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Abstract

Thematic map creation is a process that implies several steps to be accomplished regardless of the type of the map to be

produced, starting from data collection, through data exploitation and ending with maps publication as print, image, and GIS

format. An example are geological, lithological, and geomorphological maps, in which most of the highest time-consuming tasks

are those related to the discretization of single objects by identifying a set of unique characteristics that describe uniquely those

objects. Commonly these tasks introduce interpretative biases due to the different experience of the mappers who’s performing

it. In this setting, Deep Learning Computer Vision techniques could play a key-role but lack the availability of a complete set of

tools specific for planetary mapping. The aim of this work is to develop a comprehensive set of ready-to-use tools for landforms

mapping, in which users have full access to the workflow and over all the processes involved, granting complete control and

customization capabilities. In this work are presented both the developed tools and the approach that has been used and that

is based on consolidated Deep Learning methodologies and open-source libraries commonly applied in other fields of Computer

Vision. The toolset and the approach presented have been tested in the science case of mapping sinkhole-like landforms on

Mars and results are presented.
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Abstract 15 

Thematic map creation is a process that implies several steps to be accomplished regardless of the type of the map to 16 

be produced, starting from data collection, through data exploitation and ending with maps publication as print, image, 17 

and GIS format. An example are geological, lithological, and geomorphological maps, in which most of the highest 18 

time-consuming tasks are those related to the discretization of single objects by identifying a set of unique 19 

characteristics that describe uniquely those objects. Commonly these tasks introduce interpretative biases due to the 20 

different experience of the mappers who's performing it.  In this setting, Deep Learning Computer Vision techniques 21 

could play a key-role but lack the availability of a complete set of tools specific for planetary mapping. The aim of 22 

this work is to develop a comprehensive set of ready-to-use tools for landforms mapping, in which users have full 23 

access to the workflow and over all the processes involved, granting complete control and customization capabilities. 24 

In this work are presented both the developed tools and the approach that has been used and that is based on 25 

consolidated Deep Learning methodologies and open-source libraries commonly applied in other fields of Computer 26 

Vision. The toolset and the approach presented have been tested in the science case of mapping sinkhole-like 27 

landforms on Mars and results are presented. 28 

Plain Language Summary 29 

The creation of maps is a complex set of several tasks that, regardless of the type of the map, are often very time-30 

consuming. For instance, all the occurrences of a specific object, natural or man-made in a defined area, needs to be 31 

identified, drawn and classified manually; a work that can be easily accomplished for large object in small areas but 32 

may be unmanageable in cases such the mapping of small landforms on the entire surface of a planet or moon. 33 

Nowadays, especially on Earth, several of the above tasks takes adavantages of highly specialized computer codes 34 

based on  Deep Learning systems. Such codes are almost never ready-to-use, and require higher knowledge in 35 

computer programming languages. In this work we present the first release of a novel open-source computer software, 36 

almost ready-to-use, that provides all the instruments for creating or directly using custom Deep Learning models for 37 

automatic landforms mapping. We present also the results obtained by trying this software using data of Mars’s surface 38 

with the aim of mapping sinkhole-like landforms. 39 

1. Introduction 40 

The exploration of terrestrial planets in the Solar System was and still is performed mainly on data that cover almost 41 

all the electromagnetic spectrum, acquired over the last century by several types of orbiters, rovers, and landers. 42 

Planetary data volumes are constantly increasing both in quality and quantity, with the contribution of both public and 43 

private entities. 44 

Imagery has always been the primary resource for researchers in planetary sciences, especially for geologists and 45 

geomorphologists. In the last two decades the progress in the development of very high-resolution image sensors gave 46 

access to the community to images with a spatial resolution in the order of centimeters. Data collected by High 47 

Resolution Imaging Science Experiment (HiRISE) instrument, on board of the Mars Reconnaissance Orbiter (MRO)  48 

(McEwen et al., 2007) or by the Narrow Angle Camera (NAC) experiment, on board of Lunar Reconnaissance Orbiter 49 

(LRO) (Robinson et al., 2010), have been used in several works related on their planetary body. 50 
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These include not only publications related to specific surface’s features such as the impact of megabreccia (Grant et 51 

al., 2008), crater counting and morphometry (Benedix et al., 2020; Chen et al., 2017; Robbins & Hynek, 2014; Servis 52 

et al., 2020; Watters et al., 2015), boulder counting (Le Mouélic et al., 2020; Sargeant et al., 2020; Watkins et al., 53 

2017)  characterization of polar layered deposits (Milkovich et al., 2009), identification of the source of ice blocks in 54 

the north polar cap (Su et al., 2021) but also comparative analyses and numerical modeling (Guimpier et al., 2021), 55 

analyses of Mars’s surface processes (Guallini et al., 2018; Luzzi et al., 2020) including skylight, pits (Barlow et al., 56 

2017; Cushing et al., 2015; Michikami et al., 2014; Xiao et al., 2014), pit chains (Wyrick, 2004) ,  and more advanced 57 

application such as Structure-from-Motion (SfM), (Le Mouélic et al., 2020; Micheletti et al., 2015; Muller et al., 2021; 58 

Y. Wang et al., 2021), Shapes-from-Shading (SfS) (Alexandrov & Beyer, 2018; Lohse et al., 2006), Machine Learning 59 

for object detection and classification (Barrett et al., 2022; Dundar et al., 2019; Hipperson et al., 2020, 2020; Hu et 60 

al., 2021; Lee, 2019; Nodjoumi et al., 2021; Palafox et al., 2017; Rashno et al., 2017; Silburt et al., 2019; Wilhelm et 61 

al., 2020). 62 

This leap in image quality and quantity has introduced new challenges for researcher since the higher resolutions 63 

brought the great advantage of being able to analyze the surface of those planets with unprecedented details, retrieving 64 

useful information of various field such the characterization of Martian and lunar pits (Cushing et al., 2015; Haruyama 65 

et al., 2009; Kaku et al., 2017; Sharma & Srivastava, 2021; Wyrick, 2004; Xiao et al., 2014) or the Recurring Slope 66 

Linae (RSL) (McEwen et al., 2021), but with several downsides, for instance, larger image size ad numbers of 67 

acquisitions available may create problems for large scale processing due to the computational power requirements. 68 

Map production is a complex set of tasks performed by teams and groups of researchers specialized in single to 69 

multiple fields that combine their knowledge in order to describe and characterize the surface of a planet 70 

(‘Geomorphological Mapping’, 2013; Napieralski et al., 2013; Nass et al., 2021). Depending on the type of the map 71 

in production, these tasks may vary a lot but at least four major focal tasks are shared across all map types: a) data 72 

collection, b) data exploitation , c) map creation, d) map dissemination (Naß et al., 2017, 2021). Among those major 73 

tasks, the most time-consuming sub-tasks are the definition of the standards for the map production and dissemination 74 

(Hare et al., 2018) and the proper digital creation of the map elements by manual drawing all the features of the area 75 

of interest using GIS software. For instance, in geomorphological mapping, the main target is the identification of 76 

landforms. With the term landform, is intended a topographic expression of the surface of a planetary body that can 77 

be described by at least seven parameters, shape, size, height, texture, pattern, tone/hue, location/association (Tempfli 78 

et al., 2009) that combined generate a unique object while Multiple landforms in an area describe a terrain (Bridge & 79 

Demicco, 2008; DiPietro, 2013). See Table S1 in supporting information. 80 

Genetic mechanisms are a complex combination of interconnected processes and forces, some of which are more wide 81 

and planetary-scale dependent. For instance gravity usually drives the size of different morphologies such as lava 82 

tubes and rilles on the Moon, Mars and Earth (Bardabelias et al., 2020; Chappaz et al., 2017; Cruikshank & Wood, 83 

1972; Greeley, 1971; Haruyama et al., 2009; Horvath et al., 2020; Kaku et al., 2017; Léveillé & Datta, 2010; F. Sauro 84 

et al., 2020; Whitten & Martin, 2019). Other mechanisms are more related to the presence of specific environmental 85 

and atmospheric characteristics and may drive different subtypes of a common landform type.  86 
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Among the many examples, landforms such as landslides (Hungr et al., 2014) and sinkholes (Parise, 2019) found on 87 

Mars (Bardabelias et al., 2020; Cushing et al., 2007; De Blasio, 2011; Guimpier et al., 2021; Hooper & Smart, 2013; 88 

Sharma & Srivastava, 2021), may have some formation and driving mechanisms in common to their respective 89 

landforms found on  Earth (Acharya et al., 2006; Díaz Michelena et al., 2020; Gutiérrez et al., 2008; Hungr et al., 90 

2014; Jiang, 2020; Parise, 2019; U. Sauro, 2016; Van Den Eeckhaut et al., 2007; Youssef et al., 2012). Those 91 

mechanisms and settings may be related to similar surface and subsurface characteristics and properties such as the 92 

geological settings, type of substratum, the average slope, and the solar exposure of the area. 93 

Conversely, the presence of liquid-water seasonal precipitation and groundwater circulation, on landslides and 94 

sinkholes found on Earth is not only a driving mechanism but may also act as a trigger for the process (Allemand et 95 

al., 2011; Alonso et al., 2010; Cahalan & Milewski, 2018; Díaz Michelena et al., 2020; Duhart et al., 2019; Gutiérrez 96 

et al., 2008; Jiang, 2020; Lacerda et al., 2004; Lin et al., 2004; Van Den Eeckhaut et al., 2007; Youssef et al., 2012), 97 

while it is still under debate on those found on Mars (De Blasio, 2011; Guimpier et al., 2021; Hooper & Smart, 2013; 98 

Salese et al., 2019; Smith et al., 2006). 99 

Several types of terrains and thus landforms exist, natural and artificial, some are peculiar to specific areas or even 100 

planets or moons, others can be found in almost all planetary bodies of the Solar System (Hargitai & Kereszturi, 101 

2015a). 102 

In general terms, the occurrence of specific landforms are deeply connected to the geology of the area, the past and 103 

present atmospheric processes and, at least on Earth, by anthropological activities (this applies to a certain extent also 104 

to robotic or human landing sites) (Brierley et al., 2021; James et al., 2013; Slaymaker et al., 2021). Studying those 105 

features is essential to better know the relations between those three main major processes and characteristics and the 106 

evolution of the area. 107 

Identification, classification and description of landforms is done by mappers using multiple data types and sources 108 

such as images in various spectra, previous maps, digital elevation models and so on (Luzzi et al., 2020; Parente et 109 

al., 2019; Sivakumar et al., 2017). The time necessary to accomplish this specific sub-task is strictly dependent on the 110 

scale of the area of interest and scale of the features in it since wider areas and smaller features may lead to extremely 111 

high workloads. The final map product is a fundamental element to consider while estimating the complexity of the 112 

map production work. This is due to the wide diversity of map products available, and thus to the parameters to be 113 

defined and the data to be collected and processed 114 

Indeed, geological maps takes into account spatial-temporal relations between surface and subsurface’s features, their 115 

compositions and the past and present geological processes involved (Martinot et al., 2018; Naß & van Gasselt, 2021; 116 

Pondrelli et al., 2020; Sun & Stack, 2020; Tsibulskaya et al., 2020), while geomorphological maps takes the same 117 

parameters at a higher level, more related to the visual properties derived by the acquired images like colors, texture, 118 

patterns and so on (Kumar et al., 2019; Tirsch et al., 2021; Tsibulskaya et al., 2020; B. Wu et al., 2020). 119 

In addition, regardless of the type of map, the data collection steps can be very time-consuming tasks, beyond being 120 

also complex, since most of the available data needs to be pre-processed prior to the proper analysis. For example, 121 

there are more than 1.8 million products of HiRISE acquisitions that are roughly more than 49 Terabyte for a single 122 

imager that is still acquiring data at the time of writing. 123 
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In this framework, Deep Learning computer vision methodologies, are robust and widely accepted and applied both 124 

on Earth for crops monitoring and management (Grace et al., 2021), land use (Rousset et al., 2021; Talukdar et al., 125 

2020), risk management and assessment (Ghorbanzadeh et al., 2019; Liu et al., 2004; Merghadi et al., 2020; Paul & 126 

Ganju, 2021; Tien Bui et al., 2016; Yousefi et al., 2020); and on other Solar System planetary body (Barrett et al., 127 

2022; Dundar et al., 2019; Hipperson et al., 2020, 2020; Lee, 2019; Palafox et al., 2017; Rashno et al., 2017; Stepinski 128 

et al., 2007; S. Wang et al., 2020; Wilhelm et al., 2020); thus may be play a crucial role in exploiting such amount of 129 

data. 130 

The objectives of these methodologies are mainly of four types listed below and shown in Figure 1. 131 

 132 
Figure 1. Comparison between image recognition, image segmentation, object detection and instance segmentation 133 

for the specific case of geomorphology mapping. 134 

The first methodology displayed in Figure 1 is the Image Recognition (ImR) which classifies the whole image contents, 135 

the second, called Image Segmentation (ImS), classifies each pixel of the image and create segments of adiacent pixels 136 

with contiguous classification. The third technique, the Object Detection (OD), locate the objects using bounding 137 

boxes and classifies them separately, while the fourth, the Instance Segmentation (InS) is a combination of the second 138 

and the third method, obtaining the segmentation of only the objects identified by the detection. 139 

Those architectures may require a tremendous amount of well labeled training data in order to generalize properly the 140 

model and avoid overfitting and underfitting problems (Zhang et al., 2021). More detailed descriptions are available 141 

in the supporting information Text S1. 142 

Such data, are not always ready-to-use for labeling, mostly due to compatibility issues between labeling software, 143 

deep learning software and data itself. More specifically, these issues are related mainly to data size and format, and 144 

therefore pre-processing tasks have a key role and are mandatory for any approach especially if georeferencing 145 
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information is required. A more detailed overview is provided in the supporting information Text S3 along with 146 

detailed pre-processing steps. 147 

Nowadays, Deep Learning methodologies are widely and commonly used as a solution to solve several daily problems, 148 

for instance facial recognition features of social networks, Google images search, security surveillance and much 149 

more, but also specific problems relative to Earth Observation such as land coverage, crops vegetation monitoring, 150 

early warning systems and other (Brust et al., 2019; Hoeser & Kuenzer, 2020; Miyamoto et al., 2018; Redmon et al., 151 

2016; Szegedy et al., 2013; Y. Wu et al., 2019a, 2020; Zhao et al., 2019). 152 

In the last two decades a lot of efforts have been made to use Deep Learning to solve planetary mapping problems on 153 

Earth (Liu et al., 2004; Paul & Ganju, 2021; Stepinski et al., 2007; Talukdar et al., 2020) as like as on Mars (Hipperson 154 

et al., 2020; Nagle-McNaughton et al., 2020; Palafox et al., 2017; Wilhelm et al., 2020) and the Moon (Hu et al., 2021; 155 

Silburt et al., 2019; S. Wang et al., 2020) exploring almost all architectures and algorithms with very promising results. 156 

In some cases the code used for the analysis is publicly available (Aye et al., 2019; Barrett et al., 2022; Lee, 2019; 157 

Silburt, 2017/2019; Wilhelm et al., 2020) and may be used to create preliminary map products. 158 

The results obtained with the above-mentioned codes are typically plain images with superimposed the bounding 159 

boxes or the segmented area and are in non-georeferenced raster file type formats such as png or jpeg. Those type of 160 

results need to be georeferenced before being further processed in GIS software to vectorize manually all the objects 161 

or segments and finally obtain a vectorial map that can be published in a geospatial data format such as OGC 162 

Geopackage. This newer file format is specific for transferring geospatial information similarly to ESRI shapefiles 163 

(ESRI technical document, 1998), but with higher portability and compactness, moreover is an open format and 164 

standard-based (Open Geospatial Consortium, 2021). 165 

For instance, segmented areas such those that represent geomorphological units, need to be manually digitized as 166 

individual shapes in GIS software, with the manual conversion and assignment of the properties of the units in the 167 

image.  168 

In this setting, geologists and geomorphologists, not familiar with programming languages and interested only in 169 

workflows and tools may have a lot of difficulties understanding and using complex machine learning approaches that 170 

require higher knowledge in computer science, especially if complete and ready-to-use tools are not available. 171 

In this work is presented a first complete working release of DeepLandforms, a set of comprehensive and ready-to-172 

use tools specifically developed for planetary mapping. 173 

This toolset is a follow-up of the work  and tool (Nodjoumi et al., 2021) based on object detection methodology and 174 

focused on the usage of You Only Look Once version 5 (YOLOv5) framework (Pham et al., 2020; Ultralytics/Yolov5, 175 

2020/2021) to detect sinkhole-like landforms on Mars, obtaining a geopackage containing, the centroid coordinates 176 

of the bounding boxes, confidence level and classification class for each of the detections. In Figure 2 the map showing 177 

both the MGC^3 catalog and the object detection results. 178 
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 179 

 180 

Despite centroid coordinates could be considered a starting point for proper mapping, there is the lack of the spatial 181 

dimensionality thus providing only a general localization of the features, even using the coordinates of the detection 182 

boxes there is still the lack of a precise localization and definition of the shapes of the landforms. To further improve 183 

the previous work, a change of architecture was mandatory, moving from object detection to instance segmentation 184 

architecture. 185 

The instance segmentation library selected for this work is the Detectron2 Library, developed and periodically 186 

maintained by the Facebook AI Research team, specialized in image segmentation tasks through R-CNN networks. 187 

See supporting information Text S2 for additional details on Detectron2 Library. 188 

In this work, the Mask R-CNN network has been considered the only main network since it is specific for object 189 

instance segmentation tasks (He et al., 2018). 190 

Mask R-CNN extends Faster R-CNN, class labels and bounding boxes, by adding a third output, the objects masks 191 

(He et al., 2018; Massa & Girshick, 2018). A mask can be considered as a method of describing an image in boolean-192 

based representation by using specific filters or functions, meaning that the content of the image will be converted in 193 

Figure 2. Comparison of MGC^3 catalog and results obtained by using Deep Learning object detection 

(DeepLandforms-YOLOv5) on a similar dataset (Nodjoumi et al., 2021). 
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only two possible values (0-1, on-off, true-false, and so on). See supporting information Text S5 and Figure S1. Each 194 

mask is then characterized by internal and external values and can be localized by using image pixel coordinates. 195 

 196 

2. DeepLandforms 197 

DeepLandforms has been developed with the aim of creating a comprehensive set of tools to support a complete 198 

workflow for mapping landforms using georeferenced data and producing results in vectorial format. Flowchart of the 199 

workflow can be visualized in Figure 3. 200 

 201 
Figure 3. Flowchart of the complete workflow on which is based the DeepLandforms toolset. 202 

The toolset is composed by four major components, all based on docker open platform (Docker Overview, 2021; 203 

Merkel, 2014), which is a state of the art, well-known, open-source platform for developing, sharing and running 204 
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applications as a sandbox service called containers, with full support for NVIDIA GPU (CUDA) computing (Luebke, 205 

2008). More information on docker available on supporting information Text S5. 206 

The first component is the ImageProcessingUtils docker container (Nodjoumi, 2021a), a jupyter notebook tool 207 

developed for resize, crop, remove black borders, tile and convert images from CUB (Anderson Jeff & Deborah Lee 208 

Soltesz, 2003), jpeg2000 and GeoTiff file formats to GeoTiff, jpeg and png file formats maintain georeferencing 209 

information in file metadata for GeoTiff or in an ancillary world files for jpeg and png. 210 

The second component, is Labelme docker container, an open-source tool with graphical user interface for creating 211 

segmentation labels (Wada, 2021). 212 

The third component is DeepLandforms docker container which includes two jupyter notebook, both built on top of 213 

Detectron2 library, DeepLandforms-Training and DeepLandforms-Segmentation. More detailed description are 214 

provided in supporting information Text S6. 215 

The fourth component is Tensorboard docker container, a simple utility for monitoring the training process. 216 

3. Materials and Methods 217 

3.1. Data 218 

The data used in this work are mainly images acquired by image sensors operating in the visible (VIS) and Near 219 

InfraRed (NIR) spectrums on board of probes orbiting Mars and the Moon as shown in Table 1. 220 

 221 

Orbiter Target Instrument Sensor type Ground  

Resolution 

Images 

Mars 

Reconnaissance 

Orbiter (MRO) 

Mars High Resolution Image 

Science Experiment 

(HiRISE) 

Panchromatic 

VIS+NIR 

Up to .30 m/pixel ~1000 

Table 1. The dataset used for training and testing purposes is a combination of three subset samples of global coverage 222 

major datasets. 223 

This dataset is composed of images by different instruments and space missions downloaded both as Reduced Data 224 

Record (RDR) and Experiment Data Record (EDR) format from public space archives such as PDS Geosciences Node 225 

Orbital Data Explorer (ODE) (PDS Geosciences Nodes, 2021). EDR images have been processed initially to produce 226 

RDR version using USGS Integrated Software for Imagers and Spectrometers (ISIS) (Laura et al., 2021) and then 227 

converted into jpeg2000 (JP2) file format or GeoTiff file format using ImageProcessingUtils container. 228 

Computational requirements of Machine Learning and more in particular of Deep Learning architectures for Computer 229 

Vision, apart from the complexity of the architecture, are strictly related to image properties, image bands, resolution 230 

(size), dataset size, that have a great impact especially during training of the model. On the other hand, the impact on 231 

computation and resources during the usage of the pre-trained model is lower. In comparison, the Mars and Moon 232 

high-resolution images from HiRISE and LROC respectively, are enormous in terms of data size, reaching easily 233 

50000pixel height resolution at 0.3m/pixel ground resolution (on average). These require a lot more processing in 234 

order to make them compatible with Deep Learning tasks or to reduce the computational requirements. 235 
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A simple and easy approach would be the direct resize of these images but is not always possible because there is the 236 

risk of loose object’s unique details or even worse introduce apparent similarity between two different objects.  237 

A better approach is to divide the images into desired resolution tiles, in this case there is no detail loss but the number 238 

of images to be filtered out of irrelevant ones and then labeled increases proportionally of image original and desired 239 

resolution. E.g., HiRISE PSP_004715_1855_RED image is 30137x76047 pixels, dividing it into ~512x512 pixels 240 

tiles results in more than ~8700 tiles. Even tiling into larger tiles is not always a feasible approach. Moreover, such 241 

tiling may result in the loss of contextuality of the objects or introduce difficulties during the labeling tasks since the 242 

object may result splitted into multiple tiles. 243 

In this situation it is advised to define the requirements of the analysis and evaluate compromises between the 244 

approaches of Table 2. 245 

Requirements Limits Compromises Approach 

Maintain context Scaling to very low resolution may lead 

to huge loss of details 

Limit the scaling to maintain 

discretization capabilities 

Scaling  

approach 

Maintain high 

discretization and 

avoid object 

splitting 

Larger images produce several tiles 

proportional to original image and tiles 

resolution, objects may results split 

across several tiles 

Limit the dimension of the tiles 

to avoid object splitting and 

number of tiles low 

Tiling  

approach 

 246 

Table 2. Comparison between approaches, scaling approach may be better for analysis of features at regional scale, 247 

while tilin approach may be preferred for smaller landforms. 248 

In the presented use case, a mixed approach has been used: images spatial resolution have been scaled down to 5 249 

m/pixel, then the resulting images have been sliced into tiles with 1024 pixel max width or height. To achieve these 250 

specific tasks, the docker container named ImageProcessingUtils. 251 

3.2. Masks world coordinates 252 

As mentioned in the introduction, all results obtained by Mask-R-CNN are image masks described with pixel 253 

coordinates. Therefore it is necessary to convert in world coordinates. This operation has been accomplished by 254 

developing a function based on a Python library named Rasterio (Gillies & others, 2021) which contains specific 255 

modules for spatial data manipulation by using each image affine transform. See Text S4 and Figure S1 in supporting 256 

information. 257 

4. Results 258 

Hereby are described the results obtained after re-training Mask-R-CNN models on a custom dataset of HiRISE 259 

images containing pit/skylights landforms.  260 

All the configuration parameters, the components of DeepLandforms, including the descriptions of the data pre-261 

processing and labeling components, the training and inference jupyter notebooks and the types of results obtainable 262 

are available in supporting information Text S3, S4, S5, S6, S7, Table S3, S4, S5. 263 
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4.1. Pits/Skylight use-case  264 

Despite this toolset is not specific to any kind of landforms, the target used as test landform consist of pits/skylights 265 

with a comparison with craters. 266 

Craters are almost circular to elongated depressions caused by an impact of an object. Dimensions may vary a lot 267 

across the solar system and are guided by several aspects such as the presence of an atmosphere, the geology of the 268 

area, the velocity and trajectory of the object, the gravity of the planet and more. Commonly, they are characterized 269 

by a bulged rim, shallow to steep walls, radial eject marks and a small summit at the center (Evans, 2012; Hargitai & 270 

Kereszturi, 2015b; Michikami et al., 2014; Mouginis-Mark, 2004). These characteristics are more visible in craters 271 

that are newer, larger, or more in general, that were less subject to recent or present erosional processes, e.g. 272 

atmospheric ones in the case of Mars. In later stages of erosion and alteration some characteristics tend to be obliterated 273 

or smoothed, resulting in morphologies that resemble pits or skylights. 274 

Pit and skylight are depressions of the terrain characterized by an elongated to almost circular shape, flat rims and 275 

bottom, walls ranging from almost flat to very steep and in some cases sub-vertical (Cushing et al., 2015; Cushing & 276 

Titus, 2010; F. Sauro et al., 2020; U. Sauro, 2016; van der Bogert & Ashley, 2015; Wyrick, 2004). On Earth are 277 

commonly caused by the collapse of the top of a subsurface cavity, or by chemical or mechanical erosion of the 278 

subsurface sediments, while on other planetary bodies such Mars and the Moon, their formation mechanisms are still 279 

debated. As mentioned before, pits and skylights may have different shapes and dimensions on Earth and other 280 

planetary bodies (Cushing et al., 2015; Hong et al., 2015; F. Sauro et al., 2020; Sharma & Srivastava, 2021; Whitten 281 

& Martin, 2019), yet maintain almost all the characteristics. The classification proposed Figure 4, is an expansion of 282 

the classification proposed by Cushing et al (Cushing et al., 2015) and is based only on a qualitative morphological 283 

analysis based on visual appearances of the features characteristic of pits and skylight, without taking into account 284 

morphometric properties.  285 

  286 
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 287 

The most consistent and peculiar characteristic among pits/skylights that almost always differ greatly from craters is 288 

the presence of a raised rim. As previously mentioned, in craters it’s common to find bulge all along the rim, or in a 289 

specific direction that usually correspond to the impact trajectory, while rims in pits and skylights are almost 290 

Figure 4. Main types of pits/skylights that can be identified on Mars, also used as classes for labeling training dataset, 

expanded from a previous work (Nodjoumi et al., 2021). 
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completely absent or associated with previously existent landforms that can be visible also in the nearby of the pits 291 

and skylights.  292 

The best method to evaluate the differences between pit and crater rims, is to manually plot and evaluate Digital 293 

Terrain Model (DTM) profiles but, since in most cases DTMs are not always available, it is possible to evaluate them 294 

by plotting a profile along the maximum illumination direction of visible images, obtaining a pixel intensity profile 295 

that correspond to brightness levels of the pixels, with digital number (DN) with values ranging from 0 (black) and 296 

255 (white). Although 16-bit images could provide major details in the shadowed areas, 8-bit images were preferred 297 

as their 16-bit counterpart increases computational requirements dramatically and are not completely implemented yet 298 

in common Deep Learning techniques for object detection and segmentation.  This method is an approximated and 299 

indirect estimation of the orientation of the surface and assumes that the substrate is almost homogeneous. Low 300 

brightness values correspond to shadowed areas with solar incidence angle near 90°, while high brightness values 301 

correspond to lower solar incidence angle. The solar incidence angle is the angle between the solar rays and the normal 302 

on a surface and has an absolute range between 0° and 90° (Kalogirou, 2009). This approach is also the core of other 303 

works that have the same aim of identifying pits on other Solar System rocky bodies (Lohse et al., 2006; Robinson et 304 

al., 2017). 305 

Craters brightness profiles can be created using QGIS profile plugin as shown in Figure 5. 306 

Profiles can be divided in six main sections, in which there are almost two pairs of paired high peak-bottom brightness 307 

sections corresponding to the area of morphological bulge’s illuminated and shadowed faces. Those sections can be 308 

described as follows: 309 

1) Pre-rim: brightness is almost uniform and visually similar to the surroundings of the landform. 310 

2) 1st Sun-faced rim: inner side of the pit exposed to direct sun’s rays opposite of section 2. Divided in two sub-311 

sections: 312 

a. Lower ramp: brightness increases gradually towards the rim with values up to those of section 1. Not 313 

always present in conjunction with 3b. 314 

b. Higher ramp: brightness increases abruptly, with values equal or major than those of section 1, meaning 315 

that the solar incidence angle is decreasing. Not always present in conjunction with 3a. 316 

3) 1st anti-solar rim: side of 1st bulge not exposed directly to sunlight, brightness decreases with values lower 317 

than section 1, depending on inclination of the internal bulge and the landforms. Divided in two subsections: 318 

a. Penumbra: brightness decreases uniformly. Non always present in conjunction with 3b. 319 

b. Umbra: brightness decreases abruptly, usually completely dark or with DN values near to 0, those values 320 

may slightly increase moving near the next rim or increase abruptly. Non always present in conjunction 321 

with 3a. 322 

4) 2nd sun-faced rim: side of the 2nd bulge, divided in 4a and 4b, similarly to section 2a and 2b. 323 

5) 2nd anti-solar rim: side of the 2nd bulge, divided in 5a and 5b, similarly to section 3a and 3b. 324 

Post-bulge area: brightness increases up to levels similar to section 1. 325 
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 326 

Pits/Skylights brightness profiles, created using QGIS profile plugin, as shown in Figure 6. Additional example in 327 

Figure S3 in supporting information. 328 

The profiles are divided in 4 main sections, described as follows: 329 

1) Pre-pit: brightness is almost uniform with values similar to the surroundings of the landform. 330 

2) Funnel: brightness decreases with values lower than section 1, depending on inclination of the morphological 331 

slope of the surfaces. Divided in two sub-sections: 332 

a) Penumbra: brightness decreases uniformly. In some cases, brightness may drop abruptly then remaining 333 

almost constant or decreasing uniformly with values always higher than DN 0. Non always present in 334 

conjunction with 2b. 335 

Figure 5. Comparison of brightness and DTM profiles for a crater on ESP_070298-ESP_070865 stereo pair, red 

channel. In blue, an attempt to identify the correspondence of the brightness sections on a DTM derived from 

photogrammetry of HiRISE stereo pair. 
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b) Umbra: brightness decreases abruptly, usually completely dark or with DN values near to 0, those values 336 

may slightly increase moving near the next rim or increase abruptly. Non always present in conjunction 337 

with 2a. 338 

3) Sun-faced rim: inner side of the pit exposed to direct sun’s rays opposite of section 2. Divided in two sub-339 

sections: 340 

a) Lower ramp: brightness increases gradually towards the rim with values up to those of section 1. Not 341 

always present in conjunction with 3b. 342 

b) Higher ramp: brightness increases abruptly, with values equal or major than those of section 1, meaning 343 

that the solar incidence angle is decreasing. Not always present in conjunction with 3a. 344 

4) Post-pit area: intensity levels become similar or identical to those of section 1.  345 

 346 

Figure 6. Comparison of brightness and DTM profiles for a Type-1 on ESP_052638_2020-ESP_060379_2020 stereo 347 

pair, red channel. In blue, an attempt to identify the correspondence of the brightness sections on a DTM derived from 348 

photogrammetry of HiRISE stereo pair. In yellow, the portion of the DTM profile interpolated by the Socet Set ((c) 349 

BAE Systems) software. The interpolation is due to lack of usable data in both the images processed using 350 

photogrammetry (HiRISE | About HiRISE Digital Terrain Models, 2021). 351 
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In order to validate all the packages, tools and the complete workflow, an intensive test has been performed on the 352 

above-mentioned pit, skylights landforms, including a generic set of craters for references and for testing the capability 353 

to discriminate those whose appearance resemble some types of pits. 354 

The dataset consists of 89 HiRISE RDR red channel images, see supporting information Table S5. The use of only 355 

red channel images is due to the swath of 6 km cross-orbit and 20 km along-orbit at a nominal 300 km nominal orbit. 356 

In comparison the Blue-Green and NIR images have a swath resolution of 1.2 km cross-orbit. 357 

Those image have been processed using ImageProcessingUtils (Nodjoumi, 2021a) to convert from jpeg2000 file 358 

format (JP2) to GeoTiff and then resized to a common 5 m/pixel cell size, and tiled into more usable files with the 359 

largest side up to maximum 1024 pixel. 360 

All resulting images have been manually examined to filter out those which did not contain any landform relevant for 361 

the labeling steps, obtaining 152 images containing at least one type of landform. 362 

Then, all the images have been ingested into LabelMe to annotate all the pits, the skylights and some representative 363 

craters following the classification showed in Figure 4. At the end of the labeling task, it emerged that the obtained 364 

labels were unbalanced, meaning that the dataset does not contain an almost equal number of each class. 365 

Since the collection and processing of newer images containing more landforms of the unbalanced classes was not 366 

feasible at the time of analysis, a simpler approach was chosen and consist of a reduction of the classes by grouping 367 

into similar ones, doing so resulted in only four classes, Type-1, containing -1a and -1b, Type-2, containing -2a and -368 

2b, Type-3, Type-4.  369 

After concluding the dataset preparation, several training sessions were performed using DeepLandforms-training 370 

notebook, with different parameters and mask_rcnn_R_50_FPN_3x as model configuration; to evaluate the stability 371 

and scalability and the performance of the tool with the dataset on two different computers. 372 

According to Detectron2’s model zoo (Y. Wu et al., 2019b), which is a large collection of model configurations and 373 

their corresponding pre-trained models and baseline performance values, mask_rcnn_R_50_FPN_3x model 374 

configuration is reported to have the best-balanced results/training requirements ratio, see supporting information Text 375 

S7 for details on the model configuration. The ranges of the main training parameters are summarized in supporting 376 

information Table S3. 377 

All the training sessions have been monitored using tensorboard to evaluate the progression and the performance of 378 

the trainings and resulted in promising results, despite the small dimensions of the datasets and the not optimized 379 

training parameters. As it is possible to see in supporting information Figure S11, the accuracy for bounding boxes 380 

and masks reached more than 0.99 after 5000 epochs, with very low ratios of false negatives and false positives and 381 

final mean Average Precision values shown in supporting information Table S4 and Figure S9-S10. 382 

Those values are mostly in accordance with the average values of the architecture’s benchmarks (Y. Wu et al., 2019b), 383 

the low values obtained for craters and Type-4 are mainly caused by the low quantities of respective labeled data and 384 

the similarities that may occur in some landforms. 385 

The obtained model was then used to inference the valid dataset, and then the results were loaded into LabelMe to 386 

check if the labeled objects are detected and labeled correctly as shown in Figure 7. 387 

 388 
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 389 
Figure 7. Comparison between ground truth labeled image used in training (left) and inferred labeled image (right). 390 

The major difference is in the density of the points of the shape, where in the inferred image are way denser than those 391 

of the ground truth. 392 

Then the model was used on a partially new set of HiRISE RDR red channel images, in a limited area over the Tharsis 393 

Region on Mars. 394 

This region has its central coordinates at 0°N 260°E and was selected three of the largest shield volcanoes in the Solar 395 

System are located here, Arsia Mons, Pavonis Mons and Ascreus Mons, moreover in its western area is located the 396 

tallest shield volcano in the Solar System, the Olympus Mons. Considering the presence of these large shield volcanoes 397 

this region and thus possible intact lava tubes, is the best candidate region to look for possible cave entrances. A 398 

previous work by Cushing et al. (Cushing, 2017), identified and published a database containing thousands of 399 

pit/skylights landforms, by analyzing manually several Context Camera (CTX) and HiRISE imagery. 400 

This database was used as a control data for all the analyses performed in this and the previous work (Nodjoumi et al., 401 

2021). 402 

The results of the inference performed using DeepLandforms, contained in a geopackage file, was imported in QGIS 403 

software, to better inspect the results obtained as shown in Figure 8.  404 

It is possible to see multiple mis-aligned detections of the same landform, this is not properly an error since and is due 405 

to presence of two images that are originally acquired from different orbit and not perfectly coregistered or granules 406 

relatives to a stereo pair, thus the slightly misalignment, which does not affect the manual validation. To avoid these 407 

occurrences, it is necessary to manually check the working dataset for duplicates or use only coregistered data. 408 

In Figure 8, is presented an example of the obtained results, compared to the entries of the MGC^3 database and 409 

theresults obtained in the DeepLandforms-YOLOv5 object detection work, showing a very good detection and 410 

segmentation of the trained landforms. Moreover, it is possible to see the advantages of the approach proposed in this 411 

work. Providing polygon geometries as results, could greatly improve the mapping of specific landforms, especially 412 
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when looking for unknown occurrences on a wide dataset. More examples are available in Supporting information 413 

Figures S4 to S8. 414 

 415 

 416 

Figure 8. Example of detection on HiRISE Red channel image and comparison between MGC^3, DeepLandforms-417 

YOLOv5 object detection and DeepLandforms-Mask-R-CNN instance segmentation. Tables show attributes of fields 418 

in the shapefiles. The offset of MGC^3 points is probably caused by the coordinate conversion of the source MGC^3 419 

csv file into shapefile. 420 

Notice that in all the presented images, there is a misalignment between the MGC^3 points and the HiRISE or CTX 421 

Images. The cause of this discrepancy has not been identified yet but is probably due to a different reference system 422 

used by the authors of MGC^3 or introduced during the conversion from the source MGC^3 csv file to the shapefile 423 

file format. 424 

5. Discussion 425 

In this work, are presented the mapping results of skylight, pit and pit chains automated mapping using only 426 

DeepLandforms, a novel comprehensive toolset based on Deep Learning Computer Vision for object detection and 427 

segmentation. 428 

Skylight, pits and pit chains are an extremely interesting type of landforms that can be observed on almost all rocky 429 

planets and moons of the Solar System.  430 

Formation mechanisms are commonly related to volcanic and tectonic processes but are still debated, moreover it is 431 

still not clear whether such formation mechanisms are the same on all the planetary bodies in which those landforms 432 



manuscript submitted Earth and Space Science 

 

are observed, especially since there are very similar and common morphological characteristics among all 433 

observations. If it is the case of common formation mechanisms, this implies that there should be shared geological 434 

properties and settings among those bodies, thus common geological history. 435 

Further on, skylights and some pits may have access to caves as observed on Earth analogues, and hypothesized on 436 

Mars and the Moon (Hong et al., 2015), such those found on large shield volcanoes (Léveillé & Datta, 2010; F. Sauro 437 

et al., 2020). Presence of accessible caves on other planets and moons has an huge importance for space exploration 438 

since those cave may contain traces of life, both past and potentially present, as some extremophile bacteria and other 439 

smaller life-form may have found shelter from harsh surface condition and cosmic radiations (NASA, 2021). 440 

Moreover, caves are considered as good candidates for future human habitation outposts (Cushing & Titus, 2010; 441 

Pipan & Culver, 2019), and also are an excellent window on the subsurface structure, thus providing valuable 442 

information for understanding the geological settings and evolution of  the area and potential direct access to mineral 443 

resources (Blamont, 2014). 444 

To explore the above-mentioned targets and objectives, is necessary an accurate and global scale mapping of skylight, 445 

pit and pit chains, in order to better understand the spatial distribution of such landforms and correlate their presence 446 

with other geological and non-geological features and settings. 447 

For instance, since pit chains may be related to the presence of lava tubes or dykes (Ferrill et al., 2011; Whitten & 448 

Martin, 2019; Wyrick, 2004), mapping pits could lead to new understandings of lava tube distribution, thus to better 449 

knowledge of volcanic processes involved, even across planets and moons. Isolated pits with no surrounding other 450 

morphological evidence may indicate the presence of a deep buried lava tube or cavity originating from other 451 

processes. 452 

It is also possible to compare the distribution of such landforms with structural maps or other features that may be 453 

interconnected (Ferrill et al., 2004, 2011). 454 

Another advantage is connected to the planetary human mission planning, since the availability of geomorphological 455 

maps, even if not at highest resolution possible, may lead to the identification of better scientific targets or path 456 

planning in case of rovers. 457 

An automated or semi-automated approach as the one proposed in this work, in comparison to the manual mapping, 458 

may be a game-changer, providing robust processing workflows for generate high-end data in compliance with the 459 

OGC standards, for map productions at planetary scale, with the enormous advantage of relaying the most time-460 

consuming task of data pre-process and first analysis to computer time instead of human-time.  461 

Presented results are very promising, despite some issues that must be considered. 462 

Despite the very good correspondence of the shapes of the detections and the proper real shape, some refinements 463 

may be necessary, as some landforms are not detected at all, or in some cases wrongly classified. 464 

Moreover, in some cases there is a detection ambiguity, in which some resulting shapes appear doubled, non-unique 465 

or mis-aligned, due to the analysis performed on not co-registered images of the same area, as shown in Figures S4 466 

and S8 in supporting information. 467 

Poor labeling and bad train configuration parameters can also lead to models not suitable for deployment in production 468 

uses, or completely unreliable. 469 
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To improve those results the first step is to increase the quality and quantity of the training dataset, then tuning the 470 

configurations of the architecture used and eventually try different networks that may be more adequate to different 471 

landforms. 472 

The analysis presented in this work, if expanded to a large dataset, may greatly expand the knowledge of the spatial 473 

distribution of skylights, pits, and pit chains, including those already known and described, providing a detailed wide 474 

map that can be further integrated with morphometric analyses. 475 

All the main blocks of the workflow presented in Figure 3 were performed exclusively on DeepLandforms’s modules, 476 

data collection was performed using NASA-PDS data archive web services, and results evaluation and comparison 477 

was performed using QGIS software. 478 

The quality of the obtained results can be improved by increasing the amount of images in the initial dataset and their 479 

spatial resolution. This will provide more labels to the model that will better learn the differences among all the studied 480 

objects. Hyperparameters of the used network can be also tuned to achieve better results. This applies not only to this 481 

specific case but to every object detection and segmentation problem. 482 

The major limit of those automated approaches resides in the context-unawareness, meaning that when performing 483 

the analyses, all the networks are not performing a context-aware analysis in addition to the object detection and 484 

identification. This means that at the time of writing there are not yet architectures, for this kind of tasks, that evaluate 485 

the surrounding, the context, of a detection to optimize the identification of the objects present in the area. 486 

Recently there are architectures that are capable of such additional analyses, called Liquid Time-constant Networks 487 

(Hasani et al., 2020) but are still under development. 488 

6. Conclusions 489 

The advantages and improvements in data analysis provided by machine learning are undoubtful and constantly 490 

expanding in more and more sectors especially in remote sensing of Earth and Space. With an exponential amount of 491 

fast-growing available datasets, newer and faster methods are necessary to perform a continuous stream of analyses, 492 

and with a plethora of publications, works, architectures and unconnected tools available, that are mainly accessible 493 

by everyone, albeit not usable by not insiders, is also necessary to make those available for the wider audience, 494 

especially those who are involved in the analyses of data but are not specialized in the machine learning. 495 

In these settings, DeepLandforms, presented in this work, may be a forerunner, a tentative to lead an easier approach 496 

well suitable both for first-time users and advanced users.  497 

The major advantages and disadvantages are summarized in Table 3: 498 

Advantages Disadvantages 

Almost ready-to-use Not compatible to every platform 

Semi-automated approach 
Require intensive user supervision in the initial phase and 
during preliminary evaluation 

Large data volume processing capabilities Depends on the machine in which is running 
Possibly to use results for further correlation with 
other data 

 

Wide adaptability to different landforms 
May not be compatible with every landform type, 
depending on the training data 

  

Table 3. Tabulated assets and liabilities of the toolset presented in this work. 499 
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6.1. Further development 500 

Further development includes implementation of sliding window to improve further the segmentation of large images 501 

without pre-tiling them, the integration with GIS statistics such as the parametrization of the detected shapes, including 502 

cross-analysis of different data types such as Digital Terrain Models (DTM) in order to improve the quality of the 503 

results including eventually volume estimation, or integration with hyperspectral data to retrieve a mineral 504 

composition of the surface. 505 

Another development could integrate the workflow with the shape-from-shading technique (Alexandrov & Beyer, 506 

2018; Lohse et al., 2006; Micheletti et al., 2015) in order to extract depth and thus volume information where DTMs 507 

are not available. 508 

Moreover, this toolset is not specific to any planetary body nor specific landforms, thus is compatible with every 509 

planet or moon imagery, if provided images are georeferenced and the corresponding reference system is passed to 510 

the tool. 511 
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Introduction  

The following supporting information includes general insights on Deep Learning Object Detection and 

Instance Segmentation methodologies and their state-of-the-art (Text S1) including a brief overview of 

Facebook’s Detectron2 (Text S2). In Text S3 is described the dataset preparation workflow while in Text S4 

are described Image Masks with an example in Figure S1. 

In Text S5 are listed the components of the DeepLandforms toolset that can be found in the repository with 

a more detailed description of the jupyter notebooks available in Text S6. 

The Text S7 contains the Mask_rcnn_R_50_FPN model configuration used in this work.  

Figures S2 and S3 contains additional examples of the comparison between brightness and DTM profiles for 

pits. 

In Figure S4 are showed examples of multiple detections of the same landforms related to source images 

with different acquisition angle. 

Figures from S5 to S8 show several examples of the results obtained by using the manual approach of 

Cushing et al., compared to the results obtained by using the tools based on the object detection 

(DeepLandforms-YOLOv5) and Instance Segmentation (DeepLandforms) methodologies. 

Figure S9 to S11 shows an example of a training session monitored through tensorboard, in which are visible 

all the mAP for object detection and instance segmentation for each class type. 

A summary of the main parameters essential to landforms description are available in Table S1. 

Table S2 contains a list of acronyms found in the main document and here. 

In Table S3 are resumed the ranges of the model training parameters while in Table S4 are summarized the 

average results obtained at the end of the model training, same as Figures S9 to S11. 

The list of all the names of the source images used in this work and downloaded from the PDS Geosciences 

Node Orbital Data Explorer (ODE). 

Text S1. State of the art in Deep Learning Object Detection and Segmentation methodologies 

An Artificial Neural Network (ANN) can be intended as a complex computational model, inspired by 

biological neural networks, composed of "digital neurons" and used to easily solve complex problems. For 

Deep Learning (DL) we mean a Machine Learning (ML) technique that makes use of an artificial neural 

network based on a layered structure with different degrees of interconnection in which the first level is the 

data entry, the last is the level of results return and the intermediate levels can be defined as decision-making 

levels or a set of logical choices implemented autonomously by the artificial network (Hoeser & Kuenzer, 

2020).  

A Convolutional Neural Network (CNN) (Dhillon & Verma, 2020; Gu et al., 2018) is an algorithm that 

take in an input image, assigns importance (weights) to aspects/objects and learn how to differentiate among 

other aspects/objects and is composed mainly by Convolution Layers, Pooling Layers and Fully Connected 

Layers in different configurations. 



 

 

3 

 

There are several well-known and widely used CNN (Hoeser & Kuenzer, 2020), most used are  R-

CNN-based for object detection (Fast-R-CNN, Faster-R-CNN) (Girshick, 2015; Ren et al., 2016) and 

Instance Segmentation(Mask-R-CNN) (Chen et al., 2019; He et al., 2018, p.; Massa & Girshick, 2018), 

YOLO (Pham et al., 2020), ResNet (Targ et al., 2016), MobileSSD (Howard et al., 2017). and are particularly 

used in Computer Vision (CV) with applications for the classification and recognition of objects present. in 

an image or video, both static and dynamic, for example the recognition of license plates, faces, object 

tracking, etc. 

When training new models, it is possible to train them from scratch only if a custom training dataset is 

big enough, otherwise an underfitting problem will occur. 

A model is considered overfitted when it has excellent performance on trained data but poor 

performance on newer data while is considered underfitted when it has global poor performances related to 

a very small dataset (Amazon Machine Learning, 2021; Zhang et al., 2021). 

Almost all state-of-the-art public Earth-related datasets such as MS COCO, ImageNet (Deng et al., 

2009; Lin et al., 2015), contain up to several millions of labels and associated images and are commonly used 

for training above-mentioned architectures, granting a very good generalization of the problem of detection 

and segmentation without underfitting or overfitting. Models trained with such datasets are used to compute 

benchmarks for those architectures and evaluate their performance. Those benchmarks are further used as 

reference for newer and modified architectures (Wu et al., 2019b). 

A possible solution to overfitting and underfitting is a method named Transfer Learning (Neyshabur et 

al., 2020, 2021; Tan et al., 2018; Weiss et al., 2016) in which a model pre-trained on a very large dataset, 

such as the above-mentioned ones,  is partially re-trained to adapt it to a custom dataset. For instance, an 

object detection model pre-trained on a large dataset containing thousands of trees images, can be re-trained 

on a custom smaller dataset containing plants. 

An oversimplification of the training phase of a model consists of several cycles (epochs) in which data 

(batch size) are fed to the network, weights are computed at each layer, an output is produced, and an 

estimation of the error (loss) is computed. Then the difference between the obtained result and the correct 

one is backpropagated to each layer in order to adjust the corresponding weights. This process is regulated 

by a parameter called learning rate, a value between 0 and 1 that is multiplied by the loss gradient rate e 

computed difference in order to avoid over adaptation to that specific data, losing effectiveness to other data 

(Google Developers, 2021) 

The common evaluation metric used in object detection and image segmentation based on COCO 

format is the mean Average Precision (mAP). This parameter can be described as the area under the precision-

recall curve. Precision is the parameter that corresponds to the ratio of True Positive (TP) predictions and the 

sum of TP and False Positive (FP) predictions. Recall is the ratio of TP and the sum of TP and False Negatives 

(FN). The method to decide whether a prediction is positive, or negative is based on the Intersection over 

Union (IoU). IoU is the ratio between the intersection between the predicted shape area and the ground truth 

shape area divided by the sum of the area of those shapes. The Average Precision score is computed 
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automatically for each class at different IoU thresholds, commonly at 0.5, 0.75 and 0.95 and then averaged 

to obtain the global mAP and for each class (Ghorbanzadeh et al., 2019; MAY 6 & Read, 2020). 

Text S2. Facebook AI Research's Detectron2  

Detectron2 is a library developed by the Facebook AI Research team, and is an evolution of Detectron 

library (Wu et al., 2019a, 2020) and maskrcnn-benchmark (Massa & Girshick, 2018) Detectron2’s developers 

provide several models such as Faster- and Mask- Region-based Convolutional Neural Network (Faster-R-

CNN, Mask R-CNN), RetinaNet, DensePose, Cascade R-CNN, Panoptic FPN, and TensorMask, including 

their relative baseline pre-trained versions (Wu et al., 2019b) which can be used to further train custom 

models.  

All of these are state-of-the-art trained architectures specialized in object detection, image 

segmentation, instance segmentation and pose estimation. Moreover, this library is well documented 

(Facebook AI Research, 2020) and the code is maintained periodically, including features updates and 

integrations of newer models (Wu et al., 2019b). Considering all these features, Detectron2 has been chosen 

as a core library to develop new tools for planetary mapper. Pytorch has been used as a framework (Paszke 

et al., 2019). 

All included pre-trained models are compatible with the tool presented in this work, but for the specific 

task of instance segmentation for mapping landforms, the Mask R-CNN networks have been considered the 

defaults since are specific for object instance segmentation tasks (He et al., 2018). 

Text S3. Deep Learning main workflow steps 

Depending on the data size and format, the labelling software and the DeepLearning architecture and 

approach, may vary slightly. Common data pre-processing includes a data format conversion from the source 

data format to a lighter format compatible with both the labelling tool and the Deep Learning tool. 

Common file formats include jpeg, png and tiff, while the file size is usually lower than 1024 x 1024 

pixel. 

To meet those requirements, images can be resized, loosing spatial resolution, cropped, loosing portion 

of the image and tiled, increasing the number of the images. 

For instance, in this work have been used Reduced Data Record (RDR) RED channel data acquired by 

the High-Resolution Imaging Science Experiment (HiRISE) on board the Mars Reconnaissance Orbiter 

(MRO) and consist of calibrated and map-projected images at highest spatial resolution possible, provided 

in JPEG2000 (JP2) file format. File size of these images may reach few Gigabytes with used 

Data are then ingested in labeling tool that produce ancillary data containing all the labels in a format 

compatible with the Deep Learning training pipeline. For Object Detection, labels consist of bounding boxes 

containing a single object of interest, while for Instance Segmentation, labels consist of polygonal shape 

containing a single object of interest. For both types of labels, a single class category must be assigned. 
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Before of within the training pipeline, the source dataset is divided into three main sub-datasets: train, 

test and valid, with a common rule-of-thumb proportion of 70:20:10%, meaning that 70% of the data will be 

used for train dataset, 20% for the test dataset and 10% for validating the trained model. 

Train and test dataset are then used in the training pipeline, in which the test dataset is used for 

evaluating the model while training. 

After the completion of the training, the model is evaluated using the valid dataset, to assess how it 

performs with unseen data. 

Text S4. Image masks 

The filters that are used to create masks can be based on both users defined custom values or no-data values 

embedded in image’s metadata. For instance, some images may have Not-a-Number (NaN) values as no-

data, while others may have other fixed values that are commonly provided in dataset ancillary files if not 

embedded in the data.  

Segmentation results of Mask R-CNNs have instance masks as results that can cover the whole image (image 

segmentation) or only identified objects (instance segmentation) as shown in Figure S1. 

Text S5. Docker-compose and dockerfiles  

The major advantage of usage of docker platform resides in the capabilities of running services in an 

instantiated environment, independent from the host operating system without worrying of library 

dependencies, compilers, interpreters and so on, thus providing great cross-platform compatibility. Moreover, 

docker containers can be shared both as pre-built container images for fast deployment and as a docker 

building recipe named dockerfile. Those recipes can be customized by combining with other dockerfiles and, 

or, with pre-build docker images. Dockerfiles can also be used in combination with docker-compose (Merkel, 

2014), a tool for running multi-container Docker applications. DeepLandforms repository (Nodjoumi, 2021) 

contains both single separate dockerfiles and a docker-compose configuration files for automatic building of 

the necessary docker images with only minor configuration requirements by the user. These files are available 

both in Github repository (Nodjoumi, 2021) and Zenodo (Nodjoumi, 2021). 

The repository is structured as follows: 

- Dockerfiles for creating the main tool docker images containing training and inference jupyter 

notebooks, 

- Dockerfile for creating tensorboard docker image, an open-source tool for monitoring model 

training [81], 

- Dockerfile for creating labelme docker image, an open-source tool for image polygonal annotation 

in Common Object Context (COCO) label format (Lin et al., 2015), 

- Dockerfile for creating ImageProcessingUtils docker image, an open-source tool for image resizing 

and tiles, 

- A folder containing all the developed notebooks and addons, 



 

 

6 

 

- README, containing brief description and initial guidelines. 

 

Text S6. DeepLandforms Notebooks 

DeepLandforms-Training notebook is an implementation of the Detectron2 Library’s training components 

in a jupyter notebook, in which is possible to control all the main hyperparameters mentioned in Text S1, 

such as Epochs, LearningRate, batch size and more, and other parameters such the percentage used to create 

the train, test, and valid datasets. 

The notebook automatically creates such datasets and visualize pie-charts representing each dataset with class 

distributions. 

After dataset creation the notebook create an ancillary file containing all the classes that has been trained and 

save it in the same directory of the trained model. 

DeepLandforms-Segmentation notebook is an implementation of the Detectron2 Library’s inference 

components. This notebook includes several custom functions which are used to compute the world 

coordinates of the detection masks and their conversion into vectorial data, including geopackage creation. 

Moreover, a specific function has been developed to convert the detection masks into label files in COCO 

json format that can be directly used to perform new training sessions. 

Text S7. Mask_rcnn_R_50_FPN model configuration 

This model configuration can be visualized by using the following lines of code after loading properly the 

corresponding configuration. 

 

GeneralizedRCNN( 

  (backbone): FPN( 

    (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) 

    (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

    (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1)) 

    (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

    (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1)) 

    (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

    (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)) 

    (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

    (top_block): LastLevelMaxPool() 

    (bottom_up): ResNet( 

      (stem): BasicStem( 

        (conv1): Conv2d( 

Python3 code: 

from detectron2.engine import DefaultTrainer 

trainer = DefaultTrainer(cfg)  

trainer.resume_or_load(resume=False) 
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          3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False 

          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) 

        ) 

      ) 

      (res2): Sequential( 

        (0): BottleneckBlock( 

          (shortcut): Conv2d( 

            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv1): Conv2d( 

            64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

        ) 

        (1): BottleneckBlock( 

          (conv1): Conv2d( 

            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

        ) 

        (2): BottleneckBlock( 

          (conv1): Conv2d( 

            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) 

          ) 

          (conv3): Conv2d( 
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            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

        ) 

      ) 

      (res3): Sequential( 

        (0): BottleneckBlock( 

          (shortcut): Conv2d( 

            256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

          (conv1): Conv2d( 

            256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

        ) 

        (1): BottleneckBlock( 

          (conv1): Conv2d( 

            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

        ) 

        (2): BottleneckBlock( 

          (conv1): Conv2d( 

            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 
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          (conv3): Conv2d( 

            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

        ) 

        (3): BottleneckBlock( 

          (conv1): Conv2d( 

            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

        ) 

      ) 

      (res4): Sequential( 

        (0): BottleneckBlock( 

          (shortcut): Conv2d( 

            512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False 

            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) 

          ) 

          (conv1): Conv2d( 

            512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) 

          ) 

        ) 

        (1): BottleneckBlock( 

          (conv1): Conv2d( 

            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 
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          ) 

          (conv3): Conv2d( 

            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) 

          ) 

        ) 

        (2): BottleneckBlock( 

          (conv1): Conv2d( 

            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) 

          ) 

        ) 

        (3): BottleneckBlock( 

          (conv1): Conv2d( 

            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) 

          ) 

        ) 

        (4): BottleneckBlock( 

          (conv1): Conv2d( 

            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) 

          ) 
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        ) 

        (5): BottleneckBlock( 

          (conv1): Conv2d( 

            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) 

          ) 

        ) 

      ) 

      (res5): Sequential( 

        (0): BottleneckBlock( 

          (shortcut): Conv2d( 

            1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False 

            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) 

          ) 

          (conv1): Conv2d( 

            1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) 

          ) 

        ) 

        (1): BottleneckBlock( 

          (conv1): Conv2d( 

            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) 
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          ) 

        ) 

        (2): BottleneckBlock( 

          (conv1): Conv2d( 

            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

          (conv2): Conv2d( 

            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) 

          ) 

          (conv3): Conv2d( 

            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False 

            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05) 

          ) 

        ) 

      ) 

    ) 

  ) 

  (proposal_generator): RPN( 

    (rpn_head): StandardRPNHead( 

      (conv): Conv2d( 

        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) 

        (activation): ReLU() 

      ) 

      (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1)) 

      (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1)) 

    ) 

    (anchor_generator): DefaultAnchorGenerator( 

      (cell_anchors): BufferList() 

    ) 

  ) 

  (roi_heads): StandardROIHeads( 

    (box_pooler): ROIPooler( 

      (level_poolers): ModuleList( 

        (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True) 

        (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True) 

        (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True) 

        (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True) 

      ) 

    ) 

    (box_head): FastRCNNConvFCHead( 

      (flatten): Flatten(start_dim=1, end_dim=-1) 

      (fc1): Linear(in_features=12544, out_features=1024, bias=True) 

      (fc_relu1): ReLU() 

      (fc2): Linear(in_features=1024, out_features=1024, bias=True) 

      (fc_relu2): ReLU() 
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    ) 

    (box_predictor): FastRCNNOutputLayers( 

      (cls_score): Linear(in_features=1024, out_features=8, bias=True) 

      (bbox_pred): Linear(in_features=1024, out_features=28, bias=True) 

    ) 

    (mask_pooler): ROIPooler( 

      (level_poolers): ModuleList( 

        (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True) 

        (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True) 

        (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True) 

        (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True) 

      ) 

    ) 

    (mask_head): MaskRCNNConvUpsampleHead( 

      (mask_fcn1): Conv2d( 

        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) 

        (activation): ReLU() 

      ) 

      (mask_fcn2): Conv2d( 

        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) 

        (activation): ReLU() 

      ) 

      (mask_fcn3): Conv2d( 

        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) 

        (activation): ReLU() 

      ) 

      (mask_fcn4): Conv2d( 

        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) 

        (activation): ReLU() 

      ) 

      (deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2)) 

      (deconv_relu): ReLU() 

      (predictor): Conv2d(256, 7, kernel_size=(1, 1), stride=(1, 1)) 

    ) 

  ) 

) 
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Figure S1. Example of masks on HiRISE image. Purple color represents nodata value. 
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Figure S2 Comparison of brightness and DTM profiles for a Type-1 nested in Type-2 on ESP_23531-

ESP_23953 stereo pair, red channel. In blue, an attempt to identify the correspondence of the brightness 

sections on a DTM derived from photogrammetry of HiRISE stereo pair. In yellow, the portion of the DTM 

profile interpolated by the Socet Set ((c) BAE Systems) software. This is due to lack of usable data in both 

the images processed using photogrammetry (HiRISE | About HiRISE Digital Terrain Models, 2021) 
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Figure S3. Comparison of brightness and DTM profiles for a Type-3 on ESP_23531_RED ortho image, the 

DTM is derived from ESP_23531-ESP_23953 stereo pair, red channel. In blue, an attempt to identify the 

correspondence of the brightness sections on a DTM derived from photogrammetry of HiRISE stereo pair. 

In yellow, the portion of the DTM profile interpolated by the Socet Set ((c) BAE Systems) software. This is 

due to lack of usable data in both the images processed using photogrammetry (HiRISE | About HiRISE 

Digital Terrain Models, 2021) 
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Figure S4. Example of multiple polygons, slightly mis-aligned, detected on multiple images acquired of the 

same area compared to entries of the MGC^3 database with both attribute tables displayed. The results, stored 

in a geopackage, were opened in a GIS environment where can be styled using different colors for each class. 

The offset of MGC^3 points is probably caused by the coordinate conversion of the source MGC^3 csv file 

into shapefile. 
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Figure S5. Example of detection on HiRISE Red channel image and comparison between MGC^3, 

DeepLandforms-YOLOv5 object detection and DeepLandforms-Mask-R-CNN instance segmentation. In 

this case Mask-R-CNN has difficulties to classify since the landform has properties similar to both Type-2, 

Type-1 and Type-3. Tables show attributes of fields in the shapefiles. The offset of MGC^3 points is probably 

caused by the coordinate conversion of the source MGC^3 csv file into shapefile. 
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Figure S6. Example of detection on HiRISE Red channel image and comparison between MGC^3, 

DeepLandforms-YOLOv5 object detection and DeepLandforms-Mask-R-CNN instance segmentation. 

Tables show attributes of fields in the shapefiles. The offset of MGC^3 points is probably caused by the 

coordinate conversion of the source MGC^3 csv file into shapefile. 
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Figure S7. Example of detection on HiRISE Red channel image and comparison between MGC^3, 

DeepLandforms-YOLOv5 object detection and DeepLandforms-Mask-R-CNN instance segmentation. 

Multiple misclassification and segmentation error occurs. Classification errors, such as Type-1/Crater are 

mostly caused by the small training dataset. Segmentation errors are caused by both the small dataset and by 

inference performed on tiles. For instance, Type-1 and Type-2 have straight horizontal lines that correspond 

to the edge of the tile. This specific error can be mitigated by using larger tiles or by implementing a sliding-

window analysis. Tables show attributes of fields in the shapefiles. The offset of MGC^3 points is probably 

caused by the coordinate conversion of the source MGC^3 csv file into shapefile. 
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Figure S8. Example of detections on full HiRISE Red channel image. The first two shapes on top, present 

segmentation, and classification errors due to the inference that was performed on tiles instead of the full 

image. Other shapes present misclassification errors mostly due to the very small training datasets. Tables 

show attributes of fields in the shapefiles. These landforms are not present in the MGC^3. 
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Figure S9. Mean Average Precision values for the object detection, shows an overall average value compared 

to the Detectron2's benchmarks (Wu et al., 2019b)  except for Type-4 and Crater landforms. 
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Figure S10. Mean Average Precision values for the segmentation, shows an overall average value compared 

to the Detectron2's benchmarks (Wu et al., 2019b)  except for Type-4 and Crater landforms. 

 

Figure S11. Overall training results for both object detection and instance segmentation visualized through 

tensorboard interface. 

 

Parameter Description 

Shape  

Size Width, Length 

Height Height 

Texture 

 

The frequency of tonal changes 

Pattern The spatial arrangement of objects or elements in a given 

area. 

 

Tone/Hue Black&White brightness and color hue, expression of the 

amount and type of light reflected (or emitted) by an 

object and reflection of the environmental condition 

during the acquisition 

Location/Association Spatial relations between an object and its surroundings 

Table S1. Main parameters that describe a landform. (Tempfli et al., 2009). 
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Acronym Meaning 

AI Artificial Intelligence 

Cascade-R-CNN Cascade Regional CNN 

CNN Convolutional Neural Network 

COCO Common Object Context 

CTX Context Camera 

CUDA Compute Unified Device Architecture 

DEM Digital Elevation Model 

DL Deep Learning 

DN Digital Numbers 

DTM Digital Terrain Model 

EDR Experiment Data Record 

FN False Negative 

FP False Positive 

Faster-R-CNN Faster Regional CNN 

GDAL Geospatial Data Abstraction Software Library  

GIS Geographic Information System 

GPU Graphical Processor Unit 

HiRISE High Resolution Imaging Science Experiment 

ImS Image Segmentation 

InS Instance Segmentation 

LRO Lunar Reconnaissance Orbiter 

Mask-R-CNN Mask Regional CNN 

mAP Mean Average Precision 

ML Machine Learning 

MRO Mars Reconnaissance Orbiter 

NAC Narrow Angle Camera 

NIR Near InfraRed 

OD Object Detection 

ODE Orbital Data Explorer 

OGC Open Geospatial Consortium 

Panoptic FPN Panoptic Feature Proposal Network 

RAM Random Access Memory 

R-CNN Regional CNN 

RDR Reduced Data Record 

RetinaNet RetinaNetwork 

TP True Positive 

VIS Visible 

VRAM Video RAM 

WAC Wide Angle Camera 

YOLO You Only Look Once 
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Table S2. List of main acronyms present in the main paper. 

 

Parameter Value 

Epochs 1000 to 5000 

Batch size 4 to 8 

LearningRate 0,00025 to 0,002 

Table S3. Ranges of parameters used in all training tests. 

 

Type Detection mAP Segmentation mAP 

Global 32 30 

Type-1 65 55 

Type-2 29 23 

Type-3 38 25 

Type-4 1 1 

Crater 1 1 

Table S4. Mean mAP obtained at the end of the training. 

 

HiRISE RDR ODE-PDS Filename 

ESP_012600_1655_RED.JP2 

ESP_013167_1785_RED.JP2 

ESP_013589_1785_RED.JP2 

ESP_013681_1765_RED.JP2 

ESP_013879_1720_RED.JP2 

ESP_014077_1660_RED.JP2 

ESP_014380_1775_RED.JP2 

ESP_016213_1720_RED.JP2 

ESP_016305_2265_RED.JP2 

ESP_016411_1605_RED.JP2 

ESP_016767_1785_RED.JP2 

ESP_016978_1730_RED.JP2 

ESP_017057_1715_RED.JP2 

ESP_017202_1685_RED.JP2 

ESP_019259_1715_RED.JP2 

ESP_019272_1980_RED.JP2 

ESP_019351_1795_RED.JP2 

ESP_019852_1810_RED.JP2 

ESP_019957_2220_RED.JP2 
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ESP_019984_1795_RED.JP2 

ESP_019997_1975_RED.JP2 

ESP_020246_2185_RED.JP2 

ESP_021738_1625_RED.JP2 

ESP_022661_1705_RED.JP2 

ESP_023531_1840_RED.JP2 

ESP_024481_1605_RED.JP2 

ESP_024929_1720_RED.JP2 

ESP_025892_1780_RED.JP2 

ESP_026695_2020_RED.JP2 

ESP_026907_1705_RED.JP2 

ESP_028370_2215_RED.JP2 

ESP_028450_1730_RED.JP2 

ESP_028700_2085_RED.JP2 

ESP_028793_1655_RED.JP2 

ESP_035254_1585_RED.JP2 

ESP_035478_1775_RED.JP2 

ESP_037086_2025_RED.JP2 

ESP_037232_1770_RED.JP2 

ESP_041030_1735_RED.JP2 

ESP_041162_1665_RED.JP2 

ESP_041373_1660_RED.JP2 

ESP_041900_1805_RED.JP2 

ESP_042019_1730_RED.JP2 

ESP_042085_1795_RED.JP2 

ESP_042098_1775_RED.JP2 

ESP_042678_1935_RED.JP2 

ESP_043021_1775_RED.JP2 

ESP_043153_1685_RED.JP2 

ESP_043166_1775_RED.JP2 

ESP_043974_2090_RED.JP2 

ESP_044326_2045_RED.JP2 

ESP_045830_1735_RED.JP2 

ESP_045870_1650_RED.JP2 

ESP_045975_1685_RED.JP2 

ESP_046687_1725_RED.JP2 

ESP_046964_1665_RED.JP2 

ESP_049812_1735_RED.JP2 

ESP_050234_1735_RED.JP2 

ESP_050300_1735_RED.JP2 
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ESP_050379_1725_RED.JP2 

ESP_052858_1595_RED.JP2 

ESP_054703_2225_RED.JP2 

ESP_055614_1605_RED.JP2 

ESP_055811_2035_RED.JP2 

ESP_056867_1695_RED.JP2 

ESP_057025_1640_RED.JP2 

ESP_057434_1790_RED.JP2 

ESP_057777_1790_RED.JP2 

ESP_058133_1770_RED.JP2 

ESP_058186_1660_RED.JP2 

ESP_058489_1785_RED.JP2 

ESP_058542_1625_RED.JP2 

ESP_059043_1610_RED.JP2 

ESP_059544_1650_RED.JP2 

ESP_059623_1790_RED.JP2 

ESP_059702_1790_RED.JP2 

ESP_061680_1985_RED.JP2 

PSP_003647_1745_RED.JP2 

PSP_004847_1745_RED.JP2 

PSP_004913_1735_RED.JP2 

PSP_005058_1720_RED.JP2 

PSP_005203_1730_RED.JP2 

PSP_005414_1735_RED.JP2 

PSP_005625_1730_RED.JP2 

PSP_005770_1745_RED.JP2 

PSP_007022_2175_RED.JP2 

PSP_009620_1660_RED.JP2 

PSP_009712_1785_RED.JP2 

PSP_009910_1690_RED.JP2 

Table S5. List of source images used, available at (PDS Geosciences Nodes, 2020) 
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