoV, which is of great significance for the accurate pore-scale flow simulation
and petrophysical properties prediction.

Data Availability Statement

The code is freely available on the GitHub repository (https://github.com/theanswer003/
MultiscaleDRPNet).
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