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Abstract

We present a near surface air temperature (NSAT) fused data product over the contiguous United States using Level 2 data

from the Atmospheric Infrared Sounder (AIRS), on the Aqua satellite, and the Cross-track Infrared Microwave Sounding Suite

(CrIMSS), on the Suomi National Polar-orbiting Partnership (SNPP) satellite. We create the fused product using Spatial

Statistical Data Fusion (SSDF), a procedure for fusing multiple datasets by modeling spatial dependence in the data, along

with ground station data from NOAA’s Integrated Surface Database (ISD) which is used to estimate bias and variance in the

input satellite datasets. Our fused NSAT product is produced twice daily and on a 0.25-degree latitude-longitude grid. We

provide detailed validation using withheld ISD data and comparison with ERA5-Land reanalysis. The fused gridded product

has no missing data; has improved accuracy and precision relative to the input satellite datasets, and comparable accuracy

and precision to ERA5-Land; and includes improved uncertainty estimates. Over the domain of our study, the fused product

decreases daytime bias magnitude by 1.7 K and 0.5 K, nighttime bias magnitude by 1.5 K and 0.2 K, and overall RMSE by 35%

and 15% relative to the AIRS and CrIMSS input datasets, respectively. Our method is computationally fast and generalizable,

capable of data fusion from multiple datasets estimating the same quantity. Finally, because our product reduces bias, it

produces long-term datasets across multi-instrument remote sensing records with improved bias stationarity, even as individual

missions and their data records begin and end.
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Key Points:7

• We demonstrate spatial statistical fusion for Level 2 remote sensing datasets8

which estimate the same observable9

• We introduce a new daily and nightly fused near-surface air temperature product10

from satellite hyperspectral sounders over CONUS11

• The fused product decreases bias and RMSE by 1 K and 25% respectively rel-12

ative to input datasets, averaged over the domain of the study13
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Abstract14

We present a near surface air temperature (NSAT) fused data product over the con-15

tiguous United States using Level 2 data from the Atmospheric Infrared Sounder16

(AIRS), on the Aqua satellite, and the Cross-track Infrared Microwave Sounding Suite17

(CrIMSS), on the Suomi National Polar-orbiting Partnership (SNPP) satellite. We18

create the fused product using Spatial Statistical Data Fusion (SSDF), a procedure19

for fusing multiple datasets by modeling spatial dependence in the data, along with20

ground station data from NOAA’s Integrated Surface Database (ISD) which is used21

to estimate bias and variance in the input satellite datasets. Our fused NSAT prod-22

uct is produced twice daily and on a 0.25-degree latitude-longitude grid. We provide23

detailed validation using withheld ISD data and comparison with ERA5-Land reanal-24

ysis. The fused gridded product has no missing data; has improved accuracy and25

precision relative to the input satellite datasets, and comparable accuracy and preci-26

sion to ERA5-Land; and includes improved uncertainty estimates. Over the domain27

of our study, the fused product decreases daytime bias magnitude by 1.7 K and 0.528

K, nighttime bias magnitude by 1.5 K and 0.2 K, and overall RMSE by 35% and29

15% relative to the AIRS and CrIMSS input datasets, respectively. Our method is30

computationally fast and generalizable, capable of data fusion from multiple datasets31

estimating the same quantity. Finally, because our product reduces bias, it produces32

long-term datasets across multi-instrument remote sensing records with improved bias33

stationarity, even as individual missions and their data records begin and end.34

Plain Language Summary35

We have used a data fusion technique called spatial statistical data fusion (SSDF)36

to create an improved near surface air temperature (NSAT) dataset by fusing two37

separate satellite datasets. NSAT is important for a variety of applications, such as38

drought, wildfire, and extreme heat research and prediction. The two input NSAT39

datasets come from the AIRS instrument on the Aqua satellite, and the CrIMSS suite40

on the SNPP satellite. Our fused NSAT product is produced twice daily and on a 0.25-41

degree latitude-longitude grid. We also performed a detailed validation using withheld42

reference data (which was not included in the bias-correction data) and comparison43

with ERA5-Land reanalysis. The new fused product has no missing data; has improved44

accuracy and precision relative to the input satellite datasets, and comparable accuracy45

and precision to ERA5-Land; and includes improved uncertainty estimates. SSDF is46

computationally fast and generalizable, capable of data fusion from multiple datasets47

so long as they estimate the same quantity. Finally, because our product reduces bias,48

it provides a means of creating high-quality continuous long-term datasets across the49

years, as individual satellite missions and their data records begin and end.50

1 Introduction51

Data fusion is the combining of multiple datasets into a single dataset with52

improved properties relative to the input datasets (for a recent review, see Ghamisi53

et al. (2019)). Near-surface air temperature (NSAT, the air temperature at a height54

of 2 m above the surface) is a fundamental variable that critically affects life on the55

Earth’s surface, and an Essential Climate Variable. Here, we describe the use of spatial56

statistical data fusion (SSDF) to fuse two Level 2 (L2) satellite NSAT datasets into57

a single product at 0.25-degree spatial resolution on a twice-daily basis (one daytime58

and one nighttime estimate per day) over the contiguous United States (CONUS)59

and adjacent parts of North America. SSDF utilizes spatial dependence within and60

between the datasets to improve estimates at any given point, including at locations61

not covered by the input data.62
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As the Earth continues to rapidly heat due to human emissions of greenhouse63

gases, NSAT remote sensing records are becoming increasingly important for a number64

of critical science and applied science areas such as health, urban planning, hydrology65

and water, ecology and conservation, and wildfire prediction. NSAT data records66

have been produced by a variety of methods which are suited for different purposes.67

One method is to collect NSAT measurements from ground stations; one example68

of this type of dataset is the Integrated Surface Database, or ISD (A. Smith et al.,69

2011). Ground station measurements are relatively accurate, but they are sparse70

point-source measurements with some regions of the planet having less coverage than71

others. These strengths and weaknesses make them suitable for use as reference data72

for validation purposes. Another type of NSAT dataset can be created by filtering and73

processing these raw NSAT ground measurements into space-filled, gridded climate74

records useful for climate analysis and climate model validation. These climate records75

are typically monthly mean products at low resolution, such as the 1-degree resolution76

Berkeley Earth Monthly Land+Ocean dataset (Rohde & Hausfather, 2020). Berkeley77

Earth is also experimenting with daily and 0.25-degree-resolution datasets. A third78

strategy for estimating NSAT is reanalysis, which uses multiple data sources (including79

satellite data) and dynamical weather models to create dynamically consistent gridded80

fields. As computational power and algorithm efficiencies have increased, so have the81

spatial resolutions of reanalysis datasets. An example is the European Centre for82

Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5)-Land reanalysis83

NSAT dataset (Hennermann & Berrisford, 2019), which has hourly temporal resolution84

and a spatial resolution of 0.1 degrees, the highest available at the time of writing.85

Finally, NSAT can be estimated from satellite remote sensing. NSAT can be retrieved86

from imaging instruments which can estimate land surface temperature (LST) at high87

resolutions, although obtaining NSAT from LST requires regression modeling which88

introduces its own errors. An example of NSAT modeled from LST is the EUSTACE89

project (Good, 2015; Rayner et al., 2020), which produced global daily NSAT at 0.25-90

degree resolution. Another example used LST data from the Moderate Resolution91

Imaging Spectroradiometer (MODIS) and a random forest model trained using in situ92

data from the Global Land Data Assimilation System (GLDAS) to model daily all-93

sky NSAT at 1 km resolution of mainland China (Chen et al., 2021). NSAT can94

also be estimated from atmospheric temperature profiles from infrared sounders using95

interpolation to the surface pressure level, such as the AIRS and CrIMSS products96

used in this study and described below in Section 2.1.97

Our data-fusion methodology, SSDF, exists within a geostatistical framework98

which is a part of the broader area of spatial statistics. Specifically, SSDF is de-99

signed to provide the principled error characterization and error propagation within100

data fusion for massive remote sensing data (Nguyen et al., 2012). SSDF has been101

demonstrated previously in the context of data fusion of L2 satellite remote sens-102

ing datasets. L2 datasets are geophysical quantities inferred or “retrieved” from the103

primary observations of radiances by the orbiting instruments (known as “Level 1”104

data). The SSDF methodology we utilize here was first used to fuse L2 aerosol optical105

depth from the Multi-angle Imaging Spectroradiometer (MISR) and MODIS aboard106

the Terra platform. It was subsequently demonstrated in the fusion of L2 total column107

CO2 concentration (XCO2) from the Atmospheric Infrared Sounder (AIRS) aboard the108

Aqua platform and XCO2 from the Orbiting Carbon Observatory-2 (OCO-2) (Nguyen109

et al., 2014). In addition, an SSDF variant called local kriging was used to produce110

fused estimates of XCO2 from GOSAT (Hammerling et al., 2012). In the current work,111

we describe the creation of the first long data record produced by SSDF, and the first112

data fusion of NSAT by any method.113

L2 datasets can present certain challenges and limitations to end users which114

can be mitigated through data fusion. Instantaneous snapshots are obtained at a115

large number of spatial and temporal fields of regard determined by orbital and sensor116
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geometry, and therefore do not fall on a regular grid. Data coverage is spatially117

and temporally incomplete due to clouds, gores (spaces between orbit tracks), and118

faults due to “single-event upsets” often attributed to cosmic rays. L2 data can have119

large errors relative for example to reanalysis datasets, and uncertainty estimates,120

if reported, may significantly underestimate or overestimate the error relative to a121

reference dataset.122

Our fused NSAT product combines two input remote sensing datasets: L2 NSAT123

from AIRS, and L2 NSAT from the Cross-track Infrared Microwave Sounding Suite124

(CrIMSS) on the Suomi National Polar-orbiting Partnership (SNPP) platform. These125

L2 datasets are created using two independent retrieval algorithms with different first-126

guess strategies. We also use information content from in situ ground station networks127

from NOAA’s Integrated Surface Database (ISD) to determine uncertainties in the two128

remote sensing datasets which are needed to perform fusion, and to validate the SSDF129

product and its associated uncertainty estimates. We randomly divide the ISD data130

into training and testing sets to perform these two separate functions.131

Our fused NSAT product has the following key advantages over either of the132

input remote sensing datasets:133

1. filled spatial gaps;134

2. regular 0.25-degree spatial gridding;135

3. reduced bias and variance relative to a reference in situ dataset;136

4. improved uncertainty estimates;137

5. improved long-term stationarity.138

The rest of the paper is organized as follows. We first describe the input datasets139

and methodology. Then we present the fused NSAT product, and the results of vali-140

dation against withheld ISD surface station data. We also compare the fused NSAT141

product to the individual input remote sensing datasets, and to ERA5-Land reanaly-142

sis. In the process of validating our fused product, we also produce the most thorough143

validation study to date of the AIRS V7 and SNPP-CrIMSS-CLIMCAPS V2 NSAT144

products over CONUS. We conclude with a discussion of advantages, limitations, and145

potential future work.146

2 Data and methods147

Our fusion procedure involves five major steps: (1) Obtaining and filtering input148

remote sensing datasets that estimate the same quantity; (2) Matching the remote149

sensing datasets to a reference in situ dataset in space and time; (3) Using these150

matched data pairs (“matchups”) to characterize the input datasets via estimation of151

their bias and variance relative to the reference estimate; (4) Performing the SSDF152

calculations; and (5) Validating the results using withheld data from the reference153

dataset. The method and the specific datasets used in our NSAT dataset are described154

in the following subsections.155

2.1 Satellite NSAT data156

The input satellite datasets come from two hyperspectral infrared sounders and157

retrieval algorithms. The Aqua platform that carries AIRS launched in 2002 in a158

sun-synchronous polar orbit, with equator crossing times of approximately 1:30 P.M.159

and 1:30 A.M. for ascending (south to north) and descending (north to south) nodes,160

respectively. AIRS is an infrared grating spectrometer with 2378 channels, spanning161

3.7 to 15.4 µm (Chahine et al., 2006). Power to critical channels of the Aqua satellite’s162

Advanced Microwave Sounding Unit (AMSU)-A2 was lost in September 2016 (Yue et163
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al., 2017). AMSU-A2 complemented the AIRS instrument in atmospheric temperature164

and moisture profile retrievals, and was especially informative for moisture profiles.165

The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave166

Sounder (ATMS) instruments launched onboard the SNPP platform in 2012. SNPP167

is in the same orbital plane as Aqua, but at a higher altitude (824 km as opposed168

to 705 km), with equator crossing times also approximately 1:30 P.M. and 1:30 A.M.169

Together, these two instruments are known as SNPP-CrIMSS (Cross-track Infrared170

Microwave Sounder Suite). SNPP-CrIS experienced an anomaly on May 21, 2021171

which resulted in the loss of the longwave infrared channels. Another instance of172

CrIMSS is flying on the JPSS-1 (Joint Polar Satellite System, also known as J1 or173

NOAA-20) which launched on November 2017. Data from J1-CrIMSS is not used in174

this study, but could be used in future SSDF products.175

For obtaining Aqua-AIRS temperature soundings, we use the AIRS-team Version176

7 L2 “infrared-only” temperature retrieval algorithm (Susskind et al., 2014), a least177

squares estimate using singular value decomposition regularization and cloud-cleared178

radiances. Stochastic Cloud Clearing Neural Network (SCCNN) which is trained to179

ECMWF fields (Blackwell, 2005) as a first guess, then refines to a final estimate. We180

choose the “infrared-only” retrieval for our study due to the 2016 loss of AMSU-A2,181

but we note that this retrieval uses information from the satellite’s other microwave182

sounder, AMSU-A1 (Yue et al., 2020). The retrieval uncertainty is estimated via a183

regression model using eleven retrieval diagnostic quantities as predictors; the regres-184

sion coefficients are trained on two days of retrievals (9/29/04 and 2/24/07) using185

ECMWF 3-hour forecasts as a reference dataset (Susskind et al., 2014; Thrastarson186

et al., 2020). Each individual retrieval has a nominal horizontal resolution of 45 km187

comprised of nine 15 km fields of view in a 3x3 matrix, and each swath contains 30188

retrievals across its width and 45 along track. The product is organized nominally in189

240 “orbital granules” per day (AIRS Project, 2020).190

For obtaining SNPP-CrIMSS temperature soundings, we use the Community191

Long-term Infrared Microwave Coupled Atmospheric Product System (CLIMCAPS)192

Version 2 L2 temperature retrieval, which uses a hybrid optimal estimation methodol-193

ogy with a first guess from the Modern-Era Retrospective Analysis for Research and194

Applications version 2 (MERRA2) (N. Smith & Barnet, 2020), and information from195

both the CrIS and ATMS instruments. Like the AIRS-team retrieval, CLIMCAPS196

uses nine approximately 15 km fields of view in a 3x3 field of regard of 45 km, and197

performs cloud clearing using L1 radiances. CLIMCAPS uncertainty is estimated and198

propagated sequentially via error covariance matrices in stages (N. Smith & Barnet,199

2019). CLIMCAPS produces a combined infrared and microwave retrieval at two200

spectral resolutions: Nominal Spectral Resolution (NSR) and Full Spectral Resolution201

(FSR). We use the CLIMCAPS-SNPP NSR product to create our SSDF product, since202

it begins in 2012 whereas the FSR record only begins on November 2, 2015. In what203

follows, we refer to this product as “CrIMSS-CLIMCAPS” or sometimes as “CrIMSS.”204

An overview of the AIRS-team and CLIMCAPS retrievals is available online (AIRS205

team, n.d.), and a detailed comparison of the two retrievals applied to AIRS L1 data206

is available, including relative strengths and weaknesses can be found in (Yue et al.,207

2021).208

The CLIMCAPS retrieval is also applied to Aqua-AIRS radiances. For this pilot209

fused NSAT product, we chose to use the AIRS-team retrievals for the Aqua-AIRS L2210

input data to demonstrate the use of different L2 retrievals as input datasets.211

NSAT is obtained from the vertically-resolved temperature profiles (with 100212

pressure levels) via interpolation to the surface pressure for each field of regard (Olsen213

et al., 2017). The profile temperatures immediately above and below the surface214

are used for the interpolation, unless the level above is within 5 hPa of the surface215

pressure. In that case, the two levels above the surface are used. We include only L2216
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NSAT retrievals from AIRS V7 IR-only and CrIMSS-CLIMCAPS products with data217

quality flags ‘good’ or ‘best.’218

2.2 In situ NSAT data219

The National Oceanic and Atmosphere Administration (NOAA) Integrated Sur-220

face Database (ISD) is a global database of near-surface meteorological observations221

compiled from over a hundred systems of ground stations (A. Smith et al., 2011). The222

record extends back to the 1950s, although new stations have been added on a con-223

tinual basis as available, improving coverage over time. Today ISD consists of more224

than 35,000 surface weather stations globally, 14,000 of which remain active. Figure 1225

shows the spatial coverage of ISD stations in North America.226

We use sub-hourly NSAT measurements gathered from over 7000 stations in227

North America as our reference dataset, for bias and variance estimation and for valida-228

tion. No data are perfect, but the ISD errors are small relative to the errors in the input229

remote sensing datasets (see Figure 7). Naturally ventilated screened surface station230

air temperature measurements are accurate to ±0.1 K in most circumstances(Harrison231

& Burt, 2021). ISD data come with a set of ten data quality flags, indicating various232

problems and levels of quality. We only use ISD data flagged as highest quality, i.e.,233

data must be flagged with either 1 (‘Passed all quality control checks’) or 5 (‘Passed234

all quality control checks, data originate from an NCEI data source’).235

We chose ISD ground stations as our reference dataset for the following reasons:236

(1) it is not reanalysis, which assimilates AIRS and SNPP-CrIMSS information, as237

well as information from dynamical weather modeling; (2) ISD is among the most238

comprehensive ground station datasets available over land; (3) ISD NSAT estimates239

have low errors relative to remote sensing estimates.240

Figure 1: Spatial coverage of the ISD stations over North America. Note that ISD also
includes stations elsewhere in the world.

–6–



manuscript submitted to Earth and Space Science

2.3 Reanalysis NSAT data241

We also compare the fused NSAT results to ECMWF Reanalysis 5 (ERA5)-242

Land reanalysis data. The ERA5 is the fifth-generation global atmospheric reanalysis243

from ECMWF, replacing the ERA-Interim reanalysis which stopped being produced244

on August 31, 2019. Newly reprocessed datasets along with recent instruments have245

been assimilated into the ERA5 that could not be ingested into the ERA-Interim246

(Hennermann & Berrisford, 2019). We note that some AIRS spectral channels under247

clear conditions are incorporated into ECMWF reanalysis (Mcnally et al., 2006), but248

that ISD data are not.249

We use hourly ERA5-Land output which is a high-resolution version of the land250

component of the ERA5 reanalysis. ERA5-Land 2 m air temperature was chosen over251

the full ERA5 reanalysis for its finer spatial resolution of 0.1x0.1 degrees and hourly252

temporal resolution.253

2.4 Bias and variance estimation254

Biases and variances of input data sources are the key to high-quality data fusion.255

SSDF assumes input data are unbiased relative to some reference dataset, and weights256

them by the inverse of their respective variances. This minimizes output errors of257

the fused estimates relative to the reference dataset. Therefore, data must be bias-258

corrected before SSDF ingestion, and the quality of the final fused product depends259

on the quality of uncertainty estimates for the inputs.260

To estimate bias and variance for satellite footprints, we create an ensemble261

of “matchups”: matched pairs of satellite and ISD station estimates that are close262

in space (less than 100 km apart) and time (less than an hour apart). For a given263

period, the matchups are sorted into 240 km (∼two-degree) diameter hexagonal spatial264

bins based on satellite footprint location, with three-day time bins (day of interest,265

along with preceding and following days). We empirically tested different time bins266

(monthly, seven days, and three days) for aggregating matchups for determining bias267

and variance, and the three-day time bins minimized the mean standard deviation of268

a sample SSDF product over CONUS, while allowing for adequate sample size. This269

binning is the basis for quantifying bias and variance for all satellite footprints in a270

given space-time cell. We randomly select 1% of the ISD matchup pairs to withhold for271

validation (we do not withhold entire ISD stations). We chose a relatively small amount272

to withhold in order to maximize the information content for the SSDF product.273

To obtain the matchups we apply the following steps.274

1. Given an ISD observation at location s and time tI(s), select the AIRS granule275

(1 of 240) with the closest time to tI(s).276

2. Within this granule, select all L2 retrievals within 100 km of s and 1 hour of277

tI(s).278

3. If Step 2 results in more than 1 retrieval, select the one closest in spatial distance.279

Note that these steps will result in a one-to-one match between an ISD obser-280

vation and a single AIRS footprint. Some ISD observations may have no correspond-281

ing AIRS match, in which case no matchup is returned. We next tessellate a fixed282

hexagonal spatial grid over CONUS and find the biases and variances using matchups283

aggregated over 3 days within each grid cell, as follows:284

I. To compute a bias on day d and mode j (day or night) and in hexagonal grid285

cell i, we find the set of all valid (i.e., non-null) AIRS-ISD matchups from Steps286

1 to 3 above such that,287
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(a) the AIRS data come from mode j,288

(b) the AIRS footprint belongs within the grid cell i,289

(c) the ISD date is in (d− 1, d, d+ 1).290

II. The bias and variance for day d, mode j, and grid cell i are then computed291

using the set of paired ISD-AIRS matchups.292

Bias and variance estimation for CrIMSS follows the same procedure. For bias293

correction, given an instrument observation at location s on day d and mode j, we294

compute the corresponding bias within the grid cell which contains s for day d and295

mode j, and we subtract it from the instrument’s NSAT value. For more detail on the296

bias and variance estimation process, please refer to Appendix A.297

After the bias field is estimated for a given dataset relative to the ISD reference298

dataset, every datum in that dataset is then bias-corrected. After the variance field299

is estimated for a given dataset, every datum in that dataset is assigned a variance300

estimate which is then used in the SSDF algorithm to weight the datum.301

2.5 Data fusion methodology302

SSDF is an algorithm for fusing multiple remote sensing datasets by leveraging303

spatial dependence in the data, also known as kriging or optimal interpolation (Cressie,304

1993). Remote sensing data from different instruments in general are heterogeneous.305

By this we mean that the input remote sensing data sets may have different spatial306

footprints, sampling patterns, and measurement error characteristics. SSDF accounts307

for these heterogeneities by using a spatial statistical model that expresses the relation-308

ships between the quantity of interest at a particular location, and all the observations309

at all locations from all data sources.310

We note that the main requirement of SSDF is that the different instruments in311

question (e.g., AIRS and CrIMSS) must be observing the same geophysical quantity of312

interest (e.g., NSAT). We assume that after bias correction, the retrievals from both313

instruments are unbiased relative to the reference dataset. We also assume that we314

have standard deviation estimates that characterize the relative informational content315

between the instruments.316

One of the challenges encountered when applying spatial interpolation via tradi-317

tional kriging to remote sensing data is the massive data sizes involved. In traditional318

kriging, the computational complexity of the algorithm is O(N3) due to the need to319

invert an N × N covariance matrix C, where N is the number of data points. This320

inversion makes traditional kriging infeasible for datasets with N on the order of tens321

of thousands of data points or larger. To account for this, we use a scalable vari-322

ant of kriging that employs a dimension-reduction technique (Spatial Random Effects323

modeling) to parameterize the matrix C as a rank-r update to a diagonal matrix,324

where r << N . This allows us to invert the covariance matrix C analytically us-325

ing the Sherman-Morrison-Woodbury formula with computational complexity O(Nr2)326

(Cressie & Johannesson, 2008). SSDF is essentially an extension of Fixed-Ranked Krig-327

ing (FRK) for combining multiple datasets. Indeed, SSDF works by concatenating all328

the datasets into a meta-dataset (with each data point encoded with a value, location,329

and variance estimate) and then applying the FRK algorithm. Therefore, SSDF can330

easily generalize to more datasets than two, and it can also be applied to a single331

dataset (a sub-case needed for the AIRS-only part of the multi-instrument record,332

from 2002-2012), without mathematical modification.333

A second challenge with traditional kriging is handling arbitrary spatial foot-334

prints of the input datasets and those of the output grid. Gotway and Young (2002)335

identified this “change of support” problem of inferring a spatial process at one res-336
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olution from data at another resolution. However, their solution is computationally337

intensive, requiring integration over footprints and making it difficult to do parameter338

estimation for general non-linear covariance classes. In SSDF the SRE model is linear,339

which makes change of support and the associated parameter estimation straightfor-340

ward (Nguyen et al., 2012).341

As a scalable variant of Gaussian process prediction (Cressie, 1993), SSDF pro-342

vides two other advantages over other non-statistical data fusion approaches such as343

binning or non-parametric methods such as machine learning. First, the standard er-344

rors are optimized because SSDF minimizes errors relative to the unknown process;345

SSDF estimates are therefore “best linear unbiased estimates.” Within the class of346

linear estimators, this method produces the smallest prediction errors. In addition,347

SSDF provides a statistically principled method for estimating uncertainties. Mini-348

mizing errors and quantifying uncertainties allows SSDF to create more accurate and349

usable data products from input datasets.350

For the full mathematical formulation of SSDF, see Appendix B.351

2.6 Dataset preparation for assessment352

We assess our SSDF fused product using a randomly chosen reserved 1% of the353

ISD dataset. The assessment focuses on the product which is produced by the end-to-354

end workflow, including bias and variance estimation, bias correction, and the SSDF355

procedure. We match up SSDF, AIRS, CrIMSS, and ERA5 estimates to withheld ISD356

data using a 100 km and 1 hour matchup criterion (see Section 2.4 for more detail).357

These matchup datasets generally differ in their coverage; for instance, a fused estimate358

might be matched to an ISD observation at a location where there are no nearby AIRS359

or CrIMSS estimates. Therefore, to mitigate the effect of biases due to differing spatial360

and temporal coverage in these matchup pairs, we require that fused estimates are also361

close to (within the same matchup distance and time) of at least one datum from the362

comparison dataset. This matchup procedure generates multiple paired datasets: ISD-363

AIRS, ISD-CrIMSS, ISD-SSDF, and ISD-ERA5, allowing comparison, for example, of364

pairs of datasets such as AIRS and SSDF (AIRS) (i.e., a subset of the fused points365

matched up to AIRS points) which have the same number of samples, each of which is366

collocated in space and time within the matchup criterion. To put this another way,367

the reason we have separate plot traces for SSDF(AIRS) and SSDF(CrIMSS) is to368

allow an apples-to-apples comparison despite differing spatial coverage of the AIRS,369

CrIMSS, ERA5, and SSDF datasets.370

The choices of a 1% test ISD dataset and this matchup scheme results in over371

4000 AIRS-SSDF sample pairs and over 13,000 CrIMSS-SSDF sample pairs for 2013,372

a typical year.373

3 Results374

3.1 SSDF product overview375

We produced fused NSAT using two satellite input datasets over North America376

between 25 N and 50 N. We chose to fuse the AIRS and SNPP-CLIMCAPS products377

because the orbits of these satellites have similar overpass times of approximately 1:30378

and 13:30 local solar time, and the records extend back to at least 2013. We note379

that although we initially restrict our product to CONUS, the two input L2 retrievals380

provide global coverage, and that we plan to extend our fused product to global land381

surfaces in the future in regions with adequate reference (ISD) data coverage. We382

produce two products, a main product from both AIRS and SNPP-CrIMSS which383

runs from November 28 2012 through 2020 and which we will denote SSDF-AC; and384
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a long-record product with just AIRS, which runs from August 31 2002 through 2020385

and which we will denote SSDF-A. These two product lines were created identically,386

with the only difference being that the list of input data tuples (bias-corrected NSAT,387

latitude, longitude, and variance) fed to the SSDF algorithm consisted of tuples from388

either two remote sensing datasets or just one. Between 2013 and 2020 there were 32389

days and 30 nights with no AIRS data, and 29 days and 24 nights with no SNPP-390

CLIMCAPS data. Because outages happened not to occur for both input datasets on391

the same day or night over this period, the SSDF-AC product was created from only392

the single dataset when necessary, thus creating a continuous record. The SSDF-A393

record has 74 missing daily files due to AIRS outages, often due to single event upsets394

(for a list of AIRS outages, see https://airs.jpl.nasa.gov/data/outages/). In395

what follows, if not otherwise specified, “SSDF” refers to SSDF-AC.396

Figure 2: Sample data fusion satellite NSAT inputs, SSDF fused NSAT results, and un-
certainty estimates for 2015 October 31, day. The top two plots show maps of the input
satellite NSAT data ingested into the SSDF product (restricted to CONUS and neighbor-
ing regions), with AIRS on the left and SNPP-CrIMSS on the right. The bottom left plot
shows the SSDF fusion results. The bottom right plot shows the uncertainty estimates on
the SSDF fusion results at the 1-sigma level. All units are degrees K.

Figures 2 and 3 provide maps representing one arbitrarily chosen day and night397

of the SSDF-AC product. For both the day and night cases, the top two plots show398

maps of the input satellite data ingested into the SSDF product, with AIRS on the left399

and SNPP-CrIMSS on the right; the bottom left plot shows the SSDF fusion results;400

and the bottom right plot shows the uncertainty estimates on the SSDF fusion results401

at the 1-sigma level. These sample maps demonstrate how our SSDF method fills402

in missing data in the input datasets by exploiting spatial correlations to provide a403

complete gap-filled, gridded product. Note that the estimated uncertainties are higher404

in regions that contain no observations, contain observations from only a single input405

dataset, or in which the two input datasets have relatively poor agreement.406

3.2 Comparison of bias, standard deviation, and RMSE407

We now turn to validation against withheld ISD reference data to quantify im-408

provement in the SSDF products. We emphasize that the ISD data used for validation409

were not the same as the ISD data used to estimate bias and variance in the course410

of creating the SSDF products, as we split the ISD matchup data into ‘training’ and411

‘testing’ sets. We examine bias, standard deviation, and RMSE, calculated from the412
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Figure 3: Same as Figure 2 but for night. All units are degrees K.

withheld matchups, of AIRS, CrIMSS, ERA5-Land, and the corresponding matched413

SSDF data. In what follows, we often analyze daytime and nighttime separately, as414

daytime and nighttime biases can differ significantly.415

We first show maps of bias, RMSE, and standard deviation relative to the 1% of416

withheld (testing-only) ISD reference data, based on the matchups aggregated into the417

hexagonal bins. Figure 4 shows maps of bias (retrieval - ISD) for AIRS, CrIMSS, and418

SSDF, for the 2013-2020 period in total, and for day-only and night-only. Individual419

bias estimates for retrieval-ISD pairs are aggregated into 2-degree hexagonal cells.420

Overall, in the mean over CONUS and over the entire time period, our procedure421

(bias correction and data fusion) provides a reduction in the magnitude of daytime422

bias of 1.7 K and 0.5 K relative to AIRS and CrIMSS, respectively. At night, the fused423

product is essentially unbiased in the mean over the domain (relative to the reference424

dataset) and provides a reduction in the magnitude of bias of 1.5 K and 0.2 K relative425

to AIRS and CrIMSS, respectively.426

AIRS shows a strong cold bias in daytime over the mountainous West, which is427

also present in CrIMSS, although less severe. AIRS shows a near-constant warm bias428

over the entire Eastern CONUS at night, while CrIMSS shows a sharp warm bias over429

small regions of the mountainous West at night. Our procedure mitigates these biases430

(through the bias-correction procedure described above) and produces estimates with431

lower biases than either of its input satellite data sets over the domain.432
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Figure 4: Maps of bias (retrieval - ISD) over the product period of 2013-2020, created
against the withheld ISD test data, for AIRS (first column), CrIMSS-CLIMCAPS (second
column) and SSDF (third column), for both day and night together (top row), for day
only (second row) and for night only (third row). Individual bias estimates for retrieval-
ISD matchup pairs are aggregated over 2-degree hexagonal cells. The mean bias over
CONUS for the entire time period is shown in the title for each map.
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Figures 5 and 6 show maps of standard deviation and RMSE for AIRS, CrIMSS433

and SSDF, for the 2013-2020 period, and for daytime only and nighttime only. Stan-434

dard deviation and RMSE tell a similar story to that of bias. Overall, in the mean435

over CONUS and over the entire time period, SSDF provides a reduction in RMSE of436

35% and 15% compared to AIRS and CrIMSS, respectively.437

CrIMSS has high RMSE over the mountainous West in both day and night,438

but low RMSE over the eastern two-thirds of the continent. Similarly, AIRS has439

relatively high RMSE over the entire domain, but especially over the mountainous440

West. Mountainous regions pose particular challenges for remote sensing of surface441

quantities, and of NSAT in particular, which can vary greatly depending on e.g., north-442

facing versus south-facing mountain surfaces. Furthermore, variations in topographic443

features between ISD stations and their matched remote sensing retrievals can lead to444

random errors, increasing RMSE and variance estimates. However, the fused NSAT445

product shows a clear decrease in bias over all regions, including in the mountainous446

western CONUS, although there is potential for improvement in the SSDF product447

over the West.448

Figure 5: Standard deviation maps. The nine panels are similar to those in Figure 4 but
for standard deviation.
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Figure 6: RMSE maps. The nine panels are similar to those in Figure 4 but for RMSE.
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We repeated this analysis over CONUS and the 2013-2020 period for the SSDF-449

A product. We found similar improvements in bias, standard deviation, and RMSE.450

The mean bias of SSDF-A over the entire domain was -0.08 K for daytime only, and451

-0.03 K for nighttime only. The overall RMSE was 2.52 K, 4% higher than the overall452

RMSE of the SSDF-AC product.453

Figure 7 shows histograms of the NSAT error (retrieval/reanalysis - ISD) for the454

year 2013, over CONUS only. The three comparison datasets (AIRS, CrIMSS, and455

ERA5-Land) were matched separately to SSDF outputs, to ensure that the SSDF456

product and each corresponding comparison dataset are considering the same scenes.457

The SSDF error histograms are symmetric with a single mode and peak at 0 for both458

day and night, which is consistent with the errors being unbiased relative to the ISD459

reference dataset. The AIRS histogram exhibits a cold bias during the day and a warm460

bias at night. CrIMSS has a similar day/night bias shift, but of a smaller magnitude. A461

cold bias over land, particularly at higher temperatures, has been previously noted for462

both input datasets (Yue et al., 2020, 2021), although there have been few validation463

studies (Ferguson & Wood, 2010; Sun et al., 2021). The SSDF product exhibits464

smaller mean biases and RMSEs than either input dataset. On average, over both465

input datasets, daytime and nighttime, SSDF decreases mean bias magnitude by 81%466

and mean RMSE by 23% relative to the input datasets.467

Next, we examine the seasonality of bias and RMSE. Figure 8 shows the mean468

bias (retrieval/reanalysis – ISD) by month split into day/night to examine seasonality.469

There is a significant cold bias during the day for AIRS and CrIMSS that switches470

to a warm bias at night. During the day, AIRS has a smaller bias during winter471

months (Dec/Jan/Feb) and a larger bias during summer months (Jun/Jul/Aug). This472

is switched during nighttime where a larger warm bias is observed during winter and473

a smaller warm bias is observed during summer. These AIRS biases are of course also474

apparent in Figure 7. The SSDF product is relatively unbiased for both day and night.475

The SSDF bias magnitude is slightly larger during the day than night. From May to476

December, the SSDF product has a smaller bias at night than does ERA5-Land while477

during the day the reanalysis and the SSDF mean biases are of similar magnitude.478

Figure 9 shows mean RMSE (retrieval/reanalysis – ISD) by month split by day/night,479

i.e., the mean RMSE values calculated in 2-degree spatial bins. RMSE is largest for480

AIRS, particularly during the day. Generally, RMSE is higher in winter and lower in481

summer. During the day, the ERA5-Land has the lowest RMSE. At night, the SSDF482

RMSE is comparable and sometimes lower than the ERA5-Land RMSE.483

We next examine relative performance in hot and cold extremes. Figure 10 shows484

the mean bias (retrieval/reanalysis – ISD) by ISD percentile of the ISD matchups.485

The error bars indicate the standard error of the mean at the 95 percent confidence486

level. The lighter shade of every color is the matched SSDF corresponding to the487

comparison dataset. All retrievals and reanalysis do best in the mean state (25th to488

75th percentile). At the extremes, each of the datasets being compared to ISD have489

warm biases for low values (1st through the 15th percentile) and cold biases for high490

values (85th through the 99th); in other words, all of the datasets understate cold or491

warm extremes represented in the ISD. This is perhaps to be expected, as the ISD492

dataset consists of point measurements which capture fine-scale extremes, whereas the493

satellite datasets represent spatial means over scales ranging from about ∼50 km at494

nadir to ∼150 km at the edge of scan.495

The SSDF product captures the extremes better than both the AIRS and CrIMSS496

inputs. However, the reanalysis generally does best, having the smallest bias regardless497

of percentile, and is better at capturing the extremes.498
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Figure 7: Histograms of errors for day (top) and night (bottom) for 2013 over CONUS,
for AIRS (blue), CrIMSS (red) and ERA5-Land (green). The dashed line is the SSDF-AC
subset matched to the other datasets. Mean statistics of bias, RMSE, and the number of
samples are provided.

We next examine performance at extremely high elevations. Figure 11 shows499

mean biases (retrieval/reanalysis – ISD) aggregated by ISD elevation. At around 2500500

meters, mean biases increase with elevation in the SSDF product, AIRS, CrIMSS, and501

reanalysis. Daytime mean biases at these high elevations are larger in SSDF, although502

we note that the sample size is small. At night, SSDF shows lower mean biases than503

AIRS, CrIMSS, or ERA5-Land at high elevations.504

In order to increase the sample size for high-elevation cases, Figure 12 shows505

the mean biases aggregated by ISD elevation for elevations higher than 2000 meters506

over the period 2012-2020. During the day, the SSDF bias exceeds AIRS and CrIMSS,507

consistent with Figure 11. We hypothesize that this excess bias in SSDF for a very small508

number of data points at very high elevations is caused by the bulk-binning method509

for bias estimation. As Figure 11 shows, both remote sensing datasets exhibit a cold510

bias during the daytime at lower elevations. Because the two-degree hexagonal bins for511

bias estimation are dominated by lower elevations (as the problematic high elevations512
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Figure 8: Mean bias as a function of month for day (top) and night (bottom) for 2013
over CONUS. Numbers at the bottom indicate the number of data points, and are color-
coded according to dataset.

are high mountain surfaces), and because both remote sensing dataset biases switch513

signs from cold bias to warm bias at approximately 2500 m, the cold bias correction514

calculated from the bulk bins ends up exacerbating the warm bias from the input515

datasets at the highest elevations. In a future version of SSDF, we will improve the516

bias estimation of the input datasets, which could mitigate or eliminate this bias at517

the small number of estimates elevations above 2500 m.518
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Figure 9: Mean RMSE as a function of month for day (top) and night (bottom) for 2013
over CONUS. Numbers at the bottom indicate the number of data points, and are color-
coded according to dataset.

Figure 10: Mean biases as a function of ISD percentile for 2013 over CONUS. Num-
bers at the bottom indicate the number of data points, and are color-coded according to
dataset.
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Figure 11: Mean biases as a function of ISD elevation for day (top) and night (bottom)
for 2013 over CONUS. Numbers at the top indicate the number of data points, and are
color-coded according to dataset.
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Figure 12: Mean biases as a function of ISD elevation for day (top) and night (bottom)
over CONUS from 2012-2020 for AIRS, CrIMSS, and SSDF. Numbers at the top indicate
the number of data points, and are color-coded according to dataset.
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3.3 Comparison of uncertainty estimates519

The SSDF algorithm provides a mean (prediction/estimate) and standard devia-520

tion (uncertainty) of the conditional distribution of NSAT, given the available inputs;521

this distribution is termed the predictive distribution. In what follows, this is a Gaus-522

sian distribution, centered at the SSDF estimate. This information can be used to523

construct prediction intervals. Here we provide a summary and probabilistic assess-524

ment of the SSDF predictive distribution along with related information from the525

AIRS V7 and CrIMSS-CLIMCAPS V2 products. In the notation that follows, we use526

the subscript i in place of the areal unit notation Bi.527

In addition to each fused NSAT estimate, Ŷi, the algorithm also provides the528

conditional standard deviation of the predictive distribution, denoted σ̂Ŷ ,i.529

The AIRS V7 NSAT retrieval, Z1,i, is accompanied by a corresponding uncer-530

tainty estimate, denoted σ̂Z,1,i (Susskind et al., 2014). This estimate results from a531

regression model for predicting the absolute retrieval error given several predictors532

available from the retrieval.533

The CrIMSS-CLIMCAPS V2 retrieval, Z2,i, also has a corresponding uncertainty534

estimate, denoted σ̂Z,2,i (N. Smith & Barnet, 2020). This estimate results from a linear535

approximation of the posterior standard deviation of the estimated “true” state given536

the observed radiances for a single footprint and is an output of the optimal estimation537

(OE) approach used in CLIMCAPS.538

Figure 13 shows histograms of these uncertainty estimates: σ̂Z,1, σ̂Z,2, and σ̂Ŷ539

across the CONUS data record. The solid line shows uncertainty estimates from AIRS540

(blue) and CrIMSS (red) while the dashed shows the corresponding matched SSDF541

uncertainty estimates. CrIMSS has a peak around 1.2 K with a narrow distribution;542

AIRS V7 has a peak between 1.5 and 2 K with a wide distribution. SSDF uncertainty543

histograms peak around 2 K.544

These uncertainty estimates are properties of distributions, whereas we define
error ei as a realization of a random variable that represents the difference between
an estimate and the assumed “true” state (as approximated by the reference dataset).
For example, the error for SSDF is eŷ,i = Ŷi − Yi, where Yi is the ISD validation for
colocation i. If the predictive distribution is assumed to be Gaussian, the empirical
coverage of intervals of the form

Ŷi ± c σ̂Ŷ ,i,

can be assessed for the ISD matchups. In the case of an unbiased estimate, “well-545

calibrated” uncertainty estimates, and a Gaussian distribution; intervals with c = 1546

should cover the “true” state Yi about 68% of the time, and about 95% of the time547

for c = 2.548

Figure 14 shows scatterplots of the joint distribution of the uncertainty estimate549

(x-axis) and the observed error (retrieval-ISD). There are cases for AIRS and CrIMSS550

where the uncertainty estimate underestimates the error relative to the ISD reference551

dataset; over 15% of the time for both datasets and for day and night, the error is more552

than three times greater than the uncertainty estimate. However, this occurs about553

3% of the time with SSDF in the day and fewer than 5% of the time at night. Overall,554

the CrIMSS uncertainty estimates are distributed too narrowly, and with a peak too555

low, to capture the error. The AIRS uncertainty estimates also peak at a value below556

the peak of the error distribution, although the uncertainty estimate distribution is557

much wider, including a very long tail of high uncertainty estimates.558

In general, SSDF uncertainty estimates are consistent with statistical expecta-559

tions under Gaussian assumptions. For example, one would expect one-sigma uncer-560

tainty estimates to cover a standard error distribution 68% of the time, and we see561
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Figure 13: Histograms of uncertainty estimates for day (top) and night (bottom) for 2013
over CONUS.

that the SSDF uncertainty estimates do so roughly 65% of the time in daytime. Simi-562

larly, one would expect the estimates to cover 95% and over 99% at the 2- and 3-sigma563

levels, with SSDF covering about 90% and 97% during daytime.564
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Figure 14: Observed errors (retrieval - ISD) versus uncertainty estimates for day (top)
and night (bottom) for 2013 over CONUS. The colors show whether the range of each
observed error was within the uncertainty bound, as described in the text: 1×uncertainty
(green, should cover the error about 68% of the time), 2×uncertainty (orange, should
cover the error about 95% of the time), 3×uncertainty (red, should cover the error about
99% of the time) or > 3×uncertainty (black).
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3.4 Empirical distribution consistency565

The ISD record provides a sample of the empirical distribution of NSAT over566

CONUS. Here, we assess the relative consistency of the SSDF empirical distribution567

versus the other products against the ISD reference distribution. Figure 15 shows an568

example of the empirical cumulative distribution (ECDF) for the ISD (pink) and AIRS569

(blue). While it is almost certainly the case that the products’ ECDFs deviate from the570

ISD reference distribution in some subtle ways, we evaluate their relative consistency571

with ISD through a series of hypothesis tests. Figure 16 shows the difference between572

the ECDF of the retrieval/reanalysis to the ECDF of ISD. The AIRS ECDF has the573

largest difference to the ISD ECDF, particularly during the Day.574

Figure 15: ECDF for AIRS (blue) and ISD (pink) for day (top) and night (bottom) for
2013 over CONUS.

The SSDF estimates are tested against each of the other products (AIRS, CrIMSS,575

ERA5-Land) for night and day conditions. Each assessment is carried out using a ran-576

domization or resampling test (Wilks, 2006). For this test, the null hypothesis is that577

the empirical distributions of SSDF and the comparison product deviate equally from578

the ISD reference distribution. The alternative hypothesis is that either SSDF or the579

comparison product have an empirical distribution that is closer to the ISD reference580

distribution. For this procedure, the test statistic is computed as the difference in581

two-sample Kolmogorov-Smirnov (KS) statistics for the products versus ISD.582

For each instance of the test, we have a collection of matched triples {Ŷ,Zk,Y};
where Ŷ ≡ {Ŷi}; i = 1, . . . , n are the SSDF estimates, Zk ≡ {Zk,i}; i = 1, . . . , n are
the comparison products, and Y ≡ {Yi}; i = 1, . . . , n are the ISD NSAT. As above,
k = 1 for AIRS, k = 2 for CrIMSS, and here k = 3 for ERA5-Land. Then, test k has
a test statistic

γk = δ(Ŷ,Y)− δ(Zk,Y),

where δ is the traditional two-sample KS statistic. The KS statistic is the maximum583

difference in the two ECDFs being compared. Thus, the test statistic γk for the584

current test is a difference of ECDF deviations. A negative value is an indication that585

the SSDF distribution is closer to ISD than the comparison product.586
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Figure 16: The ECDF difference between the retrieval/reanalysis and the ISD color
coded for day (top) and night (bottom) for 2013 over CONUS.

The distribution of the test statistic under the null hypothesis can be estab-587

lished through a resampling procedure. The procedure should preserve the inherent588

dependence of the matched triples, but the assignment of the two comparison groups589

can be shuffled randomly. A null distribution is generated by repeating these steps590

m = 1, . . .M times:591

1. Define shuffled data vectors Wm,1 and Wm,2.592

2. For each validation matchup (i = 1, . . . , nk), assign Wi,m,1 = Ŷi and Wm,2,i =593

Zk,i with probability 0.5; otherwise assign Wm,1,i = Zk,i and Wi,m,2 = Ŷi. This594

effectively shuffles the labels for SSDF and the comparison product for each595

matchup.596

3. Compute the test statistic for the randomized samples,

γ0,m,k = δ(Wm,1,Y)− δ(Wm,2,Y),

The distribution of γ0,m,k provides the null distribution of the test statistic for each
test. Figure 17 displays the test statistics γk along with density plots of the null
distributions of test statistics γ0,m,k for M = 20, 000 resampled datasets for each test.
A two-sided p-value can be computed for each test as

pk =
1

M

M∑
m=1

Iγ(|γ0,m,k| > |γk|),

where Iγ is an indicator function.597
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The p-values for each of the resampling tests of SSDF versus other products are598

displayed as text in Figure 17. All tests, except the night comparison of SSDF and599

CrIMSS, yield p-values of 0, indicating a significant difference in consistency with the600

ISD reference distribution. These results can also be seen visually as the observed test601

statistics γk, shown as vertical lines, lie well outside the corresponding null distribu-602

tions. The tests indicate SSDF is more consistent with ISD than AIRS for both day603

and night conditions, as well as a favorable result for SSDF versus CrIMSS for day and604

versus ERA5-Land at night. The positive test statistic for SSDF versus ERA5-Land605

during the day indicates the reanalysis is more consistent with ISD in this case.606

Figure 17: Histogram of the KS statistic for AIRS (blue), CrIMSS (maroon) and ERA5-
Land (green), for day (top) and night (bottom) for 2013 over CONUS. The corresponding
p-value is color-coded on the left side.

3.5 Stationarity607

Long-term stationarity is a key characteristic for creating long, stable, multi-608

instrument Earth science data records. To assess long-term bias stationarity, we cal-609

culated mean annual biases over CONUS relative to the withheld ISD data for the two610

input datasets and SSDF. Figure 18 shows the annual mean bias for both the input611

datasets, as well as for SSDF-AC and SSDF-A. Shading shows two standard deviations612

of these annual bias estimates. We include full years only.613

SSDF reduces the mean magnitude, the variance, and the trend in these annual614

bias time series, with the biases estimated relative to the ISD reference dataset. For615

AIRS and SSDF-A matched to AIRS from 2003-2020, the overall means of the annual616
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bias time series were -0.10 K and -0.035 K and the standard deviations of the annual617

bias time series were 0.17 K and 0.035 K.618

We estimated trends and trend uncertainties using the nonparametric technique619

called Thiel Sens Slope (Sen, 1968) which is based on the medians. We used the Mann-620

Kendall test to assess statistical significance (Mann, 1945; Kendall, 1948). Trends621

for AIRS and SSDF-A were -0.01 K/yr (p-value 0.08) and -0.003 K/yr (p-value 6e-622

8), respectively, over the 2003-2020 period. The AIRS trend was less statistically623

significant due to the high standard deviation in the time series.624

For CrIMSS and SSDF-AC from 2013-2020, the overall means of the annual bias625

time series were -0.23 K and 0.076 K and the standard deviations of the annual bias626

time series were 0.059 K and 0.024 K respectively. Trends were 0.009 K/yr and -0.0007627

K/yr, respectively; neither trend is statistically significant, with p-values of 0.6 and628

0.8, respectively.629

The annual mean biases also reveal a shift of about 0.1 K between the SSDF-AC630

and SSDF-A products. This shift is small compared to the biases in the input remote631

sensing datasets, but it is undesirable. We hypothesize that it could be an artifact632

of the bulk-binning bias estimation procedure, and subsequent bias correction, due to633

differing systematic error characteristics in the two input datasets. Future versions of634

SSDF will use simulation-based uncertainty quantification methods to estimate input635

dataset biases (e.g., Hobbs et al., 2017; Braverman et al., 2021), which could miti-636

gate this difference in the mean bias between SSDF products created from different637

combinations of input datasets.638

Figure 18: Annual mean bias for each year of the data record, for the SSDF product and
each of the two remote sensing input products, relative to the withheld ISD data. Shad-
ing shows two standard deviations of these annual bias estimates. SSDF-A refers to the
AIRS-only SSDF product; SSDF-AC refers to the SSDF product created from both the
AIRS and SNPP-CLIMCAPS input datasets.

Figure 19 shows the histogram of the SSDF uncertainty estimates for 2011 (black)639

and 2013 (red). The mean uncertainty is provided as text. The histograms are com-640

parable, although the SSDF-AC product in 2013 has mean uncertainties that are 4%641
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lower on average than the SSDF-A product in 2011. This is to be expected as the642

additional information from CrIMSS provides greater certainty for SSDF.643

Figure 19: SSDF uncertainty histogram for 2011 (black) and 2013 (red) aggregated by
day (top) and night(bottom). Summary statistics of mean SSDF uncertainty are provided
as text on the upper left.
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4 Discussion and conclusion644

We have produced a new fused NSAT product over CONUS, from November645

2012 through December 2020, using Spatial Statistical Data Fusion of Aqua-AIRS V7646

and SNPP-CrIMSS CLIMCAPS V2 L2 NSAT datasets. Remote sensing data provides647

information to span the spatial domain, in situ data provides the information to correct648

the remote sensing data, and SSDF provides the means to fuse them into an improved649

dataset.650

The fused NSAT product could be used for applications over CONUS that re-651

quire NSAT data and that would benefit from the improvements we have demonstrated652

here from a detailed validation using withheld ISD data as a reference dataset. The653

SSDF method generates a fused gridded product that has no missing data; has im-654

proved accuracy and precision relative to the input satellite datasets; and includes655

uncertainty estimates that are more consistent with the observed errors relative to the656

ISD reference. The NSAT SSDF pilot product is comparable in precision and accu-657

racy to the state-of-the-art ERA5-Land reanalysis, but unlike reanalysis it does not658

involve dynamical weather modeling, only spatial covariance modeling. Furthermore,659

unlike reanalysis it could in the future support a near-real-time version for operational660

applications.661

SSDF is a general method and can be applied to one or more L2 datasets, so662

long as each dataset estimates the same observable. For example, fusion of Aqua-AIRS663

and SNPP-CrIMSS estimates of NSAT works because both satellites estimate NSAT664

at approximately 1:30 and 13:30 local solar time. However, it would not make sense665

to directly fuse NSAT estimates from Infrared Atmospheric Sounding Interferometer666

(IASI) instruments on the MetOp satellites with the Aqua and SNPP datasets, as667

the MetOp satellites pass over at approximately 9:30 and 21:30 local solar time, when668

NSAT is at different points of the diurnal cycle. On the other hand, the details of669

instruments used to make the input datasets, and their spatial footprints and sampling,670

are immaterial. For example, it would be possible to fuse NSAT derived from the671

Visible Infrared Imaging Radiometer Suite (VIIRS) land surface temperature (LST)672

product via (for example) regression modeling (Good, 2015), since such a LST-derived673

NSAT product would also sample at approximately 1:30 and 13:30 local solar time.674

SSDF could be applied across a wide range of observables estimated as L2 satellite675

datasets, such as atmospheric composition, water vapor profiles, or vapor pressure676

deficit (the difference between the water vapour pressure and the saturation water677

vapour pressure). Bias and variance estimates of the input datasets are required, and678

we emphasize that the quality of the SSDF product depends on the quality of those679

error estimates.680

Our plans for future work include improving the bias and variance estimation681

using simulation-based uncertainty quantification (Hobbs et al., 2017; Braverman et682

al., 2021). Simulation-based uncertainty quantification has the potential to further683

improve the overall quality of the SSDF product. It could also mitigate the two issues684

our validation has uncovered, namely (1) increased bias at a small number of data685

points at elevations in excess of 2500 m, and (2) a ∼0.1 K shift in annual mean bias686

between the SSDF-AC and SSDF-A (AIRS-only) versions.687

We also plan to create an NSAT SSDF product over global land areas, create a688

high spatial resolution NSAT SSDF product by including high spatial resolution input689

NSAT datasets in the fusion, and apply the SSDF method to other hyperspectral690

surface products, starting with near-surface specific humidity.691
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Open Research692

The fused SSDF NSAT datasets described in this paper are available from the693

NASA GES DISC repository at694

https://doi.org/10.5067/CPXNAPA2WSQ8 (SSDF-AC) and https://doi.org/695

10.5067/8AE9Y5TSXFX4 (SSDF-A).696

Publicly available data were obtained from the NASA Atmospheric Infrared697

Sounder and the Suomi-NPP projects, the NOAA Integrated Surface Databse, and698

the European Centre for Medium-Range Weather Forecasts reanalysis.699

Aqua AIRS V7 is available from the NASA GES DISC repository (AIRS Project,700

2019). The retrieved surface air temperature (TSurfAir), the corresponding error es-701

timate for TSurfAir (TSurfAirErr), and the corresponding quality flag (QC) (TSur-702

fAir QC) were obtained for the standard IR-only product.703

SNPP-CrIMSS-CLIMCAPS V2 is available from the NASA GES DISC reposi-704

tory (Barnet, 2019). Near surface temperature (surf air temp), the corresponding QC705

flag (surf air temp qc), and the corresponding error estimate (surf air temp err) were706

obtained from the NSR product.707

NOAA ISD NSAT data is available using the rnoaa R package.708

ECMWF ERA5-Land gridded hourly 2 m temperature means are available from709

the Copernicus Climate Change Service (C3S) Climate Data Store (Copernicus 2017).710
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Appendix A Matchups and bias estimation716

In this appendix, we will elaborate in detail our procedure for matching between717

ISD and the instruments’ observations, and the consequent bias estimation process.718

For clarity, we establish the following notation. Let s, u, and v be latitude-longitude719

locations; e.g., s = (lat, lon). On a given day (or night) let Zk(u) be the value of720

the k-th instrument’s near-surface temperature retrieval centered at u. and focus on721

a single ISD station at location s during a single period. Let tI1(s), . . . , tIM (s) be the722

times at which observations are acquired at this station during the period. These time723

points may be irregularly spaced, and M can change from station to station. The ISD724

measurements are ZI(s, ZIm(s)), m = 1, . . . ,M .725

Let tk(u) be the acquisition times associated with the k-th instrument’s footprints726

centered at location u. In principle, u ranges over all footprint locations for the727

appropriate instrument during the entire period, but in practice these locations are728

grouped by granules. We denote granule number during the current period by g =729

1, . . . , 120, and the set of footprints belonging to granule g by Gkg . The time associated730

with Gkg is τkg . To ease the computational burden, u ranges only over locations in the731

single granule with time that is closest to tIm(s).732

A matchup associates the location and time of an ISD value,
(
s, tI(s)

)
, with the

location and time of the k-th instrument’s footprint in the period:
(
u∗, tk(u∗)

)
. The

matchup function is,

Mk
(
s, tIm(s)

)
=
(
u∗, tk(u∗)

)
,

u∗ = argmin
u

{
||u− s||, u ∈

(
Gkg∗ ∩ U time ∩ Uspace

)}
,

g∗ = argmin
g

{∣∣τkg − tIm(s)
∣∣} ,

U time =
{
u :

∣∣tk(u)− tIm(s)
∣∣ ≤ 1 hour

}
, Uspace = {u : ||u− s|| ≤ 100 km} .

Note that, for a given instrument and period, there will only be one granule that733

satisfies the criterion provided by g∗.734

For a given ISD station (indexed by location s) in the current period, p, we create
the sets of matchup values for the k-th instrument as follows,

Ak(p, s) =

{
ZI
(
s, tIm(s)

)
, Zk

(
Mk
(
s, tIm(s)

))}M(p,s)

m=1

for all ISD time points at s indexed by m = 1, . . . ,M(p, s). p is identified by a date735

and a mode (day/night) indicator, e.g., p = (d, j) = (2013-01-01, day). M(p, s) is the736

number of ISD station values in period p at location s. There is at most one AIRS and737

one CrIMSS footprint associated with each station-time, but the same footprint can738

be associated with more than one station-time. Thus, Ak(p, s) may contain multiple739

elements if there is more than one ISD measurement during period p at location s.740

They may also be empty if there are no matching AIRS or CrIMSS footprints.741

After creating Ak(p, s) for all periods and ISD locations, we create supersets of
matchup value pairs by combining across three-day moving windows, by mode:

Akj(d, s) = Ak(d− 1, j, s) ∪ Ak(d, j, s) ∪ Ak(d+ 1, j, s), Akj(d) =
⋃
s

Akj(d, s).

j ∈ {day,night}. We chose the three-day time window after experimenting with shorter742

and longer windows. Shorter windows did not provide adequate sample sizes while743

longer windows failed to capture weather-related changes. Ideally, window duration744

would be as short as possible since longer time windows result in larger variance745

estimates in the fused data, relative to withheld ISD data.746
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The final step before actually computing estimated bias and variance for each
AIRS and CrIMSS footprint is to tessellate a 240 km (approximately two degrees),
hexagonal spatial grid over CONUS. We do this by creating a discrete global grid
using the DGGRID software package (Sahr et al., 2003; Sahr, 2019). One of the
centers, for example, is at 87.72550324 W, 40.7908839 N, near Watseka, Illinois; this
center uniquely determines the tessellated grid. All elements of Akj(d) are sorted in to
these grid cells based on the instrument’s footprint locations. Formally, let i ∈ 1, . . . , L
index grid cell centers, and let 1i(u) = 1 if u lies inside cell i, and zero otherwise. For
grid cell i, mode j, and date d, set

Akji (d) =

{{
ZI
(
s, tIm(s)

)
, Zk

(
u∗ms, t

k(u∗ms)
)

: 1i(u
∗
ms) = 1

}M(d,j,s)

m=1

}
all s

,

where M(d, j, s) is the number of time points acquired by the ISD station at s on747

day d in mode j, L is the total number of hexagonal grid cells, and we write u∗ms to748

emphasize its dependence on m and s via the matchup functions.749

The bias assigned to all footprints from the k-th instrument observed on day d
in mode j belonging to grid cell i is,

bkdji =
1

|Akji (d)|

∑
all s

M(d,j,s)∑
m=1

[
Zk
(
u∗ms, t

k(u∗ms)
)
− ZI

(
s, tIm(s)

)]
1i
(
u∗ms

)
.

The corresponding variance assigned to all footprints observed on day d in mode j
belonging to grid cell i is,

vkdji =
1

|Akji (d)|

∑
all s

M(d,j,s)∑
m=1

[
Zk
(
u∗ms, t

A(u∗ms)
)
− ZI

(
s, tIm(s)

)
− bkdji.

]2
1i
(
u∗ms

)
,

Subtracting the biases from the satellite footprints yields bias-corrected data.
Denote an footprint acquired by the k-th instrument on day d in mode j, centered at
location u, by ZAdj(u), where we suppress the argument tA(u) since, for a given date
and mode, location and time are confounded. The bias-corrected value is denoted by
Zk∗dj (u) as follow:

Zk∗dj (u) = ZAdj (u)− bAdji∗ , i∗ = argmax
i

1i(u),

with associated variance vkdji∗ .750

Appendix B SSDF methodology751

Consider a discretized domain where {Y (s) : s ∈ D} is a hidden, real-valued752

spatial observable. The domain of interest is ∪{Ai ⊂ <d : i = 1, . . . , ND}, which is753

made up of ND fine-scale, non-overlapping, areal regions {Ai} with locations D ≡754

{pi ∈ Ai : i = 1, . . . , ND}. Nguyen et al. (2012) call these fine-scale regions Basic755

Areal Units (BAUs), and they represent the smallest resolution at which we will make756

estimates with the model.757

For a given day and mode (d and j using the notation of the previous subsection),758

denote the vector of NSAT data at all locations by Zk, where k = 1 for AIRS and759

k = 2 for CrIMSS:760

Zk = (Zk(Bk1), Zk(Bk2), . . . , Zk(BkNk
))′,

where Zk is Nk-dimensional, Bkq is the q-th footprint from the k-th dataset and is
made up of BAUs with locations indexed by D ∩Bkq. We assume that data observed
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at an arbitrary areal region B follow the “data model” in which the observable is
averaged over the areal region plus an independent error term. That is,

Zk(B) =
1

|D ∩B|

{ ∑
s∈D∩B

Y (s)

}
+ εk(B); B ⊂ <d. (B1)

where Y (·) is a geophysical observable (here, NSAT) that is common to both datasets,761

and εk(·) is an independent but non-identically distributed Gaussian random variable.762

That is, we assume that the q-th error in the k-th dataset is distributed as εkq ∼763

N(bkq , v
k
q ). In general, bkq is not zero, however, in our case bkq is assumed to be zero764

because we performed bias correction as described in the previous subsection, and765

vkq are calculated from the hexagonal-cell-specific mean and variance estimates (see766

Appendix A for details).767

Our fused estimate for a region centered at location B0 is a linear combination768

of Z1 and Z2. That is,769

Ŷ (B0) = a′1Z1 + a′2Z2, (B2)

where a1 and a2 are N1 and N2 dimensional vectors, respectively. These vectors are770

unknown and are estimated in a way that minimizes the expected squared error relative771

to the observable. That is, we choose a1 and a2 to minimize,772

E((Y (B0)− Ŷ (B0))2) = Var(Y (B0)− a′1Z1 − a′2Z2)

= Var(Y (B0))− 2a′1Cov(Z1, Y (B0))

−2a′2Cov(Z2, Y (B0))

−2a′1Cov(Z1,Z2)a2

+a′1Var(Z1)a1 + a′2Var(a2)a2

subject to the unbiasedness constraint that the elements of a1 and a2 add up to 1.773

That is,774

1 = a′11N1
+ a′21N2

, (B3)

where 1Nk
is an Nk-dimensional vector of ones. The solution to the minimization775

problem in (B3) can be found via the method of Lagrange multipliers; but it requires776

knowledge of the spatial covariance structure C(Bi, Bj), which can be expanded in777

terms of the BAU covariances:778

C(Bi, Bj) =
1

|D ∩Bi||D ∩Bj |
∑

u∈D∩Bi

∑
v∈D∩Bj

C(u,v). (B4)

Typically, the covariance structure in kriging-based approaches is estimated from
the data, but the formulation in Equation B4 makes estimation intractable for non-
linear covariance classes. We make use of the Spatial Mixed Effects model (SME;
Cressie & Johannesson, 2008), which assumes that the observable, here NSAT, can be
written as the linear mixed model,

Y (s) = t(s)′α + S(s)′η + ξ(s). (B5)

where t(·) ≡ (t1(·), . . . , tp(·))′ is a vector of p known covariates, such as geographical779

coordinates or other physical variables. The vector of linear coefficients, α, is unknown780

and will be estimated from the data. The middle term captures the spatial dependence781

as the product of an r-dimensional vector of known spatial basis functions, S(s), and an782

r-dimensional Gaussian random variable, η. Here, we assume that with η ∼ N(0,K).783

Similar to the implementation in Nguyen et al. (2012), we implement these using784

multi-resolution bisquare basis functions centered at different resolutions of the Inverse785
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Snyder Equal-Area Projection Aperture 3 Hexagon (ISEA3H) type within the Discrete786

Global Grid (DGGRID) software (specifically, resolutions 2, 3, and 5 of ISEA3H, for787

details see Sahr, 2019). The last term, ξ(·), describes the BAU-scale variability of the788

process. We assume that ξ(·) is an independent Gaussian process with mean zero and789

variance σ2
ξ .790

The SME model in Equation B5 has useful change-of-support properties, which791

makes computation of the spatial covariance function straightforward. In particular,792

Nguyen et al. (2012) shows that793

cov(Z(Bi), Z(Bj)) = S(Bi)
′KS(Bj) + σ2

ξ

|D ∩Bi ∩Bj |
|D ∩Bi||D ∩Bj |

+ vki I(i = j), (B6)

where

S(Bi) ≡
1

|D ∩Bi|
∑

u∈D∩Bi

S(u).

Notice that Equation B6 allows us to express the covariance between spatial averages794

explicitly in terms of the spatial dependence parameter K. This allows for straightfor-795

ward estimation of it from footprint data.796

Another advantage of the SME model is its scalability. For a general covariance797

structure, solving for a1 and a2 requires inverting a (N1 +N2)× (N1 +N2) covariance798

matrix, which has computational complexity O((N1 +N2)3). For large datasets such799

as AIRS and CrIMSS where the data size is on the order of tens of thousands, this800

matrix inversion is computationally infeasible. However, the model in Equation B5801

implies the following full covariance matrix:802

Σ ≡ var((Z1′,Z2′)′)

= S′KS + U,

where S is a matrix constructed by appending the spatial function S(·) over all the803

footprints in both datasets, U is the sparse covariance matrix for the fine-scale pro-804

cesses ξ(·), and the measurement-error processes εk(·) at the given data locations (for805

more details, see Equation 4 of Nguyen et al., 2012). Using the Sherman-Morrison-806

Woodbury formula (e.g., Henderson & Searle, 1981), the matrix inverse is given by,807

Σ−1 = U−1 −U−1S′
(
K−1 + SU−1S′.

)−1
SU−1,

Note that the inversion above, and hence the calculation of the coefficients a1 and808

a2 for the fused estimate, is very fast because it only requires inversion of the sparse809

(N1 + N2) × (N1 + N2) matrix U, which is typically very sparse, and inversion of K810

and (K−1 + S′U−1S), both of which are r × r matrices (r << N1 +N2).811
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