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Abstract

Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend not only on current but also past

N inputs to the landscape, that have accumulated through time in legacy stores (e.g. soil, groundwater). Catchment-scale

N models, that are commonly used to investigate in-stream N levels, rarely examine the magnitude and dynamics of legacy

components. This study aims to gain a better understanding of the long-term fate of the N inputs and its uncertainties, using a

legacy-driven N model (ELEMeNT) in Germany’s largest national river basin (Weser; 38,450 km2) over the period 1960-2015.

We estimate the nine model parameters based on a progressive constraining strategy, to assess the value of different observational

datasets. We demonstrate that beyond in-stream N loading, soil N content and in-stream N concentration allow to reduce the

equifinality in model parameterizations. We find that more than 50% of the N surplus denitrifies (1480-2210 kg ha-1) and the

stream export amounts to around 18% (410-640 kg ha-1), leaving behind as much as around 230-780 kg ha-1 of N in the (soil)

source zone and 10-105 kg ha-1 in the subsurface. A sensitivity analysis reveals the importance of different factors affecting the

residual uncertainties in simulated N legacies, namely hydrologic travel time, denitrification rates, a coefficient characterising

the protection of organic N in source zone and N surplus input. Our study calls for proper consideration of uncertainties in N

legacy characterization, and discusses possible avenues to further reduce the equifinality in water quality modelling.
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Abstract21

Improving nitrogen (N) status in European water bodies is a pressing issue. N levels depend22

not only on current but also past N inputs to the landscape, that have accumulated through23

time in legacy stores (e.g. soil, groundwater). Catchment-scale N models, that are com-24

monly used to investigate in-stream N levels, rarely examine the magnitude and dynamics25

of legacy components. This study aims to gain a better understanding of the long-term26

fate of the N inputs and its uncertainties, using a legacy-driven N model (ELEMeNT) in27

Germany’s largest national river basin (Weser; 38,450 km2) over the period 1960–2015. We28

estimate the nine model parameters based on a progressive constraining strategy, to assess29

the value of different observational datasets. We demonstrate that beyond in-stream N load-30

ing, soil N content and in-stream N concentration allow to reduce the equifinality in model31

parameterizations. We find that more than 50% of the N surplus denitrifies (1480–221032

kg ha−1) and the stream export amounts to around 18% (410–640 kg ha−1), leaving behind33

as much as around 230–780 kg ha−1 of N in the (soil) source zone and 10–105 kg ha−1 in the34

subsurface. A sensitivity analysis reveals the importance of different factors affecting the35

residual uncertainties in simulated N legacies, namely hydrologic travel time, denitrification36

rates, a coefficient characterising the protection of organic N in source zone and N surplus37

input. Our study calls for proper consideration of uncertainties in N legacy characterization,38

and discusses possible avenues to further reduce the equifinality in water quality modelling.39

Plain Language Summary40

Lowering nitrogen (N) amounts in European surface waters is a pressing issue. N levels41

largely result from fertilizer application in agricultural areas, and deposition of atmospheric42

N coming from fossil fuel combustion. These N inputs to the landscape can accumulate43

below the ground surface in so-called legacy stores (including the soil and aquifer), from44

which they can be released progressively through time. Therefore, N levels depend not only45

on the recent N inputs, but also on their history. Our modelling study aims to improve46

our understanding of the long-term fate of the N inputs and its uncertainties in Germany’s47

largest national river basin (Weser) over the period 1960–2015. It suggests that more than48

50% of the N inputs to land is lost to the atmosphere (denitrification, 1480–2210 kg ha−1)49

and the stream export amounts to around 18% (410–640 kg ha−1), leaving behind as much50

as around 16% (264–820 kg ha−1) in the landscape (legacy). However, the uncertainties in51

these estimates remain large, partly due to a lack of observational data on internal (legacy)52
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components and uncertainties in N inputs. Overall, our study calls for proper consideration53

of uncertainties in N legacy characterization, and discusses possible avenues to further reduce54

them.55

1 Introduction56

Since the beginning of the 20th century, nitrogen (N) inputs to soils have increased57

tremendously worldwide, due to application of synthetic N fertilizers and manure in agricul-58

tural areas (Lu & Tian, 2017; B. Zhang et al., 2017), and due to deposition of atmospheric59

N, coming mostly from fossil fuel combustion (Holland et al., 1999). These large N in-60

puts to soils have not been balanced by N removal from soils through incorporation into61

plant biomass and crop harvest, resulting in large soil N surpluses in many places across62

the world, e.g. in the US (Byrnes et al., 2020), in Europe (Erisman et al., 2011) and in63

China (X. Wang et al., 2014). Furthermore, wastewater can be released to the environ-64

ment with or without treatment, which constitutes a point source of N (United Nations,65

2017). In Europe, the efficiency of wastewater treatment plants has largely improved since66

1990 (European Commission, 2020). Nevertheless water bodies still receive large point N67

loads, and for many countries, further enhancement of treatment facilities are prescribed68

(European Commission, 2020; Svirejeva-Hopkins et al., 2011).69

This excess of N in the environment has substantial consequences for both the hydro-70

sphere and the atmosphere (Robertson & Groffman, 2015). In fact, soluble N compounds,71

and more specifically nitrate, are polluting drinking water, which threatens human health72

(WHO, 2016). They are also causing eutrophication of receiving water bodies, such as Euro-73

pean seas (EEA, 2019b) and coastal areas in the US (Scavia & Bricker, 2006). In addition,74

denitrification in the terrestrial system, which microbially reduces nitrate, can release large75

amount of nitrous oxide (N2O) (Tian et al., 2018). The latter is an important greenhouse76

gas almost 300 times as potent as CO2 (Myhre et al., 2013), and contributes to the depletion77

of stratospheric ozone (Portmann et al., 2012). Therefore, reducing nitrate levels through78

improved land management strategies is a pressing issue, in particular in Europe where79

countries such as France, Germany and Greece have been recently fined by the European80

Court of Justice for exceeding the regulatory limits for nitrate in receiving water bodies81

(Damania et al., 2019).82
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Sporadic evidence shows that N inputs to the soil can not only reach surface water83

bodies or be lost to the atmosphere via denitrification, but they can also accumulate in the84

landscape as legacy N (Chen et al., 2018; Van Meter & Basu, 2015). A few studies including85

long-term measurements of soil N content in the Mississippi River Basin (Van Meter et al.,86

2016), fertilization experiments in the UK and in France (Jenkinson, 1991; Sebilo et al.,87

2013) and mass balance assessments (Smil, 1999; Worrall et al., 2015) suggest that part88

of the N surpluses can build up in the root zone of agricultural soils in organic forms89

(biogeochemical legacy). Furthermore, increasing nitrate concentration trends are detected90

in groundwater in some locations in the US and the UK (Puckett et al., 2011; Stuart et91

al., 2007). The pervasive issue of nitrate pollution in groundwater, in particular in Europe92

(Sundermann et al., 2020; EEA, 2018), and the results of modelling studies focusing on93

N accumulation in the vadose zone (Ascott et al., 2017; L. Wang et al., 2012) points to a94

widespread buildup of N in dissolved inorganic forms (hydrologic legacy). Biogeochemical95

and hydrologic legacies can impact the future water quality status of water bodies. They96

can induce a delay or “time lag” between changes in land management practices and the97

water quality response (Grimvall et al., 2000; Vero et al., 2018). The implications of the98

two legacy forms for future water quality could be very different because hydrologic legacy99

corresponds to the accumulation of reactive and mobile N, and biogeochemical legacy to the100

accumulation of much more stable (organic) N compounds. Therefore, a characterization of101

both types of N legacies at catchment scale is crucial to inform the design of effective water102

quality measures.103

However, our understanding of the magnitude of these legacies and their associated104

timescale remains limited because of a lack of observational data and the uncertainties105

associated with N legacy modelling. Direct observational data of N content in soil and106

groundwater are often sparse in time and space. This makes it difficult to capture the107

temporal changes and spatial variability in N content and to determine the integrated legacy108

behaviour at catchment scale. In particular, large-scale datasets of soil N content are often109

available for one year (e.g. Ballabio et al., 2019). Regarding groundwater N concentration110

measurements, in Europe, low-frequency (typically annual) measurements and the fact that111

they are mostly available for the recent years impedes the analysis of the long-term dynamics.112

Additionally, assessing the spatial distribution of groundwater concentration from point113

measurements involves large uncertainties (see e.g. Figure 6 in Knoll et al., 2020). Therefore,114

mechanistic models should be used to quantify N legacies, to complement the information115

–4–



manuscript submitted to Water Resources Research

provided by currently available observation data of N content in soil and groundwater that116

are insufficient.117

In this respect, some past modelling studies investigate the time lag between the tra-118

jectory of N inputs to the terrestrial system and the in-stream N levels using empirical119

approaches, e.g. the studies of Chen et al. (2014), Dupas et al. (2020), Ehrhardt et al.120

(2021) and Van Meter and Basu (2017) (further details are reported in the review of Chen121

et al., 2018). Yet, such modelling approaches are typically based on lumped transfer func-122

tions that relate the N inputs to the N stream export at catchment scale and they do not123

explicitly disentangle the role of biogeochemical and hydrologic legacies. Only few stud-124

ies, all of them focusing on North America, explicitly consider and examine both types of125

N legacies at catchment scale using mechanistic models, namely a modified version of the126

Soil Water Assessment Tool model (SWAT-LAG, Ilampooranan et al., 2019), the NOAA’s127

Geophysical Fluid Dynamics Laboratory Land Model (LM3-TAN, Lee et al., 2016), and128

the more parsimonious Exploration of Long-tErM Nutrient Trajectories model (ELEMeNT,129

Chang et al., 2021; J. Liu et al., 2021; Van Meter et al., 2017, 2018).130

Importantly, the investigation of N legacies through modelling approaches is fraught131

with large uncertainties. First, the N input data have large uncertainties because their132

construction involves numerous uncertain factors, as reported in Byrnes et al. (2020),133

Häußermann et al. (2020), Hong et al. (2012), Poisvert et al. (2017), and Häußermann134

et al. (2020) for diffuse N sources and in Grizzetti et al. (2008), Morée et al. (2013), and135

Van Meter et al. (2017) for point sources (wastewater). Notably, although the application136

of mineral fertilizer is a key N input to agricultural soils, data may only be available at the137

national level for some countries such as Germany, and spatial disaggregation strategies have138

to be developed to estimate fertilizer application at finer spatial resolutions (Häußermann et139

al., 2020). Second, the modelling of N legacies suffers from a lack of process understanding,140

e.g. regarding the immobilization and accumulation of N into organic matter in soils (see141

e.g. Bingham & Cotrufo, 2016; Yansheng et al., 2020). Third, the parameters of mechanis-142

tic N models are generally estimated through calibration (Moriasi, Zeckoski, et al., 2015),143

because they are often conceptual parameters that cannot be directly related to measurable144

quantities. Parameter values are typically constrained using in-stream measurements only145

(Moriasi, Zeckoski, et al., 2015), since observational data of internal model variables, such146

as N content in soil and groundwater, are generally lacking. It is well known that different147

parameter sets can fit the in-stream data equally well, as discussed in previous water quality148

–5–



manuscript submitted to Water Resources Research

studies, e.g. Ford et al. (2017), Husic et al. (2019), Rankinen et al. (2006), and Wade et al.149

(2008). Because of this issue of equifinality (Beven, 2006), it may be possible to identify a150

range of plausible values for the model internal fluxes and states corresponding to the differ-151

ent plausible parameter sets. Hence, simulated N legacies (internal model states) might be152

poorly characterized if in-stream information only is used to constrain model parameteriza-153

tions. All of the discussed uncertainties in N legacy modelling are exacerbated by the fact154

that the N accumulation in the landscape needs to be modelled over long timescales (decades155

to centuries) to understand the contemporary and future water quality status. In fact, long156

time series of input data are fraught with uncertainties and long records of observations of157

model outputs, such as in-stream N concentrations, are rarely available.158

Our review of the literature suggests that 1) we lack understanding of the magnitude159

and timescale of N legacies at catchment scale in light of the associated uncertainties and 2)160

it remains unclear whether and to what extent the in-stream information only, as typically161

used to calibrate catchment-scale N water quality models, is able to constrain the simulated162

N legacies and which additional information would mostly help to reduce uncertainty. In163

this study, we address these gaps by investigating the long-term fate of the N inputs to the164

landscape and its uncertainties. In particular, we analyze the uncertainties in simulated N165

biogeochemical and hydrologic legacies due to the uncertainties in the model parameters166

and the input data, and we determine the value of different types of (observational) data to167

constrain the modelling results.168

To this end, first, we introduce a multicriteria approach based on soft rules to constrain169

the model parameters, which allows assessment of parameter uncertainty and of the value170

of the different observational data available (in-stream N loading and concentration data,171

and soil N data). Secondly, we perform a sensitivity analysis to determine the factors172

responsible for the (residual) uncertainty in the simulated N legacies to prioritize future173

efforts for uncertainty reduction and model improvement. We apply the ELEMeNT model,174

which is a parsimonious N model that explicitly accounts for both biogeochemical and175

hydrologic legacies (Van Meter et al., 2017). While past modelling studies focus on North176

America (Chang et al., 2021; Ilampooranan et al., 2019; Lee et al., 2016; J. Liu et al., 2021;177

Van Meter et al., 2017, 2018), here we extend the analyses of N legacies to the European178

context. We examine the N legacy behaviour over the last six (1960–2015) decades in179

the Weser river basin (WRB), which is Germany’s largest national river basin. Through180

the application of the soft rules and the sensitivity analysis, we infer the dominant factors181

–6–
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affecting the uncertainty in simulated N legacies and discuss the implications for future182

modelling studies, data monitoring, and water and land management strategies.183

2 Model description184

The ELEMeNT model (Van Meter et al., 2017) simulates the fate of the diffuse N185

sources (soil N surplus) and point sources at annual timescale and it computes the an-186

nual in-stream nitrate-N loading and concentration at the catchment outlet. The model187

assumes that dissolved N is present in the form of nitrate (NO3). ELEMeNT conceptualizes188

the N processes in two terrestrial compartments, a shallower compartment referred to as189

“source zone”, which represents the soil root zone (assumed to have a depth of 1 m), and a190

deeper compartment referred to as “subsurface zone”, which includes both the unsaturated191

zone below the source zone and the groundwater. The land use categories considered are192

cropland, agricultural permanent grassland, and non-agricultural land (see Section 3.2.1).193

ELEMeNT requires as input the annual time series of the different land use fractions, the N194

surplus for each land use category, the stream discharge at the catchment outlet, and the N195

point sources. We revise the formulation of the subsurface submodel and add an in-stream196

submodel as detailed in Sections 2.2 and 2.3. The model version used in this study counts197

nine calibration parameters (Table 1).198
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Table 1. Description of the ELEMeNT Model Parameters, Ranges Used in this Study, and

References for the Determination of the Ranges

Parameter Description Unit Lower

value

Upper

value

References for the values

Mprist
sorg Source zone organic

N stock under pris-

tine conditions

(kg ha−1) 104 3.5×104 The range includes the

estimates of soil N con-

tent in 2009 from LUCAS

dataset (Ballabio et al.,

2016, 2019)

hc N protection coeffi-

cient for cultivated

land

(-) 0.1 0.5 Van Meter et al. (2017,

Table S2.1); Chang et al.

(2021, Table S3)

hnc N protection co-

efficient for non-

cultivated land

(-) 0.25 0.75 Van Meter et al. (2017,

Table S2.1); Chang et al.

(2021, Table S3)

ka Mineralization rate

constant for organic

active N store

(yr−1) 0.05 0.75 The range includes the

values in Van Meter et al.

(2017, Table S2.1)

Vs
a Mean annual water

content in the source

zone

(mm) 100 500 Van Meter et al. (2017,

Table S2.1)

λs Denitrification rate

constant in the

source zone

(yr−1) 0.1 1 Van Meter et al. (2017,

Table S2.1)

λsub Denitrification rate

constant in the

subsurface zone

(yr−1) 0.01 0.3 Van Meter et al. (2017,

Table S2.1); Puckett et

al. (2011); Heidecke et al.

(2015, Sect. 3.2.3.2)

µsub Mean travel time in

the subsurface

(yr) 2 50 Van Meter et al. (2017,

Table S2.1); Koeniger et

al. (2008, Table 2)

R b Fraction of in-stream

N removal

(-) 0.01 0.3 Howarth et al. (1996, Ta-

ble 9); Mulholland et

al. (2008, Figure 4.c);

X. Yang et al. (2018);

Grizzetti et al. (2008, Ta-

ble 6)

aVs integrates the parameters for the porosity, saturation and depth of the source zone reported in

Van Meter et al. (2017).

bR is a new parameter for in-stream processes, introduced in this study.
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2.1 Source Zone Submodel199

Following Van Meter et al. (2017), the model assesses the dynamics of the organic N200

pool, accounting for the biogeochemical legacy, and of the inorganic N pool. The organic201

N pool is divided into two different stores: (1) a protected N store with a slow turnover,202

that accounts for the physical stabilization of N, and (2) an active organic N store, that203

consists of organic N which is more labile and prone to mineralization. The organic N204

stores receive the total N surplus. Therefore mineralization in the model (the simulated N205

mass flux from the organic to the inorganic pool) represents the effective N mass flux to206

the inorganic N pool. This flux results from the combined effect of the transformation of207

organic N into mineral forms and the immobilization of mineral N inputs into the organic208

matter. Immobilization is understood to be an important process in both agricultural soils209

(Blankenau et al., 2001; Haag & Kaupenjohann, 2001; X. Liu et al., 2016; Macdonald et al.,210

1989; Sebilo et al., 2013; Yansheng et al., 2020) and forested soils (Castellano et al., 2012;211

Lewis & Kaye, 2012; Morier et al., 2008; Spoelstra et al., 2001). However, these process212

interactions are yet not well understood (Bingham & Cotrufo, 2016; Yansheng et al., 2020)213

and therefore difficult to represent explicitly in a mechanistic model. Since mineralization214

is parameterized as a first order process, part of the N surplus is quickly transferred to the215

inorganic N store and can therefore be readily available for leaching. A protection coefficient216

determines the fraction of the N surplus that is added to the protected store. Transfer of N217

mass from the protected to the active N stores occurs in case of land use conversion from218

uncultivated land to cropland. After mineralization occurs, the inorganic N in the source219

zone can either denitrify or leach to the subsurface.220

2.2 Subsurface Submodel221

In the subsurface, the transport of dissolved inorganic N is represented using a travel222

time distribution to account for hydrologic legacy, while N can denitrify following a first223

order process (Van Meter et al., 2017). In this study, we revise the formulation for the224

subsurface compartment. Compared to the previous model formulation (Van Meter et al.,225

2017), the travel time distribution function is an explicit function of time t (Benettin et al.,226

2015; Botter et al., 2010; Queloz et al., 2015). The N-NO3 export from the subsurface to227

the stream Jstreamsub (t) (kg ha−1 yr−1) at time t is therefore written as:228

Jstreamsub(t) =

+∞∫
0

Jsubs(t− T )p(T, t− T )e−λsubT dT (1)229
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where T (yr) is the travel time, Jsubs (kg ha−1 yr−1) is the N-NO3 mass leaching from230

the source zone to the subsurface, p(T, t) (-) is the travel time distribution function and231

λsub (yr−1) is the rate constant of denitrification in the subsurface. As in Van Meter et al.232

(2017), we assume complete mixing (or random sampling) in the subsurface compartment233

and we adopt an exponential distribution for the travel time (Equation 41 in Botter et al.,234

2010). The mean value of the distribution µ′(t) (yr) is given as:235

p(T, t− T ) =
1

µ′(t)
e
−

t∫
t−T

1
µ′(x)dx

(2)236

with237

µ′(t) =
Qoutµsub
Qout(t)

(3)238

where Qout(t) (mm yr−1) is the discharge at the catchment outlet, Qout (mm yr−1) is239

the arithmetic mean of the discharge, and µsub (yr) is the harmonic mean of µ′(t). To account240

for the fact that the mean discharge may not be stationary, we compute Qout at each time241

step as the 30-year backward moving average of the discharge. We refer to supplementary242

Sections S1-S3 for further details on the mathematical derivation and numerical integration243

of the new equations introduced in this study.244

2.3 In-stream Submodel245

In-stream N removal, which comprises the processes of denitrification and biotic as-246

similation described e.g. in Basu et al. (2011) and Dehaspe et al. (2021), was implicitly247

accounted for in Van Meter et al. (2017). The removal of N from point sources was lumped248

with the removal due to wastewater treatment, and the removal of N from diffuse sources249

was lumped with the denitrification in the terrestrial compartments. In this study, we need250

to represent in-stream removal explicitly, since our point N sources input, described in Sec-251

tion 3.2.4, already includes the N removal through wastewater treatment. The in-stream252

NO3-N load Jout(t) (kg ha−1 yr−1) is computed as:253

Jout(t) = (Jstreamsub(t) + Jps(t))R (4)254

where R (-) is the annual fraction of in-stream N removal and Jps(t) (kg ha−1 yr−1)255

is the N loading from point sources. For our application at catchment scale and annual256

timescale, we thereby assume that in-stream N removal can be represented by a first order257

process, as documented e.g. in Basu et al. (2011).258

–10–
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3 Study Catchments and Data259

3.1 Description of the Study Catchments260

We apply the ELEMeNT model to the Weser river basin (WRB) in Germany, focusing261

on the region located upstream of the Hemelingen station (see Figure 1a, b). This covers an262

area of around 38,450 km2, which corresponds to almost 11% of the total area of Germany.263

The Weser river largely contributes to the total N load discharging into the North Sea,264

where eutrophication is a major issue (Arle et al., 2017). In the WRB, a priority goal set265

by the WRB Commission (FGG Weser, 2020) is to reduce N inputs to the landscape to266

achieve in-stream N concentrations below the regulatory threshold of 2.8 mg L−1 (OGewV,267

2016). For our analyses, we selected eight stations, including Hemelingen, that have a long268

record (between 26 and 37 years) of 14-days average in-stream nitrate measurements, that269

were constructed by mixing daily samples. These stations are situated on the Weser, Werra,270

Fulda and Aller rivers and their location is reported in Figure 1b.271

The WRB is characterized by a humid temperate climate with an annual mean precip-272

itation around 780 mm yr−1 (spatial range: 600–1100 mm yr−1) and a mean aridity index273

(ratio of potential evapotranspiration to precipitation) around 0.9 (S. Yang et al., 2019;274

Zink et al., 2017). The average annual discharge at Hemelingen over the period 1950–2015275

amounts to 268 mm yr−1. Agriculture is the dominant land use type and constitutes 45%276

of the catchment area in 2015 (35% cropland and 10% agricultural permanent grassland).277

Other important land uses are forested land and other vegetated land (including natural278

grassland and urban green areas), which cover 34% and 19% of the catchment area in 2015,279

respectively. Spatially and temporally averaged annual N surplus is estimated to be equal to280

48.6 kg ha−1 yr−1 over the period 2011–2015, and N surplus takes a higher value over agri-281

cultural areas (70.9 kg ha−1 yr−1) compared to non-agricultural areas (30.3 kg ha−1 yr−1).282

On average in-stream N-NO3 concentration (Cout) value at the catchment outlet is equal283

to 3.7 mg L−1 over the period 2011–2015, which is above the target value of 2.8 mg L−1284

(OGewV, 2016).285

The eight nested subcatchments analyzed in this study, present some moderate differ-286

ences in their characteristics, as indicated in Figure 1c-j. In particular, the percentage of287

agricultural areas ranges from 38% to 48%, with lower values in the southern (upstream)288

part, which is situated in a mountainous area, compared to the northern (downstream) part,289

which lies in the German Northern Plain. We notice a sharp decrease in N surplus in 1990290
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for the Letzter Heller subcatchment (Figure 1j). This can be explained by the fact that a291

large area of the subcatchment is situated within the state of Thuringia, which was part of292

the former German Democratic Republic, and where agricultural activities were profoundly293

disrupted following the German reunification in 1990. The in-stream concentration Cout294

ranges from 3.0 mg L−1 at the Wahnhausen station (Figure 1i), which is located in the up-295

stream part, to 4.1 mg L−1 at the downstream Drakenburg and Porta stations (Figure 1d,296

f).297
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Germany
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) Verden (16,063 𝑘𝑚2)

𝑓𝑎𝑔𝑟 = 0.48

𝑄𝑜𝑢𝑡 = 226𝑚𝑚 𝑦𝑟−1

𝐶𝑜𝑢𝑡 = 3.5 𝑚𝑔 𝐿−1

Hemelingen (38,455 𝑘𝑚2)
𝑓𝑎𝑔𝑟 = 0.45

𝑄𝑜𝑢𝑡 = 268𝑚𝑚 𝑦𝑟−1

𝐶𝑜𝑢𝑡 = 3.7 𝑚𝑔 𝐿−1

Hess. Oldendorf (17,177 𝑘𝑚2) 

𝑓𝑎𝑔𝑟 = 0.40

𝑄𝑜𝑢𝑡 = 292𝑚𝑚 𝑦𝑟−1

𝐶𝑜𝑢𝑡 = 3.7 𝑚𝑔 𝐿−1

Drakenburg (21,679 𝑘𝑚2)
𝑓𝑎𝑔𝑟 = 0.43

𝑄𝑜𝑢𝑡 = 279𝑚𝑚 𝑦𝑟−1

𝐶𝑜𝑢𝑡 = 4.1 𝑚𝑔 𝐿−1

Porta (19,145 𝑘𝑚2)

𝑓𝑎𝑔𝑟 = 0.40

𝑄𝑜𝑢𝑡 = 301𝑚𝑚 𝑦𝑟−1

𝐶𝑜𝑢𝑡 = 4.1 𝑚𝑔 𝐿−1

Wahnhausen (6865 𝑘𝑚2)
𝑓𝑎𝑔𝑟 = 0.37

𝑄𝑜𝑢𝑡 = 286𝑚𝑚 𝑦𝑟−1

𝐶𝑜𝑢𝑡 = 3.0 𝑚𝑔 𝐿−1

Hemeln (12,546 𝑘𝑚2)

𝑓𝑎𝑔𝑟 = 0.38

𝑄𝑜𝑢𝑡 = 289𝑚𝑚 𝑦𝑟−1

𝐶𝑜𝑢𝑡 = 3.3 𝑚𝑔 𝐿−1

Observed 𝐽𝑜𝑢𝑡

Agricultural areas (soil N surplus)

Non-agricultural areas (soil N surplus)

Urban areas (N point sources)

(a)

(b)

(c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 1. The eight subcatchments of the WRB selected for the analyses: (a) location of the

WRB in Germany, (b) land use of the WRB and outlet of the subcatchments analyzed, and (c-j)

N input (N surplus and N point sources), in-stream observations (N-NO3 loading, Jout) time series

for the period 1950–2015, and catchment properties namely catchment area, fraction of agricultural

area in 2015 (fagr), average annual stream discharge over the period 1950–2015 (Qout), and average

observed in-stream N-NO3 concentration over the period 2011–2015 (Cout). Source of the land use

data in panel (b): Corine Land Cover data for year 2012 (EEA, 2019a). Other datasets used are

described in Section 3.2.
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3.2 Data Description and Processing298

In this section, we present the datasets adopted to run ELEMeNT and the datasets299

of N content observations used to assess the performance of the model and estimate its300

parameters (as explained in Section 4).301

3.2.1 Land Use Data302

We construct the 1800–2015 trajectories of the catchment-scale fractions of the three303

land use categories required by ELEMeNT, namely cropland, agricultural permanent grass-304

land and non-agricultural land. The latter land cover includes forest, other vegetated land305

(such as natural grassland, green urban areas), built-up areas and non-vegetated land. We306

combine data from the gridded Corine Land Cover dataset (CLC; EEA, 2019a), the grid-307

ded History Database of the Global Environment dataset (HYDE; Klein Goldewijk et al.,308

2011, 2017) and census data on agricultural areas available from the Federal Statistical309

Office (Statistisches Bundesamt, 2021) and from the yearly statistical books for Germany310

(Digizeitschriften, 2021). Supplementary Section S4 provides details on the methodology311

used to construct the land use data. The trajectories of the land use fractions for the312

different subcatchments are presented in supplementary Figure S1.313

3.2.2 N Surplus for Agricultural Areas314

We adopt the N surplus dataset for agricultural areas of Häußermann et al. (2020),315

which is available for the period 1995–2015 at the county level, and the dataset of Behrendt316

et al. (2003), which is available for the period 1950–1998 at the state level, and which builds317

on the studies of Bach and Frede (1998) and Behrendt et al. (2000). The components318

included in the two datasets are the N content in the input of mineral fertilizer, manure,319

other organic fertilizer such as sewage sludge, seeds and planting material (for the county320

level dataset only), atmospheric deposition, biological fixation by legumes, as well as the321

N content in harvested crops. We refer to Häußermann et al. (2020) and Behrendt et322

al. (2003) for further methodological details. We harmonize the two N surplus datasets323

similar to Ehrhardt et al. (2021), to construct the N surplus trajectories at county level324

for the period 1950–2015 (see Supplementary Section S5 for further details). The resulting325

trajectories of the N surplus for agricultural areas are shown in supplementary Figure S2.326
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3.2.3 N Surplus for Non-agricultural Areas327

Following Van Meter et al. (2017), for non-agricultural areas, we consider two compo-328

nents for the N surplus, namely atmospheric N deposition and biological N fixation, and we329

neglect any net accumulation of N in the vegetation. We quantify atmospheric N deposition330

using the dataset produced from Community Atmosphere Model with Chemistry (CAM-331

chem, Lamarque et al., 2012) simulations, as part of the National Center for Atmospheric332

Research (NCAR) Chemistry-Climate Model Initiative (CCMI, Tilmes et al., 2016) N de-333

position dataset. This product is part of the input datasets for the Model Intercomparison334

Projects (input4MIPS) and it is a forcing dataset for the Coupled Model Intercomparison335

Project phase 6 (CMIP6, Eyring et al., 2016). The data are provided over a 1.9◦ × 2.5◦336

grid for the period 1850–2014. We estimate biological N fixation using the mean annual rate337

reported by Cleveland et al. (1999) for natural temperate forest (16 kg ha−1 yr−1) and for338

natural grassland (2.7 kg ha−1 yr−1). We use the latter for our land use category “other339

vegetated land” defined in Section 3.2.1. The trajectories of atmospheric N deposition and340

biological N fixation are shown in supplementary Figure S3.341

3.2.4 N Point Sources342

For N point sources, we use observations of N loading, available for 802 wastewater343

treatment plants (WWTPs) and one year in the period 2012–2016 depending on the plants344

(S. Yang et al., 2019; Büttner, 2020). Data for the larger WWTPs (with population equiva-345

lent over 2,000) come from the Environmental Agency database (EEA, 2015) and correspond346

to the year 2012, while data for the smaller WWTPs (with population equivalent under347

2,000) come from the authorities of the federal German states and correspond to the year348

2015 or 2016. For the past years, we estimate N point sources from wastewater from the349

methodology proposed by Morée et al. (2013). We utilize data on population count (HYDE350

dataset), protein supply (FAO, 1951, 2021a, 2021b), and population connection to sewer351

and WWTPs (Seeger, 1999; Eurostat, 2016, 2021). We combine these data and create an352

ensemble of historical N loading from WWTPs over the period 1950–2015. The ensemble353

reflect the uncertainty in the characteristics of different parameters, such as the fraction of354

protein supply lost in the food supply chain, the ratio of industrial to domestic N emissions355

or the efficiency of wastewater treatment. Supplementary Section S6 (as well as Figure S4356

and Tables S1-S2) details the underlying procedure for the N point sources construction. A357

visual depiction of the N point sources with uncertainty is provided in Figure S5.358
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3.2.5 Stream Discharge359

To run the ELEMeNT model, we require annual discharge at the outlet of the sub-360

catchments for the period 1800–2015 and, in addition, we need daily discharge for the361

recent period to process the measurements of in-stream N-NO3 concentration, as described362

in Section 3.2.6. Discharge data is constructed by combining (1) daily discharge measure-363

ments (at the catchment outlet or at a nearby measuring station) obtained from the GRDC364

(Global Runoff Data Centre, 2021) or the WRB Commission (FGG Weser, 2021) databases365

(see supplementary Table S3), and (2) bias-corrected simulations from the mesoscale Hydro-366

logic Model (mHM, Kumar et al., 2013; Samaniego et al., 2010), to fill the missing values367

in the observation dataset. Two sets of mHM simulations are used, medium-term daily368

simulations for the period 1950–2015 (Zink et al., 2017), and long-term annual simulated369

values for the period 1800–1949 (Hanel et al., 2018). The mHM simulations capture the370

variability of observed discharge reasonably well, with values of the Nash–Sutcliffe efficiency371

always higher than 0.64 and values of the coefficient of determination always higher than372

0.66 (see supplementary Table S4). Figures S6–S13 represent the annual time series of the373

discharge measurements and the simulations before and after we apply the bias-correction.374

We refer to Zink et al. (2017) and Hanel et al. (2018) for details on the mHM setups.375

3.2.6 Observations of N Content376

N content in the Source Zone377

We derive N content in the topsoil (0–20 cm) from the Land Use and Cover Area frame378

statistical Survey (LUCAS; Ballabio et al., 2016, 2019). The LUCAS dataset was created379

from the spatial interpolation of approximately 22,000 surveyed points across Europe. For380

most countries, including Germany, soil samples were collected in 2009. To estimate the381

catchment-scale soil N content (0–100 cm, source zone of ELEMeNT), we combine the N382

content and bulk density of the topsoil from the LUCAS dataset. We also use the ratio of383

total soil N content (0–100 cm) to topsoil N content (0-20 cm), which we estimate to be384

between 2.5 and 4 from Batjes (1996), thus obtaining a plausible range for the total soil385

N content (0–100 cm). Our estimated ranges of the soil N content and further details are386

reported in supplementary Table S5.387

In-stream N Concentration388
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In-stream nitrate concentration is obtained from the WRB Commission (FGG Weser,389

2021). For the Letzter Heller catchment, we combine the concentration measurements at390

the Letzter Heller station available for the period 1979–2002 and at the Witzenhausen391

station, which is located 8 km upstream, for the period 2003–2015. The data consists of392

14-day average N-NO3 concentration measurements, that were constructed by mixing daily393

samples, and that start for most stations in the early 1980s and end around 2015. We only fill394

the gaps that have a length of maximum 42 days, and therefore concentration data for years395

containing longer gaps are discarded. Annual total in-stream loading is calculated as the396

sum of the 14-day average loading values, while annual average concentration is estimated397

as the discharge weighted average of the 14-day average concentration values. The in-stream398

N-NO3 concentration and loading data are reported in supplementary Figures S14–S15. We399

also examine the uncertainty in the observations and check for outlier values. We find that400

the concentration value at the Letzter Heller station in 1990, which is equal to 6.3 mg L−1,401

is abnormally high. The difference to the average value (4.5 mg L−1) amounts to 2.8 times402

the standard deviation over the period 1985–1995 (see supplementary Figure S14). This403

anomalous concentration value could be explained in the context of the German reunification404

in 1990, where unusual and undocumented N amounts could have been discharged into the405

stream. This is not reflected in our N input datasets. Tracking the cause of this anomaly is406

beyond the scope of this study, and therefore, we discard this value for our analyses.407

4 Methods for Parameter Estimation and Sensitivity Analysis408

4.1 Multicriteria Parameter Estimation Strategy409

Our parameter estimation strategy considers the performance of the ELEMeNT model410

in simulating three different variables, namely the total source zone N content (Ms, which411

includes the organic protected, organic active, and inorganic N stores), and the in-stream412

N-NO3 loading (Jout) and concentration (Cout) at the catchment outlet. Regarding Ms,413

the simulated values are constrained within the range derived from the observations, since414

the source zone N content is only provided for the year 2009. For Jout and Cout, we use415

three performance metrics that are the Pearson correlation coefficient denoted as ρ (-), the416

relative bias denoted as RBIAS (-) and the variability error denoted as STDerr (-). RBIAS417

and STDerr are defined as follows:418

RBIAS =
µsim − µobs

µsim
(5)419
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420

STDerr =
σsim − σobs

σsim
(6)421

where µobs and µsim are the average of the observations and simulations, respectively,422

and σsim and σobs are the standard deviation of the simulations and observations, respec-423

tively. There averages and standard deviations are calculated for each subcatchment over424

the years where observations are available. The three metrics ρ, RBIAS and STDerr mea-425

sure how well the dynamics (temporal pattern and timing), the mean and the variability426

of the observations respectively are captured by the simulations. They constitute the three427

components of the Kling-Gupta efficiency (KGE; Gupta et al., 2009) defined as:428

KGE = 1−
√

(1− ρ)2 +RBIAS2 + STD2
err (7)429

We consider these three metrics separately instead of the aggregated KGE measure to ensure430

a sufficient performance with regards to all important aspects that we aim to simulate, as431

discussed in Martinez and Gupta (2010).432

Similar to e.g., Choi and Beven (2007), Hartmann et al. (2017), (Husic et al., 2019),433

and Sarrazin et al. (2018), we use “soft rules” to identify the set of well-performing (“be-434

havioural”) simulations. We define seven soft rules, all of which have to be satisfied in the435

behavioural simulation ensemble:436

1. for Jout: | RBIAS | ≤ 0.2 ;437

2. for Jout: | STDerr | ≤ 0.25 ;438

3. for Jout: ρ ≥ 0.8 ;439

4. for Cout: | RBIAS | ≤ 0.2 ;440

5. for Cout: | STDerr | ≤ 0.25 ;441

6. for Cout: ρ ≥ 0.6 ;442

7. the simulated Ms is within the range derived from the observations.443

The order of the rules allows us to assess to what extent the use of in-stream N con-444

centration and source zone N content data can help to reduce the simulation uncertainties,445

beyond the use of in-stream N loading data. Some studies only examine the in-stream N446

loading (e.g. Chang et al., 2021; J. Liu et al., 2021; Van Meter et al., 2017, 2018) and447

not the in-stream N concentration that tends to be more difficult to simulate than the448

in-stream N loading (Husic et al., 2019). In addition, as discussed in Section 1, previous449

studies generally considered in-stream variables only for calibration. The threshold values450
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for RBIAS and ρ introduced in rules 1, 3, 4 and 6 correspond to “satisfactory” or “good”451

model performance in reproducing nutrient dynamics according to Moriasi, Gitau, et al.452

(2015). We however note that Moriasi, Gitau, et al. (2015) examine values of ρ at monthly453

and not annual timescale, due to a lack of studies analysing the model goodness-of-fit for454

annual simulations of nutrients. Here, we set a stricter threshold value on ρ for Jout (rule455

3) compared to Cout (rule 6), since the dynamics of Jout are driven by the stream discharge456

and are therefore easier to reproduce then the dynamics of Cout, as further discussed in457

Sections 5.1.1-5.1.2. Due to a lack of analysis of STDerr in previous studies, we consider458

that a threshold value equal to ± 0.25 is reasonable (rules 2 and 5).459

To estimate the nine model parameters, we generate a parameter sample of size 100,000460

from the ranges reported in Table 1 utilizing latin hypercube sampling and uniform distri-461

butions. We discard the parameter sets that do not meet the condition hc < hnc (where462

hc and hnc are the protection coefficients for cultivated and non-cultivated land, respec-463

tively). We assume that the protection of organic matter is reduced by tillage practices. We464

perform Monte-Carlo simulations for each of the eight subcatchments and we sequentially465

apply the seven soft rules, thus progressively reducing the number of behavioural parameter466

sets. Following previous studies (Dupas et al., 2020; Ehrhardt et al., 2021; Van Meter et467

al., 2017), we use the entire time series of in-stream N observations to identify behavioural468

simulations. We note that the goal of our analysis here is not to predict future catchment N469

export but to analyze the uncertainty in the simulations and the value of different types of470

data to constrain the simulations. In addition, the amount of in-stream observational data471

available (between 26 and 37 years depending on the subcatchments) is rather limited to be472

divided between a calibration set and an independent verification set.473

We simulate the ELEMeNT model from year 1800 (pre-industrial conditions) to year474

2015, including a long warm-up period i.e., we only analyze the simulations for the period475

1960–2015 and we discard the results for period 1800–1959. This is because the legacy stores476

can have a slow turnover and can build up over long timescales (Van Meter et al., 2017).477

The setup of the initial states is described in detail in supplementary Section S7. Regarding478

the N point sources, we select the realization in our ensemble that shows the best match479

with the observations available for the period 2012–2016 (further information on the point480

sources are in Section 3.2.4). For the atmospheric N deposition, we use the value in 1850481

for the period 1800–1849. Regarding the N surplus in agricultural areas, since no data are482

available before 1950, we assume that the value (at county level) of the N surplus in 1850483
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is half the value in 1950. We then use linear interpolation for the period 1850–1950 and484

we consider that the value is constant for the period 1800–1850. We also assume that the485

N surplus takes the same value over cropland and agricultural permanent grassland. In486

Section 4.2, we explain how we assess the impact of the uncertainty in the N point sources487

and N surplus.488

4.2 Sensitivity Analysis of the Simulated N Legacies489

We perform a sensitivity analysis to investigate the factors that are responsible for the490

residual uncertainty in the simulated N legacy stores, i.e., the uncertainty that remains after491

constraining the model simulations using the soft rules described in Section 4.1. This analysis492

allows us to set priorities for future efforts for uncertainty reduction and model improvement.493

We examine the sensitivity of four model outputs related to the legacy stores (namely the494

average source zone and subsurface storage and their cumulative change, assessed over the495

period 1960–2015) to the nine parameters of ELEMeNT, the N point sources input and the496

N surplus input. We select ten realizations of the N point sources across the ensemble of497

realizations to cover the uncertainty range (see Figure S5). Regarding the N surplus, we498

introduce two additional parameters to generate alternative realizations for the agricultural499

N surplus for the period (1800–1949) and for the disaggregation between cropland and500

agricultural permanent grassland. First, we define parameter rwarm (-), which represents501

the ratio of the value in 1850 to the value in 1950 of the agricultural N surplus Surplusagr(t)502

(kg ha−1 yr−1):503

rwarm =
Surplusagr(1850)

Surplusagr(1950)
(8)504

The agricultural N surplus for the period 1800–1949 is derived from rwarm, through505

linear interpolation over the period 1850–1950 and by setting a constant value over the506

period 1800–1850. Second, we define parameter rmgra−crop (-), which is the ratio of the507

N surplus for permanent agricultural grassland Surplusmgra(t) (kg ha−1 yr−1) to the N508

surplus for cropland Surpluscrop(t) (kg ha−1 yr−1), assumed to be constant in time:509

rmgra−crop =
Surplusmgra(t)

Surpluscrop(t)
(9)510

In addition, we define a time-invariant multiplier denoted as fsurplus (-), which is used to511

multiply the time series 1800–2015 of the N surplus for both agricultural and non-agricultural512

areas. This multiplier accounts for the uncertainty in the value of the total N surplus.513
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We select three values for fsurplus (0.8, 1 and 1.2), rwarm (0.25, 0.5 and 0.75) and514

rmgra−crop (0.5, 1 and 1.5), which results in 27 N surplus realizations. Since no informa-515

tion is available to further constrain the uncertainty, we argue that these 27 realizations516

cover a large plausible range of N-surplus estimates. The case fsurplus = 1, rwarm = 0.5517

and rmgra−crop = 1 corresponds to our “baseline scenario” i.e., the one used for analyses518

presented in Section 4.1. Supplementary Section S8 details the derivation of the N surplus519

for cropland and permanent agricultural grassland from the parameter rmgra−crop and sup-520

plementary Figure S16 reports the time series of different realizations of the N surplus for521

agricultural areas.522

We combine the ten point sources and the 27 N surplus realizations to create 270 sets of523

N inputs. For each of them, we perform Monte-Carlo simulations from the same parameter524

sample of size 100,000 described in Section 4.1. This produces a total input-output sample525

of size 27,000,000. We then discard simulations that do not satisfy the soft rules defined in526

Section 4.1 to obtain the sample for the sensitivity analysis.527

We apply the distribution-based PAWN sensitivity analysis method (Pianosi & Wa-528

gener, 2015) that evaluates the effect of the input factors on the entire output (here legacy529

stores) distribution. We estimate the PAWN sensitivity indices using the numerical approx-530

imation strategy introduced by Pianosi and Wagener (2018), which can be utilized for any531

generic input-output sample, and which is implemented in the Python version of the SAFE532

toolbox (Pianosi et al., 2015). With this numerical scheme, the range of variation of the533

i -th input factor is partitioned into a number ni of equally probable “conditioning” intervals534

(denotes as Ii,k, k=1,...,ni), each interval containing the same number of parameter sets.535

The PAWN method consists of the comparison between 1) the Cumulative Distribution536

Functions (CDFs) of the model output (denoted here as y) obtained by letting all input537

factors vary in their entire space of variability (i.e., unconditional CDF, denoted as Fy(y))538

and 2) the CDF obtained by allowing all input factors to vary freely, but the i -th input xi539

whose value is constrained to a specific conditioning interval (i.e., conditional CDF, denoted540

as Fy|xi(y|xi)). In PAWN, input sensitivity is quantified through the Kolmogorov-Smirnov541

statistic (KS, Kolmogorov, 1933; Smirnov, 1939), which is the maximum vertical distance,542

between unconditional and conditional CDFs. The PAWN sensitivity index for the i -th543

input factor, denoted as SiPAWN (-), aggregates the KS values calculated across all ni con-544

ditioning intervals through a summary statistic, which is chosen as the median value in this545
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study, to eliminate the impact of outlier values:546

SiPAWN = Q50
xi

KS(xi) (10)547

where548

KS(xi) = max
y
|Fy(y)− Fy|xi(y|xi)| (11)549

SiPAWN takes values between 0 and 1, and the higher its value the larger the impact550

of that input on the model output. For the ELEMeNT parameters, we adopt a number of551

conditioning intervals ni equal to 10. For the N point sources, we calculate the conditional552

CDF for each of the ten realizations, and for the three N surplus parameters we compute553

the conditional CDF for each of their three selected values. We estimate the 95% confidence554

intervals of the PAWN sensitivity indices using 1000 bootstrap resamples, and we verify the555

convergence of the results given the sample size, following Sarrazin et al. (2016).556

5 Results557

5.1 Parameter Estimation558

5.1.1 Application of the Soft Rules559

The performance of the simulated in-stream N loading and concentration is compara-560

ble in terms of the metrics RBIAS and STDerr (Figure 2a). However, in terms of ρ, the561

performance is noticeably better for the simulated N loading compared to the concentration562

for five subcatchments. For the three other subcatchments (outlet Hemelingen, Drakenburg563

and Wahnhausen), performance are more similar although higher values of ρ can be reached564

for the loading. In contrast to the concentration dynamics, the temporal fluctuations of565

the loading are strongly influenced by the discharge dynamics, which is an input to the566

ELEMeNT model. Importantly, we identify simulations that comply with each soft rule567

individually, as shown in the grey shaded areas in Figure 2a for rules 1-6 and in supplemen-568

tary Figure S17 for rule 7 (source zone N content). We also find that the threshold values569

on the performance metrics introduced in rules 1-6 result in values of the KGE higher than570

0.62 for the loading and 0.49 for the concentration in the behavioural simulation ensemble571

(grey shaded areas in right panels of Figure 2a). We verify that these KGE values are higher572

than the mean benchmark value of -0.41 (Knoben et al., 2019).573

–22–



manuscript submitted to Water Resources Research

Rules 1-3 (𝐽𝑜𝑢𝑡)                Rules 1-6 (𝐽𝑜𝑢𝑡 and 𝐶𝑜𝑢𝑡)                Rules 1-7 (𝐽𝑜𝑢𝑡, 𝐶𝑜𝑢𝑡 and 𝑀𝑠)
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Figure 2. Application of the soft rules: (a) Cumulative Distribution Function (CDF) of the

performance metrics for in-stream N loading (Jout) and concentration (Cout) in the initial simulation

ensemble (100,000 realizations) and (b) percentage of realizations of the initial ensemble identified

as behavioural (pbehav) by successive application of the soft rules based on the performance metrics

for loading (Jout, rules 1-3), the performance metrics for concentration (Cout, rules 4-6), and the

source zone N content (Ms, rule 7). The name of the eight subcatchments refer to both the legend

of the lines of panel (a) and the bar graphs of panel (b). Panel (a) reports the three performance

metrics used in the definition of rules 1-6 (relative bias RBIAS, variability error STDerr and Pearson

correlation coefficient ρ) and the Kling-Gupta efficiency (KGE). The grey shaded areas and grey

numbers on the x-axis indicate the behavioural ranges of the performance metrics used in the

definition of rules 1-6. The ranges of the performance metrics shown (x-axis of plots in panel a) do

not include the extreme values, which are shown in supplementary Figure S18.
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From Figure 2b, we observe a reduction in the number of ELEMeNT realizations after574

application of the rules on the loading (rules 1-3), but also a further diminution after appli-575

cations of the rules on the concentration (rules 4-6) and on the source zone N content (rule576

7). This means that not only the loading, but also the concentration and the source zone577

N content have a value in constraining the simulations. In addition, the data on the source578

zone N content in 2009 (rule 7) allows reduction in the uncertainty in the total source zone579

N storage that is not constrained by the other rules (Figure S17). We obtain a number of580

behavioural simulations that varies between 676 for Letzter Heller and 2076 for Wahnhausen581

(supplementary Table S6). For further details on the reduction in the number of realiza-582

tions obtained when applying each of the seven rules individually, we refer to supplementary583

Figure S19.584

5.1.2 Constraining of the Simulated In-stream Loading and Concentration585

From Figures 3-4, we observe that the precision of the simulated in-stream N loading586

and concentration is larger in the behavioural simulation ensemble compared to the uncon-587

strained ensemble, i.e., the red shaded areas are much narrower than the grey shaded areas.588

We also see that, for some years, the width of the 95% confidence interval (CI) of the simu-589

lation ensemble is reduced when applying the rules on the concentration and source zone N590

content (rules 4-7, red shaded areas) in addition to the rules on the loading (rules 1-3, blue591

shaded areas). However, the information on the source zone N content in 2009 (rule 7) does592

not further narrow down the uncertainty bounds, i.e., we do not observe green shaded ar-593

eas. Importantly, after applying the seven rules, the behavioural simulation ensembles (red594

shaded areas in Figures 3-4) capture a large number of observations. Specifically for most595

subcatchments, the simulation ensemble encompasses more than 90% of the observations,596

except for Verden for which it includes 57% of the observations.597

Regarding loading (Figure 3), the temporal dynamics follow the discharge dynamics598

(discharge is reported in supplementary Figures S6–S13), and we see that the simulation599

ensembles match the observations very well. Regarding concentration (Figure 4), we ob-600

serve that the simulations are overall in agreement with the measurements. However, the601

median ensemble has difficulties in reproducing the observed concentration trend around602

the last ten years of the simulations (2005–2015), in particular at Hemeln, Porta, Verden603

and Hemelingen. While the measurements indicate a slight decrease in concentration, the604

latter is relatively stable in the simulations, which is consistent with the N input dynamics605
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over this time period (see Figure 1). Nonetheless, the simulation ensemble captures the ob-606

servations for all locations apart from Verden. We also notice that for Letzter Heller (panel607

b), concentration shows little temporal variations, while the N surplus trajectory presents608

a sharp decrease in 1990 (as shown in Figure 1).609
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Figure 3. Simulated annual in-stream N-NO3 loading (Jout) for the eight subcatchments. The

dashed red lines represent the median of the behavioural simulation ensembles that satisfy all seven

soft rules. The shaded areas represent the 95% CI of the simulation ensembles corresponding to

four different levels of constraining.

5.1.3 Constraining of the Parameter Distributions610

From Figure 5, we find that the differences between the prior (grey lines) and posterior611

(colored lines) CDFs of the parameters are very small for four parameters, namely the two612
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Figure 4. Simulated annual in-stream N-NO3 concentration (Cout) for the eight subcatchments.

The dashed red lines represent the median of the behavioural simulation ensembles that satisfy all

seven soft rules. The shaded areas represent the 95% CI of the simulation ensembles corresponding

to four different levels of constraining.

protection coefficients (hc and hnc), the mean annual water content in the source zone (Vs)613

and the fraction of in-stream N removal (R). Nonetheless, the median of the distribution614

changes by at least 20% for Vs for one subcatchment (increase of 25% for Letzter Heller)615

and for R for four subcatchments (decrease of 27% for Wahnhausen, 20% for Hemeln, 22%616

for Porta and 23% for Hemelingen). The other five parameters (Mprist
sorg , ka, λs, λsub, and617

µsub) show appreciable (higher than 15%) reduction in their 95% CI. On average, these618

parameters exhibit a diminution in their CI of 59%, 10%, 37% 15% and 33%, respectively.619

The two denitrification rate constants (λs and λsub) and the mean travel time (µsub) take620
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values in the lower range of their prior distribution for most subcatchments, with median621

values in the range 0.28–0.34 yr−1 (prior: 0.55 yr−1), 0.06–0.17 yr−1 (prior: 0.15 yr−1)622

and 8–19 yr (prior: 26 yr), respectively. The 95% CI of the travel time in the posterior623

distribution is reduced for the some subcatchments such as Hemelingen (95% CI: 2–24 yr),624

while it can still be rather large for some other subcatchments such as Drakenburg (95% CI:625

3–44 yr). The mineralization rate constant for organic active N (ka) is unlikely to take values626

in the lower range of its prior distribution, as the lower bound of its 95% CI is in the range627

0.09–0.18 yr−1 (prior: 0.07 yr−1). Details on the median and 95% CI of the parameter628

values are reported in supplementary Tables S7–S8. In addition, all three observational629

data used (loading, concentration and source zone N content) have value in constraining630

the distribution of at least one parameter, as shown in supplementary Figures S20–S27.631

In particular, the source zone N content observations in 2009 is the only data source that632

allows to constrain the source zone organic N stock under pristine conditions (Mprist
sorg ).633

We also calculate the behavioural values of the mean transfer times for the source634

zone organic N stores as the inverse of the respective mineralization rate constants. The635

mineralization rate constant for the protected pool is computed from Equation S24 and its636

CDFs can be visualized in supplementary Figure S28. We find that the mean transfer times637

for the protected store are much higher compared to the active store for all subcatchments.638

The median values (95% CI) of the mean transfer times are in the range 2000–2700 yr639

(1300–5400 yr) and 2.0–3.0 yr (1.4–11.3 yr) for the protected and active stores, respectively640

(more details in supplementary Table S9).641

Interestingly, the parameter distributions for the upstream Letzter Heller subcatchment642

stands out, with particularly low median values of ka, and high median values of µsub643

compared to the other subcatchments, including the Wahnhausen subcatchment which is644

neighbouring the Letzter Heller and which has similar land use and topography (Figure 1,645

Section 3.1). The results suggest that, compared to the other subcatchments, Letzter Heller646

may have a particularly high potential to accumulate organic active N in the source zone,647

due to the low mineralization rate for the active N pool (median value: 0.33 yr−1), and648

dissolved mineral N in the subsurface, due to the large travel time (median value: 17 yr).649

Overall, our results demonstrate that, for each of the eight subcatchments, multiple650

combinations of model parameter values lead to acceptable model performance. This equifi-651

nality can be partly explained by interactions between the model parameters, in particular652
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between the two denitrification rate constants in source zone and subsurface, between each653

of the denitrification rate constant and the mean travel time in the subsurface, between654

the denitrification rate constant in the subsurface and the fraction of in-stream removal655

and between the two protection coefficients (a detailed interaction analysis is presented in656

Table S10).657
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Figure 5. Cumulative distribution functions (CDFs) of the model parameters for the eight

subcatchments. Colored lines refer to the behavioural CDFs, which are obtained after applications

of the seven soft rules, and grey lines refer to the prior CDFs in the original sample of size 100,000.

The prior CDFs are the same for all subcatchments.

5.2 Mass balance Over the Study Domain658

5.2.1 Fate of the N Surplus659

In this section, we examine the fate of the N surplus over the period 1960–2015 from the660

behavioural simulation ensemble (Figure 6, Table 2). Over the entire WRB (Hemelingen),661

the total denitrification in the source zone and subsurface (Jdentot) amounts to 1888 kg ha−1662

(median value), which corresponds to about 63% of the N surplus (95% CI: 49–74%). Around663

50% (median value) of the total denitrification occurs in the source zone, but the uncertainty664

in the partitioning of denitrification between source zone and subsurface is large (95% CI of665

the source zone contribution: 18–94%; supplementary Table S11).666
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The landscape export of N from catchment (Joutsub) is equal to 537 kg ha−1 (median667

value), which represents 18% of the N surplus. As the initial source zone N storage in 1960668

is very large (median value: 17,487 kg ha−1; 95% CI: 13,678–21,564 kg ha−1), the change669

in the source zone N storage (∆Ms, biogeochemical legacy) is relatively small with respect670

to this initial storage (median value: 2.5%; 95% CI: 1.2-5.1%; see details in supplementary671

Figure S30 and Table S12). Nevertheless, the change in the source zone storage amounts to672

448 kg ha−1, (median value), which constitutes a high percentage of the N surplus (15%)673

similar to the stream export part. The 95% CI is however large for this component (229–781674

kg ha−1) and is largely overlapping with the 95% CI of the stream export. The two last675

components per order of magnitude are the in-stream removal (Jremsub) and the change in676

the subsurface N storage (∆Msub, hydrologic legacy), which have median values equal to 72677

and 37 kg ha−1 respectively (which correspond to 2% and 1% of the N surplus respectively),678

and which have overlapping 95% CI. Therefore, the denitrification in the source zone and679

subsurface is an order of magnitude greater than the in-stream removal. Moreover, the N680

accumulation in the source zone is an order of magnitude higher than the N accumulation681

in the subsurface. Total legacy buildup in the WRB amounts to 491 kg ha−1 (95% CI:682

264–820 kg ha−1), which corresponds to around 16% of the N surplus.683

We also observe that the simulated source zone N store is continuously building up684

in time over the period 1960–2015 (Figure 6a). In the subsurface, the dynamics of the N685

store is much more coupled to the dynamics of the N surplus (Figure 6b). We see that686

the N storage in the subsurface increases until the 1987 to reach a value of 61 kg ha−1687

(median value), decreases by about as much as 40% between 1987 and 2010, and shows688

small fluctuations between 2010 and 2015.689

For the different subcatchments, the relative importance of the different components of690

the N mass balance are similar (Table 2). In particular, denitrification Jdentot is always the691

largest outgoing N flux. The median change in source zone storage ∆Ms generally varies692

between 473 kg ha−1 (Hemeln) and 584 kg ha−1 (Drakenburg). An exception is the Verden693

subcatchment, which is mostly located in the lowland areas, and for which the median ∆Ms694

is smaller (326 kg ha−1). The median change in subsurface storage ∆Msub is smaller for695

Wahnhausen (17 kg ha−1) and is larger for Letzter Heller (62 kg ha−1), Hessisch Olden-696

dorf (62 kg ha−1) and Drakenburg (78 kg ha−1). The relatively large value of ∆Msub for697

Letzter Heller compared to the other subcatchments is consistent with the parameter dis-698

tribution results presented in Section 5.1.3. We also observe that the (temporal) dynamics699
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of N buildup in the legacy stores of all subcatchments are similar to those of Hemelingen700

(see supplementary Figures S29-S31). In particular, N levels in the subsurface peak around701

the year 1990. Notably, the highest level of N accumulation in the subsurface across sub-702

catchments and time is equal to 119 kg ha−1 (median value) and is reached for Drakenburg703

in 1993 and Letzter Heller in 1987. However, the differences found between catchments are704

not robust, since the 95% CI are largely overlapping between subcatchments.705

We also examine the change in the different N stores of the source zone, i.e., the organic706

protected, organic active, and inorganic N stores (details in supplementary Table S12). Most707

of the N accumulation occurs in the protected pool (e.g. 94% for Hemelingen; 95% CI: 79–708

98%). For Hemelingen, N buildup amounts to 448 kg ha−1 (95% CI: 229–781 kg ha−1) in709

the protected store, to 21 kg ha−1 (95% CI: 12–74 kg ha−1) in the active store, and to 2710

kg ha−1 (95% CI: -5–16 kg ha−1) in the inorganic store.711
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Figure 6. Cumulative values of the components of the N mass balance (inputs and simulated

variables) for the WRB at Hemelingen for the period 1960–2015. For the simulated variables, the

figure reports the median values and the 95% CI in the behavioural simulation ensemble. Panels (a-

b) report the simulated cumulative change in N storage for the source zone (Ms) and the subsurface

zone (Msub) since 1960 as a function of time t (M init
s and M init

sub are the initial conditions in 1960

for the source zone and subsurface storage respectively). The shaded areas indicate the 95% CI, the

solid lines the 25% and 75% quantiles and the dashed lines the median values. Panel (c) represents

the in-stream compartment, where no accumulation of N occurs in ELEMeNT. Notations: Jps is

the point source; Jout is the simulated in-stream loading, which is the sum of the point source

contribution (Joutps) and the subsurface contribution (Joutsub); Jdentot is the total denitrification,

which is the sum of the denitrification in the source zone (Jdens) and in the subsurface (Jdensub);

Jremtot is the in-stream removal, which is the sum of the removal of the point source contribution

(Jremps) and the subsurface contribution (Jremsub); ∆Ms is the change in the source zone storage

which includes three N stores (organic protected, organic active, and inorganic N stores); ∆Msub

is the change in the subsurface storage.

–31–



manuscript submitted to Water Resources Research

Table 2. Components of the N Mass Balance in the Behavioural Simulation Ensemble for the

Period 1960–2015

Variable Wahn-

hausen

Letzter

Heller

Hemeln Hessisch

Olden-

dorf

Porta Draken-

burg

Verden Heme-

lingen

(kg ha−1)

Surplus 3093 2917 3004 3041 3075 3179 2697 3003

Joutsub 477604
361 461586

382 513645
404 550704

455 632813
510 553706

444 446500
392 537638

414

Jdentot 20012315
1616 18052096

1473 18722169
1501 17872124

1412 17872128
1403 18382214

1436 17862088
1436 18882208

1482

Jremsub 62214
7 88212

8 72224
7 91249

9 87276
8 91250

9 75192
8 72232

7

∆Ms 504828
290 480764

270 473786
283 526803

278 485807
283 584911

306 326642
80 448781

229

∆Msub 1754
5 62138

15 39100
10 62160

16 3090
9 78206

17 44142
11 37105

11

Jps 214 144 183 180 226 226 274 246

Joutps 190211
153 121141

102 161181
131 154176

127 199223
162 194222

161 234269
194 217243

176

Jremps 2461
3 2342

3 2352
3 2552

3 2764
3 3266

4 4080
5 2970

3

(% N input)

Surplus 100 100 100 100 100 100 100 100

Joutsub 1520
12 1620

13 1721
13 1823

15 2126
17 1722

14 1719
15 1821

14

Jdentot 6575
52 6272

51 6272
50 5970

46 5869
46 5870

45 6677
53 6374

49

Jremsub 27
0 37

0 27
0 38

0 39
0 38

0 37
0 28

0

∆Ms 1627
9 1626

9 1626
9 1726

9 1626
9 1829

10 1224
3 1526

8

∆Msub 12
0 25

1 13
0 25

1 13
0 26

1 25
0 13

0

Jps 100 100 100 100 100 100 100 100

Joutps 8999
71 8498

71 8899
71 8698

71 8899
72 8698

71 8598
71 8899

72

Jremps 1129
1 1629

2 1229
1 1429

2 1228
1 1429

2 1529
2 1228

1

Notes: The table reports the fate for the N surplus: the stream export (Joutsub), the total

denitrification in source zone and subsurface (Jdentot), the in-stream removal (Jremsub), the change

in the source zone storage (∆Ms) which includes three N stores (organic protected, organic active,

and inorganic N stores), and the change in the subsurface storage (∆Msub). It also reports the fate

for the N point sources (Jps): the stream export (Joutps), and the in-stream removal (Jremps). For

simulated variables, numbers indicate the median, and lower bound (lb) and upper bound (ub) of

the 95% CI in the behavioural simulation ensemble: medianub
lb .
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5.2.2 Contribution of the N Point Sources to the In-stream N Loading712

We investigate the contribution of the in-stream N loading originating from N point713

sources (Joutps) to the total in-stream loading (Jout) over the period 1960–2015. For714

Hemelingen, we find that the N point sources are an important flux that amounts to 217715

kg ha−1, and that accounts for 28.7% of the total in-stream N loading (Table 2 and sup-716

plementary Table S13). For all subcatchments, the N points sources contribution to the717

total in-stream N loading is between 20% and 29%, apart from Verden for which it is as718

high as 34.4% (median values, as reported in supplementary Table S13). We note that the719

95% CI on the point sources contribution is rather large, as e.g. for Hemelingen it is 22.6–720

35.6%. This can be partly explained by the large uncertainty in the in-stream N removal721

(Table 2), since behavioural estimates of R can span over its entire prior range (0.01-0.3) for722

all subcatchments (Figure 5). For the last ten years of the simulation period (2006–2015),723

i.e., when the point sources is at its lowest level, N point sources still contribute to between724

14% and 20% of the total in-stream N loading (95% CI: 10–26%) across all subcatchmnents725

(supplementary Table S13).726

To understand the relative role of point and diffuse (N surplus) sources on the resulting727

temporal trend of the total in-stream N concentration, we perform a piecewise linear trend728

analysis for each individual component of the concentration over different time periods for729

Hemelingen. The analysis is based on the median of the behavioural simulation ensemble730

(total concentration is represented by a dashed red line in Figure 4-h). For the period 1970–731

1990, with respect to the total concentration, we find no statistically significant trend (sig-732

nificance level: 0.01) and a very small slope of the regression line (slin=-0.01 mg L−1 yr−1),733

which is explained by the contrasting trends in the diffuse sources contribution (negative734

slope of the regression line slin=-0.08 mg L−1 yr−1) and point sources contributions (posi-735

tive slope of the regression line slin=0.07 mg L−1 yr−1). For the period 1990–2000, the total736

concentration shows a marked decreasing trend (slin=-0.16 mg L−1 yr−1). Over the same737

time period, the point sources show a stronger decline (slin=-0.1 mg L−1 yr−1) compared738

to the diffuse sources (slin=-0.05 mg L−1 yr−1). During the last time period 2000–2015,739

the concentration trends are either non-significant for the total concentration and the point740

sources contribution, or small for the diffuse sources contribution (slin=-0.02 mg L−1 yr−1).741

The concentration time series used for this trend analysis and the regression lines are re-742

ported in supplementary Figure S32.743
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5.3 Uncertainty and Sensitivity of the Simulated N Legacies744

Section 5.2.1 mostly focuses on examining the median values of the simulated N legacies.745

However the uncertainty is large (Table 2), due to the limited information available to746

constrain these legacies. The soft rules hardly affect the distribution of the simulated change747

in source zone storage (∆Ms, top panel of Figure 7). The width of the 95% CI in the748

behavioural ensemble is about equal to the median value, apart from Verden for which749

it is 1.7 time higher (red boxplots). Regarding the subsurface, the soft rules can have a750

contrasting effect on the simulated change in storage (∆Msub, bottom panel of Figure 7), as751

they can reduce but also exacerbate the uncertainty. Values that are outliers, i.e., beyond the752

95% CI of the grey boxplots, in the unconstrained ensemble can be identified as behavioural753

and be included in the constrained 95% CI (colored boxplots). The width of the 95% CI for754

∆Msub is between two to three times higher than the median value.755

Here, we investigate the factors that explain this residual uncertainty in the legacy N756

stores by assessing the sensitivity of the simulated N legacies to the ELEMeNT parameters,757

the N point sources and the N surplus in the constrained simulation ensemble obtained758

after application of the soft rules, for Hemelingen (see method in Section 4.2). For each of759

the 270 combinations of N surplus and N point sources, we identify between 531 and 2146760

behavioural simulations (details in supplementary Table S14 and Figures S33–35). This761

results in a total sample of the model input-output of size 362,985 to perform the PAWN762

sensitivity analysis. We observe that the bootstrap confidence intervals of the estimated763

sensitivity indices are narrow and exhibit little overlap among the different inputs (Figure 8).764

Therefore, the sample size is sufficient to infer a robust ranking of the input factors according765

to their relative importance.766
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N storage – ∆Ms, and change in subsurface N storage – ∆Msub) obtained for different levels of

constraining. The source zone N storage includes the three N storages (organic protected, organic

active, and inorganic N stores). The boxplots report the median (solid line), mean (dashed line),

2.5%, 25%, 75% and 97.5% quantiles of the simulation ensembles.

From Figure 8 we observe that the N point sources (PS ) and two parameters used767

to generate the N surplus realizations, namely the ratio of the N surplus for agricultural768

permanent grassland to the N surplus for cropland (rmgra−crop) and the ratio of the agricul-769

tural N surplus in 1850 to the value in 1950 (rwarm) have very small sensitivity indices and770

are the least sensitive inputs for all four output variables considered. This means that the771

uncertainties in the ELEMeNT parameters and in the value of the total N surplus (multi-772

plier parameter fsurplus) have a much larger impact on the behavioural values of the legacy773

stores than the uncertainties in PS, rmgra−crop, and rwarm.774
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Figure 8. PAWN sensitivity indices SPAWN of the nine ELEMeNT parameters, the three param-

eters introduced to generate alternative N surplus realizations (fsurplus, rmgra−crop, and rwarm),

and the N point sources realization (PS), for the WRB at Hemelingen. Sensitivity indices are re-

ported with respect to four model outputs evaluated over the period 1960–2015, namely the average

source zone N storage Ms, the average subsurface N storage Msub, the cumulative change in source

zone N storage ∆Ms, and the cumulative change in subsurface N storage ∆Msub. The source zone

N storage includes the three N storages (organic protected, organic active, and inorganic N stores).

The horizontal black lines indicate the bootstrap mean value of the sensitivity indices, while the

grey boxes represent the 95% bootstrap confidence intervals. The bootstrap confidence intervals

are very small (the grey boxes are very narrow), since the size of the sample used to calculate the

PAWN indices is very large.
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For the source zone, the sensitivity analysis results with respect to the average N775

storage (Ms) and the change in N storage (∆Ms) differ. The protection coefficient for776

cultivated land (hc) is largely responsible for the uncertainty in ∆Ms, followed by the N777

surplus multiplier (fsurplus) and the protection coefficient for non-cultivated land (hnc)778

whose sensitivity indices have similar magnitude. In contrast, the source zone organic N779

stock under pristine conditions (Mprist
sorg ) is by far the most influential parameter for Ms. For780

the subsurface zone, unlike the source zone, results are similar for the two statistics analyzed781

(the average N storage Msub and the change in N storage ∆Msub), and a larger number of782

input factors are influential. Specifically, the mean travel time in the subsurface (µsub) is the783

most influential input, followed in decreasing order of importance by the denitrification rate784

constants in the source zone (λs) and in the subsurface (λsub), and the N surplus multiplier785

(fsurplus). In addition the mean annual water content in the source zone (Vs) has a stronger786

impact on the change in the subsurface N storage than on the average storage. The value787

of the sensitivity index of Vs with respect to the change in subsurface storage is similar to788

the sensitivity index of fsurplus.789

The importance of the three N surplus parameters and the N point sources may be790

higher than suggested by the PAWN analysis because the parameter estimation may re-791

sult in different posterior parameter distributions when using different N input realizations.792

Therefore, the application of the soft rules may compensate for the uncertainties in the N793

inputs. This effect is particularly visible for the N surplus multiplier, which has some impact794

on the distributions of the mean travel time and the denitrification rate constants (supple-795

mentary Figure S38), but it is much less pronounced for the other N inputs parameters796

(supplementary Figure S36–37).797

We further examine the robustness of the PAWN analysis by estimating the sensitivity798

indices using other summary statistics (mean and maximum values) than the median value,799

to aggregate the KS values across the conditioning intervals in Equation 10. As shown in800

Figures S39–S40, the results show a similar order of importance among all inputs (model801

parameters and N input realizations) as shown in Figure 8. We however note that, when802

using the maximum KS, the mineralization rate constant for the active store (ka) has a803

sensitivity index of the same magnitude as fsurplus with respect to the average subsurface804

storage. From supplementary Figures S41–S44 that report the conditional and unconditional805

CDFs used for the calculation of the PAWN indices, we see that ka has a higher impact in806

the lower 10% of its range (values lower than 0.25 yr−1) on the average subsurface storage.807
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6 Discussion808

6.1 Performance of the Simulated In-stream N Loading and Concentration809

The ELEMeNT model is able to produce simulations that are consistent with obser-810

vations of in-stream N loading and concentration (i.e., that show satisfactory values for811

each of the three components of the KGE), and with the source zone N content in 2009 for812

the different study catchments (Figures 2-4). While previous studies using the ELEMeNT813

model (Chang et al., 2021; J. Liu et al., 2021; Van Meter et al., 2017) focused on simulating814

the in-stream N loading, here we also examine the concentration, which is more difficult to815

simulate than the loading (Husic et al., 2019). As seen in our results, the loading dynamics816

are predominantly determined by the discharge dynamics, while the concentration dynamics817

may be the results of more complex processes. It is important to assess both N loading and818

concentration to characterize the in-stream water quality status, as N loading affects the819

status in downstream receiving water, while concentration describes the local water quality820

status (Hirsch et al., 2010).821

Although, our simulations are overall in good agreement with the observations, we ob-822

serve a discrepancy between the median simulated N concentration and the measured values823

for the later years (2005–2015). This is particularly visible at Verden, where the concentra-824

tion observations are at the lower end or lower than the behavioural simulation ensemble825

for this time period. First, this mismatch between simulated and observed concentration826

could be due to changes in the characteristics of the landscape (such as e.g. the density of827

tile drains as observed in J. Liu et al. (2021)), that could require temporally varying param-828

eter values. However, no information is available to us to substantiate that such changes829

have occurred. Second, another possible cause for the discrepancy between observed and830

simulated concentration could be the uncertainty in the N input data (N surplus and N831

point sources). In particular, in Germany, data on application of mineral fertilizer exist at832

the national level only. For lower administrative levels, data refer to the sale of mineral833

fertilizer and are therefore strongly linked to the location of the fertilizer companies, rather834

than the actual amount of fertilizer application. Therefore, subjective choices have to be835

made to disaggregate the fertilizer application amounts to finer spatial units (Häußermann836

et al., 2020; Behrendt et al., 2003). Fertilizer application is an important component of837

the N surplus and changes have been implemented after 2007 due to a new ordinance that838

limits fertilizer use (DüV, 2007). This could contribute to the uncertainty in our in-stream839
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simulations. In Section 6.3.2, we further elaborate on the need for a better estimation of840

the uncertainty in the N surplus for an improved characterization of not only the in-stream841

variables, but also the N legacy stores.842

6.2 N Mass Balance in the WRB and its Implications for Water and Land843

Management844

6.2.1 Denitrification in the Terrestrial Compartments845

Our results (Figure 6 and Table 2) indicate that denitrification in the terrestrial system846

(source zone and subsurface) is the largest sink for the N surplus in the WRB for the period847

1960–2015. This is consistent with previous modelling studies of N legacies performed in848

North America, namely Ilampooranan et al. (2019) using the SWAT-LAG model, and J. Liu849

et al. (2021) and Van Meter et al. (2017) using the ELEMeNT model. However, we find850

that denitrification is much higher for the WRB, in that it is likely to be higher than 50%851

for the eight subcatchments, while it is found to be less than 50% in the three previous852

studies. Such a high amount of denitrification in the WRB could have adverse consequences853

on the atmosphere and the climate, because it can potentially release nitrous oxide (N2O).854

Yet, N2O can be further reduced into harmless dinitrogen N2 in presence of favourable855

environmental conditions in the soil and subsurface (Betlach & Tiedje, 1981; Bergsma et856

al., 2002; Robertson & Groffman, 2015; Rivett et al., 2008). The results of ongoing efforts,857

such as the “Global N2O Model Intercomparison Project” (Tian et al., 2018), will be key858

to better understand and quantify the processes involved in N2O emissions and the impact859

of denitrification on the atmosphere.860

6.2.2 Accumulation of N Legacies861

In this study, we explicitly quantify the N legacies in the WRB over the period 1960–862

2015 (Figure 6 and Table 2). Previous N modelling studies in the WRB are either based863

on a simple regression model that does not account for N storages in the terrestrial system864

(GREEN model; Grizzetti et al., 2008)), or on a modelling framework that represents the865

residence time of N in the groundwater, but that does not consider source zone N storage866

nor assesses the long-term accumulation of N in the subsurface (Heidecke et al., 2015; Hirt867

et al., 2012; Kreins et al., 2010). We find that the N accumulation in the source zone, which868

amounts to 15% of the N surplus (95% CI: 8–26%), is an order of magnitude higher that869
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the N accumulation in the subsurface, which is equal to less than 3% of the N surplus. The870

magnitude of the simulated N accumulation in the source zone and the subsurface is similar871

across subcatchments. Groundwater nitrate concentration is found to be higher than the872

regulatory threshold of 11.3 mg L−1 in some measuring points in the WRB, in particular873

in Lower Saxony (NLWKN, 2019), while background levels are typically very low. This874

supports our result that N has been building up in the subsurface. However, no information875

is available on the N accumulation in the source zone to corroborate our findings. In previous876

studies of N legacies, the relative value of biogeochemical and hydrologic N legacies is highly877

variable. Whereas the N buildup in the subsurface store is also found to be lower than the878

buildup in the source zone in the Grand river basin (J. Liu et al., 2021), a subcatchment of879

the Iowa-Cedar basin (Ilampooranan et al., 2019) and the Mississippi river basin (Van Meter880

et al., 2017), the opposite result is reported for the Susquehanna river basin (Van Meter et881

al., 2017). The magnitude of hydrologic N legacies in J. Liu et al. (2021) is similar to our882

study (around 4% of the N surplus), while it reaches 14% in Ilampooranan et al. (2019).883

Although the N accumulation in the subsurface represents a small fraction of the N884

surplus in the WRB, this N store is composed of reactive and dissolved N forms, which885

can be easily accessed and mobilized. Thus, they are of immediate relevance for the water886

quality status. Since the mean travel time in the subsurface is found to be equal to 8 yr887

(95% CI: 2–24 yr), the subsurface N storage is likely to impact the stream N concentration888

over the coming years. In the source zone, the accumulated N could be a threat for future889

water N levels as well, depending on how fast it can mineralize. Findings of previous studies890

suggest that applied N fertilizer can slowly leach over decades following their application891

(Haag & Kaupenjohann, 2001; Sebilo et al., 2013). Our results indicate that most of the N892

accumulation occurs in the organic protected N pool (median value for Hemelingen: 94%,893

Table S12), whose transfer time is in the order of magnitude of a few millennia (Table S9).894

The N buildup is much smaller in the active pool that has a transfer time of a few years to a895

decade. The long transfer times of N stored in the source zone, which can be made possible896

through the protection of N into organic matter (Six et al., 2002), may partly explain why it897

is difficult to lower the N concentrations to acceptable values in the WRB and, more broadly,898

in regions with long history of high N inputs, as described e.g. in Grimvall et al. (2000)899

and Vero et al. (2018). Source zone N storage could also be a potential resource for crop900

growth, allowing satisfaction of the crop N requirements with lower amounts of fertilizer901

application, as proposed by Dupas et al. (2020) and J. Liu et al. (2021). In particular, while902
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it is widely accepted that crops can use mineral N compounds present in the soil, they may903

also take up organic N forms, but this process is still not well understood (Näsholm et al.,904

2009; Farzadfar et al., 2021). Therefore, the fate of the N stored in the source zone has905

large uncertainties and depends on the ability of the plants to access it and on its potential906

to mineralize to yield more available N forms.907

Regarding the temporal dynamics, the permanent buildup in the source zone found for908

the WRB is consistent with most of the previous N legacy studies (Ilampooranan et al.,909

2019; J. Liu et al., 2021; Van Meter et al., 2016). The WRB shows a large decrease in910

the subsurface N store during the period 1990–2010, that can be explained by the concur-911

rent reduction in the N surplus. Hydrologic N legacies permit to sustain higher in-stream912

concentration levels over this time period. This is particularly visible for the Letzter Heller913

subcatchment, which has undergone a large and sudden decrease in the N surplus after 1990,914

while in-stream N concentration remains relatively stable. This result for the subsurface N915

legacy differs from earlier legacy studies over the Mississippi and Susquehanna river basins916

and the subcatchment of the Iowa-Cedar river basins, where the subsurface N store is con-917

tinuously building up in time (Ilampooranan et al., 2019; Van Meter et al., 2016). Given the918

importance of the N legacies for land and water management and in particular to achieve919

the target of 2.8 mg L−1 for in-stream concentration in the WRB (OGewV, 2016), better920

characterization and reduction of the uncertainties in the simulated N legacies is crucial, as921

further discussed in Section 6.3.922

6.2.3 Importance of the N Point Sources923

We find that N point sources from wastewater represent an important fraction of the924

in-stream nitrate loading in the WRB (Figure 6, Tables 2 and S13). Point sources N loads925

comprise 28.7% (95% CI: 22.6–35.6%) of the stream N load for the period 1960–2015. The926

contribution is smaller for the later period (2006–2015), where point sources have a lower927

magnitude due widespread connection to wastewater treatment plants and high efficiency928

of treatment. Grizzetti et al. (2008) find that point sources account for 31% of the stream929

N-NO3 loading over the period 1995–2002 for the WRB at Hemelingen. This is higher930

than our uncertainty estimates for this time period (95% CI: 13–23%, Table S13), which931

could be explained by the differences in the model structure used in Grizzetti et al. (2008)932

(regression based GREEN model) and in the N point sources inputs. In our study, the N933

point sources are constrained by recent observations of N loading from wastewater treatment934
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plants (Section 3.2.4), while Grizzetti et al. (2008) do not make use of observational data.935

Moreover, the temporal variations in the N point sources have a large effect on the trend936

of the total in-stream N concentration during the period 1970–2000 (Figure S32). The937

decrease in the N point sources during the 1970s and 1980s counteracts the increase in the938

contribution of the N diffuse sources (N surplus) to the in-stream N concentration, resulting939

in no overall trend in the total concentration. The marked decrease in the total concentration940

in the 1990s is also largely dominated by the decrease in the point sources. While the N941

diffuse sources are the largest contributor in magnitude to the in-stream concentration, their942

temporal signal can be smoothed through biogeochemical transformations and transport in943

the source zone and subsurface (Figure S32). In contrast, changes in the N point sources have944

an immediate impact on the in-stream concentration and can therefore strongly influence945

its trend.946

Some past N modelling studies covering a large range of catchments across Germany947

and France have not accounted for N point sources (Dupas et al., 2020; Ehrhardt et al.,948

2021). Based on our simulation results, we recommend the consideration of N point sources949

and their temporal variations in future N modeling analyses over the WRB.950

6.3 Towards Reducing the Uncertainty and Equifinality in the Simulations951

of a N Model952

6.3.1 Value of the Soft Rules to Constrain the Model Uncertainties953

In this study, we utilize three different sets of observational data (in-stream N loading954

and concentration and source zone N content) to estimate the model parameters, using a955

portfolio of soft rules to constrain the model results. We show that, beyond in-stream N956

loading, in-stream concentration and source zone N content have a value in reducing the957

number of behavioural simulations and in constraining the parameter distributions, thus958

reducing the equifinality (Figure 2b, Figure 5). Specifically, the in-stream N loading and959

concentration data affect the simulated in-stream loading and concentration (Figures 3,4)960

and the simulated change in the subsurface storage (Figure 7). The source zone N content961

is the only data that allows to constrain the magnitude of the total simulated N storage962

(Figure S17), but it has no appreciable impact on the different components of the mass963

balance (Figures 3,4,7). Importantly, the soft rules do not constrain the change in the964

source zone N store (Figure 7).965
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Only few previous N modelling studies analyzed the equifinality by performing a de-966

tailed investigation of the parameter space, including Husic et al. (2019) and Rankinen et967

al. (2006). Due to the different model structures used in these studies, our parameter esti-968

mation results cannot be directly compared to these studies. Yet, we note that Rankinen969

et al. (2006) reveals a strong interplay between terrestrial and in-stream model processes in970

a subcatchments of the Simojokiriver basin in Finland. This is consistent with our results,971

as we could barely constrain the in-stream N removal parameter (R).972

Despite the equifinality we can constrain the range of a few parameters, including the973

mean travel time in the subsurface µsub, which we determine to be equal to 8 yr (95%974

CI: 2–24 yr) at Hemelingen (Table S7). Koeniger et al. (2008) reports values of the mean975

groundwater travel time in the range 8-93 yr (37 yr for total flow) for Hemelingen, based on976

long-term tritium isotope data in combination with simulations from a hydrologic model.977

Hirt et al. (2012) found a value of the mean travel time in the groundwater of 25 yr. Ehrhardt978

et al. (2021) established that the overall mode travel time for total flow are in the range 0-20979

yr for different subcatchments of the WRB and in particular in the range 0-10 yr for most980

subcatchments. Therefore previous studies cover a large spectrum of travel time values,981

which includes our estimates. The results of the study of Hirt et al. (2012) are also, as982

expected, on the higher end of our uncertainty estimates. This can be because Hirt et al.983

(2012) explicitly account for quicker flow paths (tile drainage) in their modelling framework,984

while in ELEMeNT all flow paths to the stream are lumped in the subsurface compartment.985

The soft rules only allow to reduce part of the equifinality, as some parameter distri-986

butions could be hardly constrained (Figure 5) and the uncertainty in the model internal987

components remains large (Figure 7). For example, it would be relevant to determine the988

amount of denitrification occurring in the source zone and the subsurface, because deni-989

trification in the subsurface can involve the irreversible degradation of substances, such as990

pyrite, which is not sustainable (Wendland et al., 2009; Wriedt & Rode, 2006). Such quan-991

tification is however not possible due to equifinality (Figure 5, supplementary Table S11)992

and therefore this topic deserves further investigations. In addition, establishing a robust993

ranking of importance of the N legacy buildup between subcatchments would be desirable994

to target management efforts to legacy hotspots (J. Liu et al., 2021). However, the residual995

uncertainty in the simulated N legacies is still large (Figure 7) and the confidence intervals of996

the distributions of the N buildup obtained for the different subcatchments are overlapping.997
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This equifinality can be due to parameter interactions (Table S10) or to the fact that some998

model parameters are not influential with respect to the metrics used in the soft rules.999

6.3.2 Strategies to Further Reduce the Uncertainty and Equifinality1000

To tackle this issue of uncertainty and equifinality, we perform a sensitivity analysis to1001

investigate the factors that are responsible for the residual uncertainty in the simulated N1002

legacy stores and that should be the focus of future efforts for uncertainty reduction (Fig-1003

ure 8). We apply the PAWN method, which does not rely on any assumption regarding the1004

model input-output relationship, to the constrained input-output sample. The studies of1005

Van Meter et al. (2017) and J. Liu et al. (2021) assess the sensitivity of the median source1006

zone N store simulated with the ELEMeNT model. Although the method adopted in these1007

two studies is linear regression and the sensitivity analysis is carried out based on the uncon-1008

strained sample before calibration, their results are comparable to our study. We observe1009

that the most influential factor is by far the source zone organic N stock under pristine1010

conditions (Mprist
sorg ) in both our study and in J. Liu et al. (2021), and the mineralization1011

rate constant for the organic protected pool, which is related to Mprist
sorg (Equation S24)1012

in Van Meter et al. (2017). We further note that Van Meter et al. (2017) and J. Liu et1013

al. (2021) examine the sensitivity of the cumulative in-stream N loading and find, similar1014

to our results for the average subsurface N store, that the mean travel time and the two1015

denitrification rate constants in the source zone and the subsurface are the three most in-1016

fluential parameters. This similarity between the sensitivity of the in-stream N loading and1017

the subsurface N store can be explained by the structure of the ELEMeNT model which1018

lumps all flow paths to the stream into the subsurface store.1019

Our sensitivity analysis (Figure 8) reveals that the protection coefficient for cultivated1020

land is mostly responsible for the residual uncertainty in the simulated accumulation in1021

the source zone N store. This parameter could scarcely be constrained by the soft rules1022

(Figure 5). The protection coefficient is a conceptual parameter that partitions the N1023

surplus between the organic active and protected N stores, and therefore it can hardly1024

be inferred through field measurements. A possible solution could be to further refine1025

and constrain the representation of the protection mechanism in the source zone using1026

information gained from simulation experiments carried out with more complex models,1027

that focus on the soil processes and that can include a large number of soil N pools, such as1028

the DAISY (Hansen et al., 1991) or the CANDY model (Franko et al., 1995) (a review of soil1029
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organic matter models is provided in Campbell & Paustian, 2015). Regarding the buildup of1030

the subsurface N store, three interacting parameters mostly contribute to the uncertainty,1031

namely the mean travel time in the subsurface, which is also the most influential factor,1032

and the two denitrification rate constants. In this regard, tracer studies, and in particular1033

the combination of tritium concentration and helium isotope measurements, can help to1034

characterize the travel time (Sültenfuß et al., 2009), as well as the modelling of conservative1035

solutes, such as chloride, in combination with nitrate (Kaandorp et al., 2021). In addition,1036

Eschenbach et al. (2018) propose a method to characterize denitrification in the groundwater,1037

based on the measurement of the N2/Ar ratio. Such techniques provide promising avenues1038

for constraining denitrification fluxes and thereby possibly reducing the uncertainty in the1039

simulated N legacies.1040

Regarding the magnitude of the total N surplus, we characterize the uncertainty of1041

this input data by using a time-invariant multiplier coefficient and we explore a variation1042

of ±20% with respect to the baseline N surplus data. N surplus datasets for Germany1043

do not provide uncertainty intervals, as uncertainty estimation is currently not a common1044

practice in N surplus construction (X. Zhang et al., 2021). An improved assessment of this1045

uncertainty in future studies seem necessary, since, on the one hand, our results show that1046

the uncertainty in the N surplus has an impact (1) on the simulated N legacies (Figure 8),1047

although this impact is smaller than the ELEMeNT parameters that we discussed previously1048

in this section, (2) on the posterior distribution of the model parameters (Figure S38), and1049

(3) possibly on the simulated in-stream concentration trend over the period 2005-2015 (as1050

discussed in Section 6.1). On the other hand, X. Zhang et al. (2021) found large discrepancies1051

in different components of the N surplus for agricultural areas between different global1052

datasets, which suggests that the actual uncertainties in the N surplus can be large.1053

We recognize that, in this study, the uncertainties on the different components of the1054

N mass balance, including the simulated N legacy buildup, could be underestimated. In1055

fact, we examine the uncertainties in the N surplus using exploratory coefficients that may1056

not reflect the actual uncertainties in the N surplus. We also do not investigate the model1057

structural uncertainties. To further address the modelling uncertainties and equifinality,1058

future studies need to reveal not only the uncertainties in the model parameter values, but1059

also in the data used as input or to constrain the simulations, and in the model structures,1060

as elaborated below.1061
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First, regarding the parameters values, the definition of the parameter distributions1062

and ranges can affect the parameter estimation results, because they can greatly impact the1063

sensitivity of the metrics used for calibration (e.g. the bias, variability error or correlation1064

used in this study) to the model parameters (a discussion on the impact of the parameter1065

ranges on sensitivity analysis results is provided e.g. in Pianosi et al., 2016). To address1066

this issue, in this study, we define the ranges through a careful literature review (Table 1).1067

Second, with respect to the data uncertainties, in this study we focus on the N inputs1068

and the soil N data (used in the soft rules). Including uncertainty on soil N data is crucial1069

especially, if the objective is to detect a change in storage when data are provided for1070

different years. Given the large size of the total N storage (Table S12), the change in1071

storage may be within the observation uncertainties. In our study, we consider that other1072

data uncertainties are smaller. In fact, the annual stream discharge data is the combination1073

of observations, and evaluated and bias-corrected model simulations (Section 3.2.5). In1074

contrast, no observational data of N surplus exist to test the plausibility of the N surplus1075

estimates. We also consider that the in-stream N concentration data has a high quality,1076

since they come from 14-day average measurements (Section 3.2.6). However, uncertainty1077

should be examined when data have a lower quality, in particular when using low-frequency1078

in-stream concentration observations combined with weighted regressions on time, discharge1079

and season (WRTDS, Hirsch et al., 2010). In this respect, a bootstrap approach could be1080

envisaged (Hirsch et al., 2015).1081

Third, a modelling approach allowing for systematic exploration of different modelling1082

alternatives could be developed, similar to the Structure for Unifying Multiple Modeling1083

Alternatives (SUMMA, Clark et al., 2015a, 2015b) that allow testing of alternative model1084

formulations for a range of different hydrological and thermodynamic processes. Specifically,1085

in the source zone, worth of further investigation are the representation of the processes of1086

immobilization of N into organic matter and of N saturation, which are poorly character-1087

ized (Bingham & Cotrufo, 2016; Yansheng et al., 2020). In the subsurface, further mixing1088

schemes beyond complete mixing/random sampling could be examined using StorAge Se-1089

lection (SAS) functions, as implemented e.g. in Nguyen et al. (2021).1090

To help identification of plausible model structures and parameters values, our study call1091

for the long-term monitoring of N content in the soil and along the subsurface (unsaturated1092

zone and groundwater) profile. Current N data in the subsurface are typically provided1093
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at a unique depth below the water table at each measuring site, e.g. in the European1094

Waterbase dataset (EEA, 2021) or in the dataset provided by the German state of Lower1095

Saxony (NLWKN, 2022). These data do not allow straightforward quantification of the1096

subsurface N storage, since nitrate concentration can vary greatly with the depth to the1097

water table (MacDonald et al., 2017; Rudolph et al., 1998) and large amounts of N could1098

also be stored in the unsaturated zone (Ascott et al., 2017). Regarding the soil part, future1099

modelling studies could make use of the data on soil mineral N content that will likely1100

become available, in particular in Germany where the 2017 fertilizer ordinance (DüV, 2017)1101

prescribes the investigation of soil mineral N prior to fertilizer application.1102

Yet, due to the scale mismatch between point scale measurements of soil and subsurface1103

N content and the modelling resolutions, the incorporation of these data into the modelling1104

exercise requires the use of smart techniques and appropriate model structures that are com-1105

mensurate with the measurements (Peters-Lidard et al., 2017). Moving towards the use of1106

spatially distributed water quality models (X. Yang et al., 2018; Nguyen et al., 2021) may be1107

a way forward for integrating local scale measurements into the modelling framework. Such1108

models should be however combined with smart parameterization techniques, such as the1109

Multiscale Parameter Regionalization (MPR, Kumar et al., 2013; Samaniego et al., 2010),1110

which allows for seamless simulations at multiple scales and facilitates the incorporation of1111

finer level information (Rakovec et al., 2016; Samaniego et al., 2017).1112

7 Conclusions1113

The objectives of this study were to 1) characterize the uncertainties in the long-term1114

fate of the N inputs to the landscape, simulated with a parsimonious catchment-scale N1115

model (ELEMeNT), 2) determine the value of different (observational) data to constrain1116

the simulation results with emphasis on the simulated N legacies, and 3) gain further under-1117

standing of the magnitude and dynamics of the N legacies to determine their relevance for1118

water and land management. To do so, we establish the ELEMeNT model in eight nested1119

sub-catchments of the WRB, and simulate the fate of N and the dynamics of the legacy1120

stores over the last six decades (1960–2015).1121

We introduce a multicriteria parameter estimation strategy based on soft rules, that1122

imposes acceptability limits to the model performance in reproducing the in-stream N load-1123

ing and concentration, and the source zone N content in 2009. We demonstrate that this1124
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procedure allows to reduce the equifinality. In particular, the in-stream data allow to con-1125

strain the simulated in-stream N loading and concentration and the change in the subsurface1126

N storage, while the source zone N content data reduce the uncertainty in the simulated1127

total source zone N storage. All sources of information also have value in constraining the1128

parameter distributions. However, despite the parsimonious structure of the ELEMeNT1129

model, the uncertainties in the mass balance components remain substantial after using all1130

available information to constrain the simulations. This is due to equifinality, and more1131

specifically to interactions between the model parameters, e.g. between the travel time in1132

the subsurface and the denitrification rate constants. Our sensitivity analysis reveals crucial1133

information on model functioning by identifying key model parameters, such as the protec-1134

tion coefficient for cultivated land, the travel time in the subsurface and the dentrification1135

rate constants in the source zone and the subsurface, that are largely responsible for the1136

residual uncertainty in the simulated N legacies. The N surplus input could also be an im-1137

portant source of uncertainty. It uncertainty estimates should be better assessed in future1138

works to refine the exploratory multiplier coefficient approach used in this study.1139

Given our modelling assumptions and the data we used, our simulation results suggest1140

a relative importance of the different constituents of the N mass balance in the WRB over1141

the period 1960–2015. Denitrification is found to be the largest sink for the N surplus and1142

is likely to be higher than 50%, followed by the in-stream N export and source zone N1143

accumulation – both with similar magnitude (median value: 15–18%), while subsurface N1144

accumulation and in-stream N removal appear to be the smaller components (lower than1145

4%). Total accumulation in legacies stores in the WRB amounts to around 491 kg ha−11146

(95% CI: 264–820 kg ha−1). Although the buildup of the subsurface N store represents a1147

small proportion of the N surplus, it constitutes an immediate threat for the water quality1148

status, since it includes mobile N forms. Furthermore, our analysis reveals N point sources1149

as one of the important contributor to the in-stream N levels (median value: 28.7% over1150

the period 1960–2015); and therefore we recommend that more attention should be given1151

to this component to properly analyze N dynamics in future modeling studies.1152

Overall, we recognize that our simulation results have large uncertainties. Our study1153

calls for a thorough consideration of equifinality in catchment water quality modelling, for1154

a better characterization of the model internal components, such as the biogeochemical and1155

hydrologic N legacies. Although knowledge about N legacies is crucial to reach the water1156

quality goals and improve the ecological status of water bodies, this topic deserves more1157
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attention. In particular, modelling of N legacies is fraught with a myriad of uncertainties1158

arising from different sources, including not only the model parameter values and input data1159

that are examined in this study, but also the model structures and sparse measurements1160

(e.g. low-frequency in-stream concentration observations). To this end, we believe that1161

sensitivity analysis can be a promising tool for tackling the uncertainty and equifinality. In1162

fact, it allows identification and pinpointing of the model input factors that are responsible1163

for the uncertainty and that should be the focus of future efforts for uncertainty reduction.1164

Importantly, spatially lumped or semi-distributed model structures may restrict the amount1165

of observational data that can be incorporated into the modelling framework, because of1166

the incommensurability between the data, and the model parameter and corresponding1167

simulations. Therefore, future efforts towards reducing the equifinality should focus on both1168

collecting further data, and improving the model representations (e.g. parameterization and1169

structures).1170

Open Research1171

The land use, N surplus, N point sources and mHM simulated discharge data, as1172

well as the ELEMeNT simulated N output as available at https://www.hydroshare.org/1173

resource/8779a09b9f204172931a641dd27d00c4/. The underlying data used in this study1174

were downloaded from: https://datenbank.fgg-weser.de/weserdatenbank (in-stream1175

nitrate concentration and river discharge data, FGG Weser, 2021); http://www.bafg.de/1176

GRDC (river discharge data Global Runoff Data Centre, 2021); https://dataportaal.pbl1177

.nl/downloads/HYDE/ (History Database of the Global Environment – HYDE, Klein Gold-1178

ewijk et al., 2017); https://esgf-node.llnl.gov/ (atmospheric N deposition data); https://1179

land.copernicus.eu/pan-european/corine-land-cover (Corine Land Cover, EEA, 2019a);1180

https://esdac.jrc.ec.europa.eu/content/topsoil-physical-properties-europe-based1181

-lucas-topsoil-data (topsoil bulk density based on the Land Use and Cover Area frame1182

statistical Survey – LUCAS data, Ballabio et al., 2016); https://esdac.jrc.ec.europa1183

.eu/content/chemical-properties-european-scale-based-lucas-topsoil-data (soil N1184

content based on LUCAS data, Ballabio et al., 2019); http://www.fao.org/faostat/1185

en/\#data/FBSH and http://www.fao.org/faostat/en/\#data/FBS (protein supply data,1186

FAO, 2021a, 2021b); http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en\&dataset=1187

env\ ww\ con and https://db.nomics.world/Eurostat/env\ wwcon\ r2 (population con-1188

nection to sewer and wastewater treatment, Eurostat, 2016, 2021).1189
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Eschenbach, W., Budziak, D., Elbracht, J., Höper, H., Krienen, L., Kunkel, R., . . . Wend-1343
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Section S1. Derivation of the Equation for the Subsurface Compartment in

ELEMeNT

In this section we provide details on the derivation of the equation for the subsurface

compartment (Equation 1 in the main article):

Jstreamsub(t) =

+∞∫
0

Jsubs(t− T )p(T, t− T )e−λsubTdT (S1)

The travel time distribution p(T,t-T) of Equation S1 refers to the concept of forward

travel time, where the travel time T corresponds to the life expectancy of the water

particles, and (t-T ) represents their time of injection into the subsurface compartment.

We can show that Equation S1 is equivalent to the widely used equation which links

the solute (N) concentration in the outflow (here the concentration in the outflow of the

subsurface compartment, denoted as Cstreamsub (mg L−1)) to the solute (N) concentration

in the storage (see e.g. Equation 9 in Benettin et al., 2015):

Cstreamsub(t) =

+∞∫
0

Csub(T )pb(T, t)dT (S2)

In Equation S2, pb(T, t) (-) is the backward travel time distribution, where the travel

time T represents the age of the water particles in the storage, and Csub(T ) (mg L−1) is

the solute (N) concentration of the water particles in the storage with age T.

Equation S2 can be rewritten as a function of the concentration in the inflow at time

t-T, here the catchment-scale concentration in the percolating water from the source zone

to the subsurface denoted as Csubs(t − T ) (mg L−1), and a decay/degradation function,

here accounting for denitrification in the subsurface (Queloz et al., 2015):

Cstreamsub(t) =

+∞∫
0

Csubs(t− T )e−λsubTpb(T, t)dT (S3)
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Furthermore, forward and backward travel time distributions are linked by the following

relationship (see e.g. Equation 16 in Benettin et al., 2015):

pb(T, t) =
Qsubs(t− T )

Qstreamsub(t)
p(T, t− T ) (S4)

where Qsubs(t) (mm yr−1) is the inflow from the source zone to the subsurface and

Qstreamsub(t) (mm yr−1) is the outflow from the subsurface to the stream.

Therefore, Equation S3 can be further modified as:

Cstreamsub(t)Qstreamsub(t) =

+∞∫
0

Csubs(t− T )Qsubs(t− T )p(T, t− T )e−λsubTdT (S5)

Equation S5 is equivalent to Equation S1.

We note that in ELEMeNT, it is assumed that for any given time t the subsurface

outflow, the subsurface inflow and the stream discharge at the catchment outlet Qout(t)

(mm yr−1) are equal, i.e.:

Qstreamsub(t) = Qsubs(t) = Qout(t) (S6)
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Section S2. Derivation of the Mean Travel Time for the Subsurface Compart-

ment in ELEMeNT

In this section we provide details on the derivation of Equations 2-3 in the main article:

p(T, t− T ) =
1

µ′(t)
e
−

t∫
t−T

1
µ′(x)dx

(S7)

µ′(t) =
Qoutµsub
Qout(t)

(S8)

Under assumption of complete mixing in the subsurface storage (or of random sampling

of the water particles from the storage), the forward travel time distribution used in

Equation S1 can be expressed as Equation 41 in Botter, Bertuzzo, and Rinaldo (2010),

considering that no evapotranspiration occurs in the subsurface storage:

p(T, t− T ) =
Qout(t)

Vsub
e
−

t∫
t−T

Qout(x)
Vsub

dx

(S9)

where Vsub (mm) is the depth of the subsurface storage, which is constant in time in

ELEMeNT, since it is assumed that the inflow is equal to the outflow as reported in

Equation S6. Hence, from Equation S9, we can express the parameter of the travel time

distribution µ′(t) (yr) as:

1

µ′(t)
=
Qout(t)

Vsub
(S10)

By averaging Equation S10 over time we obtain:

Vsub = Qoutµsub (S11)

where µsub (yr) is the harmonic mean of µ′(t) and Qout (mm yr−1) is the arithmetic

mean of Qout. By combining Equation S11 and Equation S10, we obtain Equation S8.
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Section S3. Numerical Implementation of the Equations for the Subsurface

Compartment in ELEMeNT

The dynamic of the N mass stored in the subsurface compartment Msub(t) (kg ha−1) is

governed by the following differential equation:

dMsub

dt
(t) = Jsubs(t)− λsubMsub(t)−

1

µ′(t)
Msub(t) (S12)

We note that Equation S1 (Equation 1 in the main article) is the integrated form of

Equation S12. To simulate the ELEMeNT model, Equation S12 is solved numerically. The

denitrification flux Jdensub(ti−1 → ti) (kg ha−1 yr−1) and the N mass flux exported to the

stream Jstreamsub(ti−1 → ti) (kg ha−1 yr−1) during the i -th simulation time step denoted

as ]ti−1, ti], and the N mass stored in the subsurface compartment Msub(ti) (kg ha−1) at

the end of the i -th time step, are computed as reported below:

Msub(ti) =

(
Msub(ti−1)−

Jsubs(ti−1 → ti)

λsub + 1
µ′(ti−1→ti)

)
e

(
λsub+

1
µ′(ti−1→ti)

)
(ti−1−ti)

+
Jsubs(ti−1 → ti)

λsub + 1
µ′(ti−1→ti)

(S13)

Jdensub(ti−1 → ti) =
λsubµ

′(ti−1 → ti)

λsubµ′(ti−1 → ti) + 1

(
Msub(ti)−Msub(ti−1)

ti − ti−1
+ Jsubs(ti−1 → ti)

)
(S14)

Jstreamsub(ti−1 → ti) =
1

λsubµ′(ti−1 → ti) + 1

(
Msub(ti)−Msub(ti−1)

ti − ti−1
+ Jsubs(ti−1 → ti)

)
(S15)

In the following, we provide details on the derivation of Equations S13-S15. To solve

Equation S12 numerically, we perform piecewise integration over each simulation time step

]ti−1, ti]. For the integration, we assume that the rate of N leaching from the source zone

to the subsurface, as well as the mean travel time are constant over each simulation time

interval. We also consider that the function Msub(t) is continuous over the simulation

period. The conditions for the integration over the i -th simulation time step can be
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summarized as follows:
Jsubs(t) = Jsubs(ti−1 → ti) ∀t ∈]ti−1, ti]

Qout(t) = Qout(ti−1 → ti) ∀t ∈]ti−1, ti]

lim
t→ti−1

Msub(t) = Msub(ti−1)
(S16)

Considering the conditions of Equation S16, we can solve Equation S12 and we can then

write for a given t in ]ti−1, ti]:

Msub(t) =

(
Msub(ti−1)−

Jsubs(ti−1 → ti)

λsub + 1
µ′(ti−1→ti)

)
e

(
λsub+

1
µ′(ti−1→ti)

)
(ti−1−t)

+
Jsubs(ti−1 → ti)

λsub + 1
µ′(ti−1→ti)

(S17)

From Equation S17, we can derive Equation S13. The total mass flux leaving the

subsurface compartment Jtotsub(ti−1 → ti) (kg ha−1 yr−1), which is the sum of the deni-

trification flux and the N mass flux exported to the stream, can be computed numerically

using the mass balance equation:

Jtotsub(ti−1 → ti) =
Msub(ti)−Msub(ti−1)

ti − ti−1
+ Jsubs(ti−1 → ti) (S18)

Finally, the denitrification flux and the N mass flux exported to the stream are given

as:

Jdensub(ti−1 → ti) =
λsubµ

′(ti−1 → ti)

λsubµ′(ti−1 → ti) + 1
Jtotsub(ti−1 → ti) (S19)

Jstreamsub(ti−1 → ti) =
1

λsubµ′(ti−1 → ti) + 1
Jtotsub(ti−1 → ti) (S20)

Hence Equations S14 and S15.
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Section S4. Construction of the Land Use Data

We construct the 1800–2015 trajectories of the catchment-scale fractions of the three

land use categories required by ELEMeNT, namely cropland, agricultural permanent

grassland and non-agricultural land (which includes forest, natural grassland, green urban

areas, built-up areas and non-vegetated land).

From the Corine Land Cover dataset (CLC; EEA, 2019), we derive the fraction of forest

(classes 311 to 313) and non-vegetated land (classes 331 to 523), since CLC is the reference

land cover product for European countries. The CLC dataset provides maps for five years

(1990, 2000, 2006, 2012 and 2018). In addition, we verify the consistency of the CLC

forest fraction at the country scale (around 29%–30%) with the national forest inventories

of 2002 and 2012 (around 32%; BMEL, 2014). For the period 1990–2015 we make use of

the five CLC maps and fill the values for the years in-between using linear interpolation.

For the period 1800–1990, which is not covered by the CLC dataset, and for which, to

our knowledge, no inventory data are available, we consider no changes in forest and non-

vegetated areas. This assumption is supported by the land cover reconstruction dataset

of Kaplan and Krumhardt (2018), according to which the forest fraction in Germany is

almost constant and around 34–35% for the period 1600–1850.

We do not extract agricultural areas from CLC, which are greatly overestimated as

reported e.g. in Bach et al. (2006). Rather, we use the HYDE dataset (History Database

of the Global Environment; Klein Goldewijk et al., 2011, 2017) to identify cropland,

agricultural permanent grassland (called “grazing” in the HYDE dataset), as well as build-

up areas. HYDE provides a consistent long-term time series of land use fractions covering

the period 1800–2015. For the agricultural areas, we use the spatial distribution from
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HYDE and we adjust the actual values to match census data. Census data is available at

the county level for the period 1999–2016 from the Federal Statistical Office (Statistisches

Bundesamt, 2021) and at the state level for the earlier period from the yearly statistical

books (Digizeitschriften, 2021). We fill with linear interpolation the values in the HYDE

dataset and the census data for the years for which values are not provided.

Finally, we attribute the remaining fraction of the land to a land use category that

we call “other vegetated land”, which includes in particular natural grassland, urban

parks, and green areas in discontinuous urban fabric. No land use inventory allows us

to distinguish further land use categories within this “other vegetated land” class. The

trajectories of the land use fractions for the different subcatchments are presented in

supplementary Figure S1. We observe that the uncertainty in the land use fractions,

resulting from different scenarios provided by the HYDE dataset, is relatively small for

the period 1850–2015 (Figure S1). Therefore we only consider the baseline scenario of

HYDE to force the ELEMeNT model.
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Section S5. Construction of the N Surplus for Agricultural Areas

We harmonize the two N surplus datasets of Häußermann et al. (2020) and Behrendt

et al. (2003), similar to Ehrhardt et al. (2021), to construct the N surplus trajectories

at county level for the period 1950–2015. During the overlapping period between the

two datasets (1995–1998), we find that on average the state level N surplus values from

Behrendt et al. (2000) underestimate the values derived from Häußermann et al. (2020)

by 5-10%. We bias correct the N surplus values provided by Behrendt et al. (2000) with

the values of Häußermann et al. (2020) for consistency. We then downscale the 1950–1995

bias-corrected state level values to county level assuming that, for all the counties within

a given state, the N surplus followed the same temporal dynamics, while ensuring that

the state totals are satisfied. The resulting trajectories of the N surplus for agricultural

areas are shown in Figure S2.
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Section S6. Construction of the N Point Sources

N point sources for the period 1950–2015 are constructed from the methodology pro-

posed by Morée et al. (2013) (see Figure S4). N gross emissions from households are cal-

culated from protein supply data (FAO, 1951, 2021a, 2021b), considering protein losses at

the retail and household level (FAO and SIK, 2011) and N losses in humans via sweat, hair

and blood (Morée et al., 2013). A portion of the household N gross emissions is collected

by the sewer system, part of it being treated in waste water treatment plants (WWTPs)

that can have different levels of efficiency (primary, secondary or tertiary treatment). The

population connection to sewer and WWTPs data come from Seeger (1999) for the period

before 1990 and Eurostat (2016, 2021) for the period after 1990. Following Morée et al.

(2013), industrial N gross emissions are assumed to be equal to a (calibrated) fraction of

the household N emissions. A fraction of the industrial N emissions is treated in WWTPs,

while the other part ends up in stabilization pounds or is lost via volatilization. The total

N point sources is computed as the sum of the N loading corresponding to the untreated

fraction of the household N emissions collected by the sewer system, and the N loading

coming from WWTPs.

The construction of the N point sources data requires the calibration of a number of

coefficients that are described in Table S2. To account for uncertainty in these coeffi-

cients, we generate a ensemble of 100,000 combinations of values using latin hypercube

sampling, uniform distribution and the ranges reported in Table S2, from which we obtain

an ensemble of 100,000 realizations of the N point sources. We then select the 100 “best”

realizations, i.e., the realizations for which the calculated N loading from WWTPs shows

the smallest error with respect to the observation data of Büttner (2020). Further details
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on the datasets used are reported in Table S1. A visual depiction of the N point sources

with uncertainty is provided in Figure S5.
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Section S7. N Pools Initial Conditions in ELEMeNT

Source Zone Initial States

The choice of the value of the initial N storage for the organic stores needs to be

carefully examined, since the residence time of N in the organic pools can be large (Van

Meter et al., 2017). In addition, the source zone compartment of ELEMeNT has a semi-

distributed representation, as the N mass balance is evaluated over a number of units

(100 in this study) that have no explicit spatial location and that have distinct land use

trajectories. Therefore, the initial value of the organic N storages needs to be specified

for the three land use types, i.e., cropland, agricultural permanent grassland and non-

agricultural land. We further note that the ELEMeNT parameters, and in particular the

mineralization rate constants, are assumed to take the same values for the different land

use types. An exception is the protection coefficient, which takes a different value for

cropland (hc) compared to non-cultivated land (hnc).

As in Van Meter et al. (2017), we start our simulations during the pre-industrial time

(in year 1800 in this study). In the source zone, for the spatial units that initially have

a non-cultivated land use (both agricultural permanent grassland and non-agricultural

land), the active N store Mprist
a (kg ha−1) and the protected N store Mprist

p (kg ha−1) at

the beginning of the simulations are set assuming steady state (pristine or pre-industrial)

conditions:

Mprist
a =

(1− hnc)Surplusnon−agr(t0 → t1)

ka
(S21)

Mprist
p =

hncSurplusnon−agr(t0 → t1)

kp
(S22)

where hnc (-) is the protection coefficient for non-cultivated land, Surplusnon−agr(t0 →

t1) (kg ha−1 yr−1) is the N surplus for non-agricultural land for the first simulation time
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step, ka (yr−1) and kp (yr−1) are the rate constants of mineralization for the organic active

and protected N store respectively.

The rate constant of mineralization for the organic protected store kp is derived consid-

ering the following equation:

Mprist
sorg = Mprist

a +Mprist
p (S23)

where Mprist
sorg (kg ha−1) is the total source zone organic N stock under pristine conditions,

which is a calibrated parameter (see Table 1 in the main article). kp is then calculated as:

kp =
hncSurplusnon−agr(t0 → t1)

Mprist
sorg −Mprist

a

(S24)

In addition, in ELEMeNT, the protected N store for non-cultivated land (agricultural

permanent grassland and non-agricultural land) cannot exceed its value under pristine

conditions Mprist
p . It is thereby assumed that Mprist

p represents the maximum N storage

capacity of the protected N store, and that no buildup of protected N can occur beyond

the pristine conditions.

For source zone units that are cropland, the initial active N store M crop0
a (kg ha−1) is

also determined assuming steady state conditions. The initial protected N store M crop0
p

(kg ha−1) is set to 70% of its value under pristine conditions, assuming that a loss of 30%

of protected N mass occurred after the conversion from non-cultivated to cultivated land

(Van Meter et al., 2017):

M crop0
a =

(1− hc)Surpluscrop(t0 → t1)

ka
(S25)

M crop0
p = 0.7Mprist

p (S26)

where Surpluscrop(t0 → t1) (kg ha−1 yr−1) is the N surplus for cropland for the first

simulation time step.
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Subsurface Zone Initial State

As in previous applications of ELEMeNT, we set the initially subsurface N storage to

zero. We use a long warm-up period (1800–1959) to attain a reasonable value of the

storage, as explain in Section 4.1 in the main article.
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Section S8. Derivation of the N Surplus for Cropland and Agricultural Per-

manent Grassland From the Total Agricultural N Surplus

At time t, the N surplus for agricultural permanent grassland, denoted as Surplusmgra(t)

(kg ha−1 yr−1), and for cropland, denoted as Surpluscrop(t) (kg ha−1 yr−1), can be

estimated as follows:

Surpluscrop(t) = Surplusagr(t)
fagr(t)

fcrop(t) + rmgra−cropfmgra(t)
(S27)

Surplusmgra(t) = Surpluscrop(t)rmgra−crop (S28)

where Surplusagr(t) (kg ha−1 yr−1) is the N surplus for agricultural areas, rmgra−crop

(-) is the ratio of the N surplus for agricultural permanent grassland to the N surplus for

cropland, fagr(t) (-) is the fraction of total agricultural areas, fcrop(t) (-) is the fraction of

cropland and fmgra(t) (-) is the fraction of agricultural permanent grassland. Equation S27

and S28 are derived from the following equality:

Surplusagr(t)fagr(t) = Surpluscrop(t)fcrop(t) + Surplusmgra(t)fmgra(t) (S29)
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Table S1. Datasets Used to Calculate the N Point Sources

Variable Spatial resolution Time period Frequency Source/reference

Population 5’x5’ 1950–2016 decadal in 1950–

2000; yearly in

2001-2016

HYDE V3.2.1, Klein Goldewijk et al.

(2017)

Protein supply Germany (NUTS0) 1950–2016 one value in 1950;

yearly in 1961-2016

FAO (1951, 2021a, 2021b)

Food losses Europe 2007 one value FAO and SIK (2011)

Population

connection to

sewer and

WWTPs

Germany 1950-1990 qualitative informa-

tion

Seeger (1999)

Germany (NUTS0) 1990–2016 variable Eurostat (2021)

Germany (NUTS2) 2010 one value Eurostat (2016)

Observations of

N loading from

WWTPs

point data (WWTPs

location)

2012-2016 1 value for each

WWTP

Büttner (2020)

Note: NUTS: Nomenclature of territorial units for statistics. WWTP: Waste water treatments plants.
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Table S2. Description of the Coefficients That Are Calibrated to Calculate the N Point

Sources

Parameter Description Unit Lower value Upper value References for the values

fproteinloss Fraction of protein supply

lost at the distribution level

(-) 0.02 0.04 FAO and SIK (2011)

fproteinloss,house Fraction of protein supply

lost at the household level

(-) 0.12 0.16 FAO and SIK (2011)

fNc N content in protein (kg N kg−1) 0.16 0.19 Mariotti et al. (2008), Morée et

al. (2013)

fNloss,hum Fraction of human N in-

take lost via sweat, hair and

blood

(-) 0.02 0.04 best guess is 0.03 from Morée et

al. (2013)

fNloss,sewer Fraction of domestic N gross

emissions collected by the

sewer system leaked, settled,

volatilized or degraded

(-) 0.05 0.15 best guess is 0.1 from Morée et

al. (2013)

fNindus:house,1950 Ratio of industrial to domes-

tic N gross emissions in 1950

(-) 0.6 0.9 best guess is 0.75 from Morée et

al. (2013)

fNindus:house,2000 Ratio of industrial to domes-

tic gross N emissions in 2000

(-) 0.1 0.25 best guess is 0.15 from Morée et

al. (2013)

fNloss,indus Fraction of industrial gross

N emissions lost in stabi-

lization ponds or through

volatilization

(-) 0.2 0.4 best guess is 0.3 from Morée et

al. (2013)

effNprim Efficiency of N removal for

primary treatment

(-) 0.1 0.2 best guess is 0.1 from Van

Drecht et al. (2009), Morée et

al. (2013), and Van Puijenbroek

et al. (2019)

effNsec Efficiency of N removal for

secondary treatment

(-) 0.25 0.45 best guess is 0.35 from Van

Drecht et al. (2009), Morée et

al. (2013), and Van Puijenbroek

et al. (2019)

effNter Efficiency of N removal for

tertiary treatment

(-) 0.7 0.94 best guess is 0.8 from Van

Drecht et al. (2009), Morée et

al. (2013), and Van Puijenbroek

et al. (2019)
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Table S3. Discharge (Qout) at the Measuring Station, Source of the Daily Measurements,

Time Periods for the Daily Measurements and Years for Which the Measurements Present Gaps

For Each Subcatchment

Catchment outlet Qout station Source of Qout

measurements

Time period of Qout

measurements

Years with gaps in

Qout measurements

Wahnhausen Bonaforth FGG 1978-1983 1984, 1999-2000

Letzter Heller Letzter Heller GRDC 1941-2015 -

Hemeln Hann. Münden GRDC 1831-2015 -

Hessisch Oldendorf Hameln FGG 1975-2015 1981-1982

Porta Porta GRDC 1936-2015 -

Petershagen Petershagen FGG 1986-2015 -

Drakenburg Drakenburg FGG 1979-2015 1984-1985

Verden Westen FGG 1970-1983 1984-1989, 2001-2005

Hemelingen Intschede GRDC 1857-2015 -

Note: Discharge measurements are obtained from the River Basin Commission Weser (FGG Weser, 2021) and from the
(Global Runoff Data Centre, 2021). We report here the years that present long gaps (i.e., longer than five days). Short
gaps (i.e., less or equal to five days) are filled using linear interpolation.
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Table S4. Performance of mHM Discharge Simulations at the Outlet of the Subcatchments

Station Medium-term simulations (daily) Long-term simulations (annual)

Number days PBIAS (%) R2 (-) NSE (-) Number years PBIAS (%) R2 (-) NSE (-)

Bonaforth 13,179 1.8 0.87 0.87 35 30 0.85 0.83

Letzter Heller 24,106 4.1 0.89 0.89 75 26 0.71 0.68

Hann. Münden 24,106 0.29 0.91 0.91 185 28 0.66 0.64

Hameln 14,671 4.0 0.93 0.93 39 26 0.83 0.79

Porta 24,106 2.7 0.92 0.91 80 22 0.83 0.78

Drakenburg 13,210 6.8 0.93 0.93 35 29 0.85 0.82

Westen 10,500 4.2 0.80 0.74 25 63 0.83 0.76

Intschede 24,106 1.3 0.90 0.89 159 34 0.71 0.68

Note: The medium-term simulations refer to the simulations performed over the period 1950–2015, using the mHM set-
up described in Zink et al. (2017). The long-term simulations refer to the simulations performed over the period 1766–2015,
using the mHM setup described in Hanel et al. (2018). We note that long-term simulations are available at Intschede only,
and they are used to reconstruct the long-term discharge for all stations (these simulations provide the long-term trend).
Performance metrics are evaluated at daily timescale for the medium-term simulations, and at annual timescale for the
long-term simulations. The table reports the number of days or years that are used to calculate the performance metrics.
PBIAS is the percent bias (absolute value), R2 is the coefficient of determination and NSE is the Nash–Sutcliffe efficiency.
Reported PBIAS values are calculated before bias correction. We perform bias correction using a multiplicative
factor, so that PBIAS is equal to 0 after bias correction. Reported NSE values are calculated after bias correction.
We verify that the mHM simulations perform well, with values of NSE always higher than 0.64, and values of R2 always
higher than 0.66. For the medium-term simulations of Zink et al. (2017), the performance is particulary high, with values
of NSE always higher than 0.74 and values of R2 always higher than 0.80.
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Table S5. Range of Observed Soil N Content in 2009 in the Horizon 0-100 cm (Ms) for the

Eight Subcatchments

Catchment outlet
Observed Ms (kg ha−1)

Lower limit Upper limit

Wahnhausen 16,070 25,712

Letzter Heller 14,981 23,969

Hemeln 15,555 24,888

Hessisch Oldendorf 15,419 24,671

Porta 15,239 24,382

Petershagen 15,239 24,382

Drakenburg 14,895 23,831

Verden 12,618 20,189

Hemelingen 13,930 22,287

Note: Values are obtained by combining the N content and bulk density in the topsoil (0–20 cm) from the LUCAS
dataset (Ballabio et al., 2016, 2019), and the ratio of total soil N content (0–100 cm) to topsoil N content (0–20 cm), which
we estimate to be between 2.5 (lower limit) and 4 (upper limit) from Table 4 in Batjes (1996) We note that the study
of Batjes (1996) reports the average soil N content for the horizons 0-30 cm and 0-100 cm for a range of soil types. We
estimate the value for a depth of 0–20 cm from the 0–30 cm values of Batjes (1996) assuming that, in the first 30 cm of
soil, the N content is proportional to the depth.
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Table S6. Number of Behavioural Simulations Obtained After Application of the Seven Soft

Rules For Each Subcatchment

Catchment outlet Number of behavioural simulations

Wahnhausen 2076

Letzter Heller 676

Hemeln 1304

Hessisch Oldendorf 1503

Porta 1618

Drakenburg 1726

Verden 679

Hemelingen 1475

Note: The methodology used to obtain the behavioural simulations is described in Section 4.1 of the main article.
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Table S7. Prior and Posterior Median and 95% Confidence Interval of the ELEMeNT

Parameter Values for the Eight Subcatchments

Parameter Prior Wahnhausen Letzter

Heller

Hemeln Hessisch

Oldendorf

Porta Drakenburg Verden Hemelingen

Mprist
sorg Q50 22493 22932 21623 22494 22135 21808 21445 18269 20020

(kg ha−1) Q2.5 10621 17786 16559 17167 16966 17014 16380 14234 15612

Q97.5 34373 28200 26367 27365 26992 26906 26345 22609 24695

hc Q50 0.27 0.23 0.24 0.22 0.27 0.24 0.27 0.25 0.25

(-) Q2.5 0.11 0.11 0.11 0.10 0.11 0.11 0.11 0.11 0.11

Q97.5 0.48 0.47 0.47 0.46 0.48 0.46 0.48 0.49 0.48

hnc Q50 0.54 0.52 0.54 0.49 0.54 0.52 0.54 0.52 0.54

(-) Q2.5 0.28 0.27 0.27 0.27 0.28 0.28 0.28 0.27 0.27

Q97.5 0.74 0.74 0.74 0.73 0.74 0.74 0.74 0.74 0.74

ka Q50 0.40 0.50 0.33 0.39 0.38 0.48 0.37 0.44 0.49

(yr−1) Q2.5 0.07 0.18 0.10 0.14 0.10 0.18 0.09 0.13 0.17

Q97.5 0.73 0.74 0.72 0.73 0.73 0.74 0.72 0.73 0.74

Vs Q50 300 306 375 349 301 304 295 347 316

(mm) Q2.5 110 111 137 114 109 113 109 137 112

Q97.5 490 492 496 492 491 486 491 488 492

λs Q50 0.55 0.34 0.28 0.30 0.32 0.31 0.33 0.28 0.33

(yr−1) Q2.5 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Q97.5 0.98 0.71 0.63 0.63 0.65 0.63 0.67 0.60 0.66

λsub Q50 0.15 0.17 0.09 0.11 0.07 0.14 0.06 0.16 0.16

(yr−1) Q2.5 0.02 0.05 0.03 0.04 0.02 0.03 0.02 0.05 0.04

Q97.5 0.29 0.29 0.27 0.26 0.24 0.29 0.25 0.29 0.29

µsub Q50 26 10 17 14 16 8 19 11 8

(yr) Q2.5 3 3 4 4 4 2 3 3 2

Q97.5 49 29 36 34 40 23 44 31 24

R Q50 0.16 0.11 0.16 0.12 0.14 0.12 0.14 0.15 0.12

(-) Q2.5 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01

Q97.5 0.29 0.29 0.29 0.29 0.29 0.28 0.29 0.29 0.28

Note: The prior distributions are the distributions in the initial sample of size 100,000 and are the same for all subcatch-
ments. The posterior distributions correspond to the distributions in the behavioural sample obtained after application of
the seven soft rules. The values correspond to the median (Q50) and the lower and upper bound of the 95% confidence
interval (Q2.5 and Q97.5 respectively).
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Table S8. Percentage Change in the Posterior Values Compared to the Prior Values of the

Median and 95% Confidence Interval for the ELEMeNT Parameters for the Eight Subcatchments

Parameter Wahnhausen Letzter

Heller

Hemeln Hessisch

Oldendorf

Porta Drakenburg Verden Hemelingen

Mprist
sorg ∆Q50 2 -4 0 -2 -3 -5 -19 -11

(%) ∆(Q97.5 −Q2.5) -56 -59 -57 -58 -58 -58 -65 -62

hc ∆Q50 -13 -11 -19 1 -11 0 -6 -6

(%) ∆(Q97.5 −Q2.5) -4 -3 -5 0 -6 -1 0 -1

hnc ∆Q50 -3 1 -10 1 -3 1 -3 -1

(%) ∆(Q97.5 −Q2.5) 1 1 -0 -0 -1 -1 1 0

ka ∆Q50 26 -18 -2 -6 19 -8 11 22

(%) ∆(Q97.5 −Q2.5) -16 -7 -10 -6 -15 -5 -10 -15

Vs ∆Q50 2 25 16 0 1 -2 16 5

(%) ∆(Q97.5 −Q2.5) 0 -6 -0 1 -2 0 -7 -0

λs ∆Q50 -37 -49 -46 -41 -44 -40 -49 -39

(%) ∆(Q97.5 −Q2.5) -30 -39 -39 -37 -39 -35 -42 -35

λsub ∆Q50 11 -43 -31 -54 -8 -59 1 2

(%) ∆(Q97.5 −Q2.5) -13 -12 -19 -21 -8 -16 -12 -8

µsub ∆Q50 -63 -33 -47 -37 -70 -27 -59 -68

(%) ∆(Q97.5 −Q2.5) -41 -31 -34 -20 -56 -11 -39 -53

R ∆Q50 -27 2 -20 -10 -22 -9 -5 -23

(%) ∆(Q97.5 −Q2.5) -2 -0 -2 -1 -2 -1 -1 -2

Note: The prior distributions are the distributions in the initial sample of size 100,000. The posterior distributions
correspond to the distributions in the behavioural sample obtained after application of the seven soft rules. The values
correspond to the percentage change in the median (∆Q50) and the 95% confidence interval (∆(Q97.5 −Q2.5)).
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Table S9. Posterior Median and 95% Confidence Interval of the Mean Transfer Times for

Organic Active and Protected N Stores

Parameter Wahnhausen Letzter

Heller

Hemeln Hessisch

Oldendorf

Porta Drakenburg Verden Hemelingen

Q50 2.0 3.0 2.5 2.7 2.1 2.7 2.3 2.0

ta (yr) Q2.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

Q97.5 5.6 9.7 7.3 9.9 5.7 11.3 7.6 5.9

Q50 2597 2336 2646 2392 2454 2375 2079 2268

tp (yr) Q2.5 1579 1444 1527 1471 1529 1486 1323 1402

Q97.5 5376 4831 5331 4841 5025 4739 4203 4505

Note: ta: mean transfer time for organic active N store, which is equal to the inverse of the mineralization rate constant
for organic active N store 1/ka; tp: mean transfer time for organic protected N store, which is equal to the inverse of
the mineralization rate constant for organic protected N store 1/kp. kp is calculated from Equation S24 and its CDFs
are represented in Figure S28. The values correspond to the median (Q50) and the lower and upper bound of the 95%
confidence interval (Q2.5 and Q97.5 respectively).
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Table S10. Matrix of Pearson Correlation Coefficients Between Pairs of ELEMeNT Parame-

ters in the Behavioural Sample for the Hemelingen Subcatchment

Mprist
sorg hc hnc ka Vs λs λsub µsub R

Mprist
sorg 1.0 -0.12 0.0 -0.02 -0.06 0.01 0.01 0.03 -0.02

hc -0.12 1.0 0.27 -0.01 0.05 -0.06 -0.02 -0.15 -0.02

hnc 0.0 0.27 1.0 -0.02 -0.01 -0.01 -0.02 -0.05 -0.01

ka -0.02 -0.01 -0.02 1.0 -0.01 -0.02 -0.13 0.18 0.01

Vs -0.06 0.05 -0.01 -0.01 1.0 -0.09 0.03 -0.09 0.01

λs 0.01 -0.06 -0.01 -0.02 -0.09 1.0 -0.36 -0.54 -0.08

λsub 0.01 -0.02 -0.02 -0.13 0.03 -0.36 1.0 -0.32 -0.02

µsub 0.03 -0.15 -0.05 0.18 -0.09 -0.54 -0.32 1.0 -0.28

R -0.02 -0.02 -0.01 0.01 0.01 -0.08 -0.02 -0.28 1.0

Note: We highlight significant values in bold (significance level equal to 0.05). We observe particularly high values
(higher than 0.25) of the correlation coefficient between the denitrification rate constant in the source zone λs and the
denitrification rate constant in the subsurface λsub (-0.36), between λs and the mean travel time in the subsurface µsub
(-0.54), between µsub and λsub (-0.32), between µsub and the fraction of in-stream N removal R (-0.28), and between the
protection coefficient for cultivated land hc and non-cultivated land hnc (0.27). This indicates that these parameters are
interacting. We note that the analysis of the pairwise correlation coefficient only allows to detect two-way interactions
and not higher order interactions We also note that the two protection coefficients are not sampled independently in the
prior parameter sample. In fact, we discard the parameter sets that do not meet the condition hc < hnc, as explained in
Section 4.1 in the main article. Therefore, the relatively high values of the correlation coefficient between hc and hnc could
be due to the initial sampling strategy and not to the conditions imposed by the soft rules.
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Table S11. Simulated Contribution (in %) of the Denitrification in the Source Zone to

the Total Denitrification Aggregated Over the Source Zone and the Subsurface for the Eight

Subcatchments

Time

period

Stat. Wahnhausen Letzter Heller Hemeln Hessisch Oldendorf Porta Drakenburg Verden Hemelingen

1960–2015

Q50 50.5 46.8 46.4 51.6 50.5 53.3 48.6 53.8

Q2.5 16.3 17.4 17.0 18.2 17.6 18.9 19.5 17.8

Q97.5 93.5 92.9 91.8 93.4 92.1 94.2 89.5 94.2

The table reports the median (Q50), the lower bound (Q2.5, 2.5th percentile) and upper bound (Q97.5, 97.5th percentile)
values in the behavioural simulation ensemble for the period 1960–2015. The table shows that the range of variation
(between lower and upper bounds) is very large for all subcatchments. This means that there are large uncertainties
regarding the location (source zone or subsurface) of denitrification.
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Table S12. Source Zone Storage: Initial Condition in 1960 and Change for the Period

1960–2015

Variable Stat Wahn-

hausen

Letzter

Heller

Hemeln Hessisch

Oldendorf

Porta Draken-

burg

Verden Hemelingen

M init
s Q50 20,468 19,176 19,981 19,666 19,244 18,911 16,020 17,487

(kg ha−1) Q2.5 15,910 14,648 15,302 15,192 15,040 14,530 12,499 13,678

Q97.5 25,039 23,330 24,187 23,901 23,666 23,131 19,698 21,564

∆Ms Q50 2.5 2.5 2.4 2.6 2.6 3.1 2.0 2.5

(% M init
s ) Q2.5 1.3 1.3 1.3 1.3 1.4 1.5 0.5 1.2

Q97.5 4.5 4.7 4.4 4.9 4.6 5.6 4.4 5.1

∆Ms Q50 504 480 473 526 485 584 326 448

(kg ha−1) Q2.5 290 270 283 278 283 306 80 229

Q97.5 828 764 786 803 807 911 642 781

∆Mp Q50 502 452 461 500 471 549 277 416

(kg ha−1) Q2.5 284 244 270 254 267 269 43 203

Q97.5 827 733 773 785 793 880 594 756

∆Ma Q50 3 13 7 12 10 20 31 21

(kg ha−1) Q2.5 -1 1 1 4 4 8 18 12

Q97.5 21 115 55 104 50 150 128 74

∆Min Q50 -2 1 0 0 0 -2 7 2

(kg ha−1) Q2.5 -9 -6 -6 -7 -6 -9 -8 -5

Q97.5 3 8 6 8 7 6 23 16

Notations: The table reports the median (Q50), the lower bound (Q2.5, 2.5th percentile) and upper bound (Q97.5, 97.5th

percentile) values in the behavioural simulation ensemble. M init
s is the initial condition for the source zone storage in

1960; ∆Ms, ∆Mp, ∆Ma, and ∆Min are the change in the total, protected, active and inorganic storage in the source zone,
respectively, for the period 1960–2015.
(∆Ms = ∆Mp + ∆Ma + ∆Min)
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Table S13. Simulated Contribution (in %) of the N Point Sources to the Total In-stream N

Loading at the Catchment Outlet for the Eight Subcatchments

Time

period

Stat. Wahnhausen Letzter Heller Hemeln Hessisch Oldendorf Porta Drakenburg Verden Hemelingen

1960–2015

Q50 28.2 20.6 23.6 21.6 23.5 25.8 34.4 28.7

Q2.5 21.0 15.8 18.0 16.4 17.6 19.7 28.9 22.6

Q97.5 35.8 26.2 30.2 27.3 29.6 32.7 39.4 35.6

2006–2015

Q50 19.6 14.3 16.5 13.8 14.2 14.5 20.5 17.1

Q2.5 14.3 10.6 12.1 10.0 10.3 10.6 16.6 12.9

Q97.5 26.5 18.9 21.8 18.2 18.7 19.5 24.7 22.7

1995–2002

Q50 17.2 13.2 14.6 12.2 13.2 13.5 18.2 15.4

Q2.5 12.5 9.7 10.8 8.9 9.7 9.9 14.7 11.8

Q97.5 23.0 17.5 19.2 16.0 17.4 17.9 21.8 20.3

The table reports the median (Q50), the lower bound (Q2.5, 2.5th percentile) and upper bound (Q97.5, 97.5th percentile)
values in the behavioural simulation ensemble. The contribution of the N point sources is calculated as the ratio of the
cumulative simulated in-stream N loading originating from N point sources (Joutps , which is equal to the N point sources
input, from which we deduct the in-stream N removal Jremps) to the cumulative simulated total in-stream N loading at
the catchment outlet (Jout) for three time periods, 1950–2016, 1995–2002 (to be compared with the results for the study
of Grizzetti et al., 2008) and 2006–2015.
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Table S14. Number of Behavioural Simulations for Hemelingen for the 27 N Surplus Scenarios

and the Ten N Point Source Realizations

N
su

rp
lu

s
sc

en
a
ri

o

scenario fsurplus rmgra−crop rwarm

N point source realization

1 2 3 4 5 6 7 8 9 10

1 0.8 0.5 0.25 882 551 726 778 789 831 872 911 971 1058

2 0.8 0.5 0.5 886 531 710 767 779 826 872 910 965 1058

3 0.8 0.5 0.75 1095 722 930 985 1006 1045 1082 1128 1176 1268

4 0.8 1 0.25 1098 726 943 1002 1006 1040 1088 1108 1163 1270

5 0.8 1 0.5 1170 794 1011 1066 1078 1109 1153 1191 1234 1351

6 0.8 1 0.75 1179 793 1018 1075 1085 1119 1166 1199 1242 1359

7 0.8 1.5 0.25 1220 860 1050 1125 1130 1163 1205 1232 1289 1398

8 0.8 1.5 0.5 1224 860 1058 1133 1143 1167 1210 1238 1297 1398

9 0.8 1.5 0.75 1223 861 1061 1131 1139 1177 1214 1240 1303 1404

10 1 0.5 0.25 1146 755 994 1064 1068 1104 1131 1169 1243 1362

11 1 0.5 0.5 1157 761 996 1059 1069 1099 1147 1187 1249 1357

12 1 0.5 0.75 1383 980 1201 1256 1267 1325 1368 1415 1477 1611

13 1 1 0.25 1390 983 1200 1273 1283 1327 1373 1406 1470 1595

14 1 1 0.5 1475 1058 1296 1361 1368 1413 1462 1513 1575 1716

15 1 1 0.75 1483 1066 1304 1362 1371 1418 1471 1520 1585 1718

16 1 1.5 0.25 1537 1117 1348 1422 1440 1480 1523 1566 1625 1768

17 1 1.5 0.5 1552 1130 1364 1445 1451 1489 1536 1586 1642 1792

18 1 1.5 0.75 1561 1133 1373 1441 1451 1498 1540 1597 1648 1806

19 1.2 0.5 0.25 1357 888 1128 1219 1229 1293 1345 1394 1466 1647

20 1.2 0.5 0.5 1370 872 1147 1229 1246 1297 1357 1405 1500 1658

21 1.2 0.5 0.75 1667 1131 1424 1524 1534 1582 1652 1716 1790 1947

22 1.2 1 0.25 1690 1135 1449 1544 1550 1600 1669 1734 1806 1959

23 1.2 1 0.5 1794 1244 1547 1634 1647 1704 1773 1827 1918 2072

24 1.2 1 0.75 1791 1232 1537 1623 1631 1694 1764 1816 1905 2058

25 1.2 1.5 0.25 1854 1292 1605 1690 1706 1759 1825 1894 1991 2141

26 1.2 1.5 0.5 1863 1304 1614 1700 1715 1778 1840 1912 2003 2146

27 1.2 1.5 0.75 1864 1292 1605 1692 1702 1768 1834 1894 2001 2145

Note: In red and bold is the baseline scenario chosen for the analyses (fsurplus = 1, rmgra−crop = 1, rwarm=0.5 and N
point source realization 1). fsurplus: N surplus multiplier; rmgra−crop (-): ratio of N surplus for agricultural permanent
grassland to N surplus for cropland; rwarm (-): ratio of the value of the agricultural N surplus in 1850 to the value in 1950.
The number of behavioural simulations vary between 531 and 2146. Therefore, we identify a large number of behavioural
simulations for all combinations of N surplus scenario and N point source realization.
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Figure S1. Time series of the land use fractions, i.e., cropland, agricultural permanent

grassland, built-up areas, non-vegetated areas, other vegetated land (which includes in particular

natural grassland, urban parks, and green areas in discontinuous urban fabric) and forest for the

period 1800–2015 for the eight subcatchments. The solid lines are obtained using the baseline

scenario for the HYDE dataset, while the dotted lines are obtained using the upper and lower

scenarios.
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Figure S2. Time series of the agricultural N surplus (per unit of agricultural area) for

the period 1950–2015 for the eight subcatchments.
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Figure S3. Time series of the total N surplus for non-agricultural areas and its components

i.e., atmospheric N deposition and biological N fixation (per unit of non-agricultural areas)

for the period 1800–2015 for the eight subcatchments. For biological N fixation, the solid lines

are obtained using the land use data corresponding to the baseline scenario of the HYDE dataset,

while the dotted lines are obtained using the land use data corresponding to the upper and lower

scenarios of the HYDE dataset. We also refer to Section S5 for further explanation. We only

consider the baseline scenario to force the ELEMeNT model, given the small uncertainties.
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Figure S4. Flow chart depicting the procedure for the calculation of the N point sources.

Details on the datasets used are reported in Table S1, and calibrated model coefficients are

described in Table S2. WWTP: Waste Water Treatment Plant.
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Figure S5. Time series of the N point sources for the period 1950–2015 for the eight sub-

catchments. The dashed black lines represent the baseline realization that we select to estimate

the model parameters for the eight subcatchments (Section 4.1). This is the realization that

presents the smallest error with respect to the observation dataset of N loading from waste water

treatment plants of Büttner (2020). The green lines in the panel for Hemelingen represent the

nine additional realizations that we select to perform the sensitivity analysis (Section 4.2).
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Figure S6. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Bonaforth station (Wahnhausen subcatchment): (a) Medium-term simulations (Zink et al.,

2017) and (b) Long-term simulations (Hanel et al., 2018).



X - 36 :

1940 1950 1960 1970 1980 1990 2000 2010
0

100

200

300

400

500

Q
ou

t (
m

m
 y

r
1 )

(a)

1800 1825 1850 1875 1900 1925 1950 1975 2000
Time (years)

0

100

200

300

400

500

Q
ou

t (
m

m
 y

r
1 )

(b)

observations
simulations

bias-corrected simulations

Figure S7. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Letzter Heller station (Letzter Heller subcatchment): (a) Medium-term simulations (Zink et

al., 2017) and (b) Long-term simulations (Hanel et al., 2018).
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Figure S8. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Hann. Münden station (Hemeln subcatchment): (a) Medium-term simulations (Zink et al.,

2017) and (b) Long-term simulations (Hanel et al., 2018).
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Figure S9. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Hameln station (Hessisch Oldendor subcatchment): (a) Medium-term simulations (Zink et al.,

2017) and (b) Long-term simulations (Hanel et al., 2018).
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Figure S10. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Porta station (Porta subcatchment): (a) medium-term simulations (Zink et al., 2017) and (b)

Long-term simulations (Hanel et al., 2018).
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Figure S11. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Drakenburg station (Drakenburg subcatchment): (a) Medium term simulations (Zink et al.,

2017) and (b) Long-term simulations (Hanel et al., 2018).



: X - 41

1950 1960 1970 1980 1990 2000 2010
0

100

200

300

400

Q
ou

t (
m

m
 y

r
1 )

(a)

1800 1825 1850 1875 1900 1925 1950 1975 2000
Time (years)

0

100

200

300

400

500

Q
ou

t (
m

m
 y

r
1 )

(b)

observations
simulations

bias-corrected simulations

Figure S12. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Westen station (Verden subcatchment): (a) Medium term simulations (Zink et al., 2017) and

(b) Long-term simulations (Hanel et al., 2018).
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Figure S13. Observed, simulated and bias-corrected simulated annual discharge Qout for the

Intschede station (Hemelingen subcatchment): (a) Medium term simulations (Zink et al., 2017)

and (b) Long-term simulations (Hanel et al., 2018).
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Figure S14. Time series of annual observed in-stream N-NO3 concentration at the catchment

outlet Cout and number of 14-day average measurements provided for each year by the River

Basin Commission Weser (FGG Weser, 2021). For the Letzter Heller catchments, we combine

the concentration measurements at the Letzter Heller station, that are available for the period

1979–2002, and at the Witzenhausen station, that are available for the period 2003–2015. The

Witzenhausen station is located 8 km upstream of the Letzter Heller station. The red circle

identifies the outlier value at the Letzter Heller station that we do not consider for comparison

with ELEMeNT simulations.
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Figure S15. Time series of annual average observed in-stream N-NO3 loading at the catchment

outlet Jout and number of 14-day average measurements provided for each year by the River

Basin Commission Weser (FGG Weser, 2021). For the Letzter Heller catchments, we combine

the concentration measurements at the Letzter Heller station, that are available for the period

1979–2002, and at the Witzenhausen station, that are available for the period 2003–2015. The

Witzenhausen station is located 8 km upstream of the Letzter Heller station.
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Figure S16. N surplus for total agricultural areas, cropland and agricultural permanent

grassland for the period 1800–2015 for nine scenarios defined in this study for Hemelingen,

corresponding to a value of the N surplus multiplier (fsurplus) equal to 1. The figure reports the

corresponding values of the ratio of the N surplus for agricultural permanent grassland to the N

surplus for cropland (rmgra−crop), and the values of the ratio of the agricultural N surplus in 1850

to the value in 1950 (rwarm). Our “baseline” scenario is the central plot (i.e., rmgra−crop = 1 and

rwarm = 0.5).
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Figure S17. Cumulative Distribution Function (CDF) of the source zone N content Ms in 2009

in the initial simulation ensemble (100,000 realizations) and after application of rules 1-6 (rules

on the in-stream loading Jout and concentration Cout) for the eight subcatchments. The grey

shaded areas indicate the plausible ranges reported in Table S5, which are used in the definition

of the rule on the source zone N content (rule 7).
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Figure S18. Application of the soft rules for the eight subcatchments: (a) Cumulative

Distribution Function (CDF) of the performance metrics for in-stream N loading (Jout) and

concentration (Cout) in the initial simulation ensemble (100,000 realizations). The figure reports

the three performance metrics used in the definition of rules 1-6 (the relative bias RBIAS, the

variability error STDerr and the Pearson correlation coefficient ρ) and the Kling-Gupta efficiency

(KGE ). The grey shaded areas and grey numbers on the x-axis indicate the behavioural ranges

of the performance metrics used in the definition of rules 1-6. The figure shows the full ranges

of variation of the performance metrics in the simulation ensemble.
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Figure S19. Percentage of behavioural model realizations when applying each of the seven

rules individually for the eight subcatchments.
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Figure S20. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules

1-7 (dashed red lines) and prior parameter distribution (solid grey line) for Wahnhausen.
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Figure S21. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules

1-7 (dashed red lines) and prior parameter distribution (solid grey line) for Letzter Heller.
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Figure S22. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules

1-7 (dashed red lines) and prior parameter distribution (solid grey line) for Hemeln.
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Figure S23. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules 1-7

(dashed red lines) and prior parameter distribution (solid grey line) for Hessisch Oldendorf.
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Figure S24. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules

1-7 (dashed red lines) and prior parameter distribution (solid grey line) for Porta.
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Figure S25. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules

1-7 (dashed red lines) and prior parameter distribution (solid grey line) for Drakenburg.
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Figure S26. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules

1-7 (dashed red lines) and prior parameter distribution (solid grey line) for Verden.
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Figure S27. Cumulative distributions function (CDFs) of the model parameters obtained

after application of Rules 1-3 (solid blue lines), Rules 1-6 (dash-dotted green lines) and Rules

1-7 (dashed red lines) and prior parameter distribution (solid grey line) for Hemelingen.
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Figure S28. Cumulative Distribution Function (CDF) of the mineralization rate constant

for the source zone organic protected N pool (kp, calculated from Equation S24) in the prior

simulation ensemble (before application of the soft rules) and in the posterior simulation ensemble

(after application of the soft rules) for the eight subcatchments.
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Figure S29. Simulated cumulative change in N storage in the source zone since 1960. The

shaded areas indicate the 95% confidence intervals, the dashed lines the median value and the

solid lines the 25% and 75% quantiles in the behavioural simulation ensemble. Notations: t is

the time; Ms is the source zone storage; M init
s is the initial condition for the source zone storage

in 1960.
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Figure S30. Simulated cumulative change in N storage in the source zone since 1960 as a

percentage of the initial storage in 1960. The shaded areas indicate the 95% confidence intervals,

the dashed lines the median value and the solid lines the 25% and 75% quantiles in the behavioural

simulation ensemble. Notations: t is the time; Ms is the source zone storage; M init
s is the initial

condition for the source zone storage in 1960.



X - 60 :

0
50

100
150
200
250
300

M
su

b(
t)

M
in

it
su

b

(k
g

ha
1 )

Wahnhausen Letzter Heller

0
50

100
150
200
250
300

M
su

b(
t)

M
in

it
su

b

(k
g

ha
1 )

Hemeln Hessisch Oldendorf

0
50

100
150
200
250
300

M
su

b(
t)

M
in

it
su

b

(k
g

ha
1 )

Porta Drakenburg

1960 1980 2000
t (yr)

0
50

100
150
200
250
300

M
su

b(
t)

M
in

it
su

b

(k
g

ha
1 )

Verden

1960 1980 2000
t (yr)

Hemelingen

Median of simulation ensemble 25% and 75% quantiles 95% CI 

Figure S31. Simulated cumulative change in N storage in the subsurface since 1960. The

shaded areas indicate the 95% confidence intervals, the dashed lines the median value and the

solid lines the 25% and 75% quantiles in the behavioural simulation ensemble. The maximum

value of the median time series and corresponding year are indicated with black dotted lines.

Notations: t is the time; Msub is the subsurface zone storage; M init
sub is the initial condition for

the subsurface storage in 1960.
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Figure S32. Time series of the simulated in-stream N concentration Cout (median value

of the behavioural simulation ensemble, grey lines) and linear regression lines (coloured lines)

for the period 1970–2015 over the Weser River Basin (at Hemelingen). The figure reports the

total N concentration, and its two constituents, namely the contributions resulting from the N

diffuse sources (N coming from the subsurface, Coutsub) and from the N point sources (Coutps)

(Cout = Coutsub + Coutps). The regression lines were estimated for three different time periods to

analyse the concentration trends (1970–1990, 1990–2000 and 2000–2015). The coloured numbers

represent the slope for each regression line (in mg L−1 yr−1) and the p-values of the linear trend

are reported in brackets.
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Figure S33. Application of the soft rules for the ten point source realizations (for the baseline

N surplus scenario, i.e. fsurplus = 1, rmgra−crop = 1 and rwarm = 0.5) for Hemelingen: (a) Cumu-

lative Distribution Function (CDF) of the performance metrics for in-stream loading (Jout) and

concentration (Cout) in the initial simulation ensemble (100,000 realizations) and (b) percentage

of realizations of the initial ensemble identified as behavioural (pbehav) by successive application of

the soft rules based on performance metrics for loading (Jout, rules 1-3) and concentration (Cout,

rules 4-6), and based on the source zone N content for year 2009 (Ms, rule 7). Panel (a) reports

the three performance metrics used in the definition of rules 1-6 (the relative bias RBIAS, the

variability error STDerr and the Pearson correlation coefficient ρ) and the Kling-Gupta efficiency

(KGE ). The grey shaded areas and grey numbers on the x-axis indicate the behavioural ranges

of the performance metrics used in the definition of rules 1-6. The range of the performance

metrics shown do not include the extreme values.
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Figure S34. Application of the soft rules for the nine combinations of rmgra−crop and rwarm (for

fsurplus = 1 and the first point source realization) for Hemelingen: (a) Cumulative Distribution

Function (CDF) of the performance metrics for in-stream loading (Jout) and concentration (Cout)

in the initial simulation ensemble (100,000 realizations) and (b) percentage of realizations of

the initial ensemble identified as behavioural (pbehav) by successive application of the soft rules

based on performance metrics for loading (Jout, rules 1-3) and concentration (Cout, rules 4-6),

and based on the source zone N content for year 2009 (Ms, rule 7). Panel (a) reports the three

performance metrics used in the definition of rules 1-6 (the relative bias RBIAS, the variability

error STDerr and the Pearson correlation coefficient ρ) and the Kling-Gupta efficiency (KGE ).

The grey shaded areas and grey numbers on the x-axis indicate the behavioural ranges of the

performance metrics used in the definition of rules 1-6. The range of the performance metrics

shown do not include the extreme values.
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Figure S35. Application of the soft rules for the three realizations of fsurplus (for rmgra−crop = 1,

rwarm = 0.5 and the first point source realization) for Hemelingen: (a) Cumulative Distribution

Function (CDF) of the performance metrics for in-stream loading (Jout) and concentration (Cout)

in the initial simulation ensemble (100,000 realizations) and (b) percentage of realizations of

the initial ensemble identified as behavioural (pbehav) by successive application of the soft rules

based on performance metrics for loading (Jout, rules 1-3) and concentration (Cout, rules 4-6),

and based on the source zone N content for year 2009 (Ms, rule 7). Panel (a) reports the three

performance metrics used in the definition of rules 1-6 (the relative bias RBIAS, the variability

error STDerr and the Pearson correlation coefficient ρ) and the Kling-Gupta efficiency (KGE ).

The grey shaded areas and grey numbers on the x-axis indicate the behavioural ranges of the

performance metrics used in the definition of rules 1-6. The range of the performance metrics

shown do not include the extreme values.
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Figure S36. Cumulative distribution function (CDF) of the model parameters in the be-

havioural parameter sample, which was obtained after applications of the soft rules for the ten

N point sources realizations (for the baseline N surplus scenario, i.e. fsurplus = 1, rmgra−crop =

1 and rwarm = 0.5), and prior CDF in the original parameter sample of size 100,000 (grey line),

which is the same for all sets of simulations, for Hemelingen. The baseline scenario (i.e., first

point source realization) is reported with a black solid line.
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Figure S37. Cumulative distribution function (CDF) of the model parameters in the be-

havioural parameter sample, which was obtained after applications of the soft rules for the nine

combinations of rmgra−crop and rwarm (for the baseline N surplus scenario, i.e. fsurplus = 1, and

the first point source realization), and prior CDF in the original parameter sample of size 100,000

(grey line), which is the same for all scenarios, for Hemelingen. The numbers in the legend

indicate the value of the ratio of N surplus of agricultural permanent grassland to N surplus

of cropland (rmgra−crop) and the ratio of the value of the agricultural N surplus in 1850 to the

value in 1950 (rwarm) respectively for the nine N surplus realizations. The baseline scenario (i.e.,

rmgra−crop = 1 and rwarm = 0.5) is reported with a black solid line.
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Figure S38. Cumulative distribution function (CDF) of the model parameters in the be-

havioural parameter sample, which was obtained after applications of the soft rules for the three

realizations of fsurplus (for rmgra−crop = 1, rwarm=0.5, and the first point source realization), and

prior CDF in the original parameter sample of size 100,000 (grey line), which is the same for

all scenarios, for Hemelingen. The numbers in the legend indicate the value of the ratio of N

surplus of agricultural permanent grassland to N surplus of cropland (rmgra−crop) and the ratio

of the value of the agricultural N surplus in 1850 to the value in 1950 (rwarm) respectively for

the nine N surplus realizations. The baseline scenario (i.e., fsurplus = 1) is reported with a black

solid line.
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Figure S39. PAWN sensitivity indices (KSmean, estimated as the mean value of KS statistic

across all conditioning intervals) of the nine ELEMeNT parameters, the three parameters intro-

duced to generate alternative N surplus realizations (fsurplus, rmgra−crop, and rwarm), and the N

point sources realization (PS ), for the WRB at Hemelingen. Sensitivity indices are reported with

respect to four model outputs evaluated over the period 1960–2015, namely the average source

zone N storage Ms, the average subsurface N storage Msub, the cumulative change in source zone

N storage ∆Ms, and the cumulative change in subsurface N storage ∆Msub. The horizontal black

lines indicate the bootstrap mean value of the sensitivity indices, while the grey boxes represent

the 95% bootstrap confidence intervals. The bootstrap confidence intervals are very small (the

grey boxes are very narrow), since the size of the sample used to calculate the PAWN indices is

very large.
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Figure S40. PAWN sensitivity indices (KSmax, estimated as the maximum value of KS

statistic across all conditioning intervals) of the nine ELEMeNT parameters, the three parameters

introduced to generate alternative N surplus realizations (fsurplus, rmgra−crop, and rwarm), and the

N point sources realization (PS ), for the WRB at Hemelingen. Sensitivity indices are reported

with respect to four model outputs evaluated over the period 1960–2015, namely the average

source zone N storage Ms, the average subsurface N storage Msub, the cumulative change in

source zone N storage ∆Ms, and the cumulative change in subsurface N storage ∆Msub. The

horizontal black lines indicate the bootstrap mean value of the sensitivity indices, while the grey

boxes represent the 95% bootstrap confidence intervals. The bootstrap confidence intervals are

very small (the grey boxes are very narrow), since the size of the sample used to calculate the

PAWN indices is very large.
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Figure S41. Unconditional Cumulative Distribution Functions (CDF, red line) and conditional

CDFs (grey lines) of the change in source zone N storage over the period 1960–2015 (∆Ms), for

the nine ELEMeNT parameters, the three parameters introduced to generate alternative N-

surplus scenarios and the N point sources realization (PS ). These CDFs are used in the PAWN

sensitivity analysis method. The colorbars report the average value of the parameters over each

conditioning interval.
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Figure S42. Unconditional Cumulative Distribution Functions (CDF, red line) and conditional

CDFs (grey lines) of the change in subsurface N storage over the period 1960–2015 (∆Msub), for

the nine ELEMeNT parameters, the three parameters introduced to generate alternative N-

surplus scenarios and the N point sources realization (PS ). These CDFs are used in the PAWN

sensitivity analysis method. The colorbars report the average value of the parameters over each

conditioning interval.
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Figure S43. Unconditional Cumulative Distribution Functions (CDF, red line) and conditional

CDFs (grey lines) of the average source zone N storage over the period 1960–2015 (Ms), for the

nine ELEMeNT parameters, the three parameters introduced to generate alternative N-surplus

scenarios and the N point sources realization (PS ). These CDFs are used in the PAWN sensitivity

analysis method. The colorbars report the average value of the parameters over each conditioning

interval.
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Figure S44. Unconditional Cumulative Distribution Functions (CDF, red line) and conditional

CDFs (grey lines) of the average subsurface N storage over the period 1960–2015 (Msub), for the

nine ELEMeNT parameters, the three parameters introduced to generate alternative N-surplus

scenarios and the N point sources realization (PS ). These CDFs are used in the PAWN sensitivity

analysis method. The colorbars report the average value of the parameters over each conditioning

interval.


