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Abstract

Tidal triggering of tectonic tremors has been observed at plate boundaries around the circum-Pacific region. It has been reported

that the response of tremors to tidal stress during episodic tremor and slow slip (ETS) changes between the early and later stages

of ETS. Several physical models have been constructed, with which observations for the tidal response during ETS have been

partly reproduced. However, no model has been proposed that reproduces all the observations. In this study, a model adopted

in previous studies is extended to include the effects of dilatancy/compaction that occur in the fault creep region. The analytical

approximate solution derived in this study and numerical computational results reveal how the tidal response depends on the

physical properties of the fault. Furthermore, the model reproduces all the above observations simultaneously for a specific

range of fault parameters. Of particular importance is that the occurrence of dilatancy/compaction is essential to reproduce

the tidal response at the early stage of the ETS. The value of the critical distance dc is constrained to be approximately　1˜10

cm. This agrees with the values that have been widely used in seismic cycle numerical simulations rather than those obtained

in laboratory experiments. The fluid pressure diffusivity is constrained to be at least 10ˆ(-5) mˆ2/s or less, and the effective

normal stress is constrained to 10ˆ(5˜6) Pa. In conclusion, this study shows that reproducing the tidal response of tectonic

tremors during the ETS is useful for estimating fault physical properties, including hydraulic properties.
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Key points: 7 

• The spring-slider model with dilatancy/compaction reproduces the observed tidal 8 

response of tremors during episodic tremor and slip (ETS). 9 

• The critical slip distance, diffusivity and effective stress are constrained by a comparison 10 

between the model and the observation. 11 

• The pore fluid pressure change due to dilatancy/compaction is dominant at the early stage 12 

of the ETS, while it is negligible at the later stage. 13 
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Abstract 15 

Tidal triggering of tectonic tremors has been observed at plate boundaries around the circum-Pacific region. It has 16 

been reported that the response of tremors to tidal stress during episodic tremor and slow slip (ETS) changes 17 

between the early and later stages of ETS. Several physical models have been constructed, with which observations 18 

for the tidal response during ETS have been partly reproduced. However, no model has been proposed that 19 

reproduces all the observations. In this study, a model adopted in previous studies is extended to include the effects 20 

of dilatancy/compaction that occur in the fault creep region. The analytical approximate solution derived in this 21 

study and numerical computational results reveal how the tidal response depends on the physical properties of the 22 

fault. Furthermore, the model reproduces all the above observations simultaneously for a specific range of fault 23 

parameters. Of particular importance is that the occurrence of dilatancy/compaction is essential to reproduce the 24 

tidal response at the early stage of the ETS. The value of the critical distance 𝑑𝑐 is constrained to be approximately 25 

1~10 cm. This agrees with the values that have been widely used in seismic cycle numerical simulations rather than 26 

those obtained in laboratory experiments. The fluid pressure diffusivity is constrained to be at least 10−5 m2/s or 27 

less, and the effective normal stress is constrained to 105~6 Pa. In conclusion, this study shows that reproducing the 28 

tidal response of tectonic tremors during the ETS is useful for estimating fault physical properties, including 29 

hydraulic properties. 30 

Plain Language Summary 31 

Slow earthquakes, which are slower fault slips than ordinary earthquakes, have been observed at many plate 32 

boundaries around the Pacific Rim. To understand how slow earthquakes occur, we need to know the exact physical 33 

fault properties that cause slow earthquakes. Previous studies have reported that the rate of occurrence of tectonic 34 

tremors, which are slow earthquakes, varies periodically in response to subsurface stress changes induced by tides. 35 

However, the detailed mechanism of the periodic behavior is still unclear. In this paper, we develop a theoretical 36 

model to explain this periodic behavior. A comparison between the observations in the Nankai Trough and Cascadia 37 

with our model shows that the pore fluid pressure in the vicinity of the fault changes significantly when tremors 38 

respond relatively weakly to tides. Furthermore, for the model to explain the observed tidal response of tremors, we 39 

find that the scale of the surface roughness of the fault should be much larger than those obtained by laboratory 40 

experiments and that the fault should have a low permeability. 41 
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1 Introduction 42 

 Recent geodetic and seismological observations have revealed that slow earthquakes occur in the transition zone, 43 

which is located at the deeper extension of the locked megathrust zone in a subduction zone. Slow earthquakes have 44 

various timescales, which are classified into low-frequency earthquakes (LFEs) with a major frequency of 2 − 8 Hz 45 

(Obara, 2002), tectonic tremors, which are aggregations of LFEs (Shelly et al., 2007a), very low-frequency 46 

earthquakes (VLFEs) with a major frequency of 20 − 200 Hz (Ito et al., 2007), and slow slip events (SSEs), which 47 

do not radiate seismic waves and continue to slip for more than a few days (Dragert et al., 2001; Hirose et al., 1999). 48 

The focal mechanism of these slow earthquakes indicates that they accommodate shear slip on the plate interface 49 

(e.g., Ide et al., 2007; Shelly et al., 2006). This focal mechanism coincides with that of ordinary earthquakes, which 50 

are caused by fast slip. It is well known that the fast slip behavior of an ordinary earthquake reflects the physical 51 

properties of the fault, which consist of friction, effective normal stress and dilatancy/compaction (e.g., Proctor et 52 

al., 2020; Scholz, 2019; Segall and Rice, 1995). The coincidence of the focal mechanism with those of slow 53 

earthquakes means that the slip behaviors of slow earthquakes should also reflect such fault physical properties. 54 

Therefore, it is important to clarify the physical fault properties in the transition zone to reveal the mechanism of 55 

slow earthquakes on various timescales. 56 

In numerical simulation studies, several models have been proposed to reproduce slow earthquakes. These models 57 

usually adopt the rate- and state-dependent friction law (RSF) (e.g., Dieterich, 1979; Marone, 1998) as the frictional 58 

law on the plate interface. Examples of such models are those assuming near-neutral stability (e.g., Liu and Rice, 59 

2005; Matsuzawa et al., 2010), dilatant strengthening of the shear zone (e.g., Liu, 2013; Segall et al., 2010), 60 

transition from velocity weakening (VW) at a low slip rate to velocity strengthening (VS) at a high slip rate (e.g., Im 61 

et al., 2020; Peng and Rubin, 2018; Shibazaki and Iio, 2003), spatial heterogeneity of frictional properties and 62 

effective normal stress (Luo and Ampuero, 2018), and sudden negative Coulomb stress change in the VS region due 63 

to fault valve action (Perfettini and Ampuro, 2008). Comparisons between such models and observed slow slip 64 

behaviors have allowed us to estimate the physical fault properties in the transition zone, which cannot be observed 65 

directly (e.g., Beeler et al., 2018; Luo and Liu, 2019; Nakata et al., 2012; Shibazaki et al., 2012). 66 

In this study, we focus on tectonic tremors because they occur more frequently than other slow earthquakes, and it is 67 

easier to obtain more data to investigate the physical properties of faults. Tremors are classified into episodic 68 

families that accompany a SSE and continuous families that consist of tremors that occur almost daily (Thomas et 69 
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al., 2018). The former is called episodic tremor and slip (ETS) (Obara et al., 2004; Rogers and Dragert, 2003). An 70 

important observation is that, for an ETS, there is a correlation between the slip rate of the SSE and the tremor 71 

occurrence rate (e.g., Bartlow et al., 2011; Hirose and Obara, 2010; Thomas et al., 2018; Villafuerte et al., 2017), 72 

even though the cumulative moment magnitude 𝑀𝑊 of tremors is orders of magnitude smaller than that of SSEs 73 

(Kao et al., 2010). This correlation has been modeled by assuming that a tremor source is driven to failure by the 74 

stress loading due to aseismic slip that occurs in the region surrounding the tremor source (Shelly et al., 2007a). 75 

Based on this model, Shelly et al. (2011) interpreted the delayed dynamic triggering of tremors as a result of 76 

transient creep induced by the passage of seismic waves. Similarly, Tan and Marsan (2020) interpreted that the 77 

spatial anisotropy of the SSE during an ETS causes anisotropy in the power law describing a spatial decay of 78 

tremors. 79 

Another important observational fact revealed by global observations of tremors is that tremors are sensitive to 80 

tidal stress (e.g., Chen et al., 2018; Hoston, 2015; Ide and Tanaka, 2014; Ide et al., 2015; Nakata, 2008; Royer et al., 81 

2015; Rubinstein et al., 2008; Shelly et al., 2007b; Thomas et al., 2009, 2012; Van Der Elst et al., 2016; Yabe et al., 82 

2015). 83 

In general, stress changes on faults due to semidiurnal and diurnal tides are a few kPa or smaller. These stress 84 

changes are much smaller than the stress drop of ordinary earthquakes. Observational studies have reported that, in 85 

some cases, a weak correlation can be seen between earthquakes and tidal stresses (e.g., Cochran et al., 2004; 86 

Métivier et al., 2009; Tanaka 2010, 2012). The tidal response of earthquakes has also been studied by laboratory 87 

experiments using a stress perturbation to rock or granular materials (e.g., Bartlow et al., 2012; Beeler and Lockner 88 

2003; Chanard et al., 2019; Lockner and Beeler, 1999; Noël and Passelègue et al., 2019; Noël and Pimienta et al., 89 

2019; Savage and Marone, 2007). For example, the results of Chanard et al. (2019) and Noël and Pimienta et al. 90 

(2019) are consistent with the observation results of Tanaka (2010, 2012) regarding the tidal response that appears 91 

before a large earthquake. Other studies have reported that no correlation is seen between earthquakes and tidal 92 

stresses (e.g., Heaton 1982; Vidale et al., 1998; Wein and Shearer 2004). 93 

The tidal response of tremors is clearer because the pore fluid pressure on the plate interfaces is much higher in the 94 

transition zone than in the seismogenic zone, and hence, the effective normal stress is extremely low (Audet et al., 95 

2009; Shelly et al., 2006). 96 
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 The tidal response of tremors can be characterized by a tidal sensitivity and a phase difference. The tidal sensitivity, 97 

𝛼, characterizes the magnitude of tidal modulation of the tremor rate (i.e., the number of observed tremor events per 98 

unit time); the relationship between the tremor rate and the tidal Coulomb stress change is described by 99 

𝑅 = 𝑅0𝑒𝛼∆𝑆(𝑡), (1) 100 

where 𝑅 denotes the tremor rate, ∆𝑆(𝑡) is the tidal Coulomb stress, and 𝑅0 is the reference tremor rate when 101 

∆𝑆(𝑡) = 0. In equation (1), the order of the tidal sensitivity is 0.01~1 kPa−1 (e.g., Houston, 2015; Ide et al., 2015; 102 

Royer et al., 2015; Thomas et al., 2012; Yabe et al., 2015). The phase difference, defined as 𝛿,, represents the phase 103 

shift between the tremor rate peak (i.e., the phase at which 𝑅 is maximum) and the tidal stress peak (i.e., the phase at 104 

which ∆𝑆(𝑡) is maximized). 𝛿 is positive when the tremor rate reaches its maximum before the tidal stress reaches 105 

its maximus. For example, when the peak of 𝑅 precedes the peak of ∆𝑆(𝑡) in the semidiurnal tide (approximately 12 106 

hour cycle) by 3 hours, 𝛿~𝜋/2. Previous studies have reported that 𝛼 and 𝛿 change at the early and later stages of 107 

the ETS (Houston, 2015; Royer et al., 2015; Yabe et al., 2015). At the early stage of an ETS, 𝛼 ≲ 0.1 kPa−1 108 

(meaning that tidal modulation of the tremor rate is smaller) and 𝛿~𝜋/2. At the later stage of the ETS, 𝛼~0.7 kPa−1 109 

(meaning that the tidal modulation of the tremor rate is larger) and 𝛿~0. In addition, the number of tremors 110 

occurring at the later stage of ETS is approximately 1/10 or less than at the early stage of ETS (Houston, 2015; 111 

Royer et al., 2015). 112 

Constructing a model that reproduces such observed tidal responses of tremors is an effective method to infer the 113 

physical properties of faults because tidal stress change, which serves as an “input” to a fault slip model to 114 

reproduce the tidal response, is much easier to estimate. Previous studies have proposed several models to interpret 115 

the observed tidal response of tremors (Ader et al., 2012; Beeler et al., 2013; Beeler et al., 2018; Hawthorne and 116 

Rubin, 2013; Houston, 2015). These models are classified into deterministic models that adopt the physical model 117 

proposed by Shelly et al. (2007a) and a stochastic model that adopts the Weibull distribution as the failure strength 118 

of tremor sources. Furthermore, deterministic models are classified into two models: one considers the change in the 119 

pore fluid pressure at the plate interface, and the other does not (Table 1). 120 

Specifically, under the assumption that the tremor rate is proportional to fault creep velocity, Ader et al. (2012), 121 

Beeler et al. (2013) and Hawthorne and Rubin (2013) investigated the tidally modulated tremor rate. Ader et al. 122 

(2012) adopted the RSF for the VS to describe the tidal modulation of the fault creep velocity. They showed that the 123 

tidal sensitivity and the phase difference (the phase difference between the fault creep velocity peak and the tidal 124 
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stress peak) depend on the tidal period, fault creep velocity and frictional properties. Based on this result, they 125 

provided a framework to explain the tidal sensitivity and the phase difference in terms of tidal period, fault creep 126 

velocity and frictional properties. Beeler et al. (2013) compared dislocation creep, dislocation glide and the RSF for 127 

the VS region to explain the exponential relationship of equation (1) and concluded that the exponential behavior 128 

was derived from the RSF for the VS region. Based on a model that follows the RSF assuming a transition from the 129 

VW at a lower slip velocity to the VS at a higher slip velocity, Hawthorne and Rubin (2013) showed that the tidal 130 

modulation of the fault creep velocity increases as the fault creep average velocity decreases. Based on a 131 

probabilistic model, Houston (2015) interpreted that the tidal response of tremors is different between the early stage 132 

and later stages of ETS due to a gradual decrease in the fault strength for the tremor sources. Beeler et al. (2018) 133 

reproduced the observed tidal response of tremors of the continuous families based on a model assuming the RSF of 134 

the VW and estimated fault physical properties of the transition zone, such as the fluid pressure diffusivity and 135 

dilatancy coefficient. 136 

 137 

Table 1. A summary of previous models and our model 138 

Paper that proposed 

the model 

Model type Introduction of fluid 

pressure change by 

dilatancy/compaction 

Reproduction of tidal 

response of tremor at 

the early stage of ETS 

Reproduction of 

tidal response of 

tremor at the later 

stage of ETS 

Ader et al. (2012) Deterministic No Tidal period > 108 s Yes 

Beeler et al. (2013) Deterministic No Cannot reproduce 

phase difference 

Yes 

Hawthorne and 

Rubin (2013) 

Deterministic No Cannot reproduce 

phase difference 

Yes 

Houston (2015) Probabilistic ― Yesa Yesa 

Beeler et al. (2018) Deterministic Yes ―b ―b 

This study Deterministic Yes Yes Yes 

a The model assumption may not be valid. b The model is not applicable to the tidal modulation of tremors during 139 

ETS. 140 
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 141 

Most of the above models only partially explain the observations of the tidal response of tremors during ETS with 142 

several advantages (Table 1). Ader et al. (2012) investigated the slip behavior of a one-degree-of-freedom spring-143 

slider system under a harmonic stress perturbation with different periods. Their model could reproduce the tidal 144 

response of tremors at the later stage of the ETS when considering diurnal and semidiurnal tidal periods (~105 s). 145 

However, the model could not reproduce the phase difference of 𝛿~𝜋/2 observed at the early stage of ETS unless 146 

adopting much longer tidal periods (e.g., 18.6 years tide) (>108 s). Beeler et al. (2013) and Hawthorne and Rubin 147 

(2013) modeled the tidal modulation of fault creep velocity using a purely rate-dependent friction law and a 148 

frictional law assuming a transition from the VW to VS region, respectively. Their results show that the fault creep 149 

velocity increases as the tidal stress increases. This suggests that these models could explain the tidal response of 150 

tremors at the later stage of the ETS but not the phase difference observed at the early stage of the ETS (𝛿~𝜋/2). 151 

The model of Houston (2015) assumes that breakage of mineral precipitates due to slip accumulation during the ETS 152 

might weaken the fault strength. This model may contradict the idea of dilatant strengthening, which assumes that 153 

fault strength increases with increasing pore space due to breakage of precipitating minerals (Audet and Bürgmann, 154 

2014). Beeler et al. (2018) modeled the correlation between LFE clusters and tidal stress for continuous families. 155 

Their model focused only on the onset of the clusters. Therefore, their model cannot be applied to the tidal 156 

modulation of tremors that lasts for 1~2 weeks during ETS. Therefore, the models proposed thus far cannot fully 157 

explain the aspects of the observed tidal responses of tremors. 158 

Here, we propose a new model in which dilatancy/compaction occurs in the VS region to explain the observed tidal 159 

response of tremors during the ETS. We find that the pore fluid pressure changes due to dilatancy/compaction 160 

caused by tidal stress change in the transition zone, where the effective normal stress is low, have a significant 161 

influence on the sliding behavior in the VS zone. We present governing equations for this problem in section 2. In 162 

the next section, we derive an approximate solution to quantitatively describe 𝛼 and 𝛿 and clarify how the model 163 

responds to tidal stress changes. We reveal the physical reason for the dependence of 𝛼 and 𝛿 on the fault physical 164 

properties. In section 4, we estimate fault physical properties based on a comparison between the observations and 165 

our model results and discuss the validity of the estimated properties. In section 5, we summarize the results. 166 
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2 Methods 167 

2.1 Modeling the rate of tremor occurrence 168 

Similar to previous studies, we assume that tremors are generated by the rupture of small brittle patches on the fault 169 

plane due to the aseismic shear slip of a larger-scale surrounding fault (Ader et al., 2012; Beeler et al., 2013; Shelly 170 

et al., 2007a). This assumption means that the tremor source is very small and that the tremor rate, 𝑅, serves as a 171 

passive meter of the creep velocity of the surrounding fault, 𝑉: 172 

𝑉

𝑉𝑟

=
𝑅

𝑅𝑟

, (2) 173 

where 𝑅𝑟 and 𝑉𝑟  denote the tremor rate and the creep velocity at a reference state, respectively. Based on this 174 

assumption, we can regard a change in the tremor rate as a change in the creep velocity. Equation (2) has been 175 

adopted in previous studies that modeled the tidal response of tremors and LFEs (e.g., Ader et al., 2012; Beeler et 176 

al., 2013). 177 

2.2 Governing equations 178 

2.2.1 Rate- and state-dependent friction law 179 

We model the above fault creep, assuming a one-degree-of-freedom spring-slider system and employ the RSF as a 180 

friction law (Ader et al., 2012). According to the RSF, the friction coefficient 𝜇 can be written as: 181 

𝜇 = 𝜇0 + 𝑎log (
𝑉

𝑉0

) + 𝑏log (
𝑉0𝜃

𝑑𝑐

) , (3) 182 

where 𝜇0 denotes the friction coefficient at a reference slip velocity 𝑉0, 𝑉 is the slip velocity, 𝑑𝑐 is the critical slip 183 

distance, 𝜃 is the state variable, which is often interpreted as the average contact time for an asperity, and 𝑎 and 𝑏 184 

are fault constitutive parameters (e.g., Scholz, 1998). To represent fault creep, the constitutive parameters must 185 

satisfy 𝑎 > 𝑏. This regime is called VS. In equation (3), the second term on the right-hand side (RHS) represents the 186 

“direct effect”, which is caused by a change in the slip velocity, and the third term on the RHS represents the 187 

“evolution effect”, which is caused by the temporal change in the state variable. Fault slip behavior evolves to a new 188 

steady state when a sudden slip velocity change occurs and the fault slips over a distance of 𝑑𝑐 (Dieterich, 1979). 189 

This process can be expressed in several ways. In this study, we adopt the slip law proposed by Ruina (1983): 190 
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d𝜃

d𝑡
= −

𝑉𝜃

𝑑𝑐

log (
𝑉𝜃

𝑑𝑐

) . (4) 191 

2.2.2 Dilatancy/Compaction 192 

Dilatancy/compaction is a mechanism that relates fault gouge deformation to the behavior of the pore fluid. A 193 

shear zone exists at and near the plate interface where shear slip is localized and fault gouge is present (e.g., Rice, 194 

2006). We assume that the porosity change in the shear zone is caused by dilatancy/compaction (e.g., Segall et al., 195 

2010; Suzuki and Yamashita, 2009). The associated behavior of pore fluids can be modeled as in the following two 196 

cases. The first is an undrained model, which assumes that the pore fluid pressure changes only within the shear 197 

zone (Figure S1a in the supporting information), and the second is a drained model, which assumes a “homogeneous 198 

diffusion” of the pore fluid into a region adjacent to the shear zone (Segall et al., 2010) (Figure S1b in the supporting 199 

information). Since our model is a one-degree-of-freedom system, the pore fluid pressure is uniform in the direction 200 

of the slip plane, and the pore fluid pressure diffuses in the direction perpendicular to the slip plane. The pore fluid 201 

pressure in the shear zone is spatially uniform in both the drained and undrained models. Let a tidal period be 𝑇 202 

(e.g., 12.4 hours) and the characteristic timescale at which the pore fluid pressure diffuses through the shear zone be 203 

𝑡𝑤. The undrained model is valid when 𝑇 ≪ 𝑡𝑤 (Beeler et al., 2018), and the drained model is valid when 𝑇 ≫ 𝑡𝑤 204 

(Segall et al., 2010). As described later (section 4.2), the undrained model can explain the tidal response at the early 205 

and later stages of the ETS, while the drained model cannot explain the tidal response at the early stage of the ETS. 206 

We focused on the results for the undrained model in the main text, which can reproduce more observations than the 207 

drained model. The derivation of the governing equations and results for the drained model are shown in the 208 

supporting information (Texts S1-S4, Figures S3, S4 and S6). 209 

Mathematically, in the undrained model, the pore fluid pressure change in the shear zone can be described as 210 

d𝑝

d𝑡
= −𝑀

d𝜙

d𝑡
, (5) 211 

which is derived from the conservation of pore fluid mass (Segall et al., 1995), where d𝑝/d𝑡 denotes a temporal 212 

change in the pore fluid pressure, 𝑀 is the bulk modulus of the fluid and the pore space, and d𝜙/d𝑡 denotes a 213 

change in the porosity due to dilatancy/compaction. As described previously, for the friction coefficient (equation 214 

(3)), the porosity, which varies with dilatancy/compaction, also evolves from one steady state to another as the slip 215 

velocity changes. The evolution law for the porosity can be empirically described as 216 
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d𝜙

d𝑡
= −

𝜖

𝜃

d𝜃

d𝑡
, (6) 217 

using the state variable 𝜃, where 𝜖 is a dilatancy coefficient (Segall and Rice, 1995). From equations (5) and (6), we 218 

obtain 219 

d𝑝

d𝑡
= 𝜖𝑀

1

𝜃

d𝜃

d𝑡
 . (7) 220 

 221 

2.2.3 A quasi-static equation of motion 222 

The quasi-static equation of motion for the one-degree-of-freedom spring-slider model under tidal stress can be 223 

written as 224 

∆𝜏(𝑡) + 𝑘Δ𝑢 = 𝜇𝜎𝑒𝑓𝑓(𝑡), (8) 225 

where ∆𝜏(𝑡) denotes the shear stress acting on the fault plane due to tides, 𝜎𝑒𝑓𝑓(𝑡) is the effective normal stress, ∆𝑢 226 

is the relative displacement of the block to the spring pulling distance, 𝑘 is the spring stiffness and 𝜇 is the friction 227 

coefficient (Ader et al., 2012; Perfettini and Schmittbuhl, 2001). In our model, the effective normal stress is written 228 

as 𝜎𝑒𝑓𝑓(𝑡) = 𝜎𝑒𝑓𝑓
0 + ∆𝜎(𝑡) − ∆𝑝(𝑡) − Δ𝑝′(𝑡), where 𝜎𝑒𝑓𝑓

0  denotes a reference effective normal stress, ∆𝜎(𝑡) is the 229 

normal stress acting on the fault plane due to tides, ∆𝑝(𝑡) is the pore fluid pressure change due to 230 

dilatancy/compaction in the shear zone, and ∆𝑝′(𝑡) is the pore fluid pressure change due to the tidal normal stress 231 

change. When the tidal normal stress increases, ∆𝑝′(𝑡) also increases in proportion to the Skempton coefficient, 𝐵 232 

(i.e., ∆𝑝′(𝑡) = 𝐵Δ𝜎(𝑡)) (e.g., Beeler et al., 2018; Scholz et al., 2019). Using this relationship, the effective normal 233 

stress can be rewritten as 234 

𝜎𝑒𝑓𝑓(𝑡) = 𝜎𝑒𝑓𝑓
0 + (1 − 𝐵)∆𝜎(𝑡) − ∆𝑝(𝑡). (9) 235 

The observations show that there is almost no correlation between the tidal normal stress change and the tremor 236 

rate (Houston, 2015; Thomas et al., 2012), which indicates that the fault strength is almost unchanged due to the 237 

tidal normal stress change. This suggests that 𝐵 is nearly equal to 1 (equation (9)). Therefore, we adopt 𝐵 = 0.9 in 238 

our model. For simplicity, we assume that the tidal stresses ∆𝜎(𝑡) and ∆𝜏(𝑡) have a common period with the same 239 

magnitude and phase (i.e., ∆𝜎(𝑡) = Δ𝜏(𝑡) = |Δ𝜎(𝑡)|𝑒𝑖𝜔𝑡). 240 

 241 
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2.3 Nondimensionalization of governing equations 242 

Equations (3), (4), (7) and (8) constitute the governing equations for our model. For nondimensionalization of these 243 

equations, we selected a tidal period 𝑇, a reference effective normal stress 𝜎𝑒𝑓𝑓
0 , and a critical slip distance 𝑑𝑐 as 244 

characteristic physical quantities (Table 2). Representing the dimensionless variables with a tilde, the result is 245 

written as: 246 

𝜇 = 𝜇0 + 𝑎log (
𝑉̃

𝑉̃0

) + 𝑏log (
𝜃̃

𝜃̃0

) 247 

Δ𝜏̃ + 𝐾Δ𝑢̃ = 𝜇𝜎̃𝑒𝑓𝑓 248 

d𝜃̃

d𝑡̃
= −𝜃̃𝑉̃log (𝜃̃𝑉̃) 249 

d𝑝

d𝑡̃
=

𝑈

𝜃̃

d𝜃̃

d𝑡̃
, (10) 250 

where 𝜃0 = 𝑑𝑐/𝑉0 denotes the state variable at a reference slip velocity 𝑉0, 𝐾 = 𝑑𝑐𝑘/𝜎𝑒𝑓𝑓
0  is the nondimensional 251 

spring constant, and 𝑈 = 𝑀𝜖/𝜎𝑒𝑓𝑓
0  is the dilatancy parameter. Substituting the last equation in equation (10) into the 252 

nondimensionalized version of equation (9), we find that the larger 𝑈 is, the more dominant the effect of ∆𝑝(𝑡) on 253 

the effective normal stress is. In other words, the parameter 𝑈 represents the relative importance of the 254 

dilatancy/compaction to the effective normal stress change. Previous experiments and observations suggest that 255 

𝜎𝑒𝑓𝑓
0 ~105~6 Pa (Nakata et al., 2008; Shelly et al., 2006; Yabe et al., 2015), 𝜖~10−4~−5 (Samuelson et al., 2009), 256 

and 𝑀~1010 Pa (Segall et al., 1995). This yields a possible range of 𝑈 from 100 to 10−2. 257 

The time evolution of each physical quantity is numerically calculated using the fourth-order Runge‒Kutta method. 258 

 259 

Table 2. Parameters of fault physical properties 260 

Parameter Value 

Reference velocity 𝑉0 10−9 m/s 

Spring pulling velocity𝑉𝑝𝑙 10−8 m/s 

Reference frictional coefficient 𝜇0 0.7 

Reference effective normal stress 𝜎𝑒𝑓𝑓
0  500 kPa 



manuscript submitted to replace this text with name of AGU journal 

 

Skempton coefficient 𝐵 0.9 

Spring stiffness 𝑘 104 Pa/m 

Magnitude of tidal shear stress|Δ𝜏(𝑡)| 1 kPa 

Magnitude of tidal normal stress|Δ𝜎(𝑡)| 1 kPa 

Tidal period 𝑇 12.4 h 

Frictional parameter 𝑎 0.003 

Frictional parameter 𝑏 0.002 

Dilatancy parameter𝑈 10−2~0 

 261 

2.4 Definition of the tidal sensitivity (𝛼) and the phase difference (𝛿) 262 

In previous studies, 𝛼 has been estimated using equation (1), and 𝛿 has been inferred using the phase difference 263 

between the tidal Coulomb stress peak and the tremor rate peak (Houston, 2015; Royer et al., 2015; Yabe et al., 264 

2015); we define 𝛼 and 𝛿 in the same way. In the following, we refer to these two parameters as the “tidal 265 

response”. 266 

To illustrate the definition of these two quantities and how to determine them, Figure 1 shows a result obtained by 267 

numerically solving the governing equations for the case of 𝑈 = 0 and 𝑑𝑐 = 100 μm. The solid yellow line in 268 

Figure 1a is the time evolution of 𝑉(𝑡)/𝑉𝑝𝑙 during one tidal cycle. The solid yellow line in Figure 1b shows 269 

𝑉(𝑡)/𝑉𝑝𝑙 in Figure 1a against the tidal Coulomb stress change Δ𝑆(𝑡), and the solid green line shows the average of 270 

the upper and the lower values of 𝑉(𝑡)/𝑉𝑝𝑙 at each Δ𝑆(𝑡) on the horizontal axis, where 271 

Δ𝑆(𝑡) = Δ𝜏(𝑡) − 𝜇𝑝𝑙(1 − 𝐵)Δ𝜎(𝑡) (11) 272 

(e.g., Beeler et al., 2018; Scholz et al., 2019), and 𝜇𝑝𝑙 is the steady-state friction coefficient at velocity 𝑉𝑝𝑙. The 273 

reason why Δ𝑆(𝑡) is described by Δ𝜏(𝑡) − 𝜇𝑝𝑙(1 − 𝐵)Δ𝜎(𝑡) instead of Δ𝜏(𝑡) − 𝜇𝑝𝑙Δ𝜎(𝑡) is that, for a poroelastic 274 

medium, the effective normal stress change due to tides is described by (1 − 𝐵)Δ𝜎(𝑡) from equation (9). 𝛼 is 275 

obtained by fitting the following equation to the average of 𝑉(𝑡)/𝑉𝑝𝑙 (solid green line in Figure 1b): 276 

𝑉(𝑡)

𝑉𝑝𝑙

= 𝑐𝑒𝛼Δ𝑆(𝑡). (12) 277 
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In the fitting, a constant 𝑐(< 1) is simultaneously determined. If 𝑐 is not estimated, the following problem arises. 278 

Since our model pulls the block through the spring with velocity 𝑉𝑝𝑙, the block must slip with 𝑉𝑝𝑙 on a long-term 279 

average (∫ 𝑉(𝑡)
𝑇

0
𝑑𝑡/𝑇 = 𝑉𝑝𝑙 with 𝑇 ≫ 0). Equation (12) shows 𝑉(𝑡) ∝ 𝑒Δ𝑆(𝑡), indicating that the slip velocity 280 

increases nonlinearly with ΔS(t). If 𝑉(𝑡) = 𝑉𝑝𝑙 at 𝑆(𝑡) = 0 (equivalently 𝑐 = 1), it is unphysical 281 

because.∫ 𝑉(𝑡)
𝑇

0
𝑑𝑡/𝑇 > 𝑉𝑝𝑙. Therefore, 𝑉(𝑡) < 𝑉𝑝𝑙 at 𝑆(𝑡) = 0 (equivalently 𝑐 < 1) is needed. The parameter 𝑐 282 

adjusts the average velocity but has nothing to do with the estimation of fault physical properties in the following. 283 

Figure S2 shows the obtained value of 𝑐. The solid black line in Figure 1b shows the fitted result. 𝛿 is defined as the 284 

phase difference between the Δ𝑆(𝑡) peak and the 𝑉(𝑡)/𝑉𝑝𝑙 peak (see 𝛿 of Figure 1a), where 𝛿 is positive when the 285 

𝑉(𝑡)/𝑉𝑝𝑙 peak precedes the Δ𝑆(𝑡) peak (i.e., 𝛿 in Figure 1a is negative). 286 

 287 

 288 

Figure 1. The numerical solution of equation (10) for 𝑈 = 0 and 𝑑𝑐 = 100 μm. (a) Determination of the phase 289 

difference (𝛿). The horizontal axis denotes time normalized by the tidal cycle, and the value from 0 to 1 indicates 290 

one tidal cycle. The vertical axis represents the slip velocity normalized by the reference velocity, 𝑉(𝑡)/𝑉𝑝𝑙. The 291 

solid yellow line shows 𝑉(𝑡)/𝑉𝑝𝑙, and the dashed blue line shows the tidal Coulomb stress, Δ𝑆(𝑡) × 103, normalized 292 

by the reference effective normal stress, 𝜎𝑒𝑓𝑓
0 . The dashed black line represents the phase when Δ𝑆(𝑡) reaches the 293 

maximum, and the solid black line represents the 𝑉(𝑡)/𝑉𝑝𝑙 peak. The phase difference 𝛿 is defined so that it is 294 

positive when the 𝑉(𝑡)/𝑉𝑝𝑙 peak precedes the Δ𝑆(𝑡) peak. (b) Determination of the tidal sensitivity (𝛼). The 295 

horizontal axis is Δ𝑆′(𝑡) = Δ𝑆(𝑡)/𝜎𝑒𝑓𝑓
0 × 103. The vertical axis represents the slip velocity normalized by the 296 

reference velocity, 𝑉(𝑡)/𝑉𝑝𝑙. The solid yellow line shows 𝑉(𝑡)/𝑉𝑝𝑙 in (a). The solid green line shows the average of 297 
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the upper and lower velocities at each value of Δ𝑆′(𝑡). 𝑐 and 𝛼 in equation (12) are determined by a least squares 298 

method by fitting equation (12) against the green solid line. The solid black line shows the fitted result (𝛼 =299 

0.72, 𝑐 = 0.89). 300 

 301 

2.5 An approximate solution for 𝛼 and 𝛿 302 

To clarify how the tidal responses depend on the fault physical properties, we analytically derived an approximate 303 

solution for 𝛼 and 𝛿. The result is shown in section 3.1. 304 

3 Result 305 

3.1 Derivation and verification of the approximate solution 306 

When the magnitude of the tidal Coulomb stress change |Δ𝑆(𝑡)| is small enough (|Δ𝑆(𝑡)| ≪ (𝑎 − 𝑏)𝜎𝑒𝑓𝑓
0 ), we 307 

assume that the perturbation of each physical quantity caused by |Δ𝑆(𝑡)|𝑒𝑖𝜔𝑡 is proportional to 𝑒𝑖𝜔𝑡, where 𝜔 =308 

2𝜋/𝑇 is the angular velocity of the tide (Segall, 2010; Ader et al., 2012). In other words, the physical quantities can 309 

be written as 𝑉(𝑡) = 𝑉𝑝𝑙 + Δ𝑉𝑒𝑖𝜔𝑡, 𝜃(𝑡) = 𝜃𝑝𝑙 + Δ𝜃𝑒𝑖𝜔𝑡  and 𝑝(𝑡) = 𝑝0 + Δ𝑝𝑒𝑖𝜔𝑡, where 𝜃𝑝𝑙 denotes the steady-310 

state variable at 𝑉 = 𝑉𝑝𝑙, 𝑝0 is the reference value of pore fluid pressure, and Δ𝑉, Δ𝜃 and Δ𝑝 are the magnitudes of 311 

the perturbation. Substituting these forms into equations (3), (4), (7), and (8), and after some algebra, the 312 

perturbation of the nondimensionalized slip velocity, Δ𝑉̃, can be written as 313 

Δ𝑉̃

𝑉̃𝑝𝑙

=
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴
|Δ𝑆̃(𝑡)|, (13) 314 

where 315 

𝐴 = 𝑎 −
1

1 + 𝑖
𝑇𝜃

𝑇

(𝑏 − 𝜇𝑝𝑙𝑈) (14) 316 

and 317 

𝑇𝜃 = 2𝜋
𝑑𝑐

𝑉𝑝𝑙

. (15) 318 
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Equation (15) represents a characteristic timescale on which the state variable evolves (Ader et al., 2012). From the 319 

relationship of Δ𝑉̃𝑒𝑖𝜔𝑡 = 𝑉̃(𝑡) − 𝑉̃𝑝𝑙, equations (13) and (14) can be rewritten as 𝑉̃(𝑡)/𝑉̃𝑝𝑙 = 1 +320 

2𝜋𝑖Δ𝑆̃(𝑡)/(𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴). We assume that this equation is the Taylor expansion of the RHS of 321 

𝑉̃(𝑡)

𝑉̃𝑝𝑙

= exp (
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴
𝛥𝑆̃(𝑡)) (16) 322 

to the first order. Then, comparing equation (16) with equation (1), we find that the tidal sensitivity (𝛼) and the 323 

phase difference (𝛿) can be written as 324 

𝛼 = Re (
2𝜋𝑖

(𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴)𝜎𝑒𝑓𝑓
0

) (17) 325 

𝛿 = arg (
2𝜋𝑖

𝐾𝑉̃𝑝𝑙 + 2𝜋𝑖𝐴
) (18) 326 

For 𝑈 = 0, where dilatancy/compaction is neglected, Ader et al. (2012) presented a linearized approximation 327 

solution and a numerical solution. We confirmed that equations (13) and (18) are consistent with the 328 

nondimensionalized version of equation (3) of Ader et al. (2012), who examined tidal responses for different values 329 

of 𝑇. However, how the tidal response changes with different values of 𝑑𝑐 was not studied in detail for the period of 330 

~12 h, which is the dominant period of tides. Therefore, we examined how the tidal response changes with changes 331 

in 𝑑𝑐 or 𝑇𝜃  (equation (15)) for this period, since a comparison between our model and observations of the tidal 332 

response enables us to infer 𝑑𝑐 in the actual geophysical situation. Figures 2a and 2b show 𝛼 and 𝛿, respectively. In 333 

these figures, the solid green line and green dots represent the numerical solution of equation (10) and the 334 

approximate solution, respectively. The approximate solution and the numerical solution agree with each other 335 

within 15% for most cases. When 𝑇𝜃/𝑇~10−1, the approximate solution is less accurate for both 𝛼 and 𝛿. This 336 

means that the accuracy of the approximate solution can deteriorate when the nonlinearity is stronger (i.e., 𝛼 is 337 

larger). 338 

For 𝑈 ≠ 0, the approximate solution agrees with the numerical solution within 10% for all cases (the deviation 339 

between the approximate and numerical solutions is the maximum when 𝑇𝜃/𝑇~140 and 𝑈 = 1. In this case, 340 

𝛿~1.134 for the numerical solution and 𝛿~1.023 for the approximate solution, resulting in a relative error of 341 

~9.7%). The good agreement is attributed to the fact that 𝛼 is relatively small (at most ~0.7 kPa−1); thus, the 342 

nonlinearity is weaker. This indicates that the approximate solution is valid regardless of the value of 𝑇𝜃/𝑇 when 343 

𝑈 ≠ 0. 344 
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3.2 Dependence of the tidal response on the fault physical properties 345 

Based on the approximate solution and an analysis of the quasi-static equation of motion, we clarify how 𝛼 and 𝛿 346 

during an ETS depend on the fault physical properties. The specific range of physical properties that can explain the 347 

observations is discussed in section 4. 348 

3.2.1 Factors governing the tidal response during the ETS 349 

We assume that the VS region surrounding tremor patches slides at an average velocity of 𝑉𝑝𝑙. In our 350 

spring-slider model, this situation is represented by setting the velocity of the pulling spring to 𝑉𝑝𝑙. We can 351 

apply this model to fault creep during the ETS, which occurs over a shorter time span than secular plate subduction. 352 

Geodetic observations show that the fault creep velocity during an ETS is ~10−6~−9 m/s (e.g., Meade and 353 

Loveless, 2009; Schwartz and Rokosky, 2007). Therefore, we set 𝑉𝑝𝑙 as 10−8 m/s in the following numerical 354 

simulation. In addition, the frictional parameters 𝑎 and 𝑏 are chosen so that 𝑎 − 𝑏 is small because it has been 355 

suggested that 𝑎 − 𝑏 decreases in the transition zone (e.g., Liu, 2013; Matsuzawa et al., 2010). The other parameters 356 

are similar to those used in previous studies (Ader et al., 2012; Hawthorne and Rubin, 2013). Table 2 shows the 357 

adopted parameters. For these parameters, we can confirm that |𝐾𝑉̃𝑝𝑙| ≪ |2𝜋𝑖𝐴|. Then, the tidal response (equations 358 

(17) and (18)) can be approximated as 359 

𝛼~Re {(𝐴𝜎𝑒𝑓𝑓
0 )

−1
} (19) 360 

𝛿~arg{𝐴−1}. (20) 361 

Combining these equations with equation (14), we note that 𝛼 and 𝛿 depend on 𝑇𝜃/𝑇 and 𝑈. The former parameter 362 

𝑇𝜃/𝑇 prescribes the response of the state variable to the tide, which is uniquely determined once we determine 𝑉𝑝𝑙, 363 

𝑑𝑐 and 𝑇. 𝑇𝜃/𝑇 is constant throughout the tidal cycle. 𝑇𝜃/𝑇 ≪ 1 means that the state variable is close to the steady 364 

state value (𝑑𝑐/𝑉) throughout a tidal cycle, and 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 means that the state variable is almost 365 

constant throughout a tidal cycle (see section 3.2.3 for more details). In the following, we focus on these two 366 

parameters, 𝑇𝜃/𝑇 and 𝑈, to discuss the tidal response. 367 
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3.2.2 A balance of the stress changes 368 

From Figures 2a and 2b, we see a large difference between the cases for 𝑈 = 0 and 𝑈 ≠ 0. The reason for this 369 

large difference can be understood by using the following equation, which is derived from the quasi-static equation 370 

of motion (equation (8)) (for the derivation, see Appendix A): 371 

Δ𝑆(𝑡)~ 𝜎𝑒𝑓𝑓
0 (−𝜇𝑝𝑙𝑈𝑙𝑛 (

𝜃

𝜃𝑝𝑙

) + 𝑎𝑙𝑛 (
𝑉

𝑉𝑝𝑙

) + 𝑏𝑙𝑛 (
𝜃

𝜃𝑝𝑙

)) . (21) 372 

In equation (21), the left-hand side (LHS) and RHS correspond to the tidal Coulomb stress and frictional strength, 373 

respectively. The first, second, and third terms on the RHS represent the dilatancy/compaction effect, the direct 374 

effect, and the evolution effect, respectively. When 𝑈 = 0, the first term vanishes, and the tidal response (equations 375 

(19) and (20)) obtained in this study is consistent with the result discussed in Chapter 4.1 of Hawthrome and Rubin 376 

(2013). Therefore, we analyze the tidal response for 𝑈 ≠ 0 below. 377 

3.2.3 Analysis of the tidal response for𝑈 ≠ 0 378 

Figures 2a and 2b show that the tidal response can be classified into three cases according to the value of 𝑇𝜃/𝑇 379 

because the value affects the degree to which the first term of 𝑎{1 − (𝑏 − 𝜇𝑝𝑙𝑈)/𝑎(1 + 𝑖𝑇𝜃/𝑇)} is dominant (see 380 

equation (14)). The condition for the first term on the RHS of equation (14) to be negligibly small is |𝑏 −381 

𝜇𝑝𝑙𝑈|/𝑎|1 + 𝑖𝑇𝜃/𝑇| ≪ 1. Using the parameter set shown in Table 2, we obtain |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎~𝑂(1), so 𝑇𝜃/𝑇 ≫382 

|𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 is required for the above inequality to hold. Conversely, the condition for the first term on the RHS of 383 

equation (14) becoming dominant is when the value of 𝑎(1 + 𝑖𝑇𝜃/𝑇) becomes ~𝑎. In other words, 𝑇𝜃/𝑇 ≪ 1. The 384 

other case is the intermediate region between these two limits. 385 

 First, we consider the case where 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎. We find that for larger values of 𝑇𝜃/𝑇, 𝛼 and 𝛿 converge 386 

to the same values regardless of the value of 𝑈 (𝑇𝜃/𝑇~104 in Figures 2a and 2b). When 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, the 387 

first term on the RHS of equation (14) can be ignored (𝐴~𝑎). Therefore, substituting 𝐴~𝑎 into equations (19) and 388 

(20), 𝛼 and 𝛿 become 𝑎𝜎𝑒𝑓𝑓
0  and 0, respectively, regardless of the value of 𝑈. Because the state variable evolves 389 

more slowly than the tidal Coulomb stress change, the state variable is almost constant (𝜃~𝜃𝑝𝑙) throughout a tidal 390 

cycle. Then, the dilatancy/compaction and the evolution effect term of equation (21) are almost zero. Therefore, 391 

equation (21) can be approximated as Δ𝑆(𝑡)~𝑎𝜎𝑒𝑓𝑓
0 log(𝑉/𝑉𝑝𝑙) or 𝑉~𝑉𝑝𝑙𝑒

Δ𝑆(𝑡)/𝑎𝜎𝑒𝑓𝑓
0

. This means that 𝛼 = 1/𝑎𝜎𝑒𝑓𝑓
0 . 392 
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Moreover, the form of this equation indicates that the slip velocity peak agrees with the tidal Coulomb stress peak in 393 

time, which means that 𝛿 = 0. 394 

Next, we consider the case where 𝑇𝜃/𝑇 ≪ 1. In this case, 𝛼 depends on 𝑈 and takes a small value when 𝑈 is large 395 

(𝑇𝜃/𝑇~10−2 in Figure 2a). However, 𝛿 converges to zero regardless of the value of 𝑈 (𝑇𝜃/𝑇~10−2 in Figure 2b). 396 

When 𝑇𝜃/𝑇 ≪ 1, we obtain 𝛼 = 1/(𝑎 − 𝑏 + 𝜇0𝑈)𝜎𝑒𝑓𝑓
0  and 𝛿 = 0 from equations (14), (19) and (20). Because the 397 

state variable evolves more rapidly than the tidal Coulomb stress change, the state variable is close to the steady 398 

state value (𝜃~𝑑𝑐/𝑉) throughout a tidal cycle. This is derived by considering d𝜃/d𝑡~0 in equation (4). Then, 399 

equation (21) can be approximated as Δ𝑆(𝑡)~(𝑎 − 𝑏 + 𝜇𝑝𝑙𝑈)𝜎𝑒𝑓𝑓
0 log(𝑉/𝑉𝑝𝑙). As before, the form of this equation 400 

explains the above values of 𝛼 and 𝛿. Moreover, it is clear from the form of 𝛼 that it decreases as 𝑈 increases. 401 

Finally, we consider the case of the intermediate region between the above two limit cases (𝑇𝜃/𝑇 ≪ 1  and 𝑇𝜃/𝑇 ≫402 

|𝑏 − 𝜇𝑝𝑙𝑈|/𝑎). Figure 2a shows that α varies smoothly and connects the limit values for 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 and 403 

𝑇𝜃/𝑇 ≪ 1 (𝑇𝜃/𝑇~100~1 in Figure 2a). Figure 2b shows that the maximum value of 𝛿 approaches 𝜋/2 as 𝑈 404 

increases (𝑇𝜃/𝑇~100~1 in Figure 2b). To clarify why this occurs, we compared the time variation of the tidal 405 

Coulomb stress term (Δ𝑆(𝑡) of equation (21)), the dilatancy/compaction effect term and the evolution effect term in 406 

equation (21). Figure 3 shows these three terms for 𝑈 = 1 and 𝑈 = 0.01. For 𝑈 = 1, the amplitude of the dotted 407 

blue line representing the tidal Coulomb stress and the amplitude of the solid black line representing the 408 

dilatancy/compaction effect are almost the same, and there is a slight phase difference between them. Representing 409 

this phase difference as 𝛽(≪ 𝜋), we see from the balance between the solid black line and the dot blue line in Figure 410 

3 that −𝜇𝑝𝑙𝑈𝜎𝑒𝑓𝑓
0 log(𝜃/𝜃𝑝𝑙)~|Δ𝑆(𝑡)|𝑒𝑖𝜔(𝑡−𝛽). The dashed black line representing the evolution effect is negligibly 411 

small (𝑏𝜎𝑒𝑓𝑓
0 log(𝜃/𝜃𝑝𝑙)~0). Substituting these into equation (21), and after some algebra (Appendix B), we find 412 

that 413 

log (
𝑉

𝑉𝑝𝑙

) ∝ Re {𝑒𝑖𝜔(𝑡+
𝜋
2

)
} . (22) 414 

This formula indicates that the slip velocity peak agrees with the tidal Coulomb stress rate peak (𝑇𝜃/𝑇~101 in the 415 

black line of Figure 2a). For 𝑈 = 0.01, the phase difference 𝛿 is small (𝑇𝜃/𝑇~100 in the blue line of Figure 2a). 416 

This difference can be explained by considering the balance in equation (21). The amplitude of the solid yellow line 417 

representing the dilatancy/compaction effect in equation (21) is smaller than the amplitude of the dotted blue line 418 

representing the tidal Coulomb stress. Furthermore, the dashed yellow line representing the evolution effect 419 
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decreases when the dilatancy/compaction effect term (solid yellow line) is larger and vice versa. Therefore, the 420 

amplitude of the sum of these two effects becomes even smaller than the amplitude of Δ𝑆(𝑡). For the stress balance 421 

of equation (21) to be satisfied, the direct effect term (second term on the RHS) should balance the difference 422 

between Δ𝑆(𝑡) and the sum of the above two effects. This means that for a smaller 𝑈, a larger direct effect is 423 

needed. The dominance of the direct effect term indicates that 𝛿 is small, as we have seen for the case of 𝑇𝜃/𝑇 ≫424 

|𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, which explains why 𝛿 is closer to zero for 𝑈 = 0.01 than for 𝑈 = 1, as shown by Figure 2 (Figure S5 425 

shows the time variation of the tidal Coulomb stress term (Δ𝑆(𝑡) of equation (21)), the dilatancy/compaction effect 426 

term and the evolution effect term in equation at 𝑈 = 0.1). 427 

 Figure S6 schematically illustrates how the pore fluid (dilatancy/compaction effect), tidal stresses and 428 

fault creep velocity generally evolve during one tidal oscillation. Because the case for 𝑈 = 1 can 429 

reproduce the observations at both stages of the ETS, we show only the case for 𝑈 = 1. 430 
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 431 

Figure 2. (a) The numerical solution of 𝛼 (dots) and the approximation solution (equation (19)) (solid line). From 432 

equation (19), we can derive 𝛼 = 1/(𝑎 − 𝑏 + 𝜇0𝑈)𝜎𝑒𝑓𝑓
0  when 𝑇𝜃/𝑇 ≪ 1 and 𝛼 = 1/𝑎𝜎𝑒𝑓𝑓

0  when 𝑇𝜃/𝑇 ≫433 

|𝑏 − 𝜇𝑝𝑙𝑈|/𝑎. Specific values for 𝑈 = 0.01 are displayed in the figure at 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 and at 𝑇𝜃/𝑇 ≪ 1. 434 

(b) The numerical solution of 𝛿 (dots) and the approximation solution (equation (20)) (solid line). The differences in 435 

color represent the differences in the dilatancy parameter 𝑈. 436 

 437 
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 438 

Figure 3. Time evolution of the tidal Coulomb stress (tCs) (blue dotted line), the dilatancy/compaction effect (D/C) 439 

(solid lines), and the evolution effect (Evo) (dashed lines) in equation (21). The horizontal axis denotes time 440 

normalized by the tidal cycle, and the values from 0 to 1 indicate one tidal cycle. The vertical axis denotes the tidal 441 

Coulomb stress/frictional strength normalized by 𝜎𝑒𝑓𝑓
0 . The numerical solutions for 𝑇𝜃/𝑇 = 14 and 𝑈 = 1 are 442 

shown in black, and those for 𝑇𝜃/𝑇 = 1.4 and 𝑈 = 0.01 are shown in yellow. 443 

 444 

4 Discussion 445 

4.1 Application of the model to the observed tidal response during the ETS 446 

As mentioned in the introduction, most of the previous models are unable to account for the phase difference of 447 

𝛿~𝜋/2, which is observed at the early stage of ETS. As shown below, our model reproduces the tidal response 448 

during the ETS, including the phase difference, for a specific range of fault physical properties constrained by 449 

experiments, geological studies, and numerical modeling. 450 

The observed tidal responses typically show 𝛼 ≲ 0.1 kPa−1 and 𝛿~𝜋/2 at the early stage of the ETS and 451 

𝛼~0.7 kPa−1 and 𝛿~0 at the later stage of the ETS. The slip velocity of the fault, which rapidly increases at the 452 

onset of the ETS, decreases to below steady-state subduction velocity with the progress of the ETS. In our model, 453 

ETS is represented by setting 𝑉𝑝𝑙 higher than the steady-state subduction velocity (Table 2). Considering that 454 
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𝑉𝑝𝑙~10−8~−6 m/s, at the moment, we assume 𝑉𝑝𝑙~10−6 m/s at the early stage of the ETS and 𝑉𝑝𝑙~10−8 m/s at the 455 

later stage. 456 

4.2.1 The ranges of 𝑈 reproduce the observation 457 

We see from Figure 2a and 2b that the model reproduces the observed tidal response at the early stage of ETS (𝛼 ≲458 

0.1, 𝛿~𝜋/2) when 𝑇𝜃/𝑇~10 and 𝑈~1. This case corresponds to the last of the three categories of 𝑇𝜃/𝑇 presented 459 

in section 3.2.3. We have seen that the first term on the RHS of equation (21) (the dilatancy/compaction effect term), 460 

which has a phase delay with respect to the tidal Coulomb stress change, dominates in the frictional strength change, 461 

and 𝛿 becomes 𝜋/2. The dominance of the dilatancy/compaction effect term reduces the direct effect term, which 462 

results in a smaller variation in the slip velocity (𝛼 ≲ 0.1). For 𝑉𝑝𝑙 = 10−6 m/s, we obtain 𝑑𝑐 = 10−1 m from the 463 

condition of 𝑇𝜃/𝑇~10 (equation (15)). 464 

Up to this point, we have used the undrained model. The drained model assumes that the pore fluid pressure 465 

diffuses outside the shear zone, as shown in equation (S1). This implies that the shear zone has a high permeability. 466 

From text S1 and S2 in the supporting information, we derived the dilatancy parameter (𝐸𝑝) in the drained model 467 

and estimated the valid range of the parameter. Within the range, the drained model can reproduce 𝛼 for both the 468 

initial and later stages by assuming 𝑑𝑐 = 10−2 m (the solid black line in Figure S3a in the supporting information). 469 

However, the drained model cannot reproduce 𝛿~𝜋/2 at the early stage (Figure S3b in the supporting information). 470 

In addition, we confirmed that even when the dilatancy parameter is an order of magnitude larger than the 471 

reasonable value, we cannot reproduce 𝛿~𝜋/2 at the early stage (Figure S7 in the supporting information). The 472 

result that only the undrained model can reproduce both 𝛼 and 𝛿 suggests the low permeability of the shear zone. 473 

This indicates the possibility that our model can constrain the frictional parameters and the dilatancy coefficient as 474 

well as a hydraulic property of the fault through a comparison with observations of tidal response. 475 

Here, we return to the application of the undrained model. Focusing on the case of 𝑈~1, which explains the early 476 

stage, we see that the model can reproduce the observed tidal response at the later stage of the ETS (𝛼~0.7 kPa−1 477 

and 𝛿~0) when 𝑇𝜃/𝑇 ≳ 103. This case corresponds to 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 described in the three categories in 478 

section 3.2.3. As noted above, the phase advance disappears (𝛿~0) as the direct effect term (second term) on the 479 

RHS of equation (21) becomes dominant in the frictional strength change, and 𝛼 asymptotically reaches a value that 480 

is independent of 𝑈 (𝛼~1/𝑎𝜎𝑒𝑓𝑓
0 ). For 𝑉𝑝𝑙 = 10−8 m/s, the condition of 𝑇𝜃/𝑇 ≳ 103 indicates that 𝑑𝑐 ≳ 10−1 m. 481 
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On the other hand, Figure 2a shows that the model for 𝑈 = 0.01 and 𝑈 = 0.1 can explain the tidal response at the 482 

later stage of ETS when 𝑑𝑐 ≳ 10−3 m and 𝑑𝑐 ≳ 10−2 m, respectively. This means that if we apply the model only 483 

to the tidal response at the later stage of ETS, 𝑑𝑐 might be underestimated. 484 

The above comparison between the model and observations shows that the dilatancy/compaction effect is dominant 485 

at the early stage of the ETS, while the dilatancy/compaction effect is negligible at the later stage of the ETS. Figure 486 

4 schematically illustrates the physical process suggested by our model. First, we see the early stage of ETS (Figure 487 

4a). A higher tide level increases the ocean load and reduces Δ𝑆(𝑡). At low tide (𝛿~0), Δ𝑆(𝑡) takes its maximum. 488 

However, the effect generated by the low tide is almost canceled out by the significant increase in the normal stress 489 

due to the dilatancy/compaction effect. At the mean tide (𝛿~𝜋/2), Δ𝑆(𝑡) is zero. The dilatancy/compaction effect is 490 

reduced but still able to decrease the normal stress. Consequently, the slip velocity or the tremor rate reaches the 491 

maximum. Next, we see the later stage of ETS (Figure 4b). Since the dilatancy/compaction effect is always 492 

negligible at this stage, the slip velocity is maximized when Δ𝑆(𝑡) becomes the largest (low tide). 493 

Incidentally, we can reproduce the observed tidal response (𝛼, 𝛿) as well as the observation that the number of 494 

tremors decreases by one or two orders of magnitude at the later stage of ETS compared to that at the early stage. 495 

This is because in equation (2), the tremor rate is proportional to the fault creep velocity, meaning that the tremor 496 

rate at the later stage of the ETS (𝑉𝑝𝑙~10−8 m/s) is two orders of magnitude less than the tremor rate at the early 497 

stage of the ETS (𝑉𝑝𝑙~10−6 m/s). 498 

 499 
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 500 

Figure 4. A schematic illustration of the relationship between the fault creep velocity and tide level. For simplicity, 501 

only the normal stress change is represented. (a) Early stage of ETS. The sum of the normal stress due to the 502 

dilatancy/compaction effect (black arrows) and the tidal normal stress (white arrows) becomes the largest in the 503 

sense of enhancing fault slip at 𝛿~𝜋/2. (b) Later stage of ETS. The dilatancy/compaction effect is negligible, and 504 

the fault creep velocity reaches its maximum at 𝛿~0. 505 

 506 
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4.2.2 The ranges of 𝑑𝑐 reproduce the observation 507 

In section 4.2.1, we showed that the observation can be reproduced when 𝑑𝑐~10−1 m, assuming 𝑉𝑝𝑙~10−8~−6 m/s. 508 

On the other hand, Figure 5 (a) and (b) show that the observation cannot be reproduced when 𝑑𝑐 is other than 509 

~10−1 m. For example, when 𝑑𝑐 = 10−3, 𝛼~0 and 𝛿~0 at the early stage of ETS (𝑉𝑝𝑙~10−6 m/s) and 𝛼~0 510 

and 𝛿~𝜋/2 at the later stage of ETS (𝑉𝑝𝑙~10−8 m/s). 511 

The above range of 𝑑𝑐~10−1 m, which explains the observation, was determined from the conditions that 512 

𝑇𝜃/𝑇~10 at the early stage of ETS and 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎 (~100) at the later stage of ETS. In principle, 513 

these two conditions can be met for any 𝑉𝑝𝑙 if 𝑑𝑐 is appropriately chosen, considering the form of equation (15). In 514 

practice, however, 𝑑𝑐 can be constrained based on 𝑉𝑝𝑙 estimated from observations and numerical simulations. 515 

Based on observations and simulations, the slip velocity of the SSE is 10−9~−6 m/s (e.g., Goswami and Barbot 516 

2018; Schwartz and Rokosky, 2007; Segall et al. 2010). The slip velocity of the fault, which rapidly increases at 517 

the onset of the ETS, decreases to the inter-ETS period velocity with the progress of the ETS. Based on the above 518 

conditions, we can reproduce the observation not only for 𝑉𝑝𝑙~10−8~−6 m/s but also for 𝑉𝑝𝑙~10−9~−7 m/s by 519 

employing 𝑑𝑐 = 10−2 (Figure S8). When 𝑑𝑐 is other than 10−2 m, the observation cannot be reproduced. 520 

Therefore, our model and observations are consistent for critical slip distances of 0.1-0.01 m in the transition 521 

zone. 522 

 523 

Figure 5. (a) The approximation solution of 𝛼 (equation (19)) when 𝑉𝑝𝑙 = 10−6 m/s (black) and 524 

 10−8 m/s (yellow). The horizontal axis denotes the critical slip distance 𝑑𝑐. The blue dots show that 𝛼 525 

for 𝑑𝑐 = 0.13 m increases from ≲ 0.1 to ~0.7 as 𝑉𝑝𝑙 decreases from 10−6 m/s to 10−8 m/s. (b) The 526 
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same as in (a) but for the approximation solution of 𝛿 (equation (20)). The blue dots show that 𝛿 527 

decreases from ~𝜋/2 to ~0 as 𝑉𝑝𝑙 decreases from 10−6 m/s to 10−8 m/s. 528 

 529 

4.3 The constrained physical fault properties 530 

For our model to simultaneously reproduce the observed tidal responses at the early and later stages of the ETS, the 531 

following four conditions must be satisfied: 𝑈(= 𝑀𝜖/𝜎𝑒𝑓𝑓
0 )~1, 𝑑𝑐~10−1 m, the occurrence of 532 

dilatancy/compaction in the fault creep region (i.e., 𝑎 > 𝑏) and low permeability within the shear zone (undrained 533 

model). Below, we discuss the validity of these conditions. 534 

4.3.1 The dilatancy parameter 𝑈 535 

Samuelson et al. (2009) obtained a dilatancy coefficient, and Segall et al. (1995) obtained bulk moduli of the fluid 536 

and pore space. These results yield 𝜖~10−4~−5 and 𝑀~1010 Pa (equation (7)). We assume that these experimentally 537 

obtained values are of the same magnitude in the transition zone. Substituting these values into 𝑈(= 𝜖𝑀/𝜎𝑒𝑓𝑓
0 ) = 1, 538 

which reproduces the observed tidal response, we obtain 𝜎𝑒𝑓𝑓
0 = 𝜖𝑀𝑈~105~6 Pa, which supports a near-lithostatic 539 

pore fluid pressure (e.g., Audet et al., 2009; Nakata, 2008; Shelly et al., 2006; Yabe et al., 2015). 540 

4.3.2 The critical slip distance 𝑑𝑐 541 

The results of friction experiments on rocks and gouges show 𝑑𝑐~10−4~−6 m (e.g., Marone, 1998). Our results 542 

(𝑑𝑐~10−1~2 m) are 2~5 orders of magnitude larger. The much larger critical slip distance can be explained by 543 

considering the differences in roughness between laboratory surfaces and natural faults (Scholz et al., 1988) and the 544 

differences in the thickness of the shear zone between experimental and natural faults (Marone and Kilgore, 1993). 545 

Numerical models assuming the RSF also adopt a critical slip distance larger than that in the experimental results. 546 

For example, Nakata et al. (2012) successfully modeled the SSE and aftershocks after the ~M7 earthquake in 547 

Hyuga-nada, Japan, with 𝑑𝑐 = 10−1~0 m. Maury et al. (2014) calculated a time evolution of shear stress for the SSE 548 

in Mexico and estimated that the critical slip distance that can quantitatively reproduce the observed results is 549 

5 × 10−2 m. Kawamura et al. (2018) applied a 1-D multidegree of freedom spring-slider model with 𝑑𝑐 = 10−2 m 550 
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to reproduce various types of fault slip, such as fast slip, source nucleation, aftershock, and SSE. Our analysis of the 551 

tidal response during ETS also supports 𝑑𝑐 with the order of 10−1~−2 m. 552 

4.3.3 The occurrence of dilatancy/compaction in the fault creep region 553 

Numerical models that have been proposed thus far generally require the presence of a VW region (𝑎 − 𝑏 < 0) to 554 

reproduce SSE (e.g., Liu and Rice, 2005; Segall et al., 2010). Some models have proposed a mechanism by which 555 

SSE occurs in the VS regime, such as the generation of a negative Coulomb stress change due to fault valve action 556 

(Perfettini and Ampuro 2008) and the transition of the RSF from the VW at low speeds to the VS at high speeds 557 

(e.g., Im et al., 2020; Peng and Rubin, 2018; Shibazaki and Iio. 2003). Our model employs the framework of the VS 558 

and expresses the velocity of the slow slip by V𝑝𝑙 phenomenologically. 559 

The above two models assuming the VS (e.g., Im et al., 2020; Peng and Rubin, 2018; Perfettini and Ampuro, 2008; 560 

Shibazaki and Iio 2003) do not consider the time variation of pore fluid pressure. On the other hand, Beeler et al. 561 

(2018) developed a model that considers the time variation of pore fluid pressure in the VW region. However, it 562 

cannot be applicable to the tidal modulation of the tremor rate during ETS. Our results show that when we assume 563 

the framework of the VS, the observed tidal response at the early stage of ETS cannot be reproduced unless 564 

dilatancy/compaction occurs. 565 

4.3.4 The fluid pressure diffusivity derived from the undrained condition 566 

For the undrained model, 𝑇 ≪ 𝑡𝑤 must be satisfied (section 2.2.2). Using this condition, we can quantitatively 567 

constrain the fluid pressure diffusivity as follows. We assume that the thickness of the shear zone is 𝑤 and the fluid 568 

pressure diffusivity in the shear zone is 𝑐ℎ𝑦𝑑
∗ . Then, a dimensional analysis shows that 𝑤~√𝑡𝑤𝑐ℎ𝑦𝑑

∗ , where 𝑡𝑤 569 

denotes the characteristic timescale on which the pore fluid pressure diffuses through the shear zone. Therefore, the 570 

condition of 𝑇 ≪ 𝑡𝑤 can be rewritten as 𝑇 ≪ 𝑤2/𝑐ℎ𝑦𝑑
∗ . 571 

We estimate 𝑤 in the transition zone in the following manner since it cannot be observed directly. A drilling 572 

investigation and structural analyses of drill cores on the Nojima Fault revealed that 𝑤 in the seismogenic zone is 573 

~101/2 m (Lin and Nishikawa, 2019). It is generally expected that 𝑤 in the VS region is larger than in the VW 574 

region (e.g., Chen and Rampel, 2015). Therefore, we assume 𝑤~100~1/2 m in the VS region. Then, the above 575 

undrained condition yields 𝑐ℎ𝑦𝑑
∗ ≪ 2 ∗ 10−5~−4 m2/s. This value of 𝑐ℎ𝑦𝑑

∗  is consistent with Branut (2021), who 576 
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reported that the observed rupture propagation of an SSE could be reproduced by a crack propagation model at 577 

𝑤~6 𝑐𝑚 and 𝑐ℎ𝑦𝑑
∗ ~10−6 m2/s. Previous studies have shown that the 𝑐ℎ𝑦𝑑

∗  of the seismogenic zone is 578 

~10−8~−3 m2/s (Yamashita and Tsutsumi, 2018). Our results suggest that the shear zone in the transition zone is 579 

probably as impermeable as that in the seismogenic zone. 580 

4.4 Other effects than dilatancy/compaction 581 

We have seen that the dilatancy/compaction effect is important to explain the phase difference (𝛿~𝜋/2) in the tidal 582 

response. In this section, we examine whether other effects could explain 𝛿~𝜋/2. The following two possibilities 583 

are considered. 584 

In the first case, a change in the state variable is introduced due to the normal stress acting on the fault plane 585 

(Linker and Dieterich, 1992). In this case, the time variation of the state variable can be written as follows: 586 

𝑑𝜃

𝑑𝑡
= −

𝑉𝜃

𝑑𝑐

log (
𝑉𝜃

𝑑𝑐

) −
𝛾

𝑏

𝜎̇

𝜎
𝜃, (23) 587 

where 𝛾 is a constitutive parameter representing a normal stress dependence. In general, 𝛾~𝑂(0.1). Therefore, we 588 

adopt 𝛾 = 0.2 and solve the governing equations of our model replacing the evolution law (equation (4)) with 589 

equation (23). The results indicate that the difference caused by considering the effect of normal stress on the state 590 

variable is less than 1%. Therefore, the influence of the Linker-Dieterich effect is small and does not provide a 591 

reason for the large phase difference. 592 

In the second case, tidal Coulomb stress can directly destroy the tremor source instead of aseismic slip on the 593 

surrounding fault. This effect is ignored in our model. If this is the case, the tremor rate is proportional to the tidal 594 

Coulomb stressing rate (i.e., 𝛿~𝜋/2) (Beeler et al., 2013; Lockner and Beeler, 1999). This direct effect of the tidal 595 

Coulomb stress should become clearer when the aseismic slip on the surrounding fault is smaller, i.e., at the later 596 

stage of the ETS (Royer et al., 2015). However, the observed result shows 𝛿~0 at the later stage, indicating that the 597 

direct effect is smaller. 598 

None of the above effects can explain the phase difference of 𝛿~𝜋/2, and thus, the pore fluid pressure change due 599 

to dilatancy/compaction is more likely to cause the large phase difference at the early stage of the ETS. 600 
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4.5 Application to the tidal response of continuous families 601 

By setting the value of 𝑉𝑝𝑙 to a steady-state plate convergence velocity (e.g., 10−9 m/s), we can examine the range 602 

of 𝑑𝑐 and 𝑈 in which our model reproduces the tidal response of continuous families. The observations show that 603 

the tidal response of continuous families is 𝛿~0 (Ide and Tanaka, 2014; Thomas et al., 2012) and 𝛼~1.5 kPa−1 604 

(Thomas et al., 2012), for example. We examine whether these observations can be reproduced with parameters that 605 

reproduce the tidal response of episodic families (𝑑𝑐~10−1 m, 𝑈~1) (section 4.2). In the case of 𝑑𝑐 = 10−1 m, 606 

𝑉𝑝𝑙 = 10−9 m/s and 𝑇𝜃/𝑇~104, we obtain 𝛼~𝑎𝜎𝑒𝑓𝑓
0 (= 0.67 kPa−1) and 𝛿~0 (section 3.2.2). Therefore, by slightly 607 

reducing the value of 𝜎𝑒𝑓𝑓
0 , the tidal responses of continuous families and episodic families can be reproduced with 608 

similar values of the fault physical properties. 609 

4.6 Limitations of our model 610 

Our model, in which fault creep is represented with a one-degree-of-freedom spring block of the VS regime (𝑎 −611 

𝑏 > 0), necessarily fails to include the occurrence of slow slip accompanying a rapid release of the accumulated 612 

stress. For this reason, we expressed the occurrence of slow slip by the difference in 𝑉𝑝𝑙 and assumed that the tremor 613 

rate during ETS is proportional to the fault creep velocity (equation (2)). Our model accounted for the tidal response 614 

of tremors during ETS, but this does not hold if the frictional law requires 𝑎 − 𝑏 < 0 during SSE. In such a case, our 615 

model needs to be extended to include unstable regions (𝑎 − 𝑏 < 0) by increasing the degrees of freedom. 616 

Models that assume 𝑎 − 𝑏 < 0, which have been proposed thus far, include models with complex fault geometries 617 

(Romanet et al., 2018), 3-D elastic media (Matsuzawa et al., 2010), heterogeneous fault physical properties (Luo and 618 

Ampuero, 2018), and nonuniform permeability in space and time (Bizzarri, 2012; Cappa, 2011; Dunham and Rice, 619 

2008). They account for more complex effects that are not considered in our model. However, the tidal response of 620 

these models has not yet been investigated. 621 

Because our model adopts a one-degree-of-freedom (one-DOF) spring-slider system, it cannot simulate the 622 

spatiotemporal variation in stress during an ETS. Such spatiotemporal changes in stress have been modeled using a 623 

two-dimensional system (e.g., Hawthorne and Rubin, 2013), which can reproduce observations such as a spatial 624 

propagation of ETS and temporal changes in the slip velocity during ETS. Hawthorne and Rubin (2013) examined 625 

the tidal response of ETS based on such a 2-D model. 626 
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However, Hawthorne and Rubin (2013) reported that the tidal response during ETS obtained by a 2-D simulation 627 

qualitatively agrees with the tidal response of the one-DOF ramp block slider model. Their model does not include 628 

the effect of dilatancy/compaction. To confirm whether the one-DOF and 2-D simulation results are in agreement 629 

for a model including the dilatancy/compaction effect, we need to extend our model to a 2-D system. One approach 630 

to do so would be to incorporate the dilatancy/compaction effect considered in our model into the model of 631 

Hawthorne and Rubin (2013). 632 

5 Conclusions 633 

Tremors in the transition zone are sensitive to tidal stress. In this study, we propose a physical model to explain the 634 

tidal response of tremors observed during the ETS. Following previous studies (Ader et al., 2012; Beeler et al., 635 

2013; Shelly et al., 2007a), we assumed that tremors are generated by the rupture of a small brittle patch on the fault 636 

plane due to the aseismic shear slip of a larger-scale surrounding fault. As in Ader et al. (2012), we adopted a one-637 

degree-of-freedom spring-slider that follows the RSF for the VS and set up the governing equations to describe the 638 

slip behavior of the block, considering a pore fluid pressure change in the shear zone (section 2). We considered 639 

drained (high-permeability) and undrained (low-permeability) models and presented results are mainly of the 640 

undrained model, which could reproduce more observations than the drained model. The inclusion of pore pressure 641 

changes due to dilatancy/compaction in the VS regime is in remarkable contrast to previous theoretical models 642 

describing tidal modulation. 643 

In our model, the tidal response is expressed with the tidal sensitivity (𝛼), which represents the amplitude of the 644 

tidal modulation of fault creep velocity, and the phase difference (𝛿) of the fault creep velocity peak relative to the 645 

tidal Coulomb stress peak. We analytically derived an approximate solution to reveal how the tidal response depends 646 

on the fault physical properties in section 3. We note that the slip behavior is primarily controlled by the 647 

characteristic timescale 𝑇𝜃  (= 2𝜋𝑑𝑐/𝑉𝑝𝑙) at which the state variable evolves, where 𝑑𝑐 is the critical slip distance 648 

and 𝑉𝑝𝑙 is the background fault creep. We found that the behavior of 𝛼 and 𝛿 can be classified into three cases 649 

according to the magnitude of 𝑇𝜃/𝑇 (𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, 𝑇𝜃/𝑇~1~|𝑏 − 𝜇𝑝𝑙𝑈|/𝑎, 𝑇𝜃/𝑇 ≪ 1), where 𝑇 is the 650 

tidal cycle (~12 hours), 𝑎 and 𝑏 are frictional constitutive parameters, 𝜇𝑝𝑙 is the frictional coefficient and 𝑈 is the 651 

dilatancy parameter. This classification reflects the degree to which the dilatancy/compaction effect is dominant in 652 
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the frictional strength change. We showed that the smaller 𝑇𝜃/𝑇 is, the more dominant the dilatancy/compaction 653 

effect is in the friction strength change. 654 

We applied the model to ETS, assuming that 𝑉𝑝𝑙 changes between the early and later stages of the ETS. The model 655 

successfully reproduced the tidal response observed at both stages of the ETS. Adopting this undrained model, we 656 

constrained the effective normal stress to be 105~6 Pa, the critical slip distance to be 10−1~−2 m, and the fluid 657 

pressure diffusivity to be 10−5 m2/s or less. Of particular importance is the use of the phase difference in the 658 

estimation of the fault properties. Without considering the dilatancy/compaction effect, the phase difference at the 659 

early stage cannot be reproduced. Moreover, using the tidal response data obtained during only the early stage or the 660 

later stage produces different estimates of the fault properties. The range of the fault properties obtained in our study 661 

are in the ranges inferred by independent studies. Our model supports a critical slip distance of ~10−1~−2 m, which 662 

has been used in numerical simulations of earthquake cycles. This study shows that the physical modeling of the 663 

tidal response of tremors during the ETS is an effective method to retrieve the fault properties in the transition zone, 664 

including hydraulic properties. 665 

 666 

Appendices 667 

Appendix A: Derivation of equation (21) 668 

Substituting equation (3) into equation (8) and transforming the result, we obtain 669 

𝑘𝛥𝑢 + 𝛥𝜏 = {𝜇0 + 𝑎log (
𝑉𝑝𝑙

𝑉0

) + 𝑏log (
𝜃𝑝𝑙

𝜃0

) + 𝑎log (
𝑉

𝑉𝑝𝑙

) + 𝑏log (
𝜃

𝜃𝑝𝑙

)} 𝜎𝑒𝑓𝑓  670 

= {𝜇𝑝𝑙 + 𝑎log (
𝑉

𝑉𝑝𝑙

) + 𝑏log (
𝜃

𝜃𝑝𝑙

)} 𝜎𝑒𝑓𝑓 . (𝐴) 671 

We represent the relative displacement of the block at the steady state without the tide as Δ𝑢𝑛𝑜. Then, 𝑘Δ𝑢𝑛𝑜 =672 

𝜇𝑝𝑙𝜎𝑒𝑓𝑓
0  holds, where the RHS is obtained by setting ∆𝜎(𝑡) = 0 and ∆𝑝(𝑡) = 0 in equation (9). We can confirm that 673 

𝑘Δ𝑢~𝜇𝑝𝑙𝜎𝑒𝑓𝑓
0  as follows. For the parameter set in Table 2, 𝑘Δ𝑢̇~𝑂(𝑘𝑉𝑝𝑙) is three orders of magnitude smaller than 674 

Δ𝜏̇~𝑂(2𝜋|Δ𝜏|/𝑇). This means that 𝑘Δ𝑢̇ on the LHS of the time derivative of equation (A) is negligibly small, 675 

suggesting that Δ𝑢~Δ𝑢𝑛𝑜. Replacing 𝑘Δ𝑢 with 𝜇𝑝𝑙𝜎𝑒𝑓𝑓
0  on the LHS and using equations (9) and (11), equation (A) 676 

can be rewritten as 677 
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Δ𝑆(𝑡) = −𝜇𝑝𝑙Δ𝑝(𝑡) + 𝑎𝜎𝑒𝑓𝑓log (
𝑉

𝑉𝑝𝑙
) + 𝑏𝜎𝑒𝑓𝑓log (

𝜃

𝜃𝑝𝑙
) . (𝐵)678 

In equation (B), the LHS corresponds to the tidal Coulomb stress and the RHS corresponds to the frictional strength. 679 

Furthermore, equation (B) can be written as 680 

Δ𝑆(𝑡)~ − 𝜇𝑝𝑙𝑈𝜎𝑒𝑓𝑓
0 log (

𝜃

𝜃𝑝𝑙
) + 𝑎𝜎𝑒𝑓𝑓

0 log (
𝑉

𝑉𝑝𝑙
) + 𝑏𝜎𝑒𝑓𝑓

0 log (
𝜃

𝜃𝑝𝑙
) (𝐶)681 

by using equation (7), where Δ𝑝 = 0 is taken at 𝜃 = 𝜃𝑝𝑙, and it is assumed that the changes in the effective normal 682 

stress in the second and third terms on the RHS of equation (C) are sufficiently small compared to 𝜎𝑒𝑓𝑓
0 . 683 

Appendix B: Derivation of equation (22) 684 

Substituting −𝜇𝑝𝑙𝑈𝜎𝑒𝑓𝑓
0 log(𝜃/𝜃𝑝𝑙)~Δ𝑆𝑒𝑖𝜔(𝑡−𝛽) and 𝑏𝜎𝑒𝑓𝑓

0 log(𝜃/𝜃𝑝𝑙)~0 into equation (21), as described in section 685 

3.2.3, we obtain 686 

log (
𝑉

𝑉𝑝𝑙

) ~|Δ𝑆(𝑡)|Re(𝑒𝑖𝜔𝑡 − 𝑒𝑖𝜔(𝑡−𝛽)). (𝐷) 687 

When 𝜃1 = 𝜔𝑡 − 𝛽/2, 𝜃2 = 𝛽/2, we can write 𝑅𝑒(𝑒𝑖𝜔𝑡 − 𝑒𝑖𝜔(𝑡−𝛽)) = cos(𝜃1 + 𝜃2) − cos(𝜃1 − 𝜃2) =688 

sin(𝜃1) sin(𝜃2). Using sin(𝜃1) = cos (𝜋/2 + 𝜃1), we obtain sin(𝜃1) sin(𝜃2) = cos(𝜔𝑡 + (𝜋 − 𝛽)/2) sin(𝛽/2). 689 

That is, log(𝑉/𝑉𝑝𝑙)~|Δ𝑆(𝑡)|sin(𝛽/2) cos(𝜔𝑡 + (𝜋 − 𝛽)/2). Furthermore, since 𝛽 ≪ 𝜋, equation (D) can be 690 

rewritten as 691 

log (
𝑉

𝑉𝑝𝑙

) ~|Δ𝑆(𝑡)|sin (
𝛽

2
) Re {𝑒𝑖(𝜔𝑡+

𝜋
2

)
} . (𝐸) 692 

Open Research 693 

The source code is available from zenodo (10.5281/zenodo.6403829). 694 
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Introduction 

TextS1 presents the governing equation of the drained model. 

TextS2 presents the nondimensionalized governing equation of the drained model. 
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TextS3 presents a numerical method for solving the governing equation of the drained model. 

TextS4 presents the approximate solution for the tidal response of the drained model. 

Figure S1 shows a schematic of the undrained and drained models. 

Figure S2 shows the numerical solution of 𝑐 in equation (12) for the undrained model. 

Figure S3 shows the numerical and approximate solutions for the tidal responses α and δ of the 

drained model. 

Figure S4 shows the numerical solution of 𝑐 in equation (12) for the drained model. 

Figure S5 shows the time variation of the tidal Coulomb stress term (Δ𝑆(𝑡) of equation (21)), the 

dilatancy/compaction effect term and the evolution effect term in equation (21). 

Figure S6 shows a schematic illustration of the relationship between the fault creep velocity and 

the tide level when 𝑈 = 1. 

Figure S7 shows the dependence of the parameter 𝐸𝑝 on the phase difference. 

Figure S8 shows the dependence of 𝑑𝑐 on the tidal sensitivity and phase difference when 𝑉𝑝𝑙 =

10−7 and 10−9 m/s. 

 

Text S1. Derivation of the governing equations for the drained model 

We explain a drained model in which pore fluids flow out of the shear zone (Figure S1b). The 

difference between the undrained and drained models is the presence of fluid flow. The governing 

equations of the drained model are the same as those in the undrained model (equations (3), (4) 

and (8)), except for the governing equation for pore fluids. 

Following the work of Segall et al. (2010), we assume homogeneous diffusion (HD), which 

holds under the condition that 𝑇 ≫ 𝑡𝑤. In the HD case, the effect of the finite shear zone 

thickness can be neglected, so the width of the shear zone can be formally defined as 𝑤 → 0 

(Segall et al., 2010). The direction of fluid flow (Figure S1b) is parallel to the z-axis, and the 
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shear zone lies on 𝑧 = 0. 𝑐ℎ𝑦𝑑 denotes the fluid pressure diffusivity at 𝑧 ≠  0. Then, the 

governing equation for pore fluids can be written as (Segall et al., 2010) 

𝜕𝑝

𝜕𝑡
= 𝑐ℎ𝑦𝑑

𝜕2𝑝

𝜕𝑧2
  (

𝜕𝑝

𝜕𝑧
|

𝑧=0
=

𝑀𝑤𝜙̇

2𝑐ℎ𝑦𝑑
) . (𝑆1) 

 

Text S2. Nondimensionalization of the governing equations of the drained model 

The governing equations for the drained model are the upper three in equation (10) and the 

nondimensionalized equation (S1). When we adopt √𝑐ℎ𝑦𝑑𝑇 as the representative length in the z-

axis direction, the nondimensionalized equation (S1) can be written as 

𝜕𝑝̃

𝜕𝑡̃
=

𝜕2𝑝̃

𝜕𝑧̃2
   (

𝜕𝑝̃

𝜕𝑧̃
|
𝑧̃=0

= −𝐸𝑝

1

𝜃̃

𝑑𝜃̃

𝑑𝑡̃
) , (𝑆2) 

where 𝐸𝑝 = 𝑀𝜖/2𝜎𝑒𝑓𝑓
0 √𝑤2/𝑇𝑐ℎ𝑦𝑑 = 𝑈/2√𝑤2/𝑇𝑐ℎ𝑦𝑑. 𝐸𝑝 represents the relative importance of 

the dilatancy/compaction effect to the effective normal stress change in the drained model. 

Previous experiments and observations suggest that 𝑐ℎ𝑦𝑑~10−1~3 m2/s (Yamashita and 

Tsutsumi, 2018) and 𝑈~100~−2 (Section 2.2.3). Using 100~1/2 m as the value of 𝑤 (Section 

4.3.4), we obtain a possible range of 𝐸𝑝 as 10−2 to 10−4. 

 

Text S3. A numerical method for solving the governing equation of the drained 

model 

The upper three equations in equation (10) are calculated numerically using the third-order 

Adams-Bashforth method as in the undrained case. Equation (S2) is calculated numerically using 

the method presented in Appendix B of Segall et al. (2010). In the following, we discuss the latter 

method. Near the shear zone, the discretization needs to be sufficiently fine to capture a steep 
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gradient of the pore fluid pressure. On the other hand, for a region far from the shear zone, the 

discretization does not need to be fine because the pore fluid pressure gradient is small. Thus, we 

use the following coordinate transformation between 𝑧 and 𝑟 (Segall et al., 2010): 

𝑧(𝑟) = −𝑐 + 𝑒r or, equivalently, 𝑟(𝑧) = ln(𝑐 + 𝑧). 

We solve equation (S2) numerically in a new coordinate system using the Crank-Nicolson 

method. Specifically, we solve 

{1 +
𝛾

2
𝑒−𝑟𝑘(𝑒−(𝑟𝑘−𝛿) + 𝑒−(𝑟𝑘+𝛿))} 𝑝𝑘

𝑖+1

= 𝑝𝑘
𝑖 +

𝛾

2
𝑒−𝑟𝑘𝑒−(𝑟𝑘−𝛿)(𝑝𝑘−1

𝑖 + 𝑝𝑘−1
𝑖+1 ) −

𝛾

2
𝑒−𝑟𝑘𝑝𝑘

𝑖 (𝑒−(𝑟𝑘−𝛿) + 𝑒−(𝑟𝑘+𝛿)), (𝑆3)
 

where 𝛾 = Δ𝑡/Δ𝑟2, 𝛿 = Δ𝑟/2, and 𝑝𝑖
𝑘 is the value of the pore fluid pressure of the 𝑘-th grid in 

the new coordinate system at time step 𝑖. Δ𝑡 andΔ𝑟 represent increments in time and space, 

respectively. In this study, the number of grids is 35, and the starting position of the grid is 

𝑟(0) = ln(0), Δ𝑟 = 0.3, and 𝑐 = 10−4. Therefore, the grid farthest from the shear zone in the 

numerical calculation using 𝑐ℎ𝑦𝑑~10−1 m2/s, 𝑇~12.4 h is approximately 𝑧 = 170 m, while the 

grid farthest from the shear zone in the numerical calculation using 𝑐ℎ𝑦𝑑~10−3 m2/s, 𝑇~12.4 h 

is approximately 𝑧 = 17 m. 

 

Text S4. The approximate solution for the tidal response of the drained model 

The approximate solution for the drained model is derived in the same manner as in Section 3.1. 

The pore fluid pressure change due to fluid flow is represented as 𝑝(𝑧, 𝑡) = 𝑝0 + Δ𝑝(𝑧)𝑒𝑖𝜔𝑡, 

where 𝑝(0, 𝑡) corresponds to the pore fluid pressure in the shear zone. The equations for the 

drained model corresponding to equations (13) and (14) for the undrained model are  

Δ𝑉̃

𝑉̃𝑝𝑙

=
2𝜋𝑖

𝐾̃𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶
|Δ𝑆̃(𝑡)| (𝑆4) 

and 
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𝐶 = 𝑎 −
1

1 + 𝑖
𝑇𝜃
𝑇

(𝑏 − 𝜇𝑝𝑙𝐸𝑝√2𝜋𝑖), respectively. (𝑆5) 

The equations of the drained model corresponding to equations (17) and (18) for the undrained 

model are 

𝛼 = 𝑅𝑒 (
2𝜋𝑖

(𝐾̃𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶)𝜎𝑒𝑓𝑓
0 ) (𝑆6) 

and 

𝛿 = 𝑎𝑟𝑔 (
2𝜋𝑖

𝐾̃𝑉̃𝑝𝑙 + 2𝜋𝑖𝐶
) , respectively. (𝑆7) 

Furthermore, by applying the argument from which equations (19) and (20) were derived for the 

drained model, the approximate solutions of 𝛼 and 𝛿 can be expressed as 

𝛼~𝑅𝑒 {(𝐶𝜎𝑒𝑓𝑓
0 )

−1
} (𝑆8) 

and 

𝛿~𝑎𝑟𝑔{𝐶−1}, (𝑆9) 

respectively. 
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Figure S1. A schematic of the undrained (a) and drained (b) models. The difference between the 

two models is whether fluid flows outside the shear zone.  
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Figure S2. The numerical solution of 𝒄 (dots). The differences in color represent differences in 

the dilatancy parameter 𝑼. 
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Figure S3. (a) The numerical solution of 𝜶 (dots) and the approximation solution (i.e., equation 

(S8)) (solid line). (b) The numerical solution of 𝜹 (dots) and the approximation solution (i.e., 

equation (S9)) (solid line). The differences in color represent differences in the dilatancy 

parameter 𝑬𝒑 for the drained model. 
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Figure S4. The numerical solution of 𝒄 (dots). The differences in color represent differences in 

the dilatancy parameter 𝑬𝒑 for the drained model. 
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Figure S5. The time evolution of the dilatancy/compaction (D/C) term and the evolution (Evo) 

term for 𝑈 = 1 and 𝑈 = 0.1 (the variation from the time average over one tidal cycle is shown). 

The horizontal axis denotes the time normalized by the tidal period, and the values from 0 to 1 

indicate one tidal cycle. The vertical axis denotes the tidal Coulomb stress (tCs) × 103, 

normalized by the frictional strength 𝜎𝑒𝑓𝑓
0 . The numerical solutions for 𝑇𝜃/𝑇 = 14 and 𝑈 = 1 are 

shown in black, and those for 𝑇𝜃/𝑇 = 4.2 and 𝑈 = 0.1 are shown in yellow. The amplitudes of 

the D/C term and tCs term are almost the same for 𝑈 = 0.1 as well as 𝑈 = 1. This means that the 

argument in Lines 407-414 in the body text can be applied to 𝑈 = 0.1 as well as 𝑈 = 1. 

Furthermore, the D/C term for 𝑈 = 0.1 has a phase shift to the right of that for 𝑈 = 0.1. Thus, 

𝛽(≪ 𝜋) at 𝑈 = 0.1 is larger than 𝛽(≪ 𝜋) at 𝑈 = 1 (log(𝑉/𝑉𝑝𝑙)~|Δ𝑆(𝑡)|sin(𝛽/2) cos(𝜔𝑡 +

(𝜋 − 𝛽)/2). See Appendix B). Since the tidal Coulomb stress peak corresponds to 𝜔 = 𝜋/2, the 

larger 𝛽 is, the smaller 𝛿 is. In other words, 𝛿 is smaller for 𝑈 = 0.1 than for 𝑈 = 1. 
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Figure S6. A schematic illustration of the relationship between the fault creep velocity and tide 

level when 𝑈 = 1. For simplicity, only the normal stress change (white arrows) is represented. (a) 

Tidal modulation of fault creep when 𝑇𝜃/𝑇 ≪ 1. Since the dilatancy/compaction effect (black 

arrows) decreases the amplitude of Δ𝑆(𝑡), the fault creep velocity reaches its maximum at 𝛿~0. 

(b) Tidal modulation of fault creep when 𝑇𝜃/𝑇 ≪ 1 and 𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎. The sum of the 

normal stress due to the dilatancy/compaction effect and the tidal normal stress becomes the 

largest in the sense of enhancing fault slip at 𝛿~𝜋/2. (c) Tidal modulation of fault creep when 

𝑇𝜃/𝑇 ≫ |𝑏 − 𝜇𝑝𝑙𝑈|/𝑎. The dilatancy/compaction effect is negligible, and the fault creep velocity 

reaches its maximum at 𝛿~0.  
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Figure S7. The dependence of 𝑇𝜃/𝑇 on the phase difference at 𝐸𝑝 = 0.1 The numerical solution 

of 𝛿 (dots) and the approximation solution (i.e., equation (S9)) (solid line). We see that the 

maximum phase difference is 𝛿~𝜋/6 at 𝑇𝜃/𝑇~10, which cannot explain the observed phase 

difference of 𝜋/2. 
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Figure S8. (a) The approximation solution of 𝛼 (equation (19)) when 𝑉𝑝𝑙 = 10−7 m/s (black) and 

 10−9 m/s (yellow). The horizontal axis denotes the critical slip distance 𝑑𝑐. The blue dots show 

that 𝛼 for 𝑑𝑐 = 0.13 m increases from ≲ 0.1 to ~0.7 as 𝑉𝑝𝑙 decreases from 10−7 m/s to 10−9 

m/s. (b) The same as in (a) but for the approximation solution of 𝛿 (equation (20)). The blue dots 

show that 𝛿 decreases from ~𝜋/2 to ~0 as 𝑉𝑝𝑙 decreases from 10−7 m/s to 10−9 m/s. 

 


