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Abstract

Machine-learning algorithms are becoming popular techniques to predict ambient air PM2.5 concentrations at high spatial

resolutions (1x1 km) using satellite-based aerosol optical depth (AOD). Most machine-learning models have aimed to predict

24h-averaged PM2.5 concentrations (mean PM2.5). Over Mexico, none has been developed to predict subdaily peak levels,

such as the maximum daily one-hour concentration (max PM2.5). We present a new modeling approach based on extreme

gradient boosting (XGBoost) and inverse-distance weighting that uses AOD data, meteorology, and land-use variables to predict

mean and max PM2.5 in Central Mexico (including the Mexico City Metropolitan Area) from 2004 through 2019. Our models

for mean and max PM2.5 exhibited good performance, with overall cross-validated mean absolute errors (MAE) of 3.68 and

9.21 μg/m3 , respectively, compared to mean absolute deviations from the median (MAD) of 8.55 and 15.64 μg/m3. We also

investigated applications of our mean PM2.5 predictions that can aid local authorities in air-quality management and public-

health surveillance, such as the co-occurrence of high PM2.5 and heat, compliance with local air-quality standards, and the

relationship of PM2.5 exposure with social marginalization.
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Abstract 

Machine-learning algorithms are becoming popular techniques to predict ambient air PM2.5 

concentrations at high spatial resolutions (1×1 km) using satellite-based aerosol optical depth (AOD). 

Most machine-learning models have aimed to predict 24h-averaged PM2.5 concentrations (mean 

PM2.5). Over Mexico, none has been developed to predict subdaily peak levels, such as the maximum 

daily one-hour concentration (max PM2.5). We present a new modeling approach based on extreme 

gradient boosting (XGBoost) and inverse-distance weighting that uses AOD data, meteorology, and 

land-use variables to predict mean and max PM2.5 in Central Mexico (including the Mexico City 

Metropolitan Area) from 2004 through 2019. Our models for mean and max PM2.5 exhibited good 

performance, with overall cross-validated mean absolute errors (MAE) of 3.68 and 9.21 μg/m3, 

respectively, compared to mean absolute deviations from the median (MAD) of 8.55 and 15.64 μg/m3. 

We also investigated applications of our mean PM2.5 predictions that can aid local authorities in air-

quality management and public-health surveillance, such as the co-occurrence of high PM2.5 and heat, 

compliance with local air-quality standards, and the relationship of PM2.5 exposure with social 

marginalization. 
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1. Background 

Fine particulate matter with aerodynamic diameter ≤ 2.5 microns (PM2.5) affects more people than any 

other pollutant, and has been consistently associated with mortality and morbidity from cardiovascular 

and respiratory causes.1 Over the last decade, epidemiological evidence has related PM2.5 to many 

other health outcomes, such as cardio-metabolic diseases (including diabetes, hypertension, metabolic 

syndrome), neurological disorders (stroke, dementia, Alzheimer's disease, autism, Parkinson's disease), 

and perinatal outcomes (premature birth and low birth weight).2–4 At the same time, exposure scientists 

have developed new modeling approaches for air-pollution epidemiology, moving away from the use 

of data from ground monitors alone. Interest has grown in models using remote-sensing products, 

particularly aerosol optical depth (AOD) for the prediction of ground level PM2.5 concentrations at 

high spatial resolutions, such as 1 x 1 km.5–12 AOD is a measure of the amount of light absorbed and 

scattered throughout the atmospheric vertical column by the collection of suspended particles (e.g., 

urban haze, smoke, desert dust, sea salt) in the atmosphere. Thus, it is related to PM2.5 concentrations 

most relevant to health as measured by ground monitors, but the relationship is complex and depends 

on a number of other factors.13 Popular approaches to predicting ground-level PM2.5 concentration 

using AOD include chemical-transport models, as well as geostatistical approaches such as mixed-

effect models, geographically weighted regression, and land-use regression, which use additional 

PM2.5 predictors and modifiers of the PM2.5–AOD relation such as weather and land use.13,14 Among 

the most comprehensive efforts to reconstruct ground concentrations of PM2.5 is NASA’s Global 

Modeling Initiative (GMI) chemistry transport model integrated with Modern-Era Retrospective 

analysis for Research and Applications, Version 2 (MERRA-2 GMI), which estimates the global 

distribution of PM2.5 mass concentrations with a spatial resolution of 0.5° × 0.625° (about 50 km in the 

latitudinal direction), and temporal resolution as fine as 1 hour (https://acd-

ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/).15 

 

Predicting ground-based PM2.5 from satellite AOD retrievals is difficult. AOD is strongly influenced 

by particles above the surface layer, which have different characteristics from ground-level particles. 

Also, AOD retrieval algorithms assume consistent particle size distributions within large regions, such 

as Mexico and Central America.16 Furthermore, AOD often has gaps in spatial coverage due to clouds, 

snow, or ice. Thus, researchers must often impute missing AOD,17 and the complex relationship 

between AOD and PM2.5, along with the use of additional PM2.5 predictors, has motivated machine-

learning approaches such as neural networks, random forests, and gradient boosting.14,18–26 

 

These recently developed AOD-based PM2.5 (AOD-PM2.5) models and predictions have allowed 

epidemiologists to move away from traditional exposure-assessment methods that rely on proximity to 

sparse ground monitors. With sufficient spatiotemporal resolution, AOD-PM2.5 models may further 

improve exposure assessment in epidemiologic research by picking up the effects of 

https://paperpile.com/c/FV9kpl/ZcXtR
https://paperpile.com/c/FV9kpl/Upcg


microenvironments. Few AOD-PM2.5 models exist for middle-income countries. Our group developed 

one of the first AOD-PM2.5 models using daily Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) spectral AOD derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument on NASA’s Aqua satellite at a 1x1 km spatial resolution, along with data from 

ground monitors, land use, and meteorological features.27,28 Our previous model for the Mexico City 

region provides daily PM2.5 predictions from 2004–2014, and those predictions have been used in 

several epidemiologic studies in this region.9,29–46 However, model improvements are needed to better 

characterize the spatiotemporal distribution of PM2.5,
47,48 particularly since the Mexico City 

Metropolitan Area, like other middle-income regions, has undergone considerable urban sprawl. PM2.5 

emitted and produced in large metropolitan areas affects not only people in the city center but also 

people in its suburban and rural outskirts. People in the outskirts, where air-quality information is 

scarce, may face disproportionate health risks due to lower socioeconomic status and less access to 

healthcare. This environmental injustice can be even more pronounced in low- and middle-income 

regions.49,50 

 

AOD-PM2.5 models covering large urban areas have great value for epidemiology, but also for public-

health surveillance (as in quantifying mortality and morbidity attributable to PM2.5),
51 environmental 

regulation (as in assessment of compliance with air quality standards),52 and risk communication (as in 

designing air-quality indices).53 Furthermore, AOD-PM2.5 models can help administrators in air-quality 

management to see trends in the spatiotemporal distribution of PM2.5, map hotspots in regions with few 

monitors, and identify emissions sources to consider for abatement actions (e.g. prediction and 

surveillance of air pollution contingencies).54,55 Overall, AOD-PM2.5 models can be powerful aids for 

decision-making. 

 

Most of the satellite-based PM2.5 models yield predictions of 24-hour mean concentrations, perhaps 

driven by traditional approaches in epidemiology that have focused on this exposure metric, which in 

turn support standards for daily PM2.5 levels. There is growing interest in identification of specific sub-

daily PM2.5 exposures (e.g., peak concentrations) that may trigger the onset of adverse health outcomes 

and harm vulnerable people, compared to the use of 24-hour averages alone. To our knowledge, this is 

the first model reconstructing sub-daily PM2.5 concentrations in Mexico. 

 

In this study, we present a new model based on extreme gradient boosting (XGBoost) and inverse-

distance weighting (IDW) that uses satellite and land-use variables to predict daily mean and max 

PM2.5 concentrations in Central Mexico. We also present some example applications of our model and 

PM2.5 predictions. 

 



2. Method 

We constructed and evaluated two models: one for daily mean ambient PM2.5, spanning 2004 through 

2019, and one for daily max ambient PM2.5 (more precisely, the greatest hourly concentration of PM2.5 

observed each day), spanning 2011 through 2019. We restricted our max PM2.5 predictions to 2011 

onwards because of greater coverage of ground monitoring stations. Days were defined according to 

UTC−6, which coincides with the local time of the study region (Mexico's Zona Centro) when 

daylight-saving time is not in effect (namely, before the first Sunday of April and after the last Sunday 

of October). 

2.1. Study region 

We modeled an irregularly shaped area of 6,650 km2, 127 km in diameter, around Mexico City. The 

model used a grid of 7,745 square cells, 927 m on a side, in a global sinusoidal projection (the same 

one used for NASA’s MODIS products). This study area and its grid was a subset of that considered in 

our ambient temperature model for Central Mexico.56 We built the subset by finding the largest 

connected set of cells in the Valley of Mexico with all cells ≤ 3 km above sea level (Figure 1). The 

Valley of Mexico is a plateau with a mean elevation of 2,250 m above sea level, and is surrounded on 

three sides by mountain ranges, preventing the dispersion of air pollutants.57 

 

 

Figure 1. The study area used for our PM2.5 models in the 

 Mexico City Metropolitan Area (MCMA) 



2.2. Data 

We used PM2.5 data from ground monitoring stations organized by the Instituto Nacional de Ecología y 

Cambio Climático de México (INECC) including records from the Automated Atmospheric 

Monitoring Network (RAMA, Spanish acronym) from the Mexico City’s Atmospheric Monitoring 

System (SIMAT, website http://www.aire.cdmx.gob.mx/). We downloaded observations from 

INECC's website (http://scica.inecc.gob.mx). We discarded one extreme one-hour value that was 

greater than 900 μg/m3 because it appeared to be implausible when compared with the previous and 

subsequent one-hour concentrations recorded at the same monitoring station. For each station in the 

study area and day of PM2.5 observations, we computed the mean and max PM2.5 among the hourly 

observations, so long as there were at least 18 hours of observations in the day. Other station-days 

were discarded. The result was a total of 60,365 station-days from 25 stations for mean PM2.5 and 

40,819 station-days from the same 25 stations for max PM2.5. 

 

Our models used the following 14 predictors: 

 

* Longitude and latitude in degrees 

* The date, as an integer count of days 

* The IDW mean (exponent 2) of all observations of the same dependent variable on the given day 

* MAIAC AOD from NASA’s Terra and Aqua satellites,58 whose local overpass times range from 

10:40 to 15:15 and 13:10 to 15:05, respectively 

* PM2.5 (μg/m3) as predicted by MERRA-2 GMI (https://acd-

ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/), either the mean of the day's 24 hourly values 

(for modeling mean PM2.5) or the value at 10:00 UTC−6 (for max PM2.5)  

* Temperature (K), precipitation (mm), and vapor pressure (Pa) from Daymet,59 the temperature being 

computed as the mean of Daymet's maximum and minimum temperature 

* The height of the planetary boundary layer (m) and meridional and zonal wind speeds (m/s) from 

Climate Data Store,60 using the mean of the day's 24 hourly values (for mean PM2.5) or the value at 

10:00 UTC−6 (for max PM2.5) 

* The density of roads (m/km2) from OpenStreetMap,61 considering only primary, secondary, 

residential, and tertiary roads 

 

We selected the midmorning time of day 10:00 UTC−6 in constructing some of the predictors for the 

max PM2.5 model because it was the most frequent hour of greatest daily per-station PM2.5 

concentration in our sample. 

 



2.3. Model evaluation 

We evaluated models with leave-one-station-out cross-validation (CV). There are 25 stations, so for 

each dependent variable, we fit the model 25 times, leaving out one station from training and then 

testing the model's predictions on the left-out station. We evaluated models with absolute loss rather 

than squared loss so as not to overweight the importance of a minority of very high observed 

concentrations of PM2.5. Absolute loss leads to mean absolute error (MAE) as a natural measure of 

predictive accuracy (in place of root mean square error, RMSE, for squared loss), and mean absolute 

deviation from the median (MAD) as a measure of baseline variation in place of the standard deviation 

(SD) for squared loss. Note that R2, which is often used for model assessment, is defined as a squared-

loss metric. For our study, we compute R2 as 1 minus the MSE divided by the variance, and we show 

R2, RMSE, and SD in tables for completeness, although the models are more properly judged in terms 

of absolute loss. 

When computing the IDW predictor during CV, we excluded the held-out station to avoid data 

leakage. 

2.4. Models 

We predicted PM2.5 with XGBoost,62 a scheme for fast boosted decision trees. We used a log-cosh 

objective function to approximate absolute loss. Instead of providing PM2.5 as the dependent variable 

to XGBoost directly, we provided PM2.5 minus the IDW interpolation and added the IDW back to 

XGBoost's predictions. This method partly smooths out the otherwise discrete predictions produced by 

decision trees. We tuned XGBoost with twofold station-wise CV; during the larger CV discussed 

above, this CV was nested within each fold. Tuning adjusted four hyperparameters: 

 

* The number of trees, which could be 10, 25, 50, or 100 

* The maximum tree depth, which could be 3, 6, or 9 

* The learning rate η, which could range from 0.01 to 0.5 

* A ridge penalty λ, which could range from 2-10 to 210 

 

We preselected a set of 25 random vectors from this space with a maximin Latin-hypercube sample. 

 

Once the outer CV was done, to make new predictions, we trained the two models (one for mean PM2.5 

and one for max PM2.5) on all the data, with one more tuning CV apiece. These final models had the 

following hyperparameters: for mean PM2.5, 10 trees, max depth 3, η = 0.047, λ = 10; for max PM2.5, 

25 trees, max depth 9, η = 0.073, λ = 260. 

 



2.5. Applications 

We present three applications of our PM2.5 predictions for the Mexico City Metropolitan Area. We 

examined co-occurring exposures to high PM2.5 concentrations and high temperatures from our 

published spatiotemporal model.56 Person-time estimates of exposure relied on population density 

estimates for 2010. We estimated the population density within each of our grid cells using the R 

package exactextractr63 to calculate the area-weighted mean of the population density in the 

intersecting Gridded Population of the World (GPWv4) ~1-km raster cells.64 The GPWv4 used data 

from the 2010 census in Mexico at the level of Área Geoestadistica Básicas (AGEBs; the Mexican 

equivalent of US Census tracts). When comparing exposures to permissible annual limits, we 

computed "yearly" means as the means of four 3-month means, per the Mexican standard.65 Finally, 

we examined how AGEB-level PM2.5 exposure varied with social marginalization within the study 

region.66
 Every AGEB was assigned the mean PM2.5 prediction of all 1x1 km grid cells whose 

centroids fell within the AGEB polygon. 

 

3. Results 

Overall, the observed PM2.5 that we trained and tested on had a median of 23 μg/m3 (MAD = 8.55, 

IQR = 14.08) for mean PM2.5, and a median of 44 μg/m3 (MAD = 15.64, IQR = 25.00) for max PM2.5. 

 

3.1. Cross-validation 

The model for mean PM2.5 achieved a MAE of 3.68 μg/m3 (compared to a MAD of 8.55 μg/m3), and 

the model for max PM2.5 achieved a MAE of 9.21 μg/m3 (compared to a MAD of 15.64 μg/m3). These 

differences indicate a substantial improvement in accuracy compared to assigning the median exposure 

to all places and times throughout the study domain. The much greater MAE for max PM2.5 than mean 

PM2.5 is to be expected, because maxima are inherently more difficult to predict than means. Tables 1 

and 2 show the performance of these models broken down by year.  

 

  



 

Table 1. Assessment of cross-validated predictions from the daily mean PM2.5 model by year.  

Year 
Number 

of stations 
Observations R2 SD RMSE MAD MAE 

2004 8 2,751 0.76 12.02 5.86 9.12 3.91 

2005 8 2,701 0.81 14.80 6.43 11.28 4.38 

2006 8 2,685 0.68 13.19 7.48 9.55 5.04 

2007 9 2,855 0.71 10.87 5.85 8.16 4.28 

2008 9 3,040 0.64 12.16 7.29 9.27 4.61 

2009 9 2,670 0.75 10.14 5.09 7.71 3.61 

2010 9 2,844 0.79 11.70 5.41 8.83 3.64 

2011 12 3,019 0.77 11.53 5.56 8.90 3.88 

2012 13 4,025 0.76 10.10 4.95 7.63 3.59 

2013 13 4,362 0.80 11.75 5.25 8.85 3.87 

2014 14 4,203 0.73 9.87 5.10 7.50 3.86 

2015 19 5,194 0.77 10.78 5.11 7.90 3.76 

2016 17 5,307 0.83 11.44 4.73 8.56 3.37 

2017 17 4,901 0.80 10.79 4.78 8.42 3.15 

2018 17 4,633 0.84 9.91 3.94 7.19 2.83 

2019 20 5,175 0.86 11.50 4.26 7.98 2.85 

Standard deviation (SD), Root mean squared error (RMSE), Mean absolute deviation (MAD), and 

Mean Absolute Error (MAE) 

 

Table 2. Assessment of cross-validated predictions from the daily one-hour  

maximum PM2.5 model by year 

Year 
Number of 

stations 
Observations R2 SD RMSE MAD MAE 

2011 12 3,019 0.47 24.26 17.65 16.65 10.38 

2012 13 4,025 0.45 21.80 16.11 15.18 10.19 

2013 13 4,362 0.57 23.78 15.52 17.28 10.29 

2014 14 4,203 0.52 19.54 13.57 14.46 9.77 

2015 19 5,194 0.63 25.30 15.33 16.37 9.97 

2016 17 5,307 0.62 25.33 15.59 16.48 8.69 

2017 17 4,901 0.56 23.86 15.75 15.85 8.49 

2018 17 4,633 0.63 19.68 11.96 13.74 7.84 

2019 20 5,175 0.66 21.39 12.49 14.08 8.04 

Standard deviation (SD), Root mean squared error (RMSE), Mean absolute deviation (MAD), and 

Mean Absolute Error (MAE) 

 

We also compared model performance by season: cold dry (spanning November through February), 

warm dry (March to May), and rainy (June to October).67 Table 3 shows that the largest improvement 

in prediction accuracy (MAD minus MAE) was observed during the cold dry season for both mean and 

max PM2.5 models, although this season still had the largest MAE. 

  



 

 

Table 3. Assessment of cross-validated predictions for the mean and max PM2.5   

models by season from 2004-2019 

PM2.5 

model 
Season 

Number of 

stations 
Observations R2 SD RMSE MAD MAE 

Mean PM2.5 
Cold-Dry 25 20,135 0.75 12.97 6.42 9.50 4.42 

Warm-Dry 25 10,294 0.66 9.94 5.79 7.62 3.93 

Rainy 25 29,936 0.80 9.54 4.27 7.13 3.10 

Max PM2.5 

Cold-Dry 25 13,669 0.58 28.46 18.44 18.31 11.03 

Warm-Dry 24 7,048 0.38 20.07 15.76 14.07 9.50 

Rainy 24 20,102 0.60 17.96 11.39 13.47 7.86 

Standard deviation (SD), Root mean squared error (RMSE), Mean absolute deviation (MAD), and 

Mean Absolute Error (MAE) 

 

Table 4 shows the Pearson correlations among observed and predicted PM2.5 for both models. As 

would be expected, all four variables are positively related. Predictions are more associated with the 

kind of observation they are meant to predict than the other kind, but there are also strong correlations 

between mean and max PM2.5. 

 

Table 4. Correlation coefficients between observed and predicted 

 mean and max PM2.5 concentrations  

PM2.5 
Mean 

observed 

Maximum 

observed 

Mean 

predicted 

Maximum 

predicted 

Mean observed 1.00       

Maximum observed 0.85 1.00     

Mean predicted 0.89 0.73 1.00   

Maximum predicted 0.82 0.77 0.90 1.00 

 

3.2. Diagnostics of new predictions 

After making predictions for every grid cell and day with both models, we mapped the per-cell mean 

PM2.5 and max PM2.5 averaged over 2019 (Figure 2). Discontinuities in the prediction surfaces evident 

in our maps are the result of model-based splits selected in the longitude and latitude predictors. 

Although we also include an IDW interpolation that adds some smoothness, XGBoost selects for the 

most predictively accurate model. Smoothing our predictions more aggressively could make for more 

realistic-looking maps, but would not necessarily improve predictive accuracy. As expected, the 

highest concentrations (shown in dark purple) are in the center-north and center-east subregions of the 

Mexico City Metropolitan Area (north and east of Mexico City, respectively), with the highest 

population density and industrial land use. This pattern is also visible in the max PM2.5 map, but is 

most pronounced in the center-north. The lowest PM2.5 concentrations (shown in light purple and 

yellow) are in the southwest, corresponding to the least populated and the most vegetated subregion. 

 



 

 

Figure 2. Maps of the averaged annual daily mean and daily max PM2.5 concentrations for 2019 in the 

Mexico City Metropolitan Area. Solid and dotted lines indicate the Mexico City Metropolitan Area 

and Mexican states boundaries, respectively. Black dots indicate ground monitors. 

 

We examined the per-day ratio (collapsing across all cells) of mean and max PM2.5. Figure 3 shows 

this ratio for each day in 2019. Generally, the max is about twice the mean, but the ratio decreases in 

the first half of the year and increases in the second. During the rainy season (June to October), we 

examined how the ratio differed between days with and without a mean per-cell precipitation of at 

least 1 mm, and found little difference: the mean ratio was 2.03 on dry days and 2.13 on rainy days. 

 



 

Figure 3. For each day in 2019, the mean of three predicted quantities (max PM2.5, mean PM2.5, and 

max divided by mean) across all cells. A locally estimated scatterplot smoothing (LOESS) trendline is 

shown for each panel. Days are colored according to the mean precipitation across all cells. For 

legibility, 9 especially high points (> 90 μg/m3) are excluded in the max panel and 8 especially high 

points (> 45 μg/m3) are excluded in the mean panel (indicated by ticks on the top border); the 

corresponding ratios are still included in the bottom panel. 

 

With our temperature model,56 we examined the relationship between mean daily PM2.5 and mean 

daily temperature. The Kendall correlation between the two over the whole study period was 0.05, 

indicating a very weak positive relationship overall. Figure 4 breaks this relationship down by season. 

It can be observed that the PM2.5 concentrations are more stable and remain high during the cold dry 

season, which has been related to the stable atmospheric conditions and frequent thermal inversions in 

the study region. For the warm dry season and rainy season, there is a clearer tendency for higher 

PM2.5 concentrations on hotter days.  

   

 



 

Figure 4. Heatmaps of mean temperature and mean PM2.5, counting all grid cells and days equally. 

Darker areas indicate more grid cells, more days, or both. Temperature and PM2.5 predictions are 

already rounded to the nearest tenth, so no further grouping is needed for a heatmap. For legibility, the 

temperature scale only shows the middle 95% of the data for each season, and the PM2.5 scale only 

goes up to the 98th percentile for all seasons. Blue lines show the quartiles of PM2.5 conditional on 

temperature. 

 

Considering the 88,399 cell-days in which mean PM2.5 exceeded Mexico's permissible daily limit of 41 

μg/m3,65 the median temperature was 19.2 °C, somewhat warmer than the median in all other cell-days, 

15.9 °C. Considering the 173,170 cell-days with a mean temperature of at least 20 °C, we found 

substantially higher median PM2.5, 30.2 μg/m3, than in all other cell-days, 19.7 μg/m3. 

 

We used population density from GPWv4 in every prediction cell of the study area to estimate person-

days of PM2.5 exposure in 2010, referring to Mexico's standards for annual and daily ambient 

concentrations of PM2.5.
65 We compared the exposure estimated by our XGBoost-with-IDW model to 

that estimated by IDW alone, a PM2.5 interpolation technique that has been used for a health-impact 

assessment in this region.68 The study area contained 20,279,491 people in 2010. According to both 

our model and the IDW-only model, every single person in the Mexico City Metropolitan Area 

experienced a yearly mean PM2.5 worse than the permissible limit of 10 μg/m3. The large majority of 

people (97%, or more than 99% according to IDW) experienced a yearly mean more than twice the 

limit. Similarly, all people experienced at least one day with a mean PM2.5 worse than the daily 

permissible limit of 41 μg/m3. People experienced a mean of 21.6 (23.7 according to IDW) days 

exceeding the limit. The total number of exceeded person-days was 439 million (481 million according 

to IDW). Overall, we find widespread exposure to worse-than-permissible air pollution, although our 

full model suggests slightly less exposure than an IDW-only model. To show population exposure 

distributions over time, we also calculated the annual average concentration for each populated grid 

cell for each year, using more than 45 million model predictions. Figure 5 shows the empirical 

cumulative distribution functions for these annual concentrations calculated with 2010 census 

population densities. As observed in Figure 5, there has been an overall reduction in the annual 



exposure to PM2.5 since the earliest years (2004 and 2005); however, there is considerable variability 

in the estimated annual exposures, with less clear recent trends.   

 

 

 

Figure 5. Population estimated annual average exposures. The figure shows an empirical cumulative 

distribution curve for each year from 2004 to 2019, generated from our daily mean model and using 

the 2010 census population density. Specific quantiles are labeled for the year 2019, where only 10% 

of the population in the study region had an annual average exposure below 20.6 μg/m³. 

 

We used an index of social marginalization developed by the Consejo Nacional de Población 

(CONAPO), which considers access to education and health, housing characteristics, and possession of 

goods,66 to compare urban marginalization in 2010 to mean PM2.5. There were 2,065 AGEBs for which 

marginalization scores were available, with one score per AGEB and year, so we summarized mean 

PM2.5 in 2010 by AGEB. Overall, marginalization and PM2.5 were Kendall-correlated 0.024, which is a 

relationship in the expected direction (i.e., in the direction of more AGEBs with marginalized 

populations being exposed to more air pollution), but very weak. Breaking the AGEBs into 0.5-unit 

groups of marginalization (with one group for marginalization -2 to -1.5, one for -1.5 to -1, etc.), we 

find a small range of mean per-group PM2.5, from 21.78 to 22.56 μg/m3. 

  



4. Discussion 

 We constructed and validated models to predict mean and max PM2.5 in the Mexico City Metropolitan 

Area, and examined potential applications in air-pollution epidemiology and air-quality management. 

Our machine-learning-based model is the first of its kind in Mexico, although previously, our team 

used mixed-effects models with AOD to predict mean PM2.5 in this region.9 Also new is our 

consideration of max PM2.5, an exposure metric that is becoming relevant to address subdaily health 

effects from peak exposures to PM2.5.
69 Overall, our models exhibited good performance, with 

prediction errors that decreased over time, as the number of ground monitoring stations increased. Our 

per-year R2 for mean PM2.5 ranged from 0.64 to 0.86, similar to the R2 values for our team's XGBoost 

model in the Northeastern US, which ranged from 0.64 to 0.80.26 Our new modeling approach to 

predict PM2.5 is not limited to one specific area; it could be extended to other regions with low or 

intermediate density of ground monitoring stations. 

 

PM2.5 predictions from AOD-PM2.5 models have been used in epidemiology to reduce exposure 

measurement error, but may also be useful for applications such as air-quality management, 

particularly in sparsely monitored regions. Our maps of annual means of PM2.5 (Figure 2) show wide 

variation in both PM2.5 metrics across the Mexico City Metropolitan Area. More PM2.5 has historically 

been observed in the center-north and center-east of the Mexico City Metropolitan Area (in the densely 

populated limits between Mexico City and the State of Mexico), where there are substantial emissions 

from industry and traffic.70 Our PM2.5 predictions allowed us to assess exposure to PM2.5 in the entire 

Mexico City Metropolitan Area, unlike previous studies that could only partly cover this region with 

data from ground monitoring stations alone.68 The estimated annual mean concentrations from our 

model exceeded the current annual PM2.5 Mexican permissible limits across the entire study region, 

supporting previous results pointing out that despite significant improvements in the air quality of 

Mexico City for PM10 and ozone since the 1990s, there remain substantial obstacles to reducing 

emissions of PM2.5 and its precursors.71 Using spatiotemporally-resolved exposure data in the study 

region (e.g., our PM2.5 predictions) should improve future health impact assessments and support 

targeted exposure reduction strategies.72  

 

Seasonally, there is a well-defined pattern of higher PM2.5 concentrations during the two dry seasons, 

due to frequent thermal inversions and stable atmospheric conditions, which favors the accumulation 

of PM2.5.
73 The lowest PM2.5 concentrations occur during the rainy season, due to wet deposition.74 We 

hypothesized that the pattern we saw in the daily ratios of mean and max PM2.5 (Figure 2) reflects the 

influence of seasonal meteorological conditions. We checked whether higher ratios observed during 

the rainy season could be explained by precipitation, since late-afternoon showers can reduce PM2.5.
74 

However we found that days with at least 1 mm of daily precipitation had only a 5% greater ratio than 

other days. 



 

In the context of climate change, it is important to characterize the increasingly common joint 

occurrence of extreme air pollution and extreme temperatures.75 We found that while PM2.5 and 

temperature are only weakly related overall, higher PM2.5 concentrations tended to occur on warmer 

days, particularly in the rainy season (Figure 4), and conversely, days with mean temperatures of at 

least 20° C had a substantially worse median PM2.5 concentration than cooler days. It has been 

reported that co-occurring extreme PM2.5 and extreme temperatures may increase the acute risk of 

illness,76 and that the influence of PM2.5 on mortality rates may be stronger in warmer cities.77 Previous 

studies in the Mexico City Metropolitan Area have suggested stronger associations with mortality on 

days with high PM2.5 and extreme temperatures,78 but they may have estimated effects imprecisely, 

given their citywide approach for estimating exposure. We expect that our PM2.5 predictions can 

improve exposure assessment and air-pollution epidemiology, including studies addressing the 

interactive effects of PM2.5 with temperature.79 

 

Although air-quality standards are observed over geographic regions, and not at the individual level, it 

is important to quantify the extent of human exposure to unhealthy concentrations of air pollution 

during specific periods of time. This can aid in communicating the impacts of air pollution to 

stakeholders and decision-makers. To put into perspective the human cost of PM2.5 exposure, we found 

that in 2010, every person in the study region was exposed to unhealthy air quality according to the 

Mexican standards for annual (10 μg/m3) and daily (41 μg/m3) concentrations, which are several times 

the recently enacted World Health Organization Guidelines of 5 and 15 μg/m3, respectively.80 Overall, 

in 2010 the population of the study region experienced a mean of nearly three weeks of PM2.5 above 

the current daily Mexican permissible limit. For epidemiologic research, the distribution of continuous 

exposures is more relevant for health studies than the dichotomous assessment or duration of 

compliance with a particular standard. We combined our PM2.5 predictions with population data to 

calculate annual empirical cumulative distributions for all inhabited areas in the study region, a 

summary of the population distribution of our exposure estimates that is suitable for assessment of 

long-term ambient PM2.5 exposures and related chronic health effects. 

 

Assessment of compliance with PM2.5 standards is made with regulatory ground monitoring stations. 

Concentrations of PM2.5 measured in a single monitoring station are used to represent the pollution 

conditions over large spatial domains (up to tens of kilometers) for a specific amount of time, such as 

one day or one year. However, PM2.5 levels can be rapidly influenced by local sources, increasing not 

only concentrations between monitoring sites, but also the risks of acute health effects. PM2.5 

measurements from ground monitoring stations alone might be insufficient to represent air quality in 

large areas, especially when the objective is to protect human health. A distinguishing feature of our 

model is that we also generated a sub-daily metric of PM2.5 concentrations, namely, max PM2.5. There 

are not yet any air-quality standards for sub-daily PM2.5 concentrations, but new research into the 

https://paperpile.com/c/FV9kpl/iUIe2


health impacts from such exposures could eventually support standards for shorter exposure 

timeframes.81–84 The US Environmental Protection Agency states that “Because a focus on annual 

average and 24-hour average PM2.5 concentrations could mask sub-daily patterns, and because some 

health studies examine PM exposure durations shorter than 24-hours, it is useful to understand the 

broader distribution of sub-daily PM2.5 concentrations”.69 Because it's more challenging to reconstruct 

extrema (e.g., max PM2.5) versus measures of central tendency (e.g., mean PM2.5), future work on 

estimating health impacts from max PM2.5 exposures could particularly benefit from estimating and 

propagating prediction uncertainty into downstream analyses.85, 86  

 

Our comparison of PM2.5 exposure across levels of social marginalization did not suggest meaningful 

differences between groups. However, the 2010 Mexican index of social marginalization was only 

available for urban AGEBs: those with a total population of more than 2,500. Without data for rural 

AGEBs or irregular settlements, it is naturally more difficult to assess the influence of socioeconomic 

status. Also, because the methods employed in the construction of the Mexican index of social 

marginalization have changed over time, it would be difficult to analyze multiple years and make sense 

of the differences between them. 

 

A limitation of our model arises from the limited temporal resolution in the AOD data. Each satellite 

passes over the Central Mexico region only once during each period of daylight, possibly missing 

sudden episodes of intense PM2.5. However, the overpass time of the Terra satellite is similar to the 

daily peak of PM2.5 according to ground monitoring stations, so in general, Terra AOD should be 

representative of max PM2.5. Future work will utilize AOD data from the Advanced Baseline Imager 

(ABI) aboard NOAA’s Geostationary Operational Environmental Satellite - R Series (GOES-16 and 

GOES-17) with temporal resolution as high as 5 minutes over Mexico City. Synergistic AOD products 

developed from the ABI and upcoming NASA geostationary Tropospheric Emissions: Monitoring of 

Pollution (TEMPO) mission, planned for launch in December 2022, will further enhance capabilities to 

predict and monitor PM2.5 concentrations in the region. TEMPO will advance exposure science in 

North America, particularly by providing hourly observations of aerosols and gaseous pollutants for 

supporting air-pollution models.87, 88  
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