A New Aerosol Dry Deposition Model for Air Quality and Climate Modeling

Jonathan E. Pleim^{1,1}, Limei Ran^{2,2}, Rick D. Saylor^{3,3}, jeffrey A. Willison^{1,1}, and Francis S. Binkowski^{4,4}

¹U.S. EPA ²United States Department of Agriculture ³National Oceanic and Atmospheric Administration (NOAA) ⁴University of North Carolina at Chapel Hill

November 30, 2022

Abstract

Dry deposition of aerosols from the atmosphere is an important but poorly understood and inadequately modeled process in atmospheric systems for climate and air quality. Comparisons of currently used aerosol dry deposition models to a compendia of published field measurement studies in various landscapes show very poor agreement over a wide range of particle sizes. In this study, we develop and test a new aerosol dry deposition model that is a modification of the current model in the Community Multiscale Air Quality (CMAQ) model. The new model agrees much better with measured dry deposition velocities across particle sizes. The key innovation is the addition of a second inertial impaction term for microscale obstacles such as leaf hairs, microscale ridges, and needleleaf edge effects. The most significant effect of the new model is to increase the mass dry deposition of the accumulation mode aerosols in CMAQ. Accumulation mode mass dry deposition velocities increase by almost an order of magnitude in forested areas with lesser increases for shorter vegetation. Peak PM2.5 concentrations are reduced in some forested areas by up to 40% in CMAQ simulations. Over the continuous United States, the new model reduced PM2.5 by an average of 16% for July 2018 at the Air Quality System monitoring sites. For summer 2018 simulations, bias and error of PM2.5 concentrations are significantly reduced, especially in forested areas.

1	A New Aerosol Dry Deposition Model for Air Quality and Climate Modeling
2	
3	Jonathan E. Pleim ¹ , Limei Ran ² , Rick D. Saylor ³ , Jeff Willison ⁴ , and Francis S.
4	Binkowski ⁵
5	
6	¹ U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA,
7	pleim.jon@epa.gov
8	² U.S. Department of Agriculture, Natural Resources Conservation Service, Greensboro,
9	North Carolina, USA, limei.ran@usda.gov
10	³ Air Resources Laboratory, National Oceanic and Atmospheric Administration, Oak
11	Ridge, Tennessee, USA, <u>rick.saylor@noaa.gov</u>
12	⁴ U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA,
13	willison.jeffrey@epa.gov
14	⁴ Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill,
15	North Carolina, USA, francisbinkowski@gmail.com
16	
17	Key Points
18	• New aerosol deposition velocity model agrees better with observations than
19	current models
20	• Impaction on microscale obstacles such as leaf hairs is key process
21	• New aerosol deposition velocity model increases dry deposition of PM _{2.5}
22	compared to the current CMAQ model
23	

- _ _

28 Abstract

29 Dry deposition of aerosols from the atmosphere is an important but poorly understood 30 and inadequately modeled process in atmospheric systems for climate and air quality. 31 Comparisons of currently used aerosol dry deposition models to a compendia of 32 published field measurement studies in various landscapes show very poor agreement 33 over a wide range of particle sizes. In this study, we develop and test a new aerosol dry 34 deposition model that is a modification of the current model in the Community 35 Multiscale Air Quality (CMAQ) model. The new model agrees much better with 36 measured dry deposition velocities across particle sizes. The key innovation is the 37 addition of a second inertial impaction term for microscale obstacles such as leaf hairs, 38 microscale ridges, and needleleaf edge effects. The most significant effect of the new 39 model is to increase the mass dry deposition of the accumulation mode aerosols in 40 CMAQ. Accumulation mode mass dry deposition velocities increase by almost an order 41 of magnitude in forested areas with lesser increases for shorter vegetation. Peak PM_{2.5} 42 concentrations are reduced in some forested areas by up to 40% in CMAQ simulations. 43 Over the continuous United States, the new model reduced $PM_{2.5}$ by an average of 16% 44 for July 2018 at the Air Quality System monitoring sites. For summer 2018 simulations, 45 bias and error of $PM_{2.5}$ concentrations are significantly reduced, especially in forested 46 areas.

47 Plain Language Summary

Aerosol dry deposition is an important sink for atmospheric particles that are a health
hazard and a significant climate forcer. Uncertainties in modeling aerosol dry deposition
hamper accurate predictions of air quality and climate. A new aerosol dry deposition

51 model is developed that better agrees with observations of aerosol dry deposition velocity 52 for a variety of vegetation such as forests, grasslands, and water surfaces. This improved 53 aerosol dry deposition model when incorporated into air quality and climate models will 54 improve the accuracy of model predictions.

55

56 1. Introduction

57 The lifetime and fate of aerosols in the atmosphere are strongly influenced by wet and 58 dry deposition processes. Thus, the representation of these processes are key elements of 59 atmospheric models for air quality, climate, and ecosystem impacts. The uncertainties in 60 modeling aerosol dry deposition contribute significantly to the uncertainties and errors in 61 direct and indirect radiative forcing that have been identified as some of the most 62 uncertain processes in global climate modeling (IPCC, 2021). Currently, there are a wide 63 variety of aerosol dry deposition models used in atmospheric modeling systems that 64 reflect a great degree of uncertainty. Recently, there have been several studies that 65 compiled observations of aerosol dry deposition in a variety of environments for particle 66 sizes that range from 10s of nanometers to 10s of microns (Saylor et al., 2019; Emerson 67 et al., 2020; Farmer et al., 2021). Saylor et al. (2019) showed that models differ greatly 68 from the observations especially for forested landscapes. Model errors compared to 69 observations vary among different models and overpredict in some size ranges while 70 underpredicting in other size ranges.

71

Most size-resolved aerosol dry deposition models used in large-scale air quality and
 climate models are combinations of mathematical algorithms representing the major

74	processes involved in aerosol deposition as presented by Slinn (1982). All these
75	processes have strong dependencies on particle size and their combination yields a
76	relationship with the dry deposition velocity as a function of particle diameter (i.e.,
77	$V_d(d_p)$). However, since the models in use today have been shown to not agree well with
78	consensus of observations, particularly for forests, these models need to be re-examined
79	and revised. Key questions include: Can the parameterizations of the major processes be
80	revised to improve results or are there key processes that have been neglected?
81	
82	The focus of this paper is to address uncertainties in the current aerosol dry deposition
83	modeling and to propose a new model that builds on current forms but includes a key
84	new process that greatly improves agreement with the consensus of observations.
85	Section 2 describes physical processes controlling dry deposition modeling. The
86	proposed new model is described in Section 3. Evaluation of the new model against
87	measurements and discussion are presented in Section 4. Section 5 presents the
88	implementation and evaluation of the new model in the Community Multiscale Air
89	Quality (CMAQ) model (Byun and Schere, 2006) for regional applications. Concluding
90	remarks and future work are given in Section 6.
91	
92	2. Physical processes in modeling dry deposition

93 The concept of dry deposition velocity (V_d) is that surface flux (F) of a trace atmospheric 94 constituent is directly proportional to its concentration (C) just above the surface as:

$$F = V_d \times C \tag{1}$$

97 In this way physical and dynamical processes can be isolated from chemical processes. 98 The principal processes involved in aerosol dry deposition include gravitational settling, 99 Brownian diffusion, surface impaction, surface interception, and rebound. All these 100 processes are functions of particle diameter (d_p) and become more effective as particle 101 size increases except Brownian diffusion which is most effective for ultrafine particles. 102 Aerosol particles are transported from the air to the surface simultaneously by turbulent 103 fluxes and gravitational settling. The gravitational settling velocity (V_g) results from a 104 balance of gravitational and viscous drag forces as (Stokes, 1851):

$$V_g = \frac{g\rho_p d_p^2 C_c}{18\mu}$$
(2)

106

107 where g is the gravitational acceleration, ρ_p is the particle density, μ is the dynamic 108 viscosity of air and C_c is the Cunningham slip correction factor for small particles 109 (Cunningham, 1910). The turbulent fluxes are modeled similarly to gas dry deposition 110 fluxes as combinations of resistances. Flux through the turbulent surface layer is 111 represented by aerodynamic resistance R_a which is the same for gases and aerosols 112 (Pleim and Ran, 2011). However, since the no-slip condition for viscous fluids requires 113 that the velocity is exactly zero at the boundary, there is a very thin quasi-laminar 114 sublayer adjacent to all surfaces. For gases, molecular diffusion across this layer is so 115 efficient that the resistance presented by this layer R_b is rarely the limiting factor relative 116 to R_a and surface resistances. For aerosol, however, R_b is usually the most limiting 117 resistance because diffusion of particles (Brownian diffusion) is much slower than 118 molecular diffusion. Gravitational settling and turbulent fluxes are combined to compute 119 aerosol deposition velocity as (Venkatram and Pleim, 1999),

120
$$V_d = \frac{V_g}{1 - exp(-V_g(R_a + R_b))}$$
(3)

121 The quasi-laminar boundary layer resistance can be expressed in terms of collection
122 efficiencies *E* (Slinn, 1982),

123
$$R_b = \frac{1}{LAI \cdot u_* (E_B + E_{im} + E_{in})R}$$
(4)

where *LAI* is leaf area index, u_* is the friction velocity, E_B is Brownian diffusion collection efficiency, E_{im} is impaction collection efficiency, and E_{in} is interception collection efficiency. Particles that encounter a surface can either stick or bounce off which is represented by the rebound factor *R* in Equation 4 that mostly affects the largest particles. Most recent aerosol dry deposition models follow the formulations for the collection efficiencies proposed by Slinn (1982) with a variety of modifications and extensions.

131

132 Aerosol deposition to vegetated areas is particularly complex and difficult to model given 133 the wide array of vegetation types with different canopy morphologies and leaf shapes. 134 Figure 1 shows that several models, including the models currently used in CMAQ, the 135 Comprehensive Air quality Model with extensions (CAMx) (ENVIRON, 2020), the 136 Goddard Earth Observing System model with Chemistry (GEOS-Chem) (Bey et al., 137 2001), a Unified Regional Air-quality Modeling System (AURAMS) (Gong et al., 2006), 138 and the Global Environmental Multi-scale model - Modelling Air quality and CHemistry 139 (GEM-MACH) (Gong et al., 2015), cannot well represent aerosol deposition for all 140 particle sizes at evergreen needleleaf forest sites. The current CMAQv5.3 model, which 141 is a modified version of the earlier CMAQ model described by Pleim and Ran (2011), 142 and the Zhang (2001) model that is used in CAMx, AURAMS, GEM-MACH and

143	GEOSChem both seem to have the wrong shape with minimum V_d at around 2-3 μ m
144	while the measurements indicate minimum at about $0.1-0.2\ \mu\text{m}.$ Note that there are two
145	curves for the CMAQv5.3 model because its formulation includes a function of
146	convective velocity scale (w*). The models of Petroff and Zhang (2010) and Zhang and
147	Shao (2014) have minimum values at much smaller sizes with the Petroff and Zhang
148	(2010) model agreeing well with the aggregate observations in the less than 0.2 μm size
149	range. The recent model described by Emerson et al. (2020) also agrees well with the
150	size of minimum V_d for forest observations as will be shown and discussed in Section 4.
151	However, none of the models seem to capture the rapid increase in deposition velocity
152	seen in the observations from 0.2 to about 0.5 μm and the plateau from 0.5 to about 5 $\mu m.$
153	Clearly, the models as currently formulated are not able to produce the S-shaped curve of
154	the observation consensus.

Evergreen Needleleaf Forest

155

Figure 1. Measured aerosol dry deposition velocities from literature as functions of particle size for evergreen needleleaf forest. Symbols represent median values with error bars that represent estimated uncertainty, usually inter-quartile range. The lines show predictions by various models assuming $u_* = 0.4$ m/s. Adapted from Saylor et al. (2019).

Several recent studies have shown that leaf surface texture and leaf shape have significant
influence on aerosol dry deposition. For example, Chen et al. (2017) found that the
needle-shaped leaves of conifers were more effective in general than broad leaves at
PM_{2.5} (particulate matter with an effective aerodynamic diameter less than 2.5 µm)
aerosol dry deposition. They also found that broad leaf species with more grooves or
hairs tended to increase deposition. Several other studies involving both field

167	measurements and wind-tunnel experiments also showed increased deposition for leaves
168	with dense hairs, ridges, grooves or thick epicuticular wax layers (e.g., Weerakkody et al,
169	2017; Chiam et al., 2019; Leonard et al, 2016). Perini et al. (2017) also found enhanced
170	fine aerosol deposition on leaves with thick cuticular waxes but less so for hairy leaves.
171	By measuring aerosols accumulating on 22 species of trees and 25 shrubs, Sæbø et al.
172	(2012) found that leaf properties such as hair and wax cover enhanced aerosol deposition
173	among the broad-leaf species while needle-leaf species were also among the highest
174	aerosol collecting species. Beckett et al. (2000) found greater deposition of 1 μ m aerosols
175	on pine needles than broad flat leaves in wind-tunnel studies. They noted that deposition
176	was well correlated with Stokes number which is inversely proportional to the
177	characteristic leaf size which for needles was on the order of 1 mm and about 5 cm or
178	more for broad leaves. Zhang et al. (2021) tested the effects of leaf hair (trichome)
179	density, leaf aspect ratio, petiole (leaf stem) length, and leaf fractal deviation on $PM_{2.5}$
180	deposition. They found higher trichome density, lower aspect ratio, shorter petiole, and
181	greater leaf fractal deviation all increase $PM_{2.5}$ dry deposition velocities.
182	

183 **3. New model description**

184The new model, which is intended to replace the current aerosol dry deposition scheme in185CMAQ, follows the same general framework that was originally proposed by Slinn186(1982) as shown in equations 3 and 4. The aerodynamic resistance is unchanged from the187current CMAQ model and is the same for gases and aerosols (Pleim and Ran, 2011).188Unlike the current scheme, calculation of the quasi-laminar boundary layer resistance R_b 189differs for the vegetated and non-vegetated parts of each grid cell. The most important

change is to the parameterization of the impaction collection efficiency where a term is
added to better represent the shape of the deposition velocity curve for vegetated areas.

193 **3.1 Vegetated areas**

For the vegetated fraction of each grid cell the R_b is weighted by LAI to account for the total leaf surface area density available for deposition as shown in Equation 4. The Brownian collection efficiency E_B follows Slinn (1982) as:

197
$$E_B = \left(\frac{c_v}{c_d}\right) S c^{-2/3} \tag{5}$$

198 where Sc is the Schmidt number defined as the ratio of the kinematic viscosity of air divided by the Brownian diffusivity $Sc = v/D_R$ and c_v/c_d is the ratio of viscous drag to 199 200 total drag which we specify as 1/3 as deduced by Chamberlain (1966) for grass. 201 A key innovation in the new model to better fit observed dry deposition velocities by 202 particle size is to represent the impaction efficiency by two terms to account for the 203 effects of macroscale and microscale obstacles. Impaction efficiency E_{im} is generally 204 expressed as a function of Stokes number St, which describes the tendency of a particle to 205 follow fluid flow around obstacles. In the quasi-laminar sub-layer, the relevant flow 206 velocity is given by the turbulent friction velocity u_* which is the characteristic velocity 207 of turbulent eddies in the turbulent layer above the quasi-laminar sub-layer. Therefore, 208 for vegetated surfaces, St is defined as,

 $St = \frac{V_g u_*}{gA} \tag{6}$

where *A* is the characteristic dimension of the obstacles. For the new model, we define St_l and St_h using different obstacle characteristic dimensions for the leaf scale A_l and

212 microscale A_h representing features such as leaf hairs (trichomes) or other microscale 213 roughness on leaves. Thus, E_{im} is given as,

214
$$E_{im} = (1 - f_{micro}) \frac{st_l^2}{1 + st_l^2} + f_{micro} \frac{st_h^2}{1 + st_h^2}$$
(7)

215 where f_{micro} is the fraction of total impaction due to the microscale features. The concept 216 of using macro and microscale obstacle size scales was introduced by Slinn (1982) for 217 interception processes. Slinn (1982) speculated that the microscale obstacles would 218 probably not be relevant for impaction because the vegetative hairs or other microscale 219 obstacles such as cobwebs would be deflected by the flow and not be significant 220 collectors by impaction. However, testing the two-term approach for both interception 221 and impaction showed that expressing impaction as in Equation 7 matched the size 222 dependent deposition velocities, especially for forests, much better than using a similar 223 expression for interception only. Note that both f_{micro} and A_h are very uncertain 224 parameters. Slinn (1982) suggested $f_{micro} = 1\%$ but we found better fit to observations 225 with a slight reduction to $f_{micro} = 0.8\%$. The microscale characteristic obstacle scale is 226 specified by land use category (LUC) such that $A_h = 0.5 \mu m$ for needleleaf forest and 227 grasslands and $A_h = 1.0 \ \mu m$ for deciduous forest. The macroscale characteristic obstacle 228 scale is also specified by LUC with values ranging from 0.5 to 10 mm (Table 1). 229

The third collection efficiency in Equation 4 is interception. Interception is postulated as
capture that occurs when a particle comes within a particle radius of a surface or obstacle.
However, the physical basis of this process is less well defined than the Brownian or
impaction processes. Including interception efficiency as recommended by Slinn (1982)

- had very little effect in the new model. Therefore, in the new model the interception
- collection efficiency is not used.

LU Type	U* (m/s)	LAI	f _v	f _{micro}	A _l (mm)	$A_{h}\left(\mu m\right)$
Needleleaf	0.4	5	93	0.008	2	0.5
forest						
Broadleaf	0.4	5	93	0.008	10	1.0
forest						
Grassland	0.3	2	95	0.002	0.5	0.5
Water	0.2	0	0	NA	NA	NA

Table 1. Key parameters for new aerosol dry deposition model over different landscapes

237

238 **3.2 Non-vegetated areas**

For non-vegetated areas the definition of E_B is the same as for vegetated areas but the E_{im} is different,

241

$$E_{im} = 10^{-3/St}$$
 (8)

where,

243
$$St = \frac{\rho_a V_g u_*^2}{g\mu}$$
(9)

244 These are the formulations recommended by Slinn (1977) for smooth surfaces where ρ_a

245 is the air density. For water surfaces, the effects of whitecaps (breaking waves) are

included in an additional term in the E_B expression,

247
$$E_B = (1 - f_{wc}) \left(\frac{c_v}{c_d}\right) Sc^{-2/3} + f_{wc} \frac{u_*}{u_{10}}$$
(10)

248	as suggested by Pryor (1999) following Hummelshøj et al. (1992) where U_{10} is the
249	windspeed at 10 m above the surface. Note that the more complex form in Pryor (1999)
250	was not used because the term describing the particle capture by spray droplets is always
251	much smaller than the $u*/U_{10}$ term. The effects of whitecaps increase rapidly with
252	increasing windspeed as whitecaps cover more of the water surface. While most models
253	parameterize the whitecap surface fraction f_{wc} as a function of windspeed, we follow
254	Albert et al. (2016) who developed a parameterization based on satellite whitecap
255	fraction data, that is also a function of water surface temperature T_{ws} in Celsius and U_{10} is
256	in m/s,
257	$f_{wc} = a(b + U_{10})^2 \tag{11}$
258	where $a = a_1 + a_2 T_{ws} + a_3 T_{ws}^2$
259	$b = b_1 + b_2 T_{ws}$
260	and $a_1 = 8.46 \ge 10^{-5}$, $a_2 = 1.63 \ge 10^{-6}$, $a_3 = -3.35 \ge 10^{-8}$, $b_1 = 3.354$, and $b_2 = -0.062$.
261	
262	Another new modification is for the non-vegetated parts of urban LU categories where R_b
263	is weighted by building area index (BAI). The rationale for this is that buildings add
264	significant surface area in urban landscapes that is not accounted for by LAI or otherwise.
265	An initial estimate is $BAI = (4 \lambda_f + 1)/(1-f_v)$, where λ_f is frontal area density of building
266	surfaces and f_v is the vegetated fraction of the grid cell. The logic for this is that the total
267	building surface area is four times the frontal area. For applications where detailed
268	building data is not included, default values of BAI are specified by landuse category.
269	For example, <i>BAI</i> is specified as 1.8, 2.0, and 2.3 for the National Land Cover Database

270 (NLCD) categories of low intensity developed, medium intensity developed, and high

271 intensity developed, respectfully. For all other non-developed categories, *BAI* is set to 1. 272 Thus, for unvegetated portions of urban grid cells R_b is defined as, 273 $R_b = \frac{1}{BAI \cdot u_*(E_b + E_{im})}$ (12)

Note that particle rebound effects are not considered (R=1) because only the largest particles are affected and there is much variation by composition, RH, surface type, and windspeed. Grid cell deposition velocity is the combination of the vegetated and nonvegetated parts,

278
$$V_d = f_v V_{dveg} + (1 - f_v) V_{dnoveg}$$
(13)

279

280

281 **4. New model evaluation**

The new model is evaluated against aerosol dry deposition measurements over different
landscapes. The performance of the new approach is also discussed in terms of the
enhanced processes.

285

4.1 Comparison to measurements

Following several recent papers (Saylor et al., 2019; Emerson et al., 2020; Farmer et al.,

288 2021), we compile aerosol dry deposition measurements by particle size for various

surface types from the published literature to compare to aerosol dry deposition models.

290 Figure 2 shows the same data for evergreen needleleaf forest as figure 1 with the addition

- 291 of the new model described here as well as the recent model described by Emerson et al.
- 292 (2020). The parameter values for the model runs for each land use type are shown in
- 293 Table 1. The new model, designated *New CMAQ*, is the only one that shows the increase

294	of V_d in the 0.2 – 0.6 µm range and the plateau from about 0.6 µm to 6 µm. Compared to
295	the CMAQv5.3 model, the new model substantially reduces the underprediction of V_d
296	from about $0.5 - 5.0 \ \mu m$. This has profound effects on dry deposition and concentration
297	of $PM_{2.5}$ as will be shown in Section 5. The Emerson model generally fits the data very
298	well since it was developed through changes to six empirical coefficients and exponents
299	in the Zhang et al (2001) parameterization to optimize agreement with the needleleaf
300	forest observation data. However, as shown in Figures 2 and 3, the Emerson model does
301	not replicate the s-shaped curve suggested by the observations for needleleaf and
302	broadleaf forest through the $0.1 - 5.0 \ \mu m$ range as well as the new model.
303	

304

Figure 2. Measured aerosol dry deposition velocities from literature as functions of
particle size for evergreen needleleaf forest. Symbols represent median values with error

308	bars that represent estimated uncertainty, usually inter-quartile range. The lines show
309	predictions by various models assuming $u_* = 0.4$ m/s including the new model (new
310	CMAQ) in magenta and the recent Emerson et al. (2020) model in turquoise
311	
312	There are not as many measurement studies in the literature for other landuse/vegetation
313	types. Figure 3 shows the observation data and models for deciduous broadleaf forest.
314	The consensus of dry deposition measurements to broadleaf forests suggests a similar
315	shape to the V_d vs d_p curve where there is an increase of V_d in the approximately 0.2 to
316	0.6 μ m range with a plateau up to about 6 μ m. Again, the new model is the only one that
317	replicates the shape of this curve and does not greatly underestimate V_d in the 0.5 - 4.0
318	μm range.
319	
320	

327

328	Figure 4. Same	as figure 2 bi	it for grasslands	s and $u_* = 0.3 \text{ m/s}$.
-----	----------------	----------------	-------------------	---------------------------------

329

330	Figure 4 shows the new model and other models for grasslands compared to
331	measurements. While there are a lot of measurements for grasslands, there seems to be
332	much less consensus among them, even within the same studies, than for forests. With
333	the degree of scatter in the measurements there isn't clear guidance for parameter
334	selection. While the rationale for microscale impaction may also apply to grass since
335	grass leaves often have leaf hairs or trichomes and serrated edges, the evidence from the
336	measurements is less clear. Therefore, the parameter values selected for the microscale
337	impaction scaling factor f_{micro} are set to smaller values (see Table 1) than for forests,
338	which seem to better fit with the measurements. Running box models on an hourly or
339	sub-hourly basis using detailed field measurements may add some clarity to model
340	performance and refinement of parameters.
341	
342	The large scatter among the reported measurements for grassland is likely due the variety
343	of grass species which can have very different characteristics including length. For
344	example, the measurements reported by Vong et al. (2004) were made over rye grass 0.75
345	- 1 m tall, Allen et al. (1991) measured deposition to short grass of $3 - 7$ cm in length,
346	Conan et al. (2018) used artificial grass, and Nemitz et al. (2002) measured in a moorland

347 which is characterized by hummocks and hollows with vegetation including peat moss

348 (Sphagnum) and several species of tall grasses.

Virtually all studies found strong dependences of V_d on u_* with V_d increasing with 350 351 increasing u_* (Pryor et al., 2008). Some have suggested that V_d/u_* is a more robust 352 quantity for analysis and comparison (e.g., Conan et al., 2018) but many studies did not report this. Zhang et al. (2014) measured dry deposition velocities of dust particles (1 -353 354 40 µm) in a wind tunnel at various wind velocities over different surfaces. To simulate 355 deposition to trees, every reen branches were planted in the test section surface. The new 356 model set up for evergreen needleleaf forest is shown (Figure 5) to compare well to the tree wind tunnel experiments at three windspeeds with measured friction velocities of 357 358 0.24, 0.5, and 1.06 m/s.

359

360

361 Figure 5. New model compared to wind tunnel experiments for tree surfaces (Zhang et

al. 2014) at three friction velocities.

364	Figure 6 shows models compared to field measurements for water surfaces. Most of the
365	measurements over water show that dry deposition velocities are much lower in the
366	accumulation size range than for vegetated surfaces. The measurements by Sievering
367	(1981) seem to be outliers with much higher deposition velocities in the $0.15-1\ \mu m$
368	range. These measurements, which used the momentum gradient technique that assumes
369	similarity between aerosol fluxes and momentum fluxes, can be particularly uncertain
370	when the surface has bluff bodies such as waves than can induce form drag on
371	momentum flux. The other outlier study is by Zhang et al. (2014) which is a wind tunnel
372	study where dry deposition velocity is estimated by particle dynamic analysis (PDA).
373	The measurements over water in the wind tunnel were found to agree quite well with the
374	Slinn and Slinn (1980) (SS80) model for three different friction velocities when R_b is set
375	to zero (Zhang et al., 2014, Figure 11). The authors hypothesize that this is due to waves
376	and spray droplets. However, given the dramatic dissimilarity from most of the other
377	studies, there could be an issue of scaling wave-wind dynamics to a wind tunnel where
378	the water is very shallow with restricted fetch.

379

The new model agrees well with the measurements other than the 2 outlier studies and is most similar to the SS80 model. The main difference in formulation between the new model and the SS80 model for water is the inclusion of the effects of whitecaps in enhancing deposition velocity. Since Equation 11 does not have any dependence on d_p the whitecaps effects are effectively a lower limit on V_d which raises the trough of the curve.

386

387

388 Figure 6. Same as Figure 2 but for water surfaces.

4.2 Discussion

391 Figure 7 shows the size dependence of the components of the dry deposition model for 392 needleleaf forest. Clearly, the most effective component responsible for the S-shape 393 curve for vegetated surfaces in the $0.2 - 10 \,\mu m$ range is the impaction on microscale 394 features. The impaction collection efficiency acts as a threshold process where E = 1where St > -3 for the formulation shown in Equation 7 and ramps down as St and d_p get 395 396 smaller. The Stokes number, as represented by Equation 6, is a ratio of the inertial 397 stopping distance of a particle to a characteristic length scale of an obstacle. For the 398 macroscale term, which is common to nearly all current aerosol deposition models, the 399 characteristic length represents the effects of the leaves. Figure 7 shows that the leaf 400 scale impaction term has greatest effect on particles larger than about 5 µm. Note that for

401	broadleaf forests the effects of this term are limited to even larger particles because the
402	characteristic length scale is greater for broad leaves than for needle leaves.

404	The stopping distance for quasi-laminar sublayers on leaves can be estimated as $V_g u */g$.
405	For $u^* = 0.4$ m/s the stopping distance decreases with decreasing d_p reaching 1 µm at d_p =
406	0.75 µm. A characteristic length of about 0.5 µm and a scaling factor f_{micro} of about
407	0.008 result in a good fit to the measured data as shown in Figure 2. A physical
408	explanation of this process is that there exist microscale features on many leaves and
409	stems that act as obstacles in the quasi-laminar sublayers. Many studies have shown
410	increased deposition of PM _{2.5} for broadleaf species that have dense hairs, ridges, grooves,
411	or thick epicuticular wax layers as summarized above in Section 2. While needleleaf
412	species generally don't have leaf hairs, they are often seen to be particularly efficient at
413	$PM_{2.5}$ collection. A possible explanation is that the quasi-laminar sublayer grows from
414	the leading edge of a surface and therefore will be thinner near the edge. Since the needle
415	shape presents far more edge to the flow per area than broad leaves the deposition of sub-
416	micron sized particles is more efficient. The hypothesis that more edge per area increases
417	deposition is supported by the results of Zhang et al (2021) that showed increased $PM_{2.5}$
418	deposition to leaves with lower aspect ratio and greater fractal deviation. A physical
419	interpretation of the scaling factor is that the edge effects of needle shaped leaves is only
420	affecting a small portion of the leaf area. For broadleaf forest, the scaling factor accounts
421	for the fraction of species that have dense leaf hairs or other microscale features and the
422	sparsity of these features per leaf area.

424 Figure 7. Size dependence of the components of the dry deposition model for needleleaf

425 forest.

426

427 **5. CMAQ implementation and evaluation**

428 The new aerosol dry deposition model is implemented in the latest version of the CMAQ

429 modeling system. The coupled version of the Weather Research and Forecasting

430 (WRFv4.0.2) model and the CMAQv5.3 model are used to evaluate the new approach in

431 air quality simulations over different-resolution domains for summer conditions in 2018.

432

433 **5.1 Model implementation**

435 coarse modes, aerosol deposition velocities need to be integrated over the log-normal size

- 436 distributions to calculate the 0th, 2nd, and 3rd moments which represent the number,
- 437 surface area, and volume of each mode, respectively. Therefore, the terms in the model

that have explicit dependence on particle diameter *D* are integrated following Binkowskiand Shankar (1995)

440
$$\hat{X}_k = \frac{1}{M_k} \int_{-\infty}^{\infty} X D^k (lnD) dlnD \text{ where } M_k = N D_g^k exp\left(\frac{k^2}{2} ln^2 \sigma_g\right)$$
(14)

where k is the moment (0,2,3) and *N* is the particle number concentration. The only
terms in the new model that are explicit functions of particle diameter are Brownian
diffusivity and gravitational settling velocity. For Brownian diffusivity the integrated
form is,

445
$$\widehat{D}_{Bk} = D_B(D_g) \left\{ exp\left(\frac{(-2k+1)}{2}ln^2\sigma_g\right) + 1.246Kn_g exp\left(\frac{(-4k+4)}{2}ln^2\sigma_g\right) \right\}$$
(15)

446 For gravitational settling velocity the integrated form is:

447
$$\hat{V}_{gk} = V_g \left(D_g \right) \left\{ exp\left(\frac{(4k+4)}{2} ln^2 \sigma_g \right) + 1.246 K n_g exp\left(\frac{(2k+1)}{2} ln^2 \sigma_g \right) \right\}$$
(16)

where D_g is the geometric mean diameter, σ_g is the geometric standard deviation, and the Knudsen number is $Kn_g = 2\lambda/D_g$ where λ is the mean free path. For the modal model, the dry deposition velocity is computed as described in Section 3 but with \hat{D}_{Bk} and \hat{V}_{gk} for k = 0,2,3 for the three moments of each of the three modes replacing D_B and V_g .

452

453 Figure 8 demonstrates the relationships among the dry deposition velocity moments for

454 both the CMAQv5.3 model and the new model plotted against geometric mean diameter

455 D_g compared to the non-integrated models vs particle diameter D_p applied for needleleaf

- 456 forest. The 0th moment, which represents the number of the modal distribution, shows
- 457 the effects of integration are to increase the \hat{V}_d over the V_d for all sizes except in the
- 458 plateau range (~1 3 μ m) of the new model. The 3rd moment is similar to the 0th moment

459	but with a shift to smaller D_g because the larger end of the distribution contributes more
460	to volume than number.

Since the 3^{rd} moment is proportional to mass, the 3^{rd} moment of the dry deposition velocity represents the dry deposition velocity for mass concentration of aerosols. From Figure 8 it is evident that the mass deposition velocity for the new model is about an order of magnitude greater in the accumulation mode ($D_g \sim 0.1 - 0.4 \mu m$) than for the CMAQv5.3 model in forested areas. The effects of this increased dry deposition are assessed for CMAQ simulations across the conterminous US (CONUS) and at high resolution in the NE U.S.

470

469

472 Figure 8. The dry deposition velocities for the 0th and 3rd moments of the CMAQv5.3
473 model and the new model compared to the non-integrated dry deposition velocities for

both models applied to needleleaf forest. The x-axis represents D_g for the \hat{V}_d plots and D_p for the V_d plots.

476

477 **5.2 WRF-CMAQ simulations**

478 The coupled WRFv4.0.2/CMAQv5.3.1 model system was run in both the base 479 configuration and with the new aerosol dry deposition model for several months in summer 2018. These simulations were based on modeling of the Long Island Sound 480 481 Tropospheric Ozone Study (LISTOS) which was an intensive multi-institutional field 482 study during the summer of 2018 (Karambelas 2020). The base model was run for three 483 resolutions (12 km, 4 km, 1.33 km) where the outer domain covered the CONUS with 484 one-way nested domains over the northeast (NE) states (4 km) and the New York/New 485 Jersey/Connecticut (NY-NJ-CT) region (1.33 km). Detailed description of the model 486 configuration and evaluation are presented by Torres-Vazquez et al. (2022). Model 487 simulations using the new aerosol dry deposition model (NEW) were conducted for the 488 12 km CONUS domain for July 2018 and for the 1.33 km domain for July and August 489 2018. In both cases, identical simulations using the base CMAQv5.3 model (BASE) 490 were also run. Initial conditions for the 12 km CONUS runs were from base case runs on 491 June 21, 2018, that were started on January 1, 2018. The 1.33 km runs were initialized 492 on July 1, 2018, from base case 1.33 km runs that started on May 2, 2018. All runs used 493 the same boundary conditions and emissions as described by Torres-Vazquez et al. 494 (2022).

- 497 Figure 9. Accumulation mode mass dry deposition velocity from WRF-CMAQ on July
- 498 10, 2018 at 18 UTC (2 pm LT) for (a) BASE, (b) NEW, (c) NEW-BASE and (d)
- 499 NEW/BASE over the New York/New Jersey/Connecticut 1.33-km domain. Note that the

b)

- scales for (a) and (b) are different. 500
- 501
- 502 Figure 9 shows the dry deposition velocity for accumulation mode mass on July 10, 2018,
- 503 at 18 UTC (2 pm LT) for BASE, NEW, NEW-BASE and NEW/BASE over the NY-NJ-

504	CT 1.33 km resolution domain. July 10 was a particularly polluted day in the NYC area.
505	Thus, it is an interesting case to study the effects of the new aerosol dry deposition
506	model. The plots in Figure 9a and 9b both show how variations in land use strongly
507	influence aerosol dry deposition for both BASE and NEW with greatest V_d in the forested
508	areas. This is due to the combinations of large roughness length resulting in low
509	aerodynamic resistance and large LAI. The greatest effects of the new model are
510	indicated by the difference in the plot scales (BASE plots 0-0.5 cm/s; NEW plots 0-3.0
511	cm/s) which reflects an almost order of magnitude increase in V_d for accumulation mode
512	mass in forested areas. Figures 9c and 9d, NEW – BASE and NEW/BASE, respectively,
513	demonstrate that the largest differences are in the forested areas of Pennsylvania (PA),
514	NY, Massachusetts (MA), CT, and Rhode Island (RI). The ratio of NEW/BASE (Figure
515	9d) is a factor of 8-10 in the heavily forested areas while it is only 1-3 in developed areas
516	depending on the intensity of development. The inclusion of the building area as in
517	Equation 12 increases V_d for accumulation mode mass in developed areas but only by a
518	small amount as shown in Figure 10a. However, because the V_d in developed areas is
519	small compared to vegetated areas, inclusion of the building effects has a substantial
520	relative impact on the V_d (Figure 10b).

522

Figure 10. Difference (a) and relative difference (b) in V_d for accumulation mode mass between a NEW model run using *BAI* as in Equation 12 and a NEW mode run where *BAI* = 1 for July 10, 2018, at 18 UTC over the New York/New Jersey/Connecticut 1.33-km domain.

527

528 Figure 11. PM2.5 concentration on July 11, 2018, at 00 UTC (July 10, 8 pm LT) for

529 BASE model (a) NEW model (b), and BASE - NEW (c) over the 1.33 km resolution530 domain.

532 Figure 11 shows the consequences of the new aerosol deposition velocities, shown in

534	in the region. The $PM_{2.5}$ concentrations at this time are greatest in the urban centers of
535	NY city (NYC) and Philadelphia with high concentrations downwind to the northeast into
536	CT and RI. The biggest effect of the new aerosol dry deposition is to substantially reduce
537	the downwind concentrations in southern New England which is mostly forested.
538	Another relative concentration maximum in the BASE model in southeastern NJ in an
539	area known as the Pine Barrens, which is dense forest with a high fraction of needleleaf
540	trees, is mostly absent in the NEW model run. Thus, the NEW model has larger effects
541	on $PM_{2.5}$ concentrations in forested areas than other areas such as in urban areas. The
542	peak concentrations in NYC only reduced by 10% while in some of the forested areas the
543	NEW simulation reduces $PM_{2.5}$ concentration by more than 40%.
544	
545	The afternoon (18 – 20 UTC) deposition velocity for accumulation mode mass was
546	averaged for July 2018 for BASE and NEW model runs for the CONUS at 12 km
547	resolution (Figure 12). Again, it is evident that the largest effects of the NEW model are
548	in the forested areas mostly in the NE, western mountains and across the boreal forests of
549	Canada. In some areas of the northeastern U.S. and southeastern Canada the NEW dry
550	deposition velocities are 7-10 times the BASE values (Figure 12d). Note that Figure 12a
551	shows some discontinuities at the Canadian border. This is due to the hybrid land use
552	data that is a combination of higher resolution NLCD for the CONUS and the lower
553	resolution Moderate Resolution Imaging Spectroradiometer (MODIS) land use data for
554	elsewhere (Torres-Vazquez et al., 2022; Appel et al. 2014). In some of the sparsely
555	vegetated areas in the west the difference between NEW and BASE is quite small while
556	in the plains and predominately agricultural areas the difference is moderate.

558

Figure 12. Afternoon (18 – 20 UTC) average accumulation mode mass dry deposition
velocity for July 2018 on the CONUS 12 km domain for (a) BASE, (b) NEW, (c) NEWBASE and (d) NEW/BASE. Note that the scales for (a) and (b) are different.

562

563 Increases in dry deposition velocity for accumulation mode aerosol using the NEW 564 model increase the loading of aerosol species to land ecosystems. For example, Figure 565 13 shows that accumulated dry deposition mass of accumulation plus Aitken mode 566 (approximately $< 2.5 \mu m$) ammonium aerosol for July 2018 is much greater for the NEW 567 model than the BASE model. Thus, the NEW model has much greater predictions of 568 nutrient loading of the aerosol components, especially to forested ecosystems. The NEW 569 model increases deposition of other aerosol species as well that have may have health 570 effects on livestock and wildlife. Predictions of exposure to hazardous chemicals, which

- 571 may affect human health through ingestion of soil or contaminated produce, also increase
- 572 with the NEW model.
- 573

Figure 13. Accumulated dry deposition (kg/ha) over July 2018 of ammonium aerosol in
accumulation plus Aitken modes. NEW model (a), BASE model (b) and NEW – BASE
(c). Note that the scale for NEW model (a) is four times the scale for BASE model (b)

578

579 **5.3 Simulation evaluation**

- 580 The WRF-CMAQ simulations at both 1.33 km grid resolution in the NYC area and 12
- 581 km grid resolution for the CONUS were evaluated for PM_{2.5} at the U.S. Environmental
- 582 Protection Agency (EPA) Air Quality System (AQS) sites (AQS;
- 583 http://www.epa.gov/aqs). Evaluations of model runs using the NEW aerosol dry
- deposition model were compared to the BASE model for summer season when the

585	differences between NEW and BASE are greatest. Figure 14 shows diurnal bar charts for
586	July and August 2018 for all AQS sites in the 1.33 km grid resolution domain (see figure
587	9 for size of domain) and for July 2018 at AQS sites in the 12 km grid resolution CONUS
588	domain. The colored bars represent the 25^{th} and 75^{th} percentiles of the PM _{2.5}
589	concentration distributions for NEW, BASE, and AQS. The black line in each bar
590	indicates the median value. For the fine grid NE domain both NEW and BASE are high
591	compared to AQS for every hour but NEW is closer to AQS. The diurnal pattern of the
592	modeled concentrations is different from the observation with the greatest concentrations
593	around 6 am and lowest in late afternoon at about 17 LT while the AQS concentrations
594	show very little diurnal variation. This diurnal pattern is typical for modeled
595	concentrations of species with a large ground emitted fraction (i.e., NOx, CO, and PM _{2.5}).
596	This is a known issue that is related to the suppressed vertical mixing at night and the
597	much greater mixing during the day. The near dawn peak results from the combination
598	of suppressed mixing and high emissions during the morning rush hour. Note that this
599	issue has been improved in recent years through updates to the PBL scheme in the WRF-
600	CMAQ system (e.g., Toro et al., 2021). Another contributing factor is the uncertainty in
601	emissions and especially the hourly attribution of emissions.
602	

Evaluation of the 12 km CONUS simulations shows similar diurnal pattern with peak

604 concentrations around sunrise and lowest concentrations in afternoon (EDT). The AQS

- 605 concentrations are more constant over the day than the models but with a slight variation
- 606 with a similar diurnal pattern. The BASE model is again higher than the observations for

607 every hour, but the NEW model is slightly high during the night and slightly low during

the day.

609

Figure 14. Hourly bar plots of PM2.5 aggregated over July and August 2018 for the

northeast 1.33 km domain on left and over July 2018 for the 12 km CONUS on right. The

613 colored bars represent the 25^{th} and 75^{th} percentiles of the PM_{2.5} concentration

614 distributions for NEW (red), BASE (blue), and AQS observations (grey).

615

616 Spatial evaluation of PM_{2.5} in the 1.33 km domain for NEW and BASE are shown in

617 Figure 15. For both NEW and BASE the average bias is greatest in NYC where high

- 618 emissions are concentrated in small grid cells. The BASE (15b) also has high bias at
- most other sites. The NEW (15a) has less high bias and is roughly even between slightly
- high and slightly low biases outside of NYC. The lower plots show reduced bias (15d)
- and mean error (15c) for NEW compared to BASE at 83% and 93% of the AQS sites,

- 622 respectively. The urban effects of building area reduce the high bias in the cities but only
- by a very small amount (less than 0.3%; not shown).

626 Figure 15. Evaluation of modeled hourly PM_{2.5} compared to AQS measurements

- 627 averaged for July and August 2018: (a) NEW model bias, (b) BASE model bias, (c)
- 628 NEW BASE absolute bias difference, and (d) NEW BASE mean absolute error
- 629 difference.
- 630
- 631 Similar spatial evaluation for the 12 km CONUS simulations is shown in Figure 16.
- 632 Overall, the PM_{2.5} bias averaged over July 2018 at AQS sites is reduced at 64% of the

633	sites and the mean error is reduced at 77% of the sites. In areas where the BASE $PM_{2.5}$
634	concentrations are biased high such as the Great Lakes region, most of the sites in the
635	east, and the west coast, the NEW model reduces bias and error. In areas where the
636	BASE model was low, such as Texas and the southern plains, the bias is slightly
637	increased although mean absolute error is less affected. In these areas the difference in
638	dry deposition velocity is relatively small because there is less vegetation and not much
639	forest. Note that the increased bias and error at some sites in SW Oregon and northern
640	CA are related to very high PM _{2.5} concentrations caused by wildfires.

642 Figure 16. Evaluation of modeled hourly PM_{2.5} compared to AQS measurements

- 643 averaged for July 2018: (a) NEW BASE absolute bias difference, and (b) NEW –
- 644 BASE mean absolute error difference.

Figure 17. Evaluation of modeled hourly PM_{2.5} compared to IMPROVE measurements
averaged for July 2018: (a) NEW – BASE absolute bias difference, (b) NEW – BASE
mean absolute error difference, (c) gridded evergreen needleleaf forest fraction, (d) total
gridded forest fraction.

Figure 17 shows PM_{2.5} bias and error averaged over July 2018 at IMPROVE sites (the

- 652 Interagency Monitoring of PROtected Visual Environments (IMPROVE;
- 653 http://vista.cira.colostate.edu/Improve/). Since the IMPROVE network highlights Class I
- areas, many of the sites are in forested regions, particularly in the Pacific NW. Figure
- 17c shows that many sites in WA, OR and northern CA are in evergreen needleleaf forest
- and that many of these sites have the greatest reduction in bias and error of $PM_{2.5.}$
- 657

658 **6. Conclusions and future work**

659	The modeling of dry deposition in general, and aerosol dry deposition in particular,
660	contribute large amounts of uncertainty to air quality and climate models (e.g., Solazzo et
661	al., 2012; Mahowald et al., 2017). Thus, improving the mechanistic underpinnings of dry
662	deposition calculations helps improve accuracy of the modeling systems. The new
663	development to the aerosol dry deposition model was driven by the aggregation of
664	experimental data showing that existing models are unable to accurately replicate the
665	observed relationship between particle size and dry deposition velocity especially for
666	forested areas. Since the quasi-laminar sublayer resistance R_b is usually the controlling
667	resistance during peak deposition conditions (daytime), the new developments focus on
668	revision of the R_b parameterizations, particularly the impaction efficiency. The
669	development process was to revise the impaction efficiency to get better agreement with
670	the aggregate measurements while maintaining physically plausible rationales. The key
671	innovation was to add a second term to the impaction efficiency (equation 7) that
672	represents impaction on microscale obstacles. For broadleaf vegetation the concept is
673	that many species have leaf hairs or other microscale roughness features. However,
674	needleleaf species generally do not have hairs but they may have ridges or other
675	microscale obstacles. Since experimental studies have found that needleleaf species have
676	high aerosol deposition rates, it is theorized that the needle shape itself may be a key
677	factor as discussed in section 5.
678	

The main impact of the new model is to increase dry deposition velocity in the

680 accumulation size range. This has a large effect on PM_{2.5} especially in forested areas

681 where the dry deposition velocity of accumulation mode mass can increase up to an order

682	of magnitude compared to the current model in CMAQv5.3. For the high-resolution
683	model application to the LISTOS the new model reduced $PM_{2.5}$ concentration up to 40%
684	downwind of NYC in CT for the case shown in Figure 11. For these applications in
685	summer of 2018 where the BASE model generally overestimates $PM_{2.5}$, the NEW model
686	which has much greater accumulation mode mass dry deposition, results in mostly better
687	agreement with observations. However, aerosol concentrations are very difficult to
688	model accurately not just because of uncertainties in dry deposition but also uncertainties
689	in emissions, transport and diffusion, wet scavenging, and very complex chemistry which
690	involves semi-volatile organic and inorganic species (Appel et al., 2021).
691	
692	Continued research on aerosol dry deposition is needed. More field studies, especially
693	for some of the lesser studied vegetation land use types such as croplands, grasslands, and
694	broadleaf deciduous forests, would help to confirm or refute the new model paradigm for
695	different vegetation types and help define parameters such as the macro and micro scale
696	characteristic obstacle dimensions and scaling factors. In addition to comparisons to
697	aggregates of measurements we also plan to model individual field studies in detail where
698	the aerosol dry deposition model is driven by observed micrometeorology and canopy
699	characteristics on an observational timestep basis (30 min or 1 hour).
700	

Another next step in this research is to include the effects of brown vegetation in the
model. Currently, the vegetation fraction and LAI are specified in the WRF-CMAQ
system either by land-use category look-up table, where the parameters seasonally vary
between minimum and maximum values, or from MODIS satellite fraction of absorbed

705	photosynthetically active radiation (FPAR) and LAI retrievals. In either case, the
706	vegetation parameters are meant to represent live vegetation for evapotranspiration and
707	stomatal uptake of gaseous pollutants. However, for aerosol deposition, brown
708	vegetation can also provide surfaces for deposition. Therefore, we are planning to
709	include MODIS non-photosynthetic vegetation (NPV) and photosynthetic vegetation
710	(PV) fractions in the aerosol dry deposition model. Preliminary tests show that the
711	inclusion of NPV increases aerosol deposition over large areas of the western US.
712	Implementation of NPV has already been included for windblown dust emissions where
713	NPV reduces dust emissions by shielding the soil surface from the wind (Huang and
714	Foroutan 2021).
715	
716	Disclaimer
717	Although this work was reviewed by EPA and approved for publication, it may not
718	necessarily reflect official Agency policy. Mention of commercial products does not
719	constitute endorsement by the Agency.
720	Acknowledgments
721	We gratefully acknowledge the free availability and use of observational data sets from
722	EPA AQS (available at https://www.epa.gov/aqs) and the IMPROVE network (available
723	at http://vista.cira.colostate.edu/Improve) We thank Christian Hogrefe and Chris Nolte
724	for comments and suggestions on the initial version of this paper.
725	Data Availability Statement
726	Data used to generate figures and table are available at <u>https://doi.org/10.23719/1524715</u> .

728 **References**

729	Ahlm, L., Krejci, R., Nilsson, E. D., Martensson, E. M., Vogt, M. and co-authors. 2010.
730	Emission and dry deposition of accumulation mode particles in the Amazon
731	Basin. Atmos. Chem. Phys. 10, 10237-10253. doi:10.5194/acp-10-10237-2010.
732	Albert, M. F., Anguelova, M. D., Manders, A. M., Schaap, M., & Leeuw, G. D. (2016).
733	Parameterization of oceanic whitecap fraction based on satellite observations.
734	Atmospheric Chemistry and Physics, 16(21), pp.13725-13751.
735	Allen, A. G., Harrison, R. M. and Nicholson, K. W. 1991. Dry deposition of fine aerosol
736	to a short grass surface. Atmos. Environ. 25A, 2671–2676.
737	Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C.,
738	Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C.
739	G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G.,
740	Schwede, D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community
741	Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates
742	and evaluation, Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-
743	14-2867-2021, 2021.
744	Appel, K. W., Gilliam, R. C., Pleim, J. E., Pouliot, G. A., Wong, D. C., Hogrefe, C., et al.
745	598 (2014). Improvements to the WRF-CMAQ modeling system for fine-scale air
746	quality 599 simulations. EM: Air and Waste Management Association's
747	Magazine for Environmental 600 Managers (September).
748	Beckett, K.P., Freer-Smith, P.H. and Taylor, G., 2000. Particulate pollution capture by
749	urban trees: effect of species and windspeed. Global change biology, 6(8),
750	pp.995-1003.

751	Beswick, K. M., Hargreaves, K. J., Gallagher, M. W., Choularton, T. W. and Fowler, D.
752	1991. Size-resolved measurements of cloud droplet deposition velocity to a forest
753	canopy using an eddy correlation technique. Q. J. R. Met. Soc. 117, 623-645.
754	doi:10.1002/qj.49711749910.
755	Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. Field, A. M. Fiore, Q. Li, H. Liu, L.
756	J. Mickley, and M. Schultz, Global modeling of tropospheric chemistry with
757	assimilated meteorology: Model description and evaluation, J. Geophys. Res.,
758	106, 23,073-23,096, 2001.
759	Binkowski, F. S. & Shankar, U. (1995). The regional particulate matter model: 1. Model
760	description and preliminary results. Journal of Geophysical Research:
761	Atmospheres, 100(D12), pp.26191-26209.
762	Buzorius, G., Rannik, U., Makela, J. M., Keronen, P., Vesala, T. and co-authors. 2000.
763	Vertical aerosol fluxes measured by the eddy covariance method and deposition
764	of nucleation mode particles above a Scots pine forest in southern Finland. J.
765	Geophys. Res. 105, 19905–19916.
766	Byun, D., & Schere, K. L. (2006). Review of the governing equations, computational
767	algorithms, and other components of the models-3 Community Multiscale Air
768	Quality (CMAQ) modeling system. Applied Mechanics Reviews, 59(1-6).
769	https://doi.org/10.1115/1.2128636
770	Caffrey, P. F., Ondov, J. M., Zufall, M. J. and Davidson, C. I. 1998. Determination of
771	size-dependent dry particle deposition velocities with multiple intrinsic elemental
772	tracers. Environ. Sci. Technol. 32, 1615–1622. doi:10.1021/es970644f.

773	Chamberlain, A. C. 1967. Transport of Lycopodium spores and other small particles to
774	rough surfaces. Proceedings of the Royal Society of London 296A, 45–70.
775	Chen, L., Liu, C., Zhang, L., Zou, R., & Zhang, Z. (2017). Variation in tree species
776	ability to capture and retain airborne fine particulate matter (PM 2.5). Scientific
777	<i>Reports</i> , 7 (1), pp.1-11.
778	Chiam, Z., Song, X. P., Lai, H. R., & Tan, H. T. W. (2019). Particulate matter mitigation
779	via plants: Understanding complex relationships with leaf traits. Science of the
780	total environment, 688, pp.398-408
781	Clough, W. S. 1975. The deposition of particles on moss and grass surfaces. Atmos.
782	Environ. 9, 1113–1119. doi:10.1016/0004-6981(75)90187-0.
783	Connan O, Pellerin G, Maro D, Damay P, Hébert D, et al. 2018. Dry deposition velocities
784	of particles on grass: field experimental data and comparison with models. J.
785	Aerosol Sci. 126:58–67
786	Cunningham, E., 1910. On the velocity of steady fall of spherical particles through fluid
787	medium. Proc. Roy. Soc. A 83, 357.
788	Deventer, M.J., Held, A., El-Madany, T.S. and Klemm, O., 2015. Size-resolved eddy
789	covariance fluxes of nucleation to accumulation mode aerosol particles over a
790	coniferous forest. Agricultural and Forest Meteorology, 214, pp.328-340.
791	Emerson, E. W., Hodshire, A. L., DeBolt, H. M., Bilsback, K. R., Pierce, J. R.,
792	McMeeking, G. R., & Farmer, D. K. (2020). Revisiting particle dry deposition
793	and its role in radiative effect estimates. Proceedings of the National Academy of
794	Sciences, 117(42), pp.26076-26082.

- 795 ENVIRON. 2020. User's Guide, Comprehensive Air Quality Model with Extensions
- 796 (CAMx), Version 7.10. https://camx-

797 wp.azurewebsites.net/Files/CAMxUsersGuide_v7.10.pdf.

- Farmer, D. K., Boedicker, E. K., & DeBolt, H. M. (2021). Dry Deposition of
- Atmospheric Aerosols: Approaches, Observations, and Mechanisms. *Annual Review of Physical Chemistry*, **72**, pp.375-397.
- Gallagher, M. W., Choularton, T. W., Morse, A. P. and Fowler, D. 1988. Measurements
- 802 of the size dependence of cloud droplet deposition at a hill site. Q. J. R. Meteorol.
 803 Soc. 114, 1291–1303.
- 804 Gallagher, M. W., Beswick, K. M., Duyzer, J., Westrate, H., Choularton, T. W. and co-
- authors. 1997. Measurements of aerosol fluxes to Speulder Forest using a
 micrometeorological technique. Atmos. Environ. 31, 359–373.
- 807 Gaman, A., Rannik, U., Aalto, P., Pohja, T., Siivola, E. and coauthors. 2004. Relaxed
- 808 eddy accumulation system for size resolved aerosol particle flux measurements. J.
 809 Atmos. Oceanic Technol. 21, 933–943.
- 810 Gong, W., Dastoor, A.P., Bouchet, V.S., Gong, S., Makar, P.A., Moran, M.D., Pabla, B.,
- 811 Ménard, S., Crevier, L.P., Cousineau, S. and Venkatesh, S., 2006. Cloud
- 812 processing of gases and aerosols in a regional air quality model (AURAMS).
- 813 Atmospheric Research, 82(1-2), pp.248-275.
- 814 Gong, W., Makar, P.A., Zhang, J., Milbrandt, J., Gravel, S., Hayden, K.L., Macdonald,
- A.M. and Leaitch, W.R., 2015. Modelling aerosol–cloud–meteorology
- 816 interaction: A case study with a fully coupled air quality model (GEM-MACH).
- 817 Atmospheric Environment, 115, pp.695-715.

818	Gordon, M., Staebler, R. M., Liggio, J., Vlasenko, A., Li, SM. and co-authors. 2011.
819	Aerosol flux measurements above a mixed forest at Borden, Ontario. Atmos.
820	Chem. Phys. 11, 6773–6786.
821	Grönholm, T., Aalto, P. P., Hiltunen, V., Rannik, U., Rinne, J. and co-authors. 2007.
822	Measurements of aerosol particle dry deposition velocity using the relaxed eddy
823	accumulation technique. Tellus 59B, 381–386.
824	Grönholm, T., Launiainen, S., Ahlm, L., Martensson, E. M., Kulmala, M. and co-authors.
825	2009. Aerosol particle dry deposition to canopy and forest floor measured by two-
826	layer eddy covariance system. J. Geophys. Res. 114, D04202.
827	doi:1029/2008JD010663.
828	Grosch, S. and Schmitt, G. 1988. Experimental Investigations on the Deposition of Trace
829	Elements in Forest Area. In: Environmental Meteorology (eds. K. Grefen and L.
830	Lobel). Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 201–216.
831	Hicks, B. B., Wesely, M. L., Durham, J. L. and Brown, M. A. 1982. Some direct
832	measurements of atmospheric sulfur fluxes over a pine plantation. Atmos.
833	Environ. 16, 2899–2903.
834	Hicks, B. B., Matt, D. R., McMillen, R. T., Womack, J. D., Wesely, M. L. and co-
835	authors. 1989. A field investigation of sulfate fluxes to a deciduous forest. J.
836	Geophys. Res. 94, 13003–13011.
837	Hofken, K. D. and Gravenhorst, G. 1982. Deposition of atmospheric aerosol particles to
838	beech- and spruce forest. In: Deposition of Atmospheric Pollutants (eds. H. W.
839	Georggi and J. Pankrath). D. Reidel Publishing Company, Oberursel/Taunus,
840	Germany, pp. 191–194.

841	Huang, X. and Foroutan, H., 2021. Effects of Non-Photosynthetic Vegetation on Dust
842	Emissions. Earth and Space Science Open Archive ESSOAr.
843	Hummelshøj, P. N. O. S. E., Jensen, N. O., & Larsen, S. E. (1992). Particle dry
844	deposition to a sea surface. Precipitation scavenging and atmosphere-surface
845	exchange, Hemisphere Publishing Corporation, Washington, 5562, pp.829-840.
846	Hummelshøj, P. 1994. Dry Deposition of Particles and Gases. PhD Thesis, Technical
847	University of Denmark.
848	IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working
849	Group I to the Sixth Assessment Report of the Intergovernmental Panel on
850	Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan,
851	S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E.
852	Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and
853	B. Zhou (eds.)]. Cambridge University Press. In Press.
854	Karambelas, A., LISTOS: Toward a Better Understanding of New York City's Ozone
855	Pollution Problem, EM, October 2020.
856	Lavi, A., Farmer, D. K., Segre, E., Moise, T., Rotenberg, E. and co-authors. 2013. Fluxes
857	of fine particles over a semi-arid pine forest: Possible effects of a complex terrain.
858	Aerosol. Sci. Technol. 47, 906–915.
859	Leonard, R.J., McArthur, C. and Hochuli, D.F., 2016. Particulate matter deposition on
860	roadside plants and the importance of leaf trait combinations. Urban Forestry &
861	Urban Greening, 20, pp.249-253.
862	Lorenz, R. and Murphy, C. E. Jr. 1989. Dry deposition of particles to a pine plantation.

863 Boundary-Layer Meteorol. 46, 355–366.

- Mahowald, N.M., Scanza, R., Brahney, J. et al. Aerosol Deposition Impacts on Land and
 Ocean Carbon Cycles. Curr Clim Change Rep 3, 16–31 (2017).
- 866 https://doi.org/10.1007/s40641-017-0056-z
- 867 Mammarella, I., Rannik, U., Aalto, P., Keronen, P., Vesala, T. and co-authors. 2011.
- Long-term aerosol particle flux observations. Part II: Particle size statistics and
 deposition velocities. Atmos. Environ. 45, 3794–3805.
- 870 Matsuda, K., Watanabe, I., Mizukami, K., Ban, S. and Takahashi, A. 2015. Dry
- deposition of PM2.5 sulfate above a hilly forest using relaxed eddy accumulation.
 Atmos. Environ. 107, 255–261.
- Moller, U. and Schumann, G. 1970. Mechanisms of transport from the atmosphere to the
 Earth's surface. J. Geophys. Res. 75, 3013–3019.
- 875 Nemitz, E., Gallagher, M. W., Duyzer, J. H. and Fowler, D. 2002. Micrometeorological
- 876 measurements of particle deposition velocities to moorland vegetation. Q. J. R.
- 877 Meteorol. Soc. 128, 2281–2300.
- 878 Neumann, H. H. and den Hartog, G. 1985. Eddy correlation measurements of
- 879 atmospheric fluxes of ozone, sulphur, and particulates during the Champaign
- 880 Intercomparison Study. J. Geophys. Res. 90, 2097–2110.
- 881 Ould-Dada, Z. 2002. Dry deposition profile of small particles within a model spruce
 882 canopy. Sci. Total Environ. 286, 83–96.
- 883 Pleim, J. and Ran, L. 2011. Surface flux modeling for air quality applications.
- 884 Atmosphere 2, 271–302.

885	Perini, K., Ottelé, M., Giulini, S., Magliocco, A. and Roccotiello, E., 2017.
886	Quantification of fine dust deposition on different plant species in a vertical
887	greening system. Ecological engineering, 100, pp.268-276.
888	Petroff, A. and Zhang, L. 2010. Development and validation of a size-resolved particle
889	dry deposition scheme for application in aerosol transport models. Geosci. Model
890	Dev. 3, 753–769.
891	Petroff, A., Murphy, J.G., Thomas, S.C. and Geddes, J.A., 2018. Size-resolved aerosol
892	fluxes above a temperate broadleaf forest. Atmospheric Environment, 190,
893	pp.359-375.
894	Pryor, S. C., Barthelmie, R. J., Geernaert, L. L. S., Ellermann, T., & Perry, K. D. (1999).
895	Speciated particle dry deposition to the sea surface: results from ASEPS'97.
896	Atmospheric Environment, 33(13), pp.2045-2058.
897	Pryor, S. C. 2006. Size-resolved particle deposition velocities of sub-100nm diameter
898	particles over a forest. Atmos. Environ. 40, 6192–6200.
899	Pryor, S.C., Larsen, S.E., Sørensen, L.L., Barthelmie, R.J., Grönholm, T. and co-authors.
900	2007. Particle fluxes over forests: analyses of flux methods and functional
901	dependencies. J. Geophys. Res.: Atmos., 112, D07205,
902	doi:10.1029/2006JD008066.
903	Pryor, S.C., Gallagher, M., Sievering, H., Larsen, S.E., Barthelmie, R.J., Birsan, F.,
904	Nemitz, E., Rinne, J., Kulmala, M., Grönholm, T. and Taipale, R., 2008. A review
905	of measurement and modelling results of particle atmosphere-surface exchange.
906	Tellus B: Chemical and Physical Meteorology, 60(1), pp.42-75.

907	Pryor, S. C., Barthelmie, R. J., Spaulding, A. M., Larsen, S. E., and Petroff, A. (2009).
908	Size-Resolved Aerosol Particle Fluxes over Forests. J. Geophys. Res., 114,
909	doi:10.1029/2009JD012248.
910	Sæbø, A., Popek, R., Nawrot, B., Hanslin, H.M., Gawronska, H., Gawronski, S.W., 2012.
911	Plant species differences in particulate matter accumulation on leaf surfaces. Sci.
912	Total Environ. 427 (-428), 347–354,
913	http://dx.doi.org/10.1016/j.scitotenv.2012.03.084.
914	Saylor, R. D., Baker, B. D., Lee, P., Tong, D., Pan, L., & Hicks, B. B. (2019). The
915	particle dry deposition component of total deposition from air quality models:
916	right, wrong or uncertain?. Tellus B: Chemical and Physical Meteorology, 71(1),
917	p.1550324.
918	Sievering, H. 1981. Profile measurements of particle mass transfer at the air-water
919	interface. Atmos. Environ. 15, 123–129.
920	Sievering, H. 1982. Profile measurements of particle dry deposition velocity at an air-
921	land interface. Atmos. Environ. 16, 301–306.
922	Sievering, H. 1988. Small-particle dry deposition measurements: A comparison of
923	gradient and eddy flux techniques over agricultural fields, In: Annual Meeting of
924	Air Pollution Control Association, Dallas, Texas, June 19–24, 6, pp. 88–101.
925	Slinn, W. G. N. 1977. Some approximations for the wet and dry removal of particles and
926	gases from the atmosphere. Water Air Soil Pollut. 7, 513–543.
927	Slinn, S. A. & Slinn, W. G. N. (1980). Predictions for particle deposition on natural
928	waters. Atmospheric Environment (1967), 14(9), pp.1013-1016.

929	Slinn, W. G. N. (1982). Predictions for particle deposition to vegetative canopies.
930	Atmospheric Environment (1967), 16(7), pp.1785-1794.
931	Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Moran, M.D., Appel,
932	K.W., Bessagnet, B., Brandt, J., Christensen, J.H. and Chemel, C., 2012.
933	Operational model evaluation for particulate matter in Europe and North America
934	in the context of AQMEII. Atmospheric environment, 53, pp.75-92.
935	Stokes, G. G. 1851. On the effect of internal friction of fluids on the motion of
936	pendulums. Transactions of the Cambridge Philosophical Society. 9, part ii: 8–
937	106.
938	Sun, F., Yin, Z., Lun, X., Zhao, Y., Li, R. and co-authors. 2014. Deposition velocity of
939	PM2.5 in the winter and spring above deciduous and coniferous forests in Beijing,
940	China. PLoS One 9, e97723. doi: 10.1371/journal.pone.0097723.
941	Torres-Vazquez, A., Pleim, J., Gilliam, R., Pouliot, G., 2022, Performance Evaluation of
942	the Meteorology and Air Quality Conditions from 1 Multiscale WRF CMAQ
943	Simulations for the Long Island Sound Tropospheric 2 Ozone Study (LISTOS),
944	submitted to Journal of Geophysical Research: Atmospheres
945	Toro, C., Foley, K., Simon, H., Henderson, B., Baker, K.R., Eyth, A., Timin, B., Appel,
946	W., Luecken, D., Beardsley, M. and Sonntag, D., 2021. Evaluation of 15 years of
947	modeled atmospheric oxidized nitrogen compounds across the contiguous United
948	States. Elem Sci Anth, 9(1), p.00158.
949	Venkatram, A. and Pleim, J. 1999. The electrical analogy does not apply to modeling dry
950	deposition of particles. Atmos. Environ. 33, 3075–3076.

951	Vong, R. J., Vong, I. J., Vickers, D. and Covert, D. S. 2010. Size-dependent aerosol
952	deposition velocities during BEARPEX'07. Atmos. Chem. Phys. 10, 5749-5758.
953	Vong, R. J., Vickers, D. and Covert, D. S. 2004. Eddy correlation measurements of
954	aerosol deposition to grass. Tellus 56B, 105–117.
955	Waraghai, A. and Gravenhorst, G. 1989. Dry deposition of atmospheric particles to an
956	old spruce stand, in: Mechanisms and Effects of Pollutant Transfer into Forests.
957	(ed. H. W. Georgii), Kluwer Academic Publishers, London, pp. 77-86.
958	Weerakkody, U., Dover, J. W., Mitchell, P., & Reiling, K. (2018). Evaluating the impact
959	of individual leaf traits on atmospheric particulate matter accumulation using
960	natural and synthetic leaves. Urban forestry & urban greening, 30, pp.98-107.
961	Wesely, M. L., Hicks, B. B., Dannevik, W. P., Frisella, S. and Husar, R. B. 1977. An
962	eddy-correlation measurement of particulate deposition from the atmosphere.
963	Atmos. Environ. 11, 561–563.
964	Wesely, M. L., Cook, D. R., Hart, R. L. and Speer, R. E. 1985. Measurements and
965	parameterization of particulate sulfur dry deposition over grass. J. Geophys. Res.
966	90, 2131–2143.
967	Wyers, G. P. and Duyzer, J. H. 1997. Micrometeorological measurement of the dry
968	deposition flux of sulphate and nitrate aerosols to coniferous forest. Atmos.
969	Environ. 31, 333–343.
970	Zhang, L., Gong, S., Padro, J., & Barrie, L. (2001). A size-segregated particle dry
971	deposition scheme for an atmospheric aerosol module. Atmospheric environment,
972	35 (3), pp.549-560.

973	Zhang, J. and Shao, Y., 2014. A new parameterization of particle dry deposition over
974	rough surfaces. Atmospheric Chemistry and Physics, 14(22), pp.12429-12440.
975	Zhang, J., Shao, Y. and Huang, N. 2014. Measurements of dust deposition velocity in a
976	wind-tunnel experiment. Atmos. Chem. Phys. 14, 8869-8882.
977	Zufall, M. J., Davidson, C. I., Caffrey, P. F. and Ondov, J. M. 1998. Airborne
978	concentrations and dry deposition fluxes of particulate species to surrogate
979	surfaces deployed in southern Lake Michigan. Environ. Sci. Technol. 32, 1623-
980	1628.
981	Zhang, X., Lyu, J., Zeng, Y., Sun, N., Liu, C. and Yin, S., 2021. Individual effects of
982	trichomes and leaf morphology on PM2. 5 dry deposition velocity: A variable-
983	control approach using species from the same family or genus. Environmental
984	Pollution, 272, p.116385.