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Abstract

Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative

to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given

their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir,

we deployed an eddy covariance system in a small reservoir located in southwestern Virginia, USA over two years to measure

carbon dioxide (CO2) and methane (CH4) fluxes near-continuously. Fluxes were coupled with in situ sensors measuring multiple

environmental parameters. Over both years, we found the reservoir to be a large source of CO2 (633-731 g CO2-C m-2 yr-1)

and CH4 (1.02-1.29 g CH4-C m-2 yr-1) to the atmosphere, with substantial sub-daily, daily, weekly, and seasonal timescales of

variability. For example, fluxes were substantially greater during the summer thermally-stratified season as compared to the

winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice-on conditions as compared

to continuous ice-on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases

in winter ice-cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at

multiple timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved organic

matter. Overall, our novel year-round eddy covariance data from a small reservoir indicate that these freshwater ecosystems

likely contribute a substantial amount of CO2 and CH4 to global GHG budgets, relative to their surface area.
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Abstract 19 

Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse 20 

gas (GHG) budgets relative to their limited water surface area. However, constraining annual 21 

GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially 22 

and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, 23 

we deployed an eddy covariance system in a small reservoir located in southwestern Virginia, 24 

USA over two years to measure carbon dioxide (CO2) and methane (CH4) fluxes near-25 

continuously. Fluxes were coupled with in situ sensors measuring multiple environmental 26 

parameters. Over both years, we found the reservoir to be a large source of CO2 (633-731 g CO2-27 

C m-2 yr-1) and CH4 (1.02-1.29 g CH4-C m-2 yr-1) to the atmosphere, with substantial sub-daily, 28 

daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially 29 

greater during the summer thermally-stratified season as compared to the winter. In addition, we 30 

observed significantly greater GHG fluxes during winter intermittent ice-on conditions as 31 

compared to continuous ice-on conditions, suggesting GHG emissions from lakes and reservoirs 32 

may increase with predicted decreases in winter ice-cover. Finally, we identified several key 33 

environmental variables that may be driving reservoir GHG fluxes at multiple timescales, 34 

including, surface water temperature and thermocline depth followed by fluorescent dissolved 35 

organic matter. Overall, our novel year-round eddy covariance data from a small reservoir 36 

indicate that these freshwater ecosystems likely contribute a substantial amount of CO2 and CH4 37 

to global GHG budgets, relative to their surface area. 38 

 39 

Plain Language Summary 40 

Freshwater ecosystems release substantial amounts of greenhouse gases, especially carbon 41 

dioxide and methane, to the atmosphere. Small waterbodies, such as lakes and reservoirs, are 42 

common in the landscape and may release particularly high levels of greenhouse gases, though 43 

their overall contribution remains unknown. The most common methods to date for estimating 44 

greenhouse gas emissions from freshwaters typically involve only measuring concentrations 45 

during the daytime on a handful of days throughout the year. Thus, there is a clear need for near-46 

continuous measurements of carbon dioxide and methane from small waterbodies throughout the 47 

year on multiple timescales (hours to years). To do this, we measured fluxes of carbon dioxide 48 
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and methane from a small reservoir using eddy covariance over two years. We found this small 49 

reservoir to be a large source of both carbon dioxide and methane to the atmosphere over two 50 

years and found high variability in fluxes measured at short (sub-daily) to long (seasonal) 51 

timescales. Overall, this study demonstrates the importance of small reservoirs as greenhouse gas 52 

sources to the atmosphere and emphasizes the need for additional measurements to estimate their 53 

contribution to global greenhouse gas budgets. 54 

 55 

1 Introduction 56 

Freshwater ecosystems play a disproportionately large role in global greenhouse gas 57 

(GHG) budgets relative to their total water surface area, emitting more GHGs across all 58 

freshwaters than are taken up by global terrestrial ecosystems (Bastviken et al. 2011; Cole et al. 59 

2007; DelSontro et al. 2018; Tranvik et al. 2009). Despite their importance, however, the 60 

contribution of inland waters, especially small (<1 km2) reservoirs, remains under-represented 61 

within global carbon (C) and GHG budgets (Butman et al. 2018; Deemer and Holgerson, 2021; 62 

Deemer et al. 2016; DelSontro et al. 2018). It is estimated that there are ~5.8 million lakes and 63 

reservoirs in the contiguous U.S. (Winslow et al. 2014), of which approximately half (~2.6 64 

million) are human-made reservoirs (Smith et al. 2002). Of these human-made reservoirs, small 65 

reservoirs (<1 km2) compose >71% of reservoirs in the United States (National Inventory of 66 

Dams, USACE 2021), indicating that these ecosystems are extremely common, with at least ~1.8 67 

million small reservoirs in the conterminous U.S.  68 

Despite their ubiquity, constraining annual GHG estimates in small freshwater reservoirs 69 

is challenging given their small footprint area and heterogeneous GHG emissions (Loken et al. 70 

2019; McClure et al. 2020; Podgrajsek et al. 2015). Short-term measurements indicate the 71 

potential for these ecosystems to exhibit high, but patchy fluxes (Deemer and Holgerson, 2021; 72 

DelSontro et al. 2018; McClure et al. 2018, 2020; Rosentreter et al. 2021), but to the best of our 73 

knowledge, their annual emissions remain largely unknown. To date, most studies measuring 74 

GHG emissions from freshwater lakes and reservoirs are based on snapshot measurements from 75 

short-term floating chamber deployments or grab samples of dissolved GHGs, which are 76 

extrapolated to broad spatial and temporal scales to estimate annual whole-ecosystem fluxes 77 
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(Bastviken et al. 2015; Klaus et al. 2019; Wik et al. 2016). While these approaches have 78 

provided useful insights into general patterns of GHG cycling in freshwater ecosystems, they are 79 

inherently limited in capturing the high spatial and temporal variability in freshwater GHG 80 

fluxes (A.K. Baldocchi et al. 2020; Butman et al. 2018; Klaus et al. 2019; Rosentreter et al. 81 

2021; Wik et al. 2016).  82 

Eddy covariance (EC) systems are increasingly being deployed on lakes and reservoirs to 83 

constrain sub-daily GHG fluxes over large spatial footprints, enabling the quantification of 84 

whole-ecosystem GHG fluxes at multiple temporal scales (e.g., A.K. Baldocchi et al. 2020; 85 

Golub et al. 2021; Eugster et al. 2011; Vesala et al. 2011; Waldo et al. 2021). EC systems are 86 

used to determine the net exchange of carbon dioxide (CO2), methane (CH4), and/or other gases 87 

at sub-hourly time scales via micrometeorology and in situ atmospheric trace gas concentrations 88 

measured using infrared gas analyzers (A.K. Baldocchi et al. 2020; Golub et al. 2021; Vesala et 89 

al. 2011). By collecting near-continuous, high frequency data (typically measured at 10-20 Hz 90 

and reported as 30-minute means), EC systems allow GHG fluxes to be estimated at sub-daily to 91 

annual timescales, improving our understanding of GHG flux temporal variability beyond 92 

traditional discrete measurements (Golub et al. 2021; Reed et al. 2018; Vesala et al. 2011). 93 

Additionally, EC systems often capture a larger spatial footprint compared to traditional discrete 94 

measurements, as measured fluxes represent the average flux from the atmospherically-mixed 95 

area upwind of the deployed EC system (Golub et al. 2021, Waldo et al. 2021). Thus, EC 96 

systems can greatly increase the temporal resolution and spatial extent of measured fluxes in 97 

lakes and reservoirs, with the caveat that important considerations and data filtering are needed 98 

for EC systems in small waterbodies (Scholz et al. 2021). Specifically, a waterbody's small 99 

surface area increases the likelihood of surrounding terrestrial vegetation impacting EC 100 

measurements of aquatic fluxes and decreases the area available for a well-mixed, turbulent 101 

footprint (Esters et al. 2020; Scholz et al. 2021; Vesala et al. 2011).  102 

While the majority of reported freshwater EC studies have been conducted on short 103 

timescales (days to months; e.g., Erkkiliä et al. 2018; Gorsky et al. 2021; Jammet et al. 2015; 104 

Podgrajsek et al. 2014, 2015; Vesala et al. 2006, 2011), longer-term studies measuring CO2 or 105 

CH4 fluxes in lakes and reservoirs on annual timescales are becoming more common (e.g., A.K. 106 

Baldocchi et al. 2020; Golub et al. 2021; Huotari et al. 2011; Jammet et al. 2017; Liu et al. 2016; 107 

Reed et al. 2018; Shao et al. 2015; Scholz et al. 2021; Taoka et al. 2020; Waldo et al. 2021). An 108 
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annual study conducted in Lake Erie, USA found this highly-eutrophic system was a small sink 109 

of CO2 during the summer productive season yet ultimately a CO2 source on annual timescales 110 

(Shao et al. 2015). Other studies have highlighted the importance of short (hourly to daily), 111 

episodic events on annual CO2 budgets, including the disproportionate effect of storms on annual 112 

CO2 emissions from a large subtropical reservoir (Liu et al. 2016), fall mixing in a large (40 km2) 113 

temperate lake (Reed et al. 2018), and pulses of CH4 following ice-off in a north temperate lake 114 

(Gorsky et al. 2021). Studies conducted in the high northern latitudes during continuous ice-on 115 

conditions in winter observed zero to very low greenhouse gas fluxes from frozen lakes due to 116 

thick ice cover, which prevented the exchange of gasses across the air-water interface (e.g., 117 

Huotari et al. 2011; Jammet et al. 2017). In more temperate climates, other studies  found low 118 

and relatively consistent CO2 fluxes during continuous or intermittent ice-covered winter periods 119 

(A.K. Baldocchi et al. 2020; Reed et al. 2018). In addition to noted diel, seasonal, and episodic 120 

variability in CO2 fluxes, two annual studies recently found the sub-monthly timescale to be an 121 

important timescale of variability, though the mechanism for this variability remains unknown 122 

(A.K. Baldocchi et al. 2020; Golub et al. 2021). Altogether, despite the increase in studies using 123 

EC systems to measure CO2 and CH4 fluxes from freshwaters, few studies to date have captured 124 

both CO2 and CH4 fluxes on the annual scale, especially during winter.  125 

Measuring annual-scale CO2 and CH4 fluxes is particularly important as GHG fluxes are 126 

likely rapidly changing due to altered climate (Bartosiewicz et al. 2019; Beaulieu et al. 2019), 127 

motivating several potential hypotheses for how different environmental drivers may alter fluxes. 128 

Multiple environmental drivers sensitive to climate change likely affect GHG fluxes, though 129 

annual-scale studies to test the effects of these drivers on fluxes across multiple timescales are 130 

lacking. For example, increasing surface water temperatures and changes in precipitation and 131 

nutrient loading are changing phytoplankton productivity and allochthonous C inputs to lakes 132 

and reservoirs (Fowler et al. 2020; Hanson et al. 2015; Tranvik et al. 2009). For example, 133 

changes in freshwater primary production and nutrient inputs to freshwater systems have been 134 

directly linked to increases in CO2 (DelSontro et al. 2018), as well as CH4 emissions (Deemer 135 

and Holgerson, 2021; DelSontro et al. 2018; McClure et al. 2020). Finally, increasing air 136 

temperatures are leading to warmer winters and more intermittent and partial ice cover (Imrit and 137 

Sharma, 2021; Sharma et al. 2021; Woolway et al. 2020), allowing for potentially greater 138 

exchange of GHGs across the air-water interface, highlighting the need to understand the role of 139 
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ice in constraining GHG fluxes. All these examples emphasize the importance of measuring 140 

near-continuous GHG fluxes on the annual scale along with key potential environmental drivers, 141 

such as precipitation and freshwater inflows, surface water temperature, chlorophyll-a, dissolved 142 

organic matter, and ice-on/ice-off as potential GHG drivers, as it is likely that some drivers may 143 

have a greater effect at certain timescales than others.  144 

Altogether, there is a clear need to measure annual-scale CH4 and CO2 fluxes from small 145 

freshwater ecosystems, especially small reservoirs. While several studies have measured annual 146 

CO2 fluxes from freshwaters (e.g., A.K. Baldocchi et al. 2020; Golub et al. 2021; Huotari et al. 147 

2011; Liu et al. 2016; Reed et al. 2018; Shao et al. 2015; Scholz et al. 2021), to the best of our 148 

knowledge, only one freshwater study has measured both CH4 and CO2 fluxes on an annual 149 

timescale (Jammet et al. 2017), while Taoka et al. (2020) and Waldo et al. (2021) measured only 150 

CH4 fluxes at the annual scale. Specifically, Waldo et al. (2021) used EC to measure annual CH4 151 

fluxes from a large (2.4 km2), highly-eutrophic temperate reservoir, measuring emissions up to 152 

71.4 g CH4 m
-2 yr-1, which is in the top quarter of those reported from lakes and reservoirs to 153 

date. In an Arctic lake, Jammet et al. (2017) used EC to measure low GHG fluxes during the 154 

winter ice-covered period, followed by large CH4 and CO2 fluxes during spring-thaw, and 155 

increasing ebullitive CH4 fluxes during the ice-free season concurrent with small rates of CO2 156 

uptake during the summer due to photosynthesis. Aggregated across the full year, this Arctic lake 157 

was a net source of both CH4 and CO2 to the atmosphere (Jammet et al. 2017). Across the 158 

literature, most EC studies have focused on naturally-formed lakes, and all EC reservoir studies 159 

of which we are aware (Eugster et al. 2011; Golub et al. 2021; Liu et al., 2016; Waldo et al. 160 

2021) were conducted in large (>2.4 km2) reservoirs. 161 

To better understand the GHG budgets of small reservoirs and the response of fluxes to 162 

key environmental drivers, we deployed an EC system in a small (0.1 km2) freshwater reservoir 163 

located in southwestern Virginia, USA for two years to measure both CO2 and CH4 fluxes near-164 

continuously. Flux measurements were coupled with in situ sensors measuring multiple 165 

environmental parameters, including surface water temperature, dissolved oxygen, chlorophyll-a, 166 

and fluorescent dissolved organic matter. Ultimately, we used the measured GHG fluxes and 167 

environmental variables to answer the questions: 1) What is the annual phenology of CO2 and 168 

CH4 fluxes in a small, eutrophic reservoir, including during the critical winter period?; and 2) 169 

Which environmental variables best explain CO2 and CH4 variability at daily to monthly 170 
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timescales? We expected CO2 and CH4 fluxes would be variable throughout the year, especially 171 

during the summer months, when we expected larger GHG fluxes and marked diel patterns 172 

following elevated primary production during the daylight hours. Conversely, during the winter 173 

months, we expected relatively low fluxes due to suppressed biological activity and potential ice-174 

cover. Following these expectations, we predicted temperature would be an important 175 

environmental predictor positively-related to both CO2 and CH4, while chlorophyll-a would 176 

likely be an important environmental predictor positively related to CO2 fluxes on multiple 177 

timescales.  178 

 179 

2 Materials and Methods 180 

2.1 Site description 181 

Falling Creek Reservoir (FCR) is a small, eutrophic reservoir located in Vinton, Virginia, 182 

USA constructed in 1898 (Fig. 1; 37.303oN, 79.837oW; Gerling et al. 2016; Howard et al. 2021). 183 

The reservoir is located in a valley at 520 m above sea level. Hills on either side of the reservoir 184 

have a maximum elevation of 615 m (east) and 740 m (west) above sea level. The reservoir and 185 

surrounding forested watershed are owned and operated by the Western Virginia Water 186 

Authority (WVWA) as a primary drinking water source (Gerling et al. 2016). FCR has a surface 187 

area of 0.119 km2 and a maximum depth of 9.3 m (McClure et al. 2018). The reservoir is 188 

dimictic and thermally stratified from April to October (McClure et al. 2018).      During the 189 

study period, water was not extracted for drinking water treatment and remained at a constant 190 

full-pond level. The water residence time during the study period ranged from 21 to 635 d, with a 191 

median of 247 d (Fig. S1; calculated using the methods of Gerling et al. 2014). Since the 192 

reservoir remained at full pond, we assumed incoming discharge from the primary inflow was 193 

equal to outflowing discharge during the two-year study period. 194 
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 195 

Figure 1. A. Map of Falling Creek Reservoir (FCR) located in Vinton, Virginia, USA (map 196 

inset) showing location of the eddy covariance system, the weir located on the primary 197 

freshwater inflow, and the meteorological station located on the dam. B. Wind rose showing the 198 

dominant wind direction and wind speed (m s-1) of greenhouse gas fluxes retained for analysis. 199 

The cumulative footprint distribution for the study period is shown in the supplementary 200 

information (Fig. S2). 201 

2.2 Data collection and overview 202 

We used an EC system deployed near the dam on an existing metal platform extending 203 

into the reservoir to measure CO2 and CH4 fluxes between the water surface and the atmosphere 204 

from 1 May 2020 to 30 April 2022 (details below; Carey et al. 2022a). To complement the EC 205 

measured fluxes, we also calculated CO2 and CH4 diffusive gas fluxes using dissolved CO2 and 206 

CH4 discrete grab samples collected during daylight hours (between ~08:00 to 13:00) weekly to 207 

monthly from the water's surface at the deepest site of the reservoir, located near the dam, 208 

throughout the 2-year study period (details below; Carey et al. 2022b). The EC system was co-209 

located near the reservoir dam to take advantage of the existing limnological and meteorological 210 

suite of instruments already deployed at this location as well as existing electrical power and 211 

infrastructure for EC deployment. 212 

In addition to the EC and diffusive fluxes, we also collected meteorological and 213 

environmental data. Briefly, a Campbell Scientific (Logan, Utah, USA) research-grade 214 
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meteorological station measured air temperature; relative humidity; air pressure; wind speed and 215 

direction; upwelling and downwelling shortwave and longwave radiation; total rainfall; 216 

photosynthetically-active radiation (PAR); and albedo every minute at the reservoir dam (sensor 217 

information provided by Carey et al. 2022c). At the reservoir’s deepest site, we collected 10-218 

minute water temperature measurements every 1 m from the surface (0.1 m) to just above the 219 

sediments (9 m) using a thermistor string. Thermistor data were used to calculate the difference 220 

in temperature between 0.1 m and 9.0 m (Diff. Temp) and daily buoyancy frequency (N2), two 221 

metrics of thermal stratification, as well as thermocline depth throughout the study period (May 222 

2020 to April 2022) using the LakeAnalyzer package in R (Winslow et al. 2016a). Fall turnover 223 

was defined as the first day in autumn when the temperature at 1 m was <1oC of the temperature 224 

measured at 8 m (1 November 2020 and 3 November 2021; McClure et al. 2018). Spring mixing 225 

was harder to identify due to intermittent ice-on in 2021 and frequent mixing during the winter 226 

period, but we defined spring mixing as the first day in spring after complete ice-off when the 227 

temperature at 1 m was <1oC of the temperature measured at 8 m (26 February 2021 and 10 228 

February 2022). For 2022, spring mixing occurred on the same day as complete ice-off. Ice cover 229 

was determined by the presence of inverse stratification coupled with higher albedo and verified 230 

by visual observation, described by Carey and Breef-Pilz (2022). 231 

Water column temperature data complemented 10-minute measurements of dissolved 232 

oxygen (DO) percent saturation, chlorophyll-a (Chl-a, µg L-1), and fluorescent dissolved organic 233 

matter (fDOM, relative fluorescent units, RFU) measured using an EXO2 sonde (YSI, Yellow 234 

Springs, Ohio, USA) deployed at 1.6 m (Carey et al. 2022d), which is the depth historically used 235 

for water extraction when the reservoir is in-use (Howard et al. 2021). The EXO2 sonde was 236 

removed from the reservoir on 2 December 2020 for annual sensor maintenance and re-deployed 237 

on 27 December 2020. Finally, we measured stream inflow every 15 minutes on the primary 238 

inflowing stream to the reservoir via a gaged v-notch weir fitted with a Campbell Scientific 239 

CS451 pressure transducer (Campbell Scientific, Logan, Utah, USA), which was used to 240 

calculate the 15-minute flow rate following Carey et al. (2022e). The weir was breached on 20 241 

July 2020 and repaired on 24 August 2020, resulting in no flow data during this interval.  242 
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2.3 Eddy covariance flux measurements 243 

An EC system was deployed above the water surface over the deepest portion of the 244 

reservoir from 1 May 2020 to 30 April 2022. The EC instrumentation was installed 2.9 m over 245 

the reservoir's surface on a permanent metal platform that extends ~45 m from the dam. As noted 246 

above, the reservoir was maintained at full pond, resulting in a consistent height of the EC 247 

system over the water’s surface during the study period. The placement of the EC sensors at 2.9 248 

m above the water surface reflects a balance between ensuring adequate frequency responses to 249 

capture eddies (Burba and Anderson, 2010) and capturing a flux footprint that represents the area 250 

of interest. This height resulted in a flux footprint that was generally well matched to the 251 

reservoir (Fig. S2).  252 

The EC system included an ultrasonic anemometer to measure 3D wind speed and 253 

direction (CSAT3, Campbell Scientific), an open-path infrared gas analyzer for measuring CH4 254 

concentration (LI-7700, LiCor Biosciences, Lincoln, Nebraska, USA), and an enclosed-path 255 

infrared gas analyzer for measuring CO2 and water vapor concentrations (LI-7200, LiCor 256 

Biosciences), all recorded at 10 Hz by a data logger (LI-7550, LiCor Biosciences). On 10 August 257 

2020, the data logger was removed for maintenance and re-deployed on 2 September 2020. 258 

Additionally, a thermocouple on the CO2 sensor (LI-7200) was inoperable starting on 5 April 259 

2021 and was repaired on 26 April 2021. 260 

The raw 10-Hz data were first processed into 30-minute fluxes using the EddyPro v.7.0.6 261 

software (LiCor Biosciences 2019). Fluxes were calculated following standard methods in 262 

EddyPro v.7.0.6 (LiCor Biosciences 2019), which included spike detection and removal (Vickers 263 

and Mahrt, 1997), a double rotation for tilt correction (Lee et al. 2005), linear detrending (Gash 264 

and Culf, 1996), time lag compensation, and spectral corrections for high and low-pass filtering 265 

effects following Moncrieff et al. (2004) and Moncrieff et al. (1997), respectively. In addition, 266 

CH4 molar density was corrected to account for air density fluctuations and spectroscopic effects 267 

of temperature, pressure and water vapor (McDermitt et al. 2011; Webb et al. 1980). This 268 

correction was not needed for CO2, as fluxes were estimated using mixing ratios instead of 269 

densities (Burba et al. 2012).   270 
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Following initial flux calculations and processing in EddyPro, we conducted additional 271 

data processing following standard best practices, including: 1) removing wind directions which 272 

originated outside of the reservoir (80-250o; Fig. 1); 2) removing extreme flux values (CO2 273 

fluxes ≥ |100| µmol C m-2 s-1; CH4 fluxes ≥ |0.25| µmol C m-2 s-1); 3) removing CH4 fluxes when 274 

signal strength <20%; 4) removing CO2 and CH4 fluxes when they did not pass the test for 275 

stationarity or developed turbulent conditions (QC, quality control level 2 per Mauder and 276 

Foken, 2006), in addition to when the latent heat (LE) or sensible heat flux (H) had QC level <2; 277 

5) removing open-path CH4 fluxes during periods of rainfall, which was determined based on the 278 

rain gauge deployed at the dam; 6) removing additional periods of low turbulence friction 279 

velocity (u*), as described below; and 7) removing data that corresponded to flux footprints that 280 

extended significantly beyond the reservoir. We used REddyProc (Wutzler et al. 2021) to 281 

determine the u* threshold for sufficiently turbulent conditions and removed any fluxes where u* 282 

was < 0.075 m s-1. To account for the uncertainty of estimating the u* threshold, we used 283 

bootstrapping to estimate the distribution of u* thresholds, and obtained the 5th, 50th and 95th 284 

percentiles of this distribution (0.070, 0.075, and 0.163 m s-1, respectively; Wutzler et al., 2018).  285 

The final filtering step consisted of removing fluxes that extended beyond the reservoir. 286 

To do that, flux footprints were modeled for each half-hour using a simple, two-dimensional 287 

parameterization developed by Kljun et al. (2015) (Fig. S2). This model builds on the 288 

Lagrangian stochastic particle dispersion model (Kljun et al. 2002), and provides information on 289 

the extent, width, and shape of the footprint. All the variables needed for the model were 290 

obtained directly from the dataset described above or calculated following Kljun et al. (2015). 291 

Fluxes were excluded when the along-wind distance providing 90% cumulative contribution to 292 

turbulent fluxes was outside the reservoir, based on the footprint analysis. We chose to use this 293 

filtering threshold given the challenges of modeling footprints in small reservoirs; consequently, 294 

our fluxes are likely conservative. All post-processing analyses were conducted using R 295 

statistical software (v.4.0.3). Code for post-processing and all EC data can be found in the 296 

Environmental Data Initiative (EDI) repository (Carey et al. 2022a). 297 

Overall, EC measurements captured 23% and 19% of total CO2 and CH4 fluxes, 298 

respectively, over two years from FCR (Table S1), which is similar to previously-reported 299 

deployments of EC systems at lakes and reservoirs (e.g., Golub et al. 2021; Reed et al. 2018; 300 
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Waldo et al. 2021). The percentage of available data was relatively consistent across half-hourly 301 

periods (from 00:00 to 23:30), ranging from 14%-34% of data availability for CO2 for 22:00 and 302 

12:30 half-hourly periods, respectively, and 11%-32% for CH4 (22:00 and 12:30 half-hourly 303 

periods, respectively; Fig. S3). We note that during the day, the dominant wind direction was 304 

outside the reservoir footprint, while the dominant wind direction was largely along the reservoir 305 

at night (Fig. S4). This pattern resulted in a high percentage of daytime fluxes removed due to 306 

wind direction, but overall, we observed a roughly equal contribution of day and night fluxes 307 

following all flux removal processes (i.e., flux filtering due to low u*). Data availability after 308 

filtering was also relatively consistent throughout seasons and between years, ensuring even 309 

representation of measured fluxes throughout the year (Fig. S5). We do note low data availability 310 

(<10%) for both CO2 and CH4 fluxes during August 2020, due to instrument maintenance, and 311 

for CH4 during December 2020 and February 2021 due to issues with instrument power stability.  312 

2.4 Diffusive flux measurements 313 

We estimated discrete diffusive fluxes from FCR using dissolved CO2 and CH4 samples 314 

(Carey et al. 2022b) collected at the surface of the reservoir to compare with EC fluxes. Surface 315 

water samples were collected at 0.1 m depth using a 4-L Van Dorn sampler (Wildlife Supply 316 

Co., Yulee, Florida, USA) adjacent to the EC sensors (Fig. 1). Replicate (n=2) water samples 317 

were collected via a Van Dorn sampler into 20-mL serum vials without headspace, immediately 318 

capped, and then stored on ice until analysis within 24 hours. Prior to sample analysis, a small 319 

amount of water was removed from each sample and replaced with a neutral gas (helium gas). 320 

Samples were analyzed following Carey et al. (2022b) on a Shimadzu Nexis GC-2030 Gas 321 

Chromatograph (Kyoto, Japan) with a Flame Ionization Detector (GC-FID) and Thermal 322 

Conductivity Detector (TCD). 323 

The measured surface samples were used to calculate CO2 and CH4 diffusive fluxes from 324 

the surface of FCR into the atmosphere on each day of sample collection following the equation: 325 

𝐹𝑙𝑢𝑥 =  𝑘 ∗  (𝐶𝑤𝑎𝑡𝑒𝑟 − 𝐶𝑒𝑞)    Eq. 1 326 

where k is the temperature-corrected gas transfer velocity (m d-1) for the gas species (CO2 or 327 

CH4, respectively), and (𝐶𝑤𝑎𝑡𝑒𝑟 − 𝐶𝑒𝑞) is the dissolved gas concentration in excess of 328 
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atmospheric concentrations (Cole and Caraco, 1998; Wanninkhof et al. 2009).  Cwater is the 329 

concentration (mass volume-1) of CO2 or CH4 at the reservoir surface (0.1 m), and Ceq is the 330 

concentration of dissolved gas at equilibrium with the EC-measured atmospheric concentration 331 

of CO2 or CH4. The GHG flux value was calculated separately for each of the two dissolved 332 

GHG sample replicates collected at each time point using the seven k models included in the 333 

LakeMetabolizer package in R (Cole and Caraco, 1998; Crusius and Wanninkhof 2003; 334 

Heiskanen et al. 2014; MacIntyre et al. 2010; Read et al. 2012; Soloviev et al. 2007; Vachon and 335 

Prairie, 2013; Winslow et al. 2016b, 2016c). We report the mean and standard deviation from the 336 

n=14 replicate-model k determinations to account for uncertainty introduced through various k 337 

estimations. We feel this approach offers the best representation of potential diffusive flux values 338 

that can be directly compared to fluxes measured by EC (Erkkilä et al. 2018; Schubert et al. 339 

2012).   340 

2.5 Statistical analyses 341 

To assess the phenology of fluxes (CO2 and CH4), we analyzed the mean and standard 342 

deviation (±1 S.D.) of measured EC fluxes at half-hourly, daily, weekly, and monthly time scales 343 

through the study period. For both EC and discrete diffusive fluxes, negative fluxes correspond 344 

to fluxes into the reservoir (i.e., uptake) while positive fluxes are out of the reservoir (i.e., release 345 

to the atmosphere).  346 

To assess diel variation in GHG fluxes, we compared median measured EC fluxes during 347 

the day (11:00 to 13:00) and night (23:00 to 01:00) throughout the study period. As data were not 348 

normally distributed, we used paired Wilcoxon signed-rank tests to assess statistical significance 349 

of paired day-night fluxes (α = 0.05). Additionally, we compared dawn (05:00 to 07:00) and 350 

dusk (17:00 to 19:00) median EC measured fluxes using the same methods.  351 

Ice coverage at FCR is episodic and ephemeral, encompassing longer ice-covered periods 352 

as well as shorter-duration ice-covered periods when ice may be present during portions of 353 

sequential days or with partial coverage of the reservoir’s surface, which we refer to as 354 

intermittent ice-on periods. To explore the role of variable winter ice cover on CO2 and CH4 355 

fluxes, we analyzed mean half-hourly fluxes (±1 S.D.) from 10 January to 10 February for both 356 

2021 and 2022, which encompassed a period of intermittent (2021) and continuous (2022) ice-on 357 
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(following Carey and Breef-Pilz 2022; Table S2). We used Mann-Whitney-Wilcoxon tests to 358 

determine statistically-significant differences (α = 0.05) between the median half-hourly fluxes 359 

measured during intermittent and continuous ice-on periods.  360 

 Finally, we calculated the net annual flux balance for CO2 and CH4 using both measured 361 

and gap-filled half-hourly EC data. Briefly, after filtering, half-hourly fluxes were gap-filled in 362 

REddyProc using the marginal distribution sampling method (MDS), which uses the correlation 363 

of measured fluxes with environmental driver variables, namely, radiation, temperature, and 364 

vapor pressure deficit (VPD) to estimate fluxes during the missing time periods (Wutzler et al. 365 

2018). Prior to MDS, we used the meteorological data measured at the dam to gap-fill any 366 

missing wind speed, direction, temperature, and relative humidity in the EC dataset (Table S3). 367 

Overlapping data show that all meteorological variables were tightly correlated between the EC 368 

system and the adjacent meteorological station (Pearson’s rho=0.81-0.98; Table S3). Gap-filling 369 

was performed for each of the u* scenarios, providing information about the uncertainty that 370 

might be introduced to the data by choosing a u* threshold. Measured and gap-filled fluxes were 371 

summed across each year (01 May - 30 April). The standard deviation (±1 S.D.) was calculated 372 

for both the measured and gap-filled data using the different u* scenarios. 373 

 2.6 Time series analysis 374 

To identify key environmental predictors and test mechanistic relationships between 375 

observed mean daily, weekly, and monthly measured CO2 and CH4 fluxes and environmental 376 

variables, we developed separate autoregressive integrated moving average (ARIMA) models for 377 

each timescale. ARIMA models are used to identify key environmental predictors while 378 

accounting for temporal autocorrelation (Hyndman and Athanasopoulos, 2018). We selected 379 

several potential, in-reservoir, environmental predictors, including: surface water temperature 380 

(Temp, 0.1 m, oC); the difference between surface (0.1 m) and bottom (9 m) water temperatures 381 

(Diff. Temp); buoyancy frequency (N2); thermocline depth (TD); DO percent saturation (DO 382 

sat); Chl-a; fDOM; and discharge (Inflow) measured at the primary inflow to FCR (Fig. S6, S7). 383 

We chose to focus on limnological environmental variables to help identify potential drivers of 384 

GHG fluxes, following our predictions. Prior to ARIMA modeling, we conducted pairwise 385 

Spearman correlations on all predictor variables (aggregated to each time scale) and removed 386 
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collinear variables (Pearson’s rho≥0.7) that were the least correlated with fluxes. N2 and Diff. 387 

Temp were removed for all time scales due to their strong correlation with surface water 388 

temperature (Table S4). Response and predictor variables were checked for skewness, 389 

transformed if appropriate, and normalized (z-scores) prior to model fitting (Hounshell et al. 390 

2022).  391 

 We used a model selection algorithm (Lofton et al. 2022) to identify the importance of 392 

environmental predictor variables at each time scale. The algorithm was based on the auto.arima 393 

function in the forecast package in R (Hyndman and Khandakar, 2008; Hyndman et al. 2021) 394 

which compared fitted models to a global model (all possible predictors) and a null persistence 395 

model with just one autoregressive term (AR(1)). We selected the environmental model with the 396 

lowest corrected Akaike information criterion (AICc), as well as models within 2 AICc units 397 

(Burnham and Anderson, 2002). Models were limited to include one autoregressive term 398 

(Hounshell et al. 2022). 399 

 400 

3 Results 401 

3.1 Phenology of CO2 and CH4 fluxes 402 

High-frequency EC data show that FCR was generally a net source of both CO2 and CH4 403 

to the atmosphere across multiple timescales (Figs. 2, 3, S7; Tables S5). Overall, measured CO2 404 

fluxes ranged from -39.46 to 52.67 µmol m-2 s-1 with a mean flux of 1.86 ± 6.21 µmol m-2 s-1 (±1 405 

S.D.) aggregated over the entire 2-year study period. Measured CH4 fluxes ranged from -0.084 to 406 

0.096 µmol m-2 s-1, with a mean CH4 flux of 0.003 ± 0.011 µmol m-2 s-1 over the study period 407 

(Fig. 2, 3, S8; Table S5).  408 
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Figure 2. Daily mean carbon dioxide fluxes (CO2, µmol m-2 s-1) for A. May 2020 to April 2021 410 

(Year 1) and B. May 2021 to April 2022 (Year 2) measured using eddy covariance (Daily Mean 411 

EC, red) and calculated discrete diffusive fluxes (Diff, blue) using the mean and standard 412 

deviation of two replicate samples and seven gas transfer coefficient models (k; Winslow et al. 413 

2016b). Grey dots represent measured half-hourly fluxes from the EC. The dark red line 414 

represents daily mean fluxes. The shaded red area represents ±1 standard deviation of the daily 415 

30-minute fluxes using measured EC fluxes. The vertical dotted line indicates the onset of 416 

reservoir fall and spring mixing, respectively. C. Mean monthly CO2 fluxes (µmol m-2 s-1) 417 

aggregated from measured EC data. The error bars correspond to ±1 S.D. of aggregated fluxes 418 

for both measured and gap-filled EC values. The horizontal dashed line indicates zero fluxes.   419 
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Figure 3. Daily mean methane fluxes (CH4, µmol m-2 s-1) for A. May 2020 to April 2021 (Year 421 

1) and B. May 2021 to April 2022 (Year 2) measured using eddy covariance (Daily Mean EC, 422 

red) and calculated discrete diffusive fluxes (Diff, blue) using the mean and standard deviation of 423 

two replicate samples and seven gas transfer coefficient models (k; Winslow et al. 2016b). Grey 424 

dots represent measured half-hourly fluxes from the EC. The dark red line represents daily mean 425 

fluxes. The shaded red area represents ±1 standard deviation of the daily 30-minute fluxes. The 426 

vertical dotted line indicates the onset of reservoir fall and spring mixing for each year, 427 

respectively. C. Mean monthly CH4 fluxes (µmol m-2 s-1) aggregated from measured EC data. 428 

The error bars correspond to ±1 S.D. of aggregated fluxes for both measured and gap-filled EC 429 

values. The horizontal dashed line indicates zero fluxes. 430 

At the hourly to diel scale, we found that certain times of day had higher fluxes than 431 

others, but that overall, there was little difference in fluxes at midday versus midnight. Measured 432 

EC fluxes revealed no statistically significant difference between paired CO2 fluxes measured 433 

during the day (11:00 to 13:00) as compared to night (23:00 to 01:00; p=0.09; Fig. 4; Table S6), 434 

and no statistically significant difference between paired, measured day and night CH4 fluxes 435 

(p=0.16; Fig. 4; Table S6). We did observe significantly higher median CO2 fluxes measured at 436 

dawn (05:00 to 07:00; 1.34 µmol m-2 s-1) as compared to dusk (17:00 to 19:00; -0.030 µmol m-2 437 

s-1; p<0.001; Fig 4; Table S6), which may be related to higher median dawn wind speeds 438 

(p<0.001), though there was no statistical difference between dawn and dusk CH4 fluxes.   439 
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 440 

Figure 4. Day (11:00 to 13:00) vs. night (23:00 to 01:00) comparisons of A. carbon dioxide 441 

(CO2, µmol m-2 s-1) fluxes, B. methane (CH4, µmol m-2 s-1) fluxes, and C. wind speed (m s-1) 442 

measured using the eddy covariance (EC) system deployed at Falling Creek Reservoir. Points 443 

represent measured half-hourly fluxes, while the boxes represent the 25th and 75th percentile, 444 

respectively and the thick line shows the median flux calculated with measured EC data. Dawn 445 

(05:00 to 07:00) vs. dusk (17:00 to 19:00) comparisons of D. CO2 fluxes, E. CH4 fluxes, and F. 446 

wind speed. Wilcoxon signed-rank tests were used to determine statistical significance between 447 

paired (day to night; dawn to dusk) fluxes. Statistical significance was defined a priori as p<0.05; 448 

asterisks indicate statistically significant differences. n indicates the number of paired fluxes 449 

(Table S6).  450 

At the seasonal scale, both CO2 and CH4 fluxes (EC and diffusive measured fluxes) were 451 

greater in magnitude and more variable during the summer than winter, with increasing fluxes 452 

during the late spring and decreasing fluxes during the late fall (Figs. 2, 3). During the summer 453 

months (June – August), FCR was an overall source of CO2 and CH4 to the atmosphere for both 454 
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years (Figs. 2, 3). Specifically, CO2 and CH4 fluxes were up to 5× and 15× greater, respectively, 455 

during the summer stratified period (May – October) as compared to the winter and early spring 456 

(November – April; Fig. 2, 3, S9). During fall turnover, EC measured CO2 fluxes remained low 457 

in both years (2020, 2021), while diffusive fluxes showed an increase in CO2 fluxes on the day 458 

of turnover (Figs. 2, S11). Similarly, CH4 fluxes were also low during and following turnover for 459 

both EC and diffusive fluxes in both years (Figs. 3, S9). From September to April, FCR was a 460 

small CO2 source, but emitted less CO2 than during the summer. For CH4, FCR was almost net 461 

neutral from late fall to early spring (November to April), in contrast to larger CH4 emissions 462 

during the summer. Following the onset of spring mixing, there was a small, but notable increase 463 

in CO2 emissions in 2021 but little change in CH4 emissions. In 2022, there were no notable 464 

changes in either CO2 or CH4 fluxes following ice-off and subsequent spring mixing in 2022 465 

(Fig. 5). At the annual scale, there were notably higher CO2 fluxes in the late-summer and early 466 

fall 2021 as compared to the summer and fall 2020, while for CH4 fluxes, there were notably 467 

higher fluxes both in the mid-summer 2021 and in the late-summer and early fall 2021 (Figs. 2, 468 

3). 469 

3.2 Comparison of EC and diffusive fluxes 470 

Overall, both CO2 and CH4, diffusive fluxes were within the range of measured EC 471 

fluxes, though diffusive CO2 fluxes were lower than measured EC fluxes when comparing 472 

discrete timepoints (Fig. 2, 3; Table S5). Specifically, hourly CO2 diffusive fluxes calculated 473 

from grab surface samples were an order of magnitude lower than measured EC fluxes and 474 

ranged from -1.24 to 17.50 µmol m-2 s-1, with a mean flux of 0.39 ± 1.29 µmol m-2 s-1 (Figs. 2, 475 

S10, S11; Table S5). We note that the magnitude of diffusive fluxes was highly sensitive to the 476 

gas transfer coefficient method (k) used in flux calculations, and thus we presented the mean and 477 

standard deviation of the seven different k models used, which represent the range of possible 478 

diffusive fluxes which could be compared to EC measured fluxes (Eq. 1; Fig. S10). Hourly CH4 479 

diffusive fluxes were more comparable to measured EC fluxes, with a range of -0.003 to 0.096 480 

µmol m-2 s-1 and a mean of 0.006 ± 0.009 µmol m-2 s-1 (Figs. 3, S10, S11; Table S5).   481 
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3.3 Environmental predictors of CO2 and CH4 fluxes 482 

During the study period, FCR experienced typical meteorological and environmental 483 

conditions. The meteorology measured at the reservoir dam recorded a mean air temperature of 484 

14.1oC (13.8 and 14.4oC in years 1 and 2, respectively), with a minimum and maximum 485 

temperature of -11.5 and 35.1oC, respectively across the two years (Table S7). Mean wind speed 486 

during the time period was 1.99 m s-1 (2.00 and 1.97 m s-1 for years 1 and 2, respectively), with a 487 

maximum wind speed of 11.2 m s-1 and a dominant wind direction of 198o (191o and 199o for 488 

years 1 and 2, respectively). Yearly total rainfall ranged from 790 mm (Year 2) to 1438 mm 489 

(Year 1). During the winter (January - February), air temperatures in year 1 ranged from -8.0 to 490 

19.4oC with a mean of 1.9oC and in year 2 ranged from -11.5 to 21.4oC with a mean of 2.1oC. 491 

Water column variables measured at 1.6 m below the surface also exhibited typical 492 

annual patterns and were for the most part similar between years. We found water temperatures 493 

ranged from 1.23 to 31.4oC, with a mean of 15.2 and 15.9oC for years 1 and 2, respectively (Fig. 494 

S6; Table S8). Chl-a values ranged from 0.25 to 121 μg L-1, with a mean of 11.5 μg L-1 and 12.3 495 

μg L-1 in years 1 and 2, respectively. fDOM was also nearly identical in years 1 and 2 with a 496 

mean of 6.09 and 6.04 RFU, respectively, and a range of 3.01 to 10.4 RFU. For DO sat., the 497 

mean was 107 and 97.8% in year 1 and year 2. Finally, inflow was higher in year 1 (0.056 m3 s-1) 498 

as compared to year 2 (0.013 m3 s-1) and ranged from 0.005 to 0.27 m3 s-1 (Fig. S7; Table S8). 499 

This resulted in a substantial difference in calculated water residence time, with substantially 500 

lower mean water residence time in year 1 (148 ± 169 d) as compared to year 2 (347 ± 119 d; 501 

Fig. S1). 502 

Overall, surface water temperature and thermocline depth were found to be the most 503 

important environmental predictors for both CO2 and CH4 fluxes over all timescales analyzed 504 

(daily, weekly, monthly), followed by fDOM (Table 1). Inflow discharge was only intermittently 505 

important for CO2 and CH4 fluxes at various timescales while DO sat. and Chl-a were only 506 

intermittently important for CO2 fluxes (Tables 1, S9). Water temperature was positively 507 

correlated with both CO2 and CH4 fluxes at all timescales, following the pattern of higher GHG 508 

fluxes during summer as compared to winter in the time series data (Figs. 2, 3). CO2 fluxes were 509 

negatively associated with thermocline depth while CH4 fluxes were positively associated with 510 
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thermocline depth at all timescales (Table 1); i.e., CO2 fluxes were greater when there were 511 

shallower thermocline depths, whereas CH4 fluxes were greater when there were deeper 512 

thermocline depths.  513 

In addition to water temperature and thermocline depth, CO2 fluxes were positively 514 

associated with fDOM across all timescales, while CH4 fluxes were only positively associated 515 

with fDOM at the daily and weekly timescales (Table 1). Conversely, inflow was positively 516 

associated with CO2 fluxes at daily and weekly timescales, while inflow was negatively 517 

associated with CH4 fluxes at weekly and monthly timescales. Finally, Chl-a was negatively 518 

associated with CO2 fluxes, but only on the daily timescale and was negatively associated with 519 

DO sat. at the weekly timescale. CH4 fluxes were not associated with either Chl-a or DO sat. at 520 

any timescale. 521 

CO2 fluxes were best predicted by ARIMA models at the monthly timescale 522 

(RMSE=0.48 µmol m-2 s-1), with descending RMSE for the weekly (0.63 µmol m-2 s-1) and then 523 

daily (0.97 µmol m-2 s-1) models (Tables 1; S9). For CH4 fluxes, the best-fitting ARIMA model 524 

was also identified at the monthly timescale (RMSE=0.41 µmol m-2 s-1), with descending RMSE 525 

for the weekly and daily models ranging from 0.64 and 1.02 µmol m-2 s-1, respectively (Tables 1, 526 

S8). Full ARIMA results are reported in Table S9. 527 
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Table 1. Best-fit results from Autoregressive Integrated Moving Average (ARIMA) analysis 528 

GHG Timescale 
Model 

Order 

Surface 

Temp (oC) 

DO Sat. 

(%) 

Chl-a 

(µg L-1) 

fDOM 

(RFU) 

Inflow 

(m3 s-1) 

Thermo. 

Depth (m) 

RMSE 

(µmol m2 s-1) 

CO2 Daily (1,0,0) 0.18 - -0.17 0.07 0.08 -0.09 0.97 

 Weekly (0,0,0) 0.64 -0.16 - 0.13 0.20 -0.19 0.63 

 Monthly (0,0,0) 0.73 - - 0.24 - -0.31 0.48 

CH4 Daily (0,0,0) 0.27 - - 0.12 - 0.25 1.02 

 Weekly (0,1,1) 0.36 - - 0.23 -0.36 0.24 0.64 

 Monthly (0,0,1) 0.74 - - - -0.26 0.21 0.41 

 529 

Note: Table includes only the top selected model (lowest corrected Akaike Information Criterion, AICc). Models are separated by 530 

greenhouse gas (GHG) flux as carbon dioxide (CO2) and methane (CH4) fluxes as well as by timescale (daily, weekly, monthly). 531 

Environmental predictors included: Surface temperature (Surface Temp, oC), dissolved oxygen saturation (DO Sat, %), Chlorophyll-a 532 

(Chl-a, µg L-1), fluorescent dissolved organic matter (fDOM, RFU), inflow discharge (Inflow, m3 s-1), and thermocline depth 533 

(Thermo. Depth, m). Model order is specified as (p,d,q) where p is the order of the AR term, d is the order of the integration term, and 534 

q is the order of the MA term. For brevity, the autoregressive (AR) and moving average (MA) terms have been removed but can be 535 

found in the supplemental information. Results for all models with 2 AICc of the best fitting model, can be found in the supplemental 536 

information (Table S9). Dashed lines indicate environmental parameters that were not identified as statistically significant. The root 537 

mean square error (RMSE) is reported for each model. Standard errors for each parameter value are given in Table S9.538 
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3.4 Influence of ice cover on CO2 and CH4 fluxes 539 

FCR experienced two distinct winter regimes in 2021 vs. 2022. In 2021, ice-on first 540 

occurred on 10 January 2021, then came on and off multiple times before final ice-off on 23 541 

February 2021. Overall, there were 27 days with some ice and 9 days with some open-water 542 

during the 2021 intermittent ice-period. In contrast, in 2022, there was a brief period of ice cover 543 

from 11 January to 14 January 2022, followed by continuous ice-on occurring from 16 January 544 

2022 to final ice-off on 10 February 2022. While we were unable to collect ice thickness data 545 

through both winters due to safety concerns, peak ice thickness in FCR in 2022 was ~9.5 cm 546 

whereas peak ice thickness in 2021 was ~2 cm. 547 

When comparing measured half-hourly fluxes aggregated across the intermittent ice-on 548 

period in winter 2021 and the continuous ice-on period in winter 2022, there were statistically-549 

significantly higher median CO2 and CH4 fluxes measured during intermittent ice-on than 550 

continuous ice-on (Kruskal-Wallis p<0.0001; Fig. 5; Table S10). During intermittent ice-on in 551 

winter 2021, median CO2 fluxes were 0.71 μmol m-2 s-1, 2.5× higher than the median of 0.28 552 

μmol m-2 s-1 during continuous ice-on in 2022. For CH4, median fluxes were 0.001 μmol m-2 s-1 553 

and -0.001 μmol m-2 s-1, during intermittent ice-on and continuous ice-on, respectively (Table 554 

S10). Throughout the winter period, mean daily CO2 and CH4 fluxes were much lower and less 555 

variable than in the summer, for both years (Fig. 2, 3).  556 
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 557 

Figure 5. Mean daily fluxes during the winter of 2021 for A. Carbon dioxide (CO2, µmol m-2 s-1) 558 

and B. Methane (CH4 µmol m-2 s-1) during intermittent ice-on. Mean daily fluxes during winter 559 

of 2022 for C. CO2 and D. CH4 during near-continuous ice-on. Grey dots represent measured 560 

half-hourly fluxes while the solid red line indicates mean daily fluxes. The shaded red area 561 

corresponds to the standard deviation (±1 S.D.) of the daily mean fluxes. The blue vertical 562 

dashed lines correspond to the start of either intermittent or near-continuous ice-on for winter 563 

2021 and 2022, respectively, while the red vertical dashed lines correspond to the start of 564 

complete ice-off. The black dashed line in 2021 corresponds to spring mixing (first day after ice-565 

off when the temperature at 1 m and 8 m was < 1oC). For 2022, spring mixing was on the same 566 

day as ice-off. Boxplots of measured E. CO2 and F. CH4 fluxes during each winter’s intermittent 567 

or continuous ice-on, respectively. For each box plot, the median is represented as the bold line 568 

while the 25th and 75th percentiles are represented as the bottom and top of the box, respectively. 569 

The whiskers represent minimum and maximum values (1.5× interquartile range). Points 570 

represent all half hourly fluxes measured during the respective winter intermittent or continuous 571 

ice-on, respectively period. The dashed horizontal line corresponds to zero fluxes. Asterisks 572 
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indicate statistically significant differences between median half-hourly fluxes measured during 573 

intermittent (2021) and continuous (2022) ice-on periods using Mann-Whitney-Wilcoxon tests (α 574 

= 0.05). 575 

3.5     Net CO2 and CH4 balance for a small, eutrophic reservoir 576 

 Gap-filled CO2 and CH4 half-hourly fluxes summed across the entire year indicate that 577 

FCR was an overall source of CO2 and CH4 to the atmosphere (Fig. 6). According to gap-filled 578 

EC fluxes, FCR released 633 and 731 g CO2-C m-2 year-1, during the first and second years of the 579 

study, respectively. For gap-filled CH4 fluxes, FCR released 1.02 and 1.29 g CH4-C m-2 year-1, 580 

respectively. Although substantial gap-filling was needed, the gap-filled and measured data 581 

yielded similar estimates when the measured data were scaled by the percentage of missing data 582 

from the measured time series (Fig. S12).      583 

The annual GHG balances were driven by large fluxes of CO2 and CH4 during the 584 

summer. Net emissions during the warmest months (June – September; 375 and 496 g CO2-C m-2 
585 

for year 1 and year 2, respectively) represented up to 68% of the total annual net CO2 flux as 586 

compared to the coldest months (December – March) when only 98 and 57 g CO2-C m-2 was 587 

emitted (up to 15% of the total annual CO2). Similarly, for CH4, up to 66% of the total annual net 588 

CH4 flux was released during the warmest months (June – September; 0.67 and 0.76 g CH4-C m-
589 

2) and less than 1% during the coldest months (December – March). For the second year of 590 

monitoring, annual fluxes were greater for both CO2 and CH4, largely due to elevated fluxes in 591 

early and late fall (September – November). Cumulatively, the amount of CO2-C released from 592 

FCR was three orders of magnitude greater than the mass of CH4-C released.  593 
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 594 

Figure 6. Annual cumulative fluxes using measured and gap-filled eddy covariance (EC) data 595 

for A. carbon dioxide (CO2, g C m-2) and B. methane (CH4, g C m-2) from Falling Creek 596 

Reservoir for Year 1 (May 2020-April 2021; pink) and Year 2 (May 2021-April 2022; dark red). 597 

Shaded areas correspond to the aggregated standard deviation (±1 S.D.) of measurements. The 598 

horizontal dashed line corresponds to zero and the vertical dotted line indicates reservoir fall 599 

turnover for both years. 600 

 601 

4 Discussion 602 

This study provides the first annual-scale, multi-year estimates of both CH4 and CO2 603 

fluxes using an EC system from a small reservoir. While using EC systems in small freshwaters 604 

is inherently challenging and contains several limitations, our work reveals variable patterns in 605 

both CO2 and CH4 fluxes over sub-daily to seasonal scales that set the stage for future work. Our 606 

study was limited by low levels of measured data, underscoring the need for more accurately 607 

quantifying the GHG contributions of small reservoirs on multiple timescales. Despite these 608 

challenges, however, our data suggest that FCR was a substantial CO2 and CH4 source to the 609 

atmosphere on multiple timescales. Below we discuss some of the challenges of using an EC 610 

system in small freshwaters as well as the patterns and potential drivers of variability in fluxes 611 

(CO2 and CH4) over multiple timescales, including during winter ice-cover.  612 
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4.1 Variability in sub-daily fluxes, with higher dawn than dusk CO2 fluxes  613 

 A key advantage of an EC system is the ability to capture variability in sub-daily GHG 614 

fluxes throughout the year. Despite data gaps and limitations, the fluxes collected by the EC 615 

represent a substantial increase in the ability to identify variability in GHG fluxes at multiple 616 

timescales. Our work complements previous studies of freshwater systems using EC 617 

measurements that observed high sub-daily variability in both summer CO2 (Liu et al. 2016; 618 

Golub et al. 2021; Shao et al. 2015) and CH4 fluxes (Eugster et al. 2011; Podgrajsek et al. 2014; 619 

Taoka et al. 2020; Waldo et al. 2021) and furthers our understanding of the variability of CO2 620 

and CH4 fluxes on multiple timescales.  621 

When comparing day (11:00 to 13:00) versus night (23:00 to 01:00) fluxes, we observed 622 

no statistically significant differences between CO2 or CH4 fluxes using measured EC fluxes 623 

aggregated over the two-year monitoring period (Fig. 4; Table S6). When repeating this analysis 624 

separately among seasons, we did observe a statistically significant difference between day and 625 

night for CH4 fluxes during the winter, but that was the only season where statistical differences 626 

were detected (Table S11). Similarly, studies in a small Finnish lake also found no evidence for 627 

diel differences in CO2 fluxes (Erkkiliä et al. 2018; Mammarella et al. 2015), while Waldo et al. 628 

(2021) found diel differences in CH4 fluxes on only 18.5% of days out of a 2-year study period. 629 

Other studies, however, have observed more consistent diel patterns in GHG fluxes. For 630 

example, some studies have shown higher CH4 fluxes during the night in lakes and reservoirs 631 

(Eugster et al. 2011; Podgrasjek et al. 2014; Waldo et al. 2021) and higher CO2 fluxes at night in 632 

streams (Attermeyer et al. 2021; Gómez-Gener et al. 2021). On the other hand, some studies 633 

observed higher CH4 fluxes during the day as compared to night (Erkkiliä et al. 2018; Jammet et 634 

al. 2017; Podgrasjek et al. 2016; Sieczko, et al. 2020). Our results are contrary to our predictions, 635 

in which we expected statistically higher CO2 fluxes during the day due to significantly higher 636 

wind speeds. We hypothesize that higher concentrations of dissolved CO2 in the surface waters 637 

at night, due to decreased primary productivity and elevated microbial respiration or convective 638 

mixing of deeper waters with higher dissolved GHG concentrations (Liu et al. 2016; Fig. S13), 639 

were not efficiently transferred to the atmosphere at the low observed nightly wind speeds, 640 

resulting in similar flux magnitudes during both day and night. Clearly, there is a range of 641 

responses to diel variation among lake and reservoir CO2 and CH4 fluxes, and more work is 642 
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needed to identify when, where, and why lakes and reservoirs may emit differential GHGs 643 

during day vs. night. 644 

While we did not observe statistically significant differences between GHG fluxes 645 

measured during the day as compared to night, we did observe statistically significantly higher 646 

CO2 fluxes at dawn (05:00 to 07:00) as compared to dusk (17:00 to 19:00), but no difference in 647 

dawn vs. dusk CH4 fluxes over the full study period (Fig. 4). Similarly, studies conducted in 648 

other lakes also found CO2 flux minima during the late afternoon (~18:00) and CO2 flux maxima 649 

during the early morning (~06:00; Liu et al. 2016; Shao et al. 2015), supporting our observations 650 

of higher dawn CO2 fluxes. Liu et al. (2016) hypothesized the lower CO2 fluxes observed during 651 

the day (~18:00) were likely a result of elevated primary productivity during the afternoon, 652 

primarily in the summer months, but could have also been due to convective mixing in the water 653 

column at night.  654 

 Altogether, our results provide additional evidence that the time of sample collection has 655 

important implications for upscaling freshwater GHG fluxes to longer timescales (Attermeyer et 656 

al. 2021; Gómez-Gener et al. 2021). A previous study conducted in FCR which estimated CO2 657 

and CH4 diffusive fluxes using discrete GHG measurements collected at ~noon concluded FCR 658 

was often a small CO2 sink during the summer stratified period in 2015-2016 (McClure et al. 659 

2018), whereas our diel EC data indicate that FCR was an overall CO2 source throughout the 660 

summer in both 2020 and 2021. While the flux magnitudes measured by McClure et al. (2018) 661 

were similar to the present study, the overall conclusions were different due to the temporal 662 

resolution of sample collection.  663 

4.2 Important role of water temperature and thermocline depth in constraining daily, 664 

weekly, and monthly CO2 and CH4 fluxes 665 

 Following our analysis of CO2 and CH4 fluxes over daily to seasonal timescales, we then 666 

used time-series analysis to test the potential effects of various limnological variables on GHG 667 

fluxes. Specifically, ARIMA results show that surface water temperature was positively 668 

correlated with both CO2 and CH4 fluxes at the daily, weekly, and monthly timescales (Table 1). 669 

These results were supported by higher fluxes of both CO2 and CH4 observed during the warmer 670 

summer months when aggregated to daily, weekly, and monthly timescales (Fig. 2, 3, S8). 671 
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Strong positive correlations between GHG fluxes (both CO2 and CH4) and water temperature 672 

have been observed in several freshwater ecosystems, especially on longer timescales, with clear 673 

differences between summer and winter fluxes (monthly to seasonally; Eugster et al. 2011; Reed 674 

et al. 2018; Taoka et al. 2020). Higher GHG fluxes were expected during the summer as 675 

compared to winter, due to elevated rates of biological respiration stimulated by higher 676 

temperatures in both the surface and deep waters (Fig. S13). Generally, water column dissolved 677 

GHG concentrations increased throughout the summer period (Fig. S13). In the surface waters, 678 

dissolved CH4 concentrations generally peaked in July, while dissolved CO2 concentrations 679 

increased throughout the summer and peaked around fall turnover. 680 

In addition to temperature, thermocline depth was also identified as an important 681 

environmental parameter controlling both CO2 and CH4 fluxes. For CO2 fluxes, thermocline 682 

depth was negatively associated with fluxes at all timescales, indicating higher CO2 fluxes when 683 

the thermocline was shallower. Generally, thermocline depth was shallower in the late summer 684 

(Fig. S7) when CO2 fluxes were observed to be greatest and most variable in FCR. This pattern 685 

may be indirectly related to water temperature, as shallower thermocline depths were weakly, 686 

negatively associated with warmer water temperatures, and there was a strong positive 687 

relationship between CO2 fluxes and water temperature, as discussed above.  688 

Conversely, thermocline depth was positively correlated with CH4 fluxes at all timescales 689 

(daily, weekly, monthly), indicating higher CH4 fluxes when the thermocline depth was deeper, 690 

which was generally observed during the late summer and early fall as mixing increased (Fig. 691 

S7). Previous studies have suggested water column mixing is an important control on CH4 692 

fluxes, leading to higher fluxes during convective and wind-driven mixing when high dissolved 693 

concentrations of CH4 accumulated in the deeper waters are mixed to the surface, which would 694 

be more common when the thermocline depth is deeper (Sieczko et al. 2021). We did observe 695 

elevated dissolved CH4 concentrations in the metalimnion (3.8 - 5 m), particularly in the late 696 

summer and early fall when the thermocline started to deepen (Fig. S7, S13), which was likely 697 

mixed into the surface waters and contributed to reservoir CH4 fluxes, as observed previously in 698 

FCR by McClure et al. (2018). However, we do not know the extent of methanotrophy in 699 

converting dissolved CH4 to CO2 prior to emissions. While we also observed elevated dissolved 700 

CO2 concentrations at similar depths during the late summer and early fall, we might expect 701 
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elevated primary production observed at this same time (Fig. S6) reduced overall fluxes of CO2 702 

from the reservoir. Additional research is needed to specifically link water column dissolved 703 

GHG concentrations and water column processes with atmospheric emissions. 704 

 Following temperature and thermocline depth, fDOM was identified as a key positive 705 

environmental predictor for CO2 fluxes at all timescales (daily, weekly, monthly; Table 1). A 706 

similar positive relationship between terrestrially-derived DOM and dissolved CO2 was 707 

identified in 48 Canadian streams (D’Amario and Xenopoulos, 2015). As fDOM sensors are 708 

thought to mainly capture allochthonous DOM (Howard et al. 2021; Watras et al. 2015), this 709 

finding suggests that allochthonous DOM from the reservoir’s primary inflow stream or diffuse 710 

overland flow may result in elevated CO2 emissions from freshwater ecosystems as 711 

allochthonous DOM is converted to CO2 during respiration. This follows previous research 712 

which has identified allochthonous carbon inputs and associated DOC concentrations as 713 

important predictors of CO2 fluxes in lakes and reservoirs (Barros et al. 2011; Sobek et al. 2005). 714 

Unlike for CO2, fDOM was only identified as an important environmental predictor for CH4 715 

fluxes at shorter timescales (daily, weekly). In an analysis of >300 lakes, Sanches et al. (2019) 716 

found a strong positive relationship between dissolved organic C and diffusive CH4 fluxes, 717 

suggesting dissolved organic C availability for methanogenesis may play an important role in 718 

constraining CH4 fluxes across multiple lakes and timescales. The strong positive correlation 719 

between CH4 fluxes and fDOM observed here further indicates that dissolved organic C, as a 720 

proxy from fDOM (Howard et al. 2021), may also be important at the local scale on short-721 

timescales. 722 

 In addition to these overarching patterns, several environmental parameters were 723 

intermittently important for various timescales for either CO2 or CH4 fluxes. CO2 fluxes were 724 

positively correlated with inflow at shorter timescales (daily, weekly) while CH4 fluxes were 725 

negatively correlated with inflow but only at longer timescales (weekly, monthly; Table 1). 726 

Following the positive relationship between CO2 fluxes and fDOM, we hypothesize the positive 727 

relationship with inflow reflects the importance of allochthonous DOM delivery to FCR via the 728 

primary inflow and diffuse overland flow, which suggests a potentially labile source of 729 

allochthonous DOM to the reservoir via the primary inflow. Pearson correlation analysis, 730 

suggests fDOM and inflow were weakly correlated at these timescales (daily, weekly; ρ = 0.13, 731 
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0.11, respectively), but was weakly negatively correlated at longer timescales (monthly, ρ = -732 

0.03; Table S4). Previous research examining CH4 fluxes from FCR have found similar negative 733 

relationships between inflow and CH4 fluxes, especially via ebullition in the upstream, littoral 734 

portion of the reservoir (McClure et al. 2020). Results from this study suggest inflow is similarly 735 

correlated with CH4 fluxes at the deepest point of the reservoir, primarily on longer timescales 736 

(weekly, monthly). Finally, Chl-a was negatively associated with CO2 fluxes at the daily 737 

timescale while DO sat. was negatively associated with CO2 fluxes at the weekly timescale 738 

(Table 1). Both of these relationships suggest a coupling between high primary production, as 739 

indicated by high Chl-a and high DO Sat., and low CO2 fluxes on shorter timescales (daily, 740 

weekly). Previous studies have identified a weak negative relationship between primary 741 

production and CO2 fluxes on the sub-daily timescale in other eutrophic, freshwater lakes and 742 

reservoirs (Liu et al. 2016; Shao et al. 2015).      743 

4.3 Role of fall turnover and ice cover in affecting GHG dynamics 744 

 Contrary to previous studies conducted in both FCR and other thermally-stratified 745 

waterbodies (e.g., Erkkiliä et al. 2018; McClure et al. 2018; 2020), we observed low CO2 and 746 

CH4 fluxes during the days surrounding fall turnover for both years (1 November 2020; 3 747 

November 2021), when EC data indicate that FCR was a small to negligible CO2 and CH4 source 748 

(Fig. 2, 3, S9). Discrete diffusive fluxes measured on the day of fall turnover suggest FCR was a 749 

4x and 14x larger CO2 source than fluxes measured with the EC, in years 1 and 2 respectively 750 

(Figs. 2, S9). Similar to CO2, we found the magnitude of CH4 fluxes decreased following fall 751 

turnover but remained a small source (Fig. 3, S9). McClure et al. (2018) observed episodic 752 

release of CH4 from FCR during the weeks prior to fall turnover as high concentrations of 753 

dissolved CH4 that had accumulated in the middle of the water column, due to the formation of a 754 

metalimnetic oxygen minimum, were emitted during wind-mixing. In the weeks prior to fall 755 

turnover, we did observe elevated CH4 emissions in both years (Figs. 3, S9), supporting this 756 

observed mechanism (McClure et al. 2018; Fig. S13), and decreasing the importance of fall 757 

turnover as a single pulse of emissions. For CO2, similar increases in dissolved CO2 758 

concentrations were observed in the metalimnion during the same time period, but as suggested 759 

above, the release of this CO2 to the atmosphere was likely mitigated by primary production in 760 

the surface waters.  761 
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 Importantly, this study provides some of the first near-continuous flux measurements of 762 

both CO2 and CH4 during winter, including during intermittent and continuous ice-on conditions 763 

(Fig. 5). Overall, the annual GHG balance was driven by large fluxes of CO2 and CH4 during the 764 

summer, as CO2 and CH4 fluxes were 3× and 23× greater, respectively, during the summer 765 

stratified period (April – October) as compared to the winter and early spring (November – 766 

March; Fig. 6). However, we do note that we observed significantly higher CO2 and CH4 fluxes 767 

during intermittent ice-on when there is likely more air-water gas exchange as compared to 768 

continuous ice-on (p<0.001; Fig. 5; Table S10), which would physically limit air-water gas 769 

exchange, thereby demonstrating the importance of annually-variable, winter ice dynamics to 770 

seasonal GHG fluxes. Of the studies that report GHG fluxes during continuous ice-on, all report 771 

low fluxes with low variability (A.K. Baldocchi et al. 2020; Jammet et al. 2015, 2017; Reed et al. 772 

2018), similar to the winter with continuous ice-on at FCR. Interestingly, these studies also noted 773 

high fluxes immediately following ice-off for both CO2 and CH4 due to accumulation of 774 

dissolved CO2 and CH4 under the ice from aerobic and anaerobic microbial respiration 775 

(Anderson et al. 1999; A.K. Baldocchi et al. 2020; Gorsky et al. 2021; Jammet et al. 2015, 2017; 776 

Podgrajsek et al. 2015; Takoa et al. 2020), which was not observed at FCR. Unlike these 777 

previous studies, which were largely conducted in northern lakes which are frozen for months at 778 

a time, FCR is a more temperate system which only periodically freezes for a few days to weeks 779 

at time (Carey and Breef-Pilz, 2022). We hypothesize that the brief continuous ice-cover 780 

observed at FCR during winter 2022 (25 days) was not long enough to promote extensive 781 

accumulation of dissolved GHGs under ice, as observed by the other studies. Further work on the 782 

effect of ice cover on GHG fluxes is needed, but our comparison of intermittent ice-on vs. 783 

continuous ice-on suggests that the increasing intermittent ice-cover being experienced in many 784 

lakes worldwide (Imrit and Sharma, 2021; Sharma et al. 2021; Woolway et al. 2020) will likely 785 

increase winter GHG fluxes. These increases may be due to both greater continuous exchange of 786 

GHGs across the air-water interface and increased rates of microbial respiration under higher 787 

winter temperatures. 788 

4.4 Much higher annual CO2 emissions from FCR than other studied reservoirs 789 

 When scaling fluxes to the full year, FCR was a much smaller annual CH4 source (1.02-790 

1.29 g m-2 yr-1), yet a larger CO2 source (633-731 g m-2 yr-1; Figs. 5, S12), than other reservoirs 791 
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reported in the literature to date (A.K. Baldocchi et al. 2020; Deemer et al. 2016; Golub et al. 792 

2021). While the total magnitude of CO2 emissions from FCR was greater than most studies, 793 

Golub et al. (2021) similarly found that data from 12 lakes and reservoirs over multiple years 794 

emitted substantial amounts of CO2 in their synthesis of EC measured CO2 fluxes in freshwaters 795 

(13.6 - 224 g C m-2 yr-1), except for one reservoir during one year which had a CO2 flux of -53.6 796 

g C m-2 yr-1. As compared to other reservoirs with GHG flux data, FCR is old (>100 years old) 797 

which may lead to lower GHG emissions, particularly for CH4 fluxes, likely as a result of 798 

reduced supply of organic matter substrate in the sediments as the reservoir ages (Barros et al. 799 

2011; McClure et al. 2020; Prairie et al. 2018).     800 

Despite its age, however, FCR was a much larger CO2 source as compared to other lakes 801 

and reservoirs. The CO2 emissions were consistently high among years, suggesting that FCR 802 

may be a greater source of CO2 than most terrestrial environments (-750 to 250 g C m-2 yr-1 for 803 

multi-year, undisturbed terrestrial sites; D.D. Baldocchi et al. 2020). Comparisons between years 804 

suggest that slightly higher annual fluxes of CO2 and CH4 in the early to late fall (September - 805 

November) of the first monitoring year as compared to the second year may be related to slightly 806 

higher mean air temperatures or lower inflow levels (and corresponding longer hydraulic 807 

residence times), though this remains unknown. We note that these cumulative fluxes are likely 808 

conservative, as there were substantial gaps in measured EC fluxes during year 1, particularly in 809 

August 2020, likely resulting in underestimated measured fluxes during this time of year when 810 

fluxes are usually highest (Fig. 6, S12). Multiple meteorological, biological, and environmental 811 

processes likely contributed to the higher observed annual CO2 fluxes as compared to other lakes 812 

and reservoirs. Additional studies comparing GHG fluxes from multiple reservoirs 813 

simultaneously are needed to identify these variables.       814 

4.5 Challenges of using EC systems in small, freshwater lakes and reservoirs 815 

 While the study described here greatly expands the temporal frequency of measured CO2 816 

and CH4 fluxes from a small reservoir, several caveats must be taken into consideration. EC 817 

systems are notoriously difficult to use in freshwater ecosystems due to footprint considerations 818 

(Vesala et al. 2006), frequent occurrences of low u* values, particularly at night (Vesala et al. 819 

2006; Scholz et al. 2021), as well as general considerations resulting in high percentages of data 820 
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removed due to these and other issues (yielding data coverage of 10 – 40%; e.g., A.K. Baldocchi 821 

et al. 2020; Erkkiliä et al. 2018; Huotari et al. 2011; Ouyang et al. 2017; Shao et al. 2015; Waldo 822 

et al. 2021; Table S1). While low data coverage was common in the current study, data gaps 823 

were relatively consistent across timescales (daily to seasonally) to ensure unbiased data. 824 

Furthermore, compared to the temporal frequency of many grab sample methods (i.e., samples 825 

measured weekly, biweekly, or monthly), the data coverage of the EC system is still a substantial 826 

improvement and more accurately captures fluxes across multiple timescales challenging to 827 

sample, such as at night, during winter ice-cover, and during episodic events, such as fall 828 

turnover. Importantly, we note that standard gap-filling routines for EC flux data collected from 829 

freshwater ecosystems (i.e., lakes and reservoirs) do not currently exist. We applied gap-filling 830 

routines originally developed for terrestrial ecosystems (Wutzler et al. 2018) to FCR to better 831 

estimate annual scale fluxes, which is still a substantial improvement over traditional grab 832 

sampling methods. 833 

While strict filtering processes were enacted to limit non-local fluxes (i.e., filtering fluxes 834 

when the along-wind distance providing 90% of the cumulative contribution was outside the 835 

reservoir), we are unable to completely rule out potential non-local processes (e.g., land-lake 836 

interactions) which occur outside the footprint and are entrained or advected into the EC 837 

footprint area (Esters et al. 2020; Vesala et al. 2006, 2011; Fig. S2). These processes may be 838 

particularly important in small freshwaters located in mountainous regions (Scholz et al. 2021). 839 

For example, Scholz et al. (2021) found reduced nighttime CO2 emissions due to low wind 840 

speeds and CO2 sinking from the land to the lake surface at night in a mountainous Swiss lake. 841 

While the topography at FCR is not as extreme, similar processes may be occurring at FCR, 842 

though at a smaller scale. In addition, based on studies conducted in similar terrestrial 843 

ecosystems, we might expect negative CO2 fluxes in the summer followed by substantial CO2 844 

emissions in the fall and winter; however, these patterns were not observed in FCR, suggesting 845 

the majority of fluxes measured in this study likely originated in the reservoir. When considered 846 

and interpreted cautiously, the data collected by the EC system provides a far more 847 

comprehensive time series than what is possible from discrete measurements (Anderson et al. 848 

1999; Eugster 2003; Houtari et al. 2011; Jonsson et al. 2008; Scholz et al. 2021), which is critical 849 

for increasing our understanding of GHG fluxes from small reservoirs on multiple temporal 850 

scales.  851 
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Finally, comparisons with diffusive grab samples suggest fluxes measured with the EC 852 

system were consistently higher than those estimated with diffusive grab samples, especially for 853 

CO2 (Fig 2, S11), which is consistent with previous studies (Scholz et al. 2021, and references 854 

therein). Conversely, CH4 fluxes calculated using the discrete diffusive methods were more 855 

comparable to those measured by the EC system (Fig. 3, S11). Discrepancies between EC 856 

measured fluxes and diffusive grab samples may be a result of the different spatial resolution of 857 

the two methods, where the EC system is measuring fluxes both at the deepest point of the 858 

reservoir in addition to upstream and littoral portions of the reservoir while diffusive grab 859 

samples were only collected at the deepest point of the reservoir (Fig. 1; Scholz et al. 2021). 860 

Indeed, several studies have observed higher CO2 and CH4 fluxes in the littoral zone, closer to 861 

the shore, which would have been encompassed in the measured EC fluxes but not the diffusive 862 

grab samples (Erkkiliä et al. 2018; Scholz et al. 2021; Taoka et al. 2020). A comparison of CH4 863 

fluxes on an inflow to dam transect at FCR observed substantially higher fluxes in the littoral 864 

zone, supporting this pattern (McClure et al. 2020). 865 

 866 

5 Conclusions 867 

Overall, we observed FCR to be a source of CO2 and CH4 to the atmosphere on annual 868 

timescales. Given the limitations of gap-filling, our calculated annual fluxes (~633-731 g CO2-C 869 

m-2 yr-1; ~1.02-1.29 g CH4-C m-2 yr-1) are only estimates, however, we note their remarkable 870 

consistency between years. Importantly, by measuring fluxes near-continuously for a full year, 871 

we found winter fluxes (December-March) of both CO2 and CH4 to be comparatively smaller 872 

(15-25% and <1% of total annual fluxes, respectively) than the summer stratified period (June - 873 

September) yet still important for annual GHG fluxes. In addition, measuring GHG fluxes during 874 

two winters with contrasting ice-cover, showed significantly higher CO2 and CH4 fluxes during 875 

intermittent as compared to continuous ice-on. Finally, we identified surface water temperature, 876 

thermocline depth, and several other environmental variables (fDOM, inflow) as important 877 

drivers of both CO2 and CH4 fluxes on multiple timescales. Altogether, our results suggest that 878 

CO2 and CH4 are highly dynamic on multiple temporal scales and highlight the role of small 879 

reservoirs as important GHG sources in global budgets. Ultimately, efforts to scale up small 880 

reservoir CO2 and CH4 emissions will need to consider how the environmental processes that 881 
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drive C dynamics in small reservoirs may differ from larger waterbodies, which in turn could 882 

alter reservoir fluxes. Given the ubiquity of small (<1 km2) reservoirs in the landscape, 883 

quantifying their contributions to the global C cycle is paramount, especially given that our study 884 

suggests that they may emit more CO2 and CH4 than would be expected from their surface area. 885 
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The eddy covariance dataset and associated QA/QC code for this study can be found in the 902 

Environmental Data Initiative (EDI) repository via 903 

https://doi.org/10.6073/pasta/a1324bcf3e1415268996ba867c636489 and https://portal-904 

s.edirepository.org/nis/mapbrowse?packageid=edi.920.2 (Carey et al. 2022a). Additionally, code 905 

used for the timeseries and ARIMA analyses are archived at https://10.5281/zenodo.742001 906 

(Zenodo; Hounshell et al. 2022). Additional datasets including the meteorological data set 907 

(https://portal-s.edirepository.org/nis/mapbrowse?packageid=edi.143.17, Carey et al. 2022c), 908 

limnological dataset (https://doi.org/10.6073/pasta/81c6c76f4fe22434a20aa8c00f2d4ad1 and 909 

https://doi.org/10.6073/pasta/a1324bcf3e1415268996ba867c636489
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https://portal-s.edirepository.org/nis/mapbrowse?packageid=edi.518.11, Carey et al. 2022d), 910 

inflow discharge (https://doi.org/10.6073/pasta/c65755d4c0102dde6e3140c1c91b77d6 and 911 

https://portal-s.edirepository.org/nis/mapbrowse?packageid=edi.923.1, Carey et al. 2022e), ice-912 

cover (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.456.4, Carey and Breef-913 

Pilz, 2022), and dissolved discrete grab greenhouse gas concentrations 914 

(https://doi.org/10.6073/pasta/2fb836492aace4c13b7962f2718be8e5 and https://portal-915 

s.edirepository.org/nis/mapbrowse?scope=edi&identifier=928&revision=3, Carey et al. 2022b) 916 

are also archived in the EDI. All data (2020-2022) are available for review in the EDI staging 917 

environment and will be published following manuscript acceptance. All data through 2021 have 918 

been published to EDI and are available under the Creative Commons License - Attribution.   919 
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Fig. S1. Water residence time (days, d) plotted for A. Year 1 (May 2020-April 2021) and B. 

Year 2 (May 2021-April 2022). The vertical dashed line represents fall turnover for each 

year. The horizontal dashed lines correspond to the mean and median, respectively (Year 

1: mean = 148 d, median = 71 d; Year 2: mean = 347 d, median = 383 d). 
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Figure S2. Cumulative footprint for fluxes retained for analysis during the two years of 

eddy covariance (EC) fluxes measured from Falling Creek Reservoir following methods in 

Kljun et al. (2015). The 10-80% isolines are plotted as red circles around the EC system 

(denoted as the black plus-sign). Additional data filtering was conducted to remove 

fluxes within the 80% isoline which originated over land. 
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Figure S3. Barplot of average percent of data availability for A. carbon dioxide (CO2) and 

B. methane (CH4) fluxes distributed throughout the day (half-hourly from 0:00 to 23:30).  
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Figure S4. Windrose of all measured windspeed and direction during the study period 

separated by A. Day (shortwave radiation in > 0 W m2) and B. Night (shortwave radiation 

in < 0 W m2) collected from the meteorological stations deployed at the dam. 
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Figure S5. Barplot of average percent of data availability for A. carbon dioxide (CO2) and 

B. methane (CH4) fluxes distributed throughout each month and year of the study period.  
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Figure S6. Environmental variables measured during the study period, including A. 

Surface Water Temperature (Temp, oC) measured at 0.1 m below the surface; B. Dissolved 

oxygen (DO, percent saturation, %) measured at 1.6 m; C. Chlorophyll-a (Chl-a, µg L-1) 
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measured at 1.6 m; and D. fluorescent dissolved organic matter (fDOM, Relative 

Fluorescence Units, RFU) measured at 1.6 m. Solid black lines represent the daily mean 

while the light grey points represent individual measurements made every 15 minutes 

for inflow and every 10 minutes for all other variables. The dashed vertical black line 

indicates reservoir fall turnover for both years. 
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Figure S7. Environmental variables measured during the study period, including A. 

Inflow (m3 s-1) measured at the primary inflow to Falling Creek Reservoir; B. Buoyancy 

frequency (N2) calculated from thermal profiles at the deepest point in the reservoir; C. 
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The temperature difference (Temp Diff., oC) measured from the surface (0.1 m) and 

bottom (9 m) at the deepest point of the reservoir; and D. Thermocline depth (Depth, m) 

calculated from thermal profiles deployed at the deepest point of the reservoir. Solid 

black lines represent the daily mean while the light grey points represent individual 

measurements made every 15 minutes for inflow and every 10 minutes for all other 

variables. The dashed vertical black line indicates reservoir fall turnover for each year. 
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Figure S8. A. Mean weekly carbon dioxide fluxes (CO2, µmol m-2 s-1) and B. mean weekly 

methane fluxes (CH4, µmol m-2 s-1) aggregated from measured eddy covariance data 

from 1 May 2020 to 30 April 2021 in Falling Creek Reservoir plotted as a red line with 

dots. The red shaded area corresponds to the standard deviation (±1 S.D.) of aggregated 

fluxes for both measured and gap-filled values. Black dots represent measured half-

hourly fluxes. The vertical dashed line corresponds to reservoir fall turnover for each year.  
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Figure S9. Mean daily A., B. Carbon dioxide (CO2, µmol m-2 s-1) and C., D. Mean daily 

methane fluxes (CH4 µmol m-2 s-1) for 2020 and 2021, respectively, around reservoir fall 

turnover (01 November 2021 and 03 November 2022, respectively). Mean daily wind is 

also plotted for E. 2020 and F. 2021. Grey dots represent measured half-hourly fluxes 

from the EC system (CO2, CH4) and the meteorological station deployed at the dam of 

Falling Creek Reservoir (Wind speed). The dark red line represents daily mean fluxes or 

wind speed. The shaded red area represents ±1 standard deviation of the daily 30-

minute fluxes or wind speed. The vertical dotted line indicates reservoir fall turnover. 
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Figure S10. Discrete diffusive fluxes calculated for A. carbon dioxide (CO2, µmol m-2 s-1) 

and B. methane (CH4, µmol m-2 s-1) during the study period (1 May 2020 to 30 April 2022) 

using multiple gas transfer coefficient models (k; Winslow et al. 2016; Cole and Caraco, 

1998; Crusius and Wannikof, 2003; Vachon and Prairie, 2013; MacIntyre et al. 2010; 

Heiskanen et al. 2014; Read et al. 2012; Soloviev et al. 2007). Points represent the mean 

of two replicates calculated for each k method and the error bars are the standard 

deviation (±1 S.D.). The dashed horizontal line indicates zero fluxes and the dotted 

vertical line corresponds to reservoir fall turnover on 1 November 2020 and 3 November 

2021, respectively. 
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Figure S11. Instantaneous mean diffusive fluxes compared to mean hourly fluxes 

obtained using the eddy covariance (EC) system for A. carbon dioxide (CO2, µmol m-2 s-1; 

n = 24 observations) and C. methane (CH4, µmol m-2 s-1; n = 21 observations). Standard 

deviation is plotted as grey bars for both mean diffusive fluxes estimated for two 

replicates using all k methods (see main manuscript text) and for mean hourly fluxes 

obtained using the EC. Results are also compared as boxplots for B. CO2 and D. CH4 

where the mean instantaneous fluxes are plotted as the grey points; the box represents 

the 25th and 75th percentiles; the median is represented as the bolded line; and the 

whiskers represent the minimum and maximum values (1.5x interquartile range). Dashed 

vertical and horizontal lines correspond to zero fluxes; the one-to-one line is plotted as a 

solid black line. 
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Figure S12. Annual cumulative fluxes for A. carbon dioxide (CO2, g C m-2) and B. 

methane (CH4, g C m-2) using measured eddy covariance fluxes from Falling Creek 

Reservoir for Year 1 (May 2020-April 2021; pink) and Year 2 (May 2021-April 2022; dark 

red). Shaded areas correspond to the aggregated standard deviation (±1 S.D.) of 

measurements. The horizontal dashed line corresponds to zero and the vertical dotted 

line indicates reservoir fall turnover for both years. Note: these cumulative fluxes only 

represent 22 and 24% of CO2 fluxes and 16 and 23% of CH4 fluxes measured directly 

using the EC system in year 1 and year 2, respectively. When upscaling to the full year, 

this would lead to 774 and 657 g CO2 m
-2 for year 1 and year 2 and 1.45 and 1.03 g CH4 

m-2, respectively. 
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Fig. S13. A. Water column dissolved methane (CH4, µmol m-2 s-1) plotted for multiple 

depths throughout the water column; B. Dissolved CH4 measured at the surface of the 

reservoir (0.1 m); C. Dissolved carbon dioxide (CO2, µmol m-2 s-1) measured at multiple 

depths; and D. dissolved CO2 measured at 0.1 m. All samples were collected at the 

deepest point of the reservoir located near the eddy covariance system (EC). The mean 

and standard deviation of two replicate samples are reported. The dashed, vertical line 

corresponds to fall turnover for Year 1 and Year 2. 
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Percent available 

CO2 fluxes (%) 

Percent available 

CH4 fluxes (%) 

Raw data available 84 73 

Removing fluxes from behind the dam (<80o and 

>250o) 59 52 

QA/QC* of fluxes, LE**, and H*** 39 33 

Removing fluxes outside of reservoir footprint 29 25 

Removing fluxes with low u* 23 19 

 

* QA/QC = Quality assurance/quality control 
** Latent energy flux 
*** Sensible heat flux 

 

Table S1. Percent of measured carbon dioxide (CO2) and methane (CH4) fluxes retained 

for analysis following data post-processing and various steps of data post-processing. 

See main manuscript for description of each post-processing step; all code is available in 

(Carey et al. 2022a). 
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 Start Date End Date 

Intermittent Ice on 10 January 2021 10 February 2021 

Intermittent Ice on 11 January 2022 14 January 2022 

Continuous Ice on 16 January 2022 10 February 2022 

 

Table S2. Start and end dates used to define intermittent ice-on and continuous ice-on 

periods during the winter for 2020-2021 and winter 2021-2022 in Falling Creek Reservoir 

(Carey and Breef-Pilz, 2022).  
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Parameter % Missing R2 r Linear equation 

Wind speed 12 0.60 0.78 EC = Met*0.50 + 0.19 

Air Temperature 39 0.97 0.98 EC = Met*0.95 - 1.01 

Sonic Air Temperature 39 0.97 0.98 EC = Met*1.03 - 0.56 

Relative Humidity 41 0.75 0.87 EC = Met*0.80 + 13.76 

 

Table S3. Meteorological variables derived from the eddy covariance (EC) system which 

were estimated with meteorological data obtained from the meteorological (Met) station 

deployed on the dam of Falling Creek Reservoir. The percent of missing data (% Missing) 

represents the percent of data missing from the EC system over the two-year monitoring 

period that was estimated from the meteorological data. The R2 is included for the linear 

relationship between the EC and Met data along with the linear equation used for 

estimation, r denotes Spearman rho correlation. Parameters include: wind speed (m s-1), 

air temperature (K), sonic air temperature (K), and relative humidity (%).  
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 Daily 

 DO % Sat. 
Chl-a 

(µg L-1) 

fDOM 

(RFU) 

Inflow 

(m3 s-1) 

Temp 

Diff. 
N2 

Thermo 

Depth 

(m) 

Surface Temp. (oC) 0.04 -0.54 0.30 0.02 0.94 0.91 -0.01 

DO % Sat.  0.10 0.01 0.39 0.12 0.00 -0.05 

Chl-a (µg L-1)   -0.18 -0.16 -0.53 -0.49 -0.02 

fDOM (RFU)    0.13 0.23 0.28 -0.05 

Inflow (m3 s-1)     0.14 -0.03 -0.18 

Temp Diff.      0.92 -0.17 

N2       -0.15 

 Weekly 

Surface Temp. (oC) 0.10 -0.52 0.18 0.06 0.95 0.93 0.16 

DO % Sat.  0.07 -0.07 0.39 0.17 0.06 -0.01 

Chl-a (µg L-1)   -0.25 -0.19 -0.52 -0.50 -0.07 

fDOM (RFU)    0.11 0.11 0.21 -0.09 

Inflow (m3 s-1)     0.14 0.00 -0.17 

Temp Diff.      0.95 0.01 

N2       -0.01 

 Monthly 

Surface Temp. (oC) 0.16 -0.68 0.23 0.03 0.96 0.95 0.03 

DO % Sat.  -0.15 -0.14 0.65 0.23 0.11 0.00 

Chl-a (µg L-1)   -0.45 -0.18 -0.68 -0.64 0.05 

fDOM (RFU)    -0.03 0.16 0.30 -0.04 

Inflow (m3 s-1)     0.13 0.01 -0.27 
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Temp Diff.      0.96 -0.12 

N2       -0.11 

 

Table S4. Correlations (Pearson’s rho) among environmental parameters identified for 

the ARIMA analyses, including surface temperature (surface temp., oC), percent dissolved 

oxygen saturation (DO % Sat.), chlorophyll-a (Chl-a, µg L-1), fluorescent dissolved organic 

matter (fDOM, relative fluorescence units, RFU), inflow (m3 s-1), temperature difference 

(Temp Diff.) between the surface (0.1 m) and bottom (9 m), and buoyancy frequency (N2). 

Highlighted boxes indicate environmental variables which were removed due to 

collinearity (rho>|0.70|). 
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Minimum 

(µmol m-2 s-1) 

Maximum 

(µmol m-2 s-1) 

Median 

(µmol m-2 s-1) 

Mean 

(µmol m-2 s-1) 

Standard Deviation 

(µmol m-2 s-1) 

Coefficient of 

Variation (%) 

CH4 

Measured 

EC 

-0.084 0.096 0.001 0.003 0.011 350.571 

 

Diffusive 

(Mean) 
-0.0059 0.0928 0.0020 0.0048 0.0074 154.62 

CO2 

Measured 

EC 
-39.46 52.67 0.79 1.86 6.21 334.21 

 

Diffusive 

(Mean) 
-1.24 17.50 0.11 0.38 1.22 325.66 

 

Table S5. Minimum, maximum, median, mean, standard deviation, and coefficient of variation for measured methane (CH4) and 

carbon dioxide (CO2) fluxes for the study period (1 May 2020 to 30 April 2022) obtained from the eddy covariance (EC) system and 

mean diffusive fluxes. Mean diffusive fluxes represent all diffusive methods.
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 25th Percentile Median 75th Percentile p-value 

 CO2 (µmol m-2 s-1) 

Day -0.44 1.05 3.91  

Night -0.60 1.03 3.48 0.093 

Dawn -0.07 1.34 4.37  

Dusk -0.66 -0.03 0.65 <0.001 

 CH4 (µmol m-2 s-1) 

Day -0.0017 0.0013 0.0079  

Night -0.0016 0.0011 0.0066 0.162 

Dawn -0.0027 0.0002 0.0052  

Dusk -0.0008 0.0014 0.0062 0.357 

 Wind (m s-1) 

Day 0.92 1.27 1.73  

Night 0.76 1.03 1.44 <0.001 

Dawn 0.95 1.24 1.64  

Dusk 0.87 1.23 1.67 0.003 

 

Table S6.  Diel (day/night) and dawn/dusk comparisons for measured eddy covariance 

(EC) fluxes for carbon dioxide (CO2, µmol m-2 s-1) and methane (CH4, µmol m-2 s-1) along 

with wind (m s-1). Day corresponds to measurements collected from 11:00 to 13:00 while 

night corresponds to 23:00 to 01:00 throughout the time period. Dawn corresponds to 

measurements collected from 05:00 to 07:00 and dusk corresponds to 17:00 to 19:00. 

Statistically significant differences (p < 0.05) based on paired Wilcoxon sign-rank tests 

are highlighted in grey. 
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 Year 1 Year 2 Total Study Period 

Mean Temp. (oC) 13.8 14.4 14.1 

Min. Temp. (oC) -9.93 -11.5  

Max. Temp. (oC) 35.1 35.0  

Mean Wind Speed 

(m s-1) 

2.00 1.97 1.99 

Max. Wind Speed 

(m s-1) 

9.28 11.2  

Dominant Wind 

Direction (o) 

191 199 198 

Total Rainfall (mm) 1438 790 2228 

 

Table S7. Various climatological variables calculated for Falling Creek Reservoir (FCR) for 

Year 1 (01 May 2020-30 April 2021), Year 2 (01 May 2021-30 April 2022), and the full 

study period calculated from the meteorological station deployed at the dam. 
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 Year 1 Year 2 Total Study Period 

Mean Surface Temp. (oC) 15.2 15.9 15.6 

Min. Surface Temp. (oC) 1.23 1.88  

Max. Surface Temp. (oC) 31.4 31.3  

Mean Chl-a (μg L-1) 11.5 12.3 11.9 

Min. Chl-a (μg L-1) 1.34 0.25  

Max Chla (μg L-1) 90.3 121  

Mean fDOM (RFU) 6.09 6.04 6.1 

Min. fDOM (RFU) 3.19 3.01  

Max. fDOM (RFU) 10.4 8.79  

Mean % DO 107 97.8 102 

Min. % DO 8.12 0  

Max. % DO 220 208  

Mean Inflow (m3 s-1) 0.056 0.013 0.034 

Min. Inflow (m3 s-1) 0.005 0.006  

Max. Inflow (m3 s-1) 0.27 0.20  

 

Table S8. Mean, minimum, and maximum calculated for key environmental variables 

from Falling Creek Reservoir during year 1 (May 2020 - April 2021) and year 2 (May 2021 

- April 2022) including: Surface temperature, Chlorophyll-a (Chl-a), fluorescent dissolved 

organic matter (fDOM, RFU), percent dissolved oxygen (% DO), and inflow. 



 

 

27 

 

GHG Order AR(1) MA(1) MA(2) 

Temp. 

Surf. (oC) 

% DO 

Sat. 

Chl-a 

(µg L-1) 

fDOM 

(RFU) 

Flow 

(m3 s-1) 

Thermo. 

(m) AICc RMSE  

 Daily 

CO2 
(1,0,0) 0.11     0.18   -0.17 0.07 0.08 -0.09 1281.69 0.97 

S.E.   0.05     0.07   0.06 0.05 0.05 0.05     

CO2 (1,0,0) 0.10   0.20 -0.07 -0.14 0.07 0.12 -0.09 1281.79 0.97 

S.E.   0.05     0.07 0.05 0.06 0.05 0.06 0.05     

CO2 (0,0,2)  0.11 0.05 0.20  -0.17  0.08 -0.09 1282.98 0.97 

S.E.     0.05 0.05 0.07   0.06   0.05 0.05     

CO2 (0,0,2)  0.10 0.04 0.22 -0.07 -0.15  0.11 -0.09 1283.35 0.97 

S.E.     0.05 0.05 0.07 0.05 0.06   0.06 0.05     

CH4 (0,0,0)       0.27     0.12   0.25 1213.36 1.02 

S.E.         0.05     0.05   0.05     

CH4 (0,0,0)    0.28 -0.04  0.12  0.25 1214.53 1.02 

S.E.         0.05 0.04   0.05   0.05     

CH4 (0,0,0)    0.28  0.02 0.12  0.25 1215.30 1.02 

S.E.         0.07   0.06 0.05   0.05     
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GHG Order AR(1) MA(1) MA(2) 

Temp. 

Surf. (oC) 

% DO 

Sat. 

Chl-a 

(µg L-1) 

fDOM 

(RFU) 

Flow 

(m3 s-1) 

Thermo. 

(m) AICc RMSE  

 Weekly 

CO2 (0,0,0)       0.64 -0.16   0.13 0.20 -0.19 183.00 0.63 

S.E.         0.07 0.07   0.07 0.08 0.07     

CO2 (0,0,0)    0.67 -0.17   0.19 -0.20 184.05 0.64 

S.E.         0.07 0.07     0.08 0.07     

CH4 (0,1,1)   -0.75   0.36     0.23 -0.36 0.24 184.13 0.64 

S.E.     0.09   0.15     0.10 0.13 0.08     

CH4 (0,1,1)  -0.65     0.28 -0.43 0.21 185.88 0.65 

S.E.     0.09         0.11 0.15 0.08     

 Monthly 

CO2 (0,0,0)       0.73     0.24   -0.31 42.58 0.48 

S.E.         0.10     0.10   0.10     

CO2 (0,0,0)    0.71 0.15  0.27  -0.32 43.55 0.45 

S.E.     0.10 0.10  0.10  0.10   

CO2 (0,0,0)       0.73     0.27 0.15 -0.26 43.88 0.46 

S.E.         0.10     0.10 0.10 0.10     

CH4 (0,0,1)   0.72   0.74       -0.26 0.21 38.85 0.41 
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S.E.     0.18   0.14       0.12 0.07     

 

Table S9. Best-fit results from Autoregressive Integrated Moving Average (ARIMA) showing the top selected model (lowest corrected 

Akaike Information Criterion, AICc < 2). Models are separated by greenhouse gas (GHG) flux as carbon dioxide fluxes (CO2) and 

methane fluxes (CH4) as well as by timescale (daily, weekly, monthly). Environmental predictors included: Surface temperature (Surface 

Temp, oC), dissolved oxygen saturation (DO Sat, %), Chlorophyll-a (Chl-a, µg L-1), fluorescent dissolved organic matter (fDOM, RFU), 

inflow discharge (Inflow, m3 s-1), and thermocline depth (Thermo. depth, m). Model order is specified as (p,d,q) where p is the order of 

the AR term, d is the order of the integration term, and q is the order of the MA term. Results for all models with 2 AICc of the best 

fitting model are included. The root mean square error (RMSE) is also reported for each model. Shaded model results are included in 

the main manuscript (Table 1). S.E. is the standard error.
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25th 

Percentile Median 

75th 

Percentile 

p-value 

 CO2 (µmol m-2 s-1) 

Intermittent ice-on (Year 1) 0.12 0.71 1.34 <0.001 

Continuous Ice-on  

(Year 2)  

-0.34 0.28 0.93  

 CH4 (µmol m-2 s-1) 

Intermittent ice-on (Year 1) -0.001 0.001 0.004 <0.001 

Continuous Ice-on  

(Year 2)  

-0.002 -0.001 0.000  

 

Table S10. 25th percentile, median, and 75th percentile reported measured eddy covariance 

(EC) data for carbon dioxide (CO2, µmol m-2 s-1) and methane (CH4, µmol m-2 s-1) fluxes during 

winter 2020-2021 (year 1) under partial ice-on (‘On’) and during winter 2021-2022 (year 2) under 

continuous ice-on. The Mann-Whitney-Wilcoxon test was used to identify medians which were 

statistically different. Statistically significant relationships are highlighted in grey. 
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 Season CO2 (µmol m-2 s-1) CH4 (µmol m-2 s-1) Wind (m s-1) 

  Mean p-value Mean p-value Mean p-value 

Day Spring 1.02  0.000  1.19  

Night Spring 0.82 0.77 0.001 0.57 0.97 0.01 

Day Summer 2.98  0.006  1.30  

Night Summer 3.14 0.07 0.004 0.12 0.97 <0.001 

Day Fall 0.79  0.005  1.30  

Night Fall 0.61 0.86 0.002 0.13 1.09 0.005 

Day Winter 0.68  -0.001  1.26  

Night Winter 0.61 0.32 0.000 0.03 1.23 0.10 

Dawn Spring 1.32  0.000  1.28  

Dusk Spring -0.25 <0.001 0.000 0.06 1.30 0.05 

Dawn Summer 3.55  0.005  1.19  

Dusk Summer -0.33 <0.001 0.005 0.24 1.08 0.002 

Dawn Fall 1.28  0.003  1.19  

Dusk Fall 0.10 0.002 0.004 0.48 1.43 0.76 

Dawn Winter 0.70  -0.002  1.35  

Dusk Winter 0.19 <0.001 0.000 0.04 1.31 0.07 

 

Table S11 Diel (day/night) and dawn/dusk comparisons for measured eddy covariance (EC) 

fluxes for carbon dioxide (CO2, µmol m-2 s-1) and methane (CH4, µmol m-2 s-1) along with wind (m 

s-1) for each season (Spring, March-May; Summer, June-August; Fall, September-November; 

Winter, December-February). Day corresponds to measurements collected from 11:00 to 13:00 

while night corresponds to 23:00 to 01:00 throughout the time period. Dawn corresponds to 

measurements collected from 05:00 to 07:00 and dusk corresponds to 17:00 to 19:00. 

Statistically significant differences (p < 0.05) based on paired Wilcoxon sign-rank tests are 

highlighted in grey. 

 


